1
|
Narro-Serrano J, Marhuenda-Egea FC. Diagnosis, Severity, and Prognosis from Potential Biomarkers of COVID-19 in Urine: A Review of Clinical and Omics Results. Metabolites 2024; 14:724. [PMID: 39728505 DOI: 10.3390/metabo14120724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has spurred an extraordinary scientific effort to better understand the disease's pathophysiology and develop diagnostic and prognostic tools to guide more precise and effective clinical management. Among the biological samples analyzed for biomarker identification, urine stands out due to its low risk of infection, non-invasive collection, and suitability for frequent, large-volume sampling. Integrating data from omics studies with standard biochemical analyses offers a deeper and more comprehensive understanding of COVID-19. This review aims to provide a detailed summary of studies published to date that have applied omics and clinical analyses on urine samples to identify potential biomarkers for COVID-19. In July 2024, an advanced search was conducted in Web of Science using the query: "covid* (Topic) AND urine (Topic) AND metabol* (Topic)". The search included results published up to 14 October 2024. The studies retrieved from this digital search were evaluated through a two-step screening process: first by reviewing titles and abstracts for eligibility, and then by retrieving and assessing the full texts of articles that met the specific criteria. The initial search retrieved 913 studies, of which 45 articles were ultimately included in this review. The most robust biomarkers identified include kynurenine, neopterin, total proteins, red blood cells, ACE2, citric acid, ketone bodies, hypoxanthine, amino acids, and glucose. The biological causes underlying these alterations reflect the multisystemic impact of COVID-19, highlighting key processes such as systemic inflammation, renal dysfunction, critical hypoxia, and metabolic stress.
Collapse
Affiliation(s)
| | - Frutos Carlos Marhuenda-Egea
- Department of Biochemistry and Molecular Biology and Soil Science and Agricultural Chemistry, University of Alicante, 03690 Alicante, Spain
| |
Collapse
|
2
|
Lima V, Morais STB, Ferreira VG, Almeida MB, Silva MPB, de A. Lopes T, de Oliveira JM, Raimundo JRS, Furtado DZS, Fonseca FLA, Oliveira RV, Cardoso DR, Carrilho E, Assunção NA. Multiplatform Metabolomics: Enhancing the Severity Risk Prognosis of SARS-CoV-2 Infection. ACS OMEGA 2024; 9:45746-45758. [PMID: 39583673 PMCID: PMC11579725 DOI: 10.1021/acsomega.4c02557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/26/2024]
Abstract
Concerns about the SARS-CoV-2 outbreak (COVID-19) continue to persist even years later, with the emergence of new variants and the risk of disease severity. Common clinical symptoms, like cough, fever, and respiratory symptoms, characterize the noncritical patients, classifying them from mild to moderate. In a more severe and complex scenario, the virus infection can affect vital organs, resulting, for instance, in pneumonia and impaired kidney and heart function. However, it is well-known that subclinical symptoms at a metabolic level can be observed previously but require a proper diagnosis because viral replication on the host leaves a track with a different profile depending on the severity of the illness. Metabolomic profiles of mild, moderate, and severe COVID-19 patients were obtained by multiple platforms (LC-HRMS and MALDI-MS), increasing the chance to elucidate a prognosis for severity risk. A strong link was discovered between phenylalanine metabolism and increased COVID-19 severity symptoms, a pathway linked to cardiac and neurological consequences. Glycerophospholipids and sphingolipid metabolisms were also dysregulated linearly with the increasing symptom severity, which can be related to virus proliferation, immune system avoidance, and apoptosis escaping. Our data, endorsed by other literature, strengthens the notion that these pathways might play a vital role in a patient's prognosis.
Collapse
Affiliation(s)
- Vinicius
S. Lima
- Programa
de Pós-Graduação em Medicina Translacional, Departamento
de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Sinara T. B. Morais
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
| | - Vinicius G. Ferreira
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas 13083-861, Brazil
| | - Mariana B. Almeida
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas 13083-861, Brazil
| | - Manuel Pedro Barros Silva
- Programa
de Pós-Graduação em Medicina Translacional, Departamento
de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Thais de A. Lopes
- Departamento
de Química, Universidade Federal
de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Juliana M. de Oliveira
- Departamento
de Química, Universidade Federal
de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | | | - Danielle Z. S. Furtado
- Programa
de Pós-Graduação em Medicina Translacional, Departamento
de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Fernando L. A. Fonseca
- Faculdade
de Medicina do ABC, Santo André, São Paulo 09060-870, Brazil
- Departamento
de Química, Universidade Federal
de São Paulo, São
Paulo 05508-070, Brazil
| | - Regina V. Oliveira
- Departamento
de Química, Universidade Federal
de São Carlos, São Carlos, São Paulo 13565-905, Brazil
| | - Daniel R. Cardoso
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
| | - Emanuel Carrilho
- Instituto
de Química de São Carlos, Universidade de São Paulo, São Carlos 13566-590, Brazil
- Instituto
Nacional de Ciência e Tecnologia de Bioanalítica, INCTBio, Campinas 13083-861, Brazil
| | - Nilson A. Assunção
- Programa
de Pós-Graduação em Medicina Translacional, Departamento
de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
- Departamento
de Química, Universidade Federal
de São Paulo, São
Paulo 05508-070, Brazil
| |
Collapse
|
3
|
Robertson JL, Sayed Issa A, Senger RS. Perspective: Raman spectroscopy for detection and management of diseases affecting the nervous system. Front Vet Sci 2024; 11:1468326. [PMID: 39497742 PMCID: PMC11533901 DOI: 10.3389/fvets.2024.1468326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/27/2024] [Indexed: 11/07/2024] Open
Abstract
Raman spectroscopy (RS) is used increasingly for disease detection, including diseases of the nervous system (CNS). This Perspective presents RS basics and how it has been applied to disease detection. Research that focused on using a novel Raman-based technology-Rametrix® Molecular Urinalysis (RMU)-for systemic disease detection is presented, demonstrated by an example of how the RS/RMU technology could be used for detection and management of diseases of the CNS in companion animals.
Collapse
Affiliation(s)
- John L. Robertson
- Department of Biomedical Engineering, Virginia Tech, Blacksburg, VA, United States
- Rametrix Technologies, Inc., Blacksburg, VA, United States
- Veterinary and Comparative Neurooncology Laboratory, Virginia Tech, Blacksburg, VA, United States
| | - Amr Sayed Issa
- Rametrix Technologies, Inc., Blacksburg, VA, United States
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Ryan S. Senger
- Rametrix Technologies, Inc., Blacksburg, VA, United States
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
4
|
Robertson JL, Dervisis N, Rossmeisl J, Nightengale M, Fields D, Dedrick C, Ngo L, Issa AS, Guruli G, Orlando G, Senger RS. Cancer detection in dogs using rapid Raman molecular urinalysis. Front Vet Sci 2024; 11:1328058. [PMID: 38384948 PMCID: PMC10879274 DOI: 10.3389/fvets.2024.1328058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction The presence of cancer in dogs was detected by Raman spectroscopy of urine samples and chemometric analysis of spectroscopic data. The procedure created a multimolecular spectral fingerprint with hundreds of features related directly to the chemical composition of the urine specimen. These were then used to detect the broad presence of cancer in dog urine as well as the specific presence of lymphoma, urothelial carcinoma, osteosarcoma, and mast cell tumor. Methods Urine samples were collected via voiding, cystocentesis, or catheterization from 89 dogs with no history or evidence of neoplastic disease, 100 dogs diagnosed with cancer, and 16 dogs diagnosed with non-neoplastic urinary tract or renal disease. Raman spectra were obtained of the unprocessed bulk liquid urine samples and were analyzed by ISREA, principal component analysis (PCA), and discriminant analysis of principal components (DAPC) were applied using the Rametrix®Toolbox software. Results and discussion The procedure identified a spectral fingerprint for cancer in canine urine, resulting in a urine screening test with 92.7% overall accuracy for a cancer vs. cancer-free designation. The urine screen performed with 94.0% sensitivity, 90.5% specificity, 94.5% positive predictive value (PPV), 89.6% negative predictive value (NPV), 9.9 positive likelihood ratio (LR+), and 0.067 negative likelihood ratio (LR-). Raman bands responsible for discerning cancer were extracted from the analysis and biomolecular associations were obtained. The urine screen was more effective in distinguishing urothelial carcinoma from the other cancers mentioned above. Detection and classification of cancer in dogs using a simple, non-invasive, rapid urine screen (as compared to liquid biopsies using peripheral blood samples) is a critical advancement in case management and treatment, especially in breeds predisposed to specific types of cancer.
Collapse
Affiliation(s)
- John L. Robertson
- Department of Biomedical Engineering and Mechanics, College of Engineering, Virginia Tech, Blacksburg, VA, United States
- Rametrix Technologies Inc., Blacksburg, VA, United States
| | - Nikolas Dervisis
- Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - John Rossmeisl
- Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Marlie Nightengale
- Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Daniel Fields
- Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Cameron Dedrick
- Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Lacey Ngo
- Department of Biomedical Engineering and Mechanics, College of Engineering, Virginia Tech, Blacksburg, VA, United States
| | - Amr Sayed Issa
- Rametrix Technologies Inc., Blacksburg, VA, United States
| | - Georgi Guruli
- Department of Surgery, VCU Health, Richmond, VA, United States
| | - Giuseppe Orlando
- Department of General Surgery, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| | - Ryan S. Senger
- Rametrix Technologies Inc., Blacksburg, VA, United States
- Department of Biological Systems Engineering, College of Agriculture & Life Sciences and College of Engineering, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
5
|
Malenfant J, Kuster L, Gagné Y, Signo K, Denis M, Canesi S, Frenette M. Towards routine organic structure determination using Raman microscopy. Chem Sci 2024; 15:701-709. [PMID: 38179529 PMCID: PMC10763559 DOI: 10.1039/d3sc02954a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024] Open
Abstract
Raman microscopy can reveal a compound-specific vibrational "fingerprint" from micrograms of material with no sample preparation. We expect this increasingly available instrumentation to routinely assist synthetic chemists in structure determination; however, interpreting the information-dense spectra can be challenging for unreported compounds. Appropriate theoretical calculations using the highly efficient r2SCAN-3c method can accurately predict peak positions but are less precise in matching peak heights. To limit incorrect biases while comparing experimental and theoretical spectra, we introduce a user-friendly software that gives a match score to assist with structure determination. The capabilities and limitations of this approach are demonstrated for several proof-of-concept examples including the characterization of intermediates in the total synthesis of deoxyaspidodispermine.
Collapse
Affiliation(s)
- Jason Malenfant
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montreal Quebec H3C 3P8 Canada
| | - Lucille Kuster
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montreal Quebec H3C 3P8 Canada
| | - Yohann Gagné
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montreal Quebec H3C 3P8 Canada
| | - Kouassi Signo
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montreal Quebec H3C 3P8 Canada
| | - Maxime Denis
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montreal Quebec H3C 3P8 Canada
| | - Sylvain Canesi
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montreal Quebec H3C 3P8 Canada
| | - Mathieu Frenette
- Department of Chemistry, NanoQAM, Centre Québécois des Matériaux Fonctionnels (CQMF), Université du Québec à Montréal Montreal Quebec H3C 3P8 Canada
| |
Collapse
|
6
|
Goulart ACC, Zângaro RA, Carvalho HC, Lednev IK, Silveira L. Diagnosing COVID-19 in nasopharyngeal secretion through Raman spectroscopy: a feasibility study. Lasers Med Sci 2023; 38:210. [PMID: 37698685 DOI: 10.1007/s10103-023-03871-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 08/29/2023] [Indexed: 09/13/2023]
Abstract
Since the beginning of the COVID-19 pandemic, the scientific community has sought to develop fast and accurate techniques for detecting the SARS-CoV-2 virus. Raman spectroscopy is a promising technique for diagnosing COVID-19 through serum samples. In the present study, the diagnosis of COVID-19 through nasopharyngeal secretion has been proposed. Raman spectra from nasopharyngeal secretion samples (15 Control, negative and 12 COVID-19, positive, assayed by immunofluorescence antigen test) were obtained in triplicate in a dispersive Raman spectrometer (830 nm, 350 mW), accounting for a total of 80 spectra. Using principal component analysis (PCA) the main spectral differences between the Control and COVID-19 samples were attributed to N and S proteins from the virus in the COVID-19 group. Features assigned to mucin (serine, threonine and proline amino acids) were observed in the Control group. A binary model based on partial least squares discriminant analysis (PLS-DA) differentiated COVID-19 versus Control samples with accuracy of 91%, sensitivity of 80% and specificity of 100%. Raman spectroscopy has a great potential for becoming a technique of choice for rapid and label-free evaluation of nasopharyngeal secretion for COVID-19 diagnosis.
Collapse
Affiliation(s)
| | - Renato Amaro Zângaro
- Universidade Anhembi Morumbi - UAM, R. Casa do Ator, 275, São Paulo, SP, 04546-001, Brazil
- Center for Innovation, Technology and Education - CITÉ, Parque Tecnológico de São José dos Campos, Estr. Dr. Altino Bondensan, 500, São José dos Campos, SP, 12247-016, Brazil
| | - Henrique Cunha Carvalho
- Center for Innovation, Technology and Education - CITÉ, Parque Tecnológico de São José dos Campos, Estr. Dr. Altino Bondensan, 500, São José dos Campos, SP, 12247-016, Brazil
- Federal University of Technology - Paraná - UTFPR, Via Marginal Rosalina Maria dos Santos, 1233, Bl. B, Campo Mourão, PR, 87301-899, Brazil
| | - Igor K Lednev
- Department of Chemistry, University at Albany - SUNY, 1400 Washington Av., Albany, NY, 12222, USA
| | - Landulfo Silveira
- Universidade Anhembi Morumbi - UAM, R. Casa do Ator, 275, São Paulo, SP, 04546-001, Brazil.
- Center for Innovation, Technology and Education - CITÉ, Parque Tecnológico de São José dos Campos, Estr. Dr. Altino Bondensan, 500, São José dos Campos, SP, 12247-016, Brazil.
| |
Collapse
|
7
|
Morello M, Amoroso D, Losacco F, Viscovo M, Pieri M, Bernardini S, Adorno G. Urine Parameters in Patients with COVID-19 Infection. Life (Basel) 2023; 13:1640. [PMID: 37629497 PMCID: PMC10455209 DOI: 10.3390/life13081640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
A urine test permits the measure of several urinary markers. This is a non-invasive method for early monitoring of potential kidney damage. In COVID-19 patients, alterations of urinary markers were observed. This review aims to evaluate the utility of urinalysis in predicting the severity of COVID-19. A total of 68 articles obtained from PubMed studies reported that (i) the severity of disease was related to haematuria and proteinuria and that (ii) typical alterations of the urinary sediment were noticed in COVID-19-associated AKI patients. This review emphasizes that urinalysis and microscopic examination support clinicians in diagnosing and predicting COVID-19 severity.
Collapse
Affiliation(s)
- Maria Morello
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (F.L.); (M.V.); (M.P.); (S.B.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy;
- Department of Experimental Medicine, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Dominga Amoroso
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (F.L.); (M.V.); (M.P.); (S.B.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy;
| | - Felicia Losacco
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (F.L.); (M.V.); (M.P.); (S.B.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy;
| | - Marco Viscovo
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (F.L.); (M.V.); (M.P.); (S.B.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy;
| | - Massimo Pieri
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (F.L.); (M.V.); (M.P.); (S.B.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy;
- Department of Experimental Medicine, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Sergio Bernardini
- Clinical Biochemistry Department of Laboratory Medicine, Division of Proteins, University Hospital (PTV), 00133 Rome, Italy; (F.L.); (M.V.); (M.P.); (S.B.)
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy;
- Department of Experimental Medicine, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy
| | - Gaspare Adorno
- Clinical Pathology and Clinical Biochemistry, Graduate School, Faculty of Medicine, University of Tor Vergata, 00133 Rome, Italy;
- Department of Biomedicine and Prevention, University of Rome, 00133 Rome, Italy
| |
Collapse
|
8
|
Binetti J, Real M, Renzulli M, Bertran L, Riesco D, Perpiñan C, Mohedano A, Segundo RS, Ortiz M, Porras JA, Pineda DR, Auguet T. Clinical and Biomarker Profile Responses to Rehabilitation Treatment in Patients with Long COVID Characterized by Chronic Fatigue. Viruses 2023; 15:1452. [PMID: 37515140 PMCID: PMC10384083 DOI: 10.3390/v15071452] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Long COVID (LC) syndrome is a complex multiorgan symptom that persists beyond >12 weeks after SARS-CoV-2 infection. The most frequently associated symptom is fatigue. Physical activity and exercise are recommended, although specific studies are lacking. The objectives of the present work are to analyze the impact of a supervised exercise program on the clinical evolution of LC with fatigue patients and to identify whether certain circulating biomarkers could predict the response to rehabilitation. The rehabilitation treatment response was analyzed in 14 women diagnosed with LC and fatigue, based on the changes in the 6 min walk test and Borg/Fatigue Impact scales. Patients who showed improvement in the meters walked were considered "responders" to the therapy. A total of 65% of patients responded to the exercise program, with an improvement in the meters walked and in oxygen saturation, with stability in the percentage of meters walked. Participants with obesity and those double-vaccinated against SARS-CoV-2 presented a lower degree of fatigue. LC patients presented a favorable response to a supervised exercise program. Differences in creatinine and protein levels were observed between rehabilitation therapy "responders" and "nonresponders". A good state of protein nutrition was related to a better rehabilitation response. The results are promising regarding possible predictive biomarkers of rehabilitation response, such as creatinine.
Collapse
Affiliation(s)
- Jessica Binetti
- GEMMAIR Research Group, Department of Medicine and Surgery, Pere Virgili Institute for Health Research (IISPV), Rovira i Virgili University (URV), 43007 Tarragona, Spain; (J.B.); (L.B.); (D.R.); (J.A.P.)
- Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007 Tarragona, Spain; (M.R.); (A.M.)
| | - Monica Real
- Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007 Tarragona, Spain; (M.R.); (A.M.)
| | - Marcela Renzulli
- Rehabilitation Unit, Joan XXIII University Hospital of Tarragona, 43007 Tarragona, Spain; (M.R.); (R.S.S.); (M.O.); (D.R.P.)
| | - Laia Bertran
- GEMMAIR Research Group, Department of Medicine and Surgery, Pere Virgili Institute for Health Research (IISPV), Rovira i Virgili University (URV), 43007 Tarragona, Spain; (J.B.); (L.B.); (D.R.); (J.A.P.)
| | - David Riesco
- GEMMAIR Research Group, Department of Medicine and Surgery, Pere Virgili Institute for Health Research (IISPV), Rovira i Virgili University (URV), 43007 Tarragona, Spain; (J.B.); (L.B.); (D.R.); (J.A.P.)
- Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007 Tarragona, Spain; (M.R.); (A.M.)
| | | | - Alba Mohedano
- Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007 Tarragona, Spain; (M.R.); (A.M.)
| | - Rosa San Segundo
- Rehabilitation Unit, Joan XXIII University Hospital of Tarragona, 43007 Tarragona, Spain; (M.R.); (R.S.S.); (M.O.); (D.R.P.)
- Neurobehavioral and Health Research Group (NEUROLAB), Rovira i Virgili University (URV), 43007 Tarragona, Spain
| | - Marta Ortiz
- Rehabilitation Unit, Joan XXIII University Hospital of Tarragona, 43007 Tarragona, Spain; (M.R.); (R.S.S.); (M.O.); (D.R.P.)
| | - José Antonio Porras
- GEMMAIR Research Group, Department of Medicine and Surgery, Pere Virgili Institute for Health Research (IISPV), Rovira i Virgili University (URV), 43007 Tarragona, Spain; (J.B.); (L.B.); (D.R.); (J.A.P.)
- Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007 Tarragona, Spain; (M.R.); (A.M.)
| | - Daniela Rosanna Pineda
- Rehabilitation Unit, Joan XXIII University Hospital of Tarragona, 43007 Tarragona, Spain; (M.R.); (R.S.S.); (M.O.); (D.R.P.)
| | - Teresa Auguet
- GEMMAIR Research Group, Department of Medicine and Surgery, Pere Virgili Institute for Health Research (IISPV), Rovira i Virgili University (URV), 43007 Tarragona, Spain; (J.B.); (L.B.); (D.R.); (J.A.P.)
- Internal Medicine Unit, Joan XXIII University Hospital of Tarragona, 43007 Tarragona, Spain; (M.R.); (A.M.)
| |
Collapse
|
9
|
Zhang Q, Zhao L, Qi G, Zhang X, Tian C. Raman and fourier transform infrared spectroscopy techniques for detection of coronavirus (COVID-19): a mini review. Front Chem 2023; 11:1193030. [PMID: 37273513 PMCID: PMC10232992 DOI: 10.3389/fchem.2023.1193030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/01/2023] [Indexed: 06/06/2023] Open
Abstract
Coronavirus pandemic has been a huge jeopardy to human health in various systems since it outbroke, early detection and prevention of further escalation has become a priority. The current popular approach is to collect samples using the nasopharyngeal swab method and then test for RNA using the real-time polymerase chain reaction, which suffers from false-positive results and a longer diagnostic time scale. Alternatively, various optical techniques, namely, optical sensing, spectroscopy, and imaging shows a great promise in virus detection. In this mini review, we briefly summarize the development progress of vibrational spectroscopy techniques and its applications in the detection of SARS-CoV family. Vibrational spectroscopy techniques such as Raman spectroscopy and infrared spectroscopy received increasing appreciation in bio-analysis for their speediness, accuracy and cost-effectiveness in detection of SARS-CoV. Further, an account of emerging photonics technologies of SARS-CoV-2 detection and future possibilities is also explained. The progress in the field of vibrational spectroscopy techniques for virus detection unambiguously show a great promise in the development of rapid photonics-based devices for COVID-19 detection.
Collapse
Affiliation(s)
- Qiuqi Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Lei Zhao
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Guoliang Qi
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Xiaoru Zhang
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis and College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Cheng Tian
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| |
Collapse
|
10
|
Bruzzone C, Conde R, Embade N, Mato JM, Millet O. Metabolomics as a powerful tool for diagnostic, pronostic and drug intervention analysis in COVID-19. Front Mol Biosci 2023; 10:1111482. [PMID: 36876049 PMCID: PMC9975567 DOI: 10.3389/fmolb.2023.1111482] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
COVID-19 currently represents one of the major health challenges worldwide. Albeit its infectious character, with onset affectation mainly at the respiratory track, it is clear that the pathophysiology of COVID-19 has a systemic character, ultimately affecting many organs. This feature enables the possibility of investigating SARS-CoV-2 infection using multi-omic techniques, including metabolomic studies by chromatography coupled to mass spectrometry or by nuclear magnetic resonance (NMR) spectroscopy. Here we review the extensive literature on metabolomics in COVID-19, that unraveled many aspects of the disease including: a characteristic metabotipic signature associated to COVID-19, discrimination of patients according to severity, effect of drugs and vaccination treatments and the characterization of the natural history of the metabolic evolution associated to the disease, from the infection onset to full recovery or long-term and long sequelae of COVID.
Collapse
Affiliation(s)
- Chiara Bruzzone
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bilbao, Bizkaia, Spain
| | - Ricardo Conde
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bilbao, Bizkaia, Spain
| | - Nieves Embade
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bilbao, Bizkaia, Spain
| | - José M. Mato
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bilbao, Bizkaia, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bilbao, Bizkaia, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
11
|
Kong X, Liang H, An W, Bai S, Miao Y, Qiang J, Wang H, Zhou Y, Zhang Q. Rapid identification of early renal damage in asymptomatic hyperuricemia patients based on urine Raman spectroscopy and bioinformatics analysis. Front Chem 2023; 11:1045697. [PMID: 36762194 PMCID: PMC9905717 DOI: 10.3389/fchem.2023.1045697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Objective: The issue of when to start treatment in patients with hyperuricemia (HUA) without gout and chronic kidney disease (CKD) is both important and controversial. In this study, Raman spectroscopy (RS) was used to analyze urine samples, and key genes expressed differentially CKD were identified using bioinformatics. The biological functions and regulatory pathways of these key genes were preliminarily analyzed, and the relationship between them as well as the heterogeneity of the urine components of HUA was evaluated. This study provides new ideas for the rapid evaluation of renal function in patients with HUA and CKD, while providing an important reference for the new treatment strategy of HUA disease. Methods: A physically examined population in 2021 was recruited as the research subjects. There were 10 cases with normal blood uric acid level and 31 cases with asymptomatic HUA diagnosis. The general clinical data were collected and the urine samples were analyzed by Raman spectroscopy. An identification model was also established by using the multidimensional multivariate method of orthogonal partial least squares discriminant analysis (OPLS-DA) model for statistical analysis of the data, key genes associated with CKD were identified using the Gene Expression Omnibus (GEO) database, and key biological pathways associated with renal function damage in CKD patients with HUA were analyzed. Results: The Raman spectra showed significant differences in the levels of uric acid (640 cm-1), urea, creatinine (1,608, 1,706 cm-1), proteins/amino acids (642, 828, 1,556, 1,585, 1,587, 1,596, 1,603, 1,615 cm-1), and ketone body (1,643 cm-1) (p < 0.05). The top 10 differentially expressed genes (DEGs) associated with CKD (ALB, MYC, IL10, FOS, TOP2A, PLG, REN, FGA, CCNA2, and BUB1) were identified. Compared with the differential peak positions analyzed by the OPLS-DA model, it was found that the peak positions of glutathione, tryptophan and tyrosine may be important markers for the diagnosis and progression of CKD. Conclusion: The progression of CKD was related to the expression of the ALB, MYC, IL10, PLG, REN, and FGA genes. Patients with HUA may have abnormalities in glutathione, tryptophan, tyrosine, and energy metabolism. The application of Raman spectroscopy to analyze urine samples and interpret the heterogeneity of the internal environment of asymptomatic HUA patients can be combined with the OPLS-DA model to mine the massive clinical and biochemical examination information on HUA patients. The results can also provide a reference for identifying the right time for intervention for uric acid as well as assist the early detection of changes in the internal environment of the body. Finally, this approach provides a useful technical supplement for exploring a low-cost, rapid evaluation and improving the timeliness of screening. Precise intervention of abnormal signal levels of internal environment and energy metabolism may be a potential way to delay renal injury in patients with HUA.
Collapse
Affiliation(s)
- Xiaodong Kong
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Haoyue Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Wei An
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Sheng Bai
- Department of Ultrasound, Xiangya Hospital Central South University, Changsha, Hunan, China
| | | | - Junlian Qiang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China
| | - Haoyu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China,*Correspondence: Qiang Zhang, ; Yuan Zhou,
| | - Qiang Zhang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin Geriatrics Institute, Tianjin, China,*Correspondence: Qiang Zhang, ; Yuan Zhou,
| |
Collapse
|