1
|
Zveushe OK, Nkoh JN, de Dios VR, Manjoro TT, Suanon F, Zhang H, Chen W, Lin L, Zhou L, Zhang W, Sesu F, Li J, Han Y, Dong F. Enhancing hexavalent chromium stable reduction via sodium alginate encapsulation of newly isolated fungal and bacterial consortia. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136994. [PMID: 39740549 DOI: 10.1016/j.jhazmat.2024.136994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Chromium [Cr(VI)]-induced soil pollution is a serious environmental threat. Bioremediation utilizes specific microbes capable of transforming Cr(VI) into the less toxic Cr(III), however, microbial efficacy can be inhibited by elevated pollutant concentrations and competition from indigenous microbial communities. Thus, this study explored the potential of single and multi-domain microbial consortia encapsulated in alginate to overcome these shortcomings. The results revealed that (i) fungal treatments demonstrated an elevated tolerance and reduction ability for Cr(VI) compared to bacterial treatments; (ii) combined application of fungi and bacteria was more effective in degrading Cr(VI) in soil compared to the individual treatments; (iii) microbial encapsulation improved microbial response to Cr(VI) toxicity thereby increasing their lifespan and Cr(VI) degrading ability; (iv) microbial consortia significantly decreased soil pH, electrical conductivity, and redox potential while simultaneously increasing soil enzyme activities (urease, sucrase, phosphatase, catalase, and laccase); and (v) The improved tolerance in the inoculated treatment resulted in increased microbial diversity and a substantial variation in microbial community structures, with 10,753 bacterial and 2697 fungal amplicon sequence variants identified across the treatment groups. This study underscores the critical importance of microbial diversity in bioremediation, emphasizing that encapsulation with the right material could improve the effectiveness of environmental remediation strategies.
Collapse
Affiliation(s)
- Obey Kudakwashe Zveushe
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jackson Nkoh Nkoh
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Víctor Resco de Dios
- Joint Research Unit CTFC-AGROTECNIO-CERCA Center, Lleida 25198, Spain; Department of Forest and Agricultural Sciences and Engineering, University of Lleida, Lleida 25198, Spain
| | - Tendai Terence Manjoro
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Fidèle Suanon
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hengxing Zhang
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wenfang Chen
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lin Lin
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lei Zhou
- Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang 621010, China
| | - Wei Zhang
- Center of Analysis and Testing, Southwest University of Science and Technology, Mianyang 621010, China
| | - Frank Sesu
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jin Li
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ying Han
- School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Faqin Dong
- School of Environment and Resource, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China; Key Laboratory of Solid Waste Treatment and Resource Recycle, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China.
| |
Collapse
|
2
|
Xia Y, Wen Y, Yang Y, Song X, Wang Y, Zhang Z. Exploring bio-remediation strategies by a novel bacteria Micrococcus sp. strain HX in Cr(VI)-contaminated groundwater from long-term industrial polluted. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117474. [PMID: 39644576 DOI: 10.1016/j.ecoenv.2024.117474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Hexavalent chromium (Cr(VI)) has emerged as a contaminant of heavy metal, owing to its wide use in industry. This study focuses on elucidating the interaction between microbial communities and environmental parameters in Cr(VI)-contaminated groundwater near a factory in Henan Province, and evaluating the bio-remediation potential of microorganisms toward Cr(VI) reduction. The highest concentration of Cr(VI) in the groundwater is 208.08 mg/L. The dominant microbes were Proteobacteria and Bacteroidota, closely positively related to Cr(VI) and SO42-. Many of these genus have been proven to be chromium tolerant or have the ability to reduce Cr(VI). Two strains, Micrococcus sp. HX and Bacillus sp. HX-2, were isolated from contaminated groundwater, and Micrococcus sp. HX was used for the first time to reduce Cr(VI) in groundwater. The reduced ability of HX reached 90.18 % at a Cr(VI) concentration of 100 mg/L, while HX-2 achieved a reduction capacity of 63.8 %. Micrococcus sp. HX shows the best reduction efficiency in alkaline environments (ph=8), which is close to the tannery industry wastewater. The reduction efficiency by Micrococcus sp. HX reached 67.26 % in groundwater samples (Cr(VI)= 26.08 mg/L). Transcriptome analyses revealed oxidoreductase activity, ATP binding and the NAD(P) binding region protein-related gene expression were up-regulated. Binding reduction experiments indicated that most of the Cr(III) was detected extracellular, which suggests that the reduction of Cr(VI) by HX was mainly extracellular enzyme-catalyzed.
Collapse
Affiliation(s)
- Yu Xia
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China; Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang University, Shenyang 110044, China; Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, China.
| | - Yuesuo Yang
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Yunlong Wang
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Zhipeng Zhang
- Sichuan Geological Environment Survey and Research Center, Sichuan 610000, China
| |
Collapse
|
3
|
Liang S, Ling M, Li L, Gan S, Shang C. Transcriptome Sequencing of Bacillus sp. TTMP20 and Analysis of the Effect of BDH Gene on Tetramethylpyrazine Synthesis. Curr Microbiol 2024; 82:33. [PMID: 39653804 DOI: 10.1007/s00284-024-03990-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/12/2024] [Indexed: 01/12/2025]
Abstract
Bacillus sp. TTMP20 has high tetramethylpyrazine (TTMP) yield. However, the mechanism of TTMP production in this strain is unclear at present, which limits the modification for strain TTMP20. In this study, key metabolic pathways related to TTMP synthesis were identified, which included glycolytic pathway, tricarboxylic acid cycle and nitrogen metabolism pathway. Moreover, transgenic Bacillus sp. TTMP20 with recombinant vector PHY-300PLK-BDH was constructed. 2,3-butanediol dehydrogenase gene (BDH) overexpression considerably reduced TTMP biosynthesis. This study will supply new insight into the regulation of TTMP biosynthesis at key enzyme gene level.
Collapse
Affiliation(s)
- Shiyu Liang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), No. 1, Yanzhong Road, Yanshan District, Guilin, 541006, Guangxi, China
| | - Mengxiang Ling
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), No. 1, Yanzhong Road, Yanshan District, Guilin, 541006, Guangxi, China
| | - Lihua Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), No. 1, Yanzhong Road, Yanshan District, Guilin, 541006, Guangxi, China
| | - Shanling Gan
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), No. 1, Yanzhong Road, Yanshan District, Guilin, 541006, Guangxi, China.
| | - Changhua Shang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education & Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), No. 1, Yanzhong Road, Yanshan District, Guilin, 541006, Guangxi, China.
| |
Collapse
|
4
|
Arisah FM, Ramli N, Ariffin H, Maeda T, Farid MAA, Yusoff MZM. Novel Insights into Cr(VI)-Induced Rhamnolipid Production and Gene Expression in Pseudomonas aeruginosa RW9 for Potential Bioremediation. J Microbiol Biotechnol 2024; 34:1877-1889. [PMID: 39343606 PMCID: PMC11473487 DOI: 10.4014/jmb.2406.06034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 06/29/2024] [Accepted: 07/09/2024] [Indexed: 10/01/2024]
Abstract
Rhamnolipid (RL) is renowned for its efficacy in bioremediating several types of organic and metal contaminants. Nevertheless, there has been a scarcity of studies specifically examining the relationship between this substance and metals, especially in terms of their impact on RL formation and the underlying interaction processes. This study addresses this gap by investigating the RL mechanism in Cr (VI) remediation and evaluating its effect on RL production in Pseudomonas aeruginosa RW9. In this study, P. aeruginosa RW9 was grown in the presence of 10 mg l-1 Cr (VI). We monitored RL yield, congeners distribution, and their ratios, as well as the transcriptional expression of the RL-encoded genes: rhlA, rhlB, and rhlC. Our results revealed that RL effectively reduced Cr (VI) to Cr (III), with RL yield increasing threefold, although with a slight delay in synthesis compared to control cells. Furthermore, Cr (VI) exposure induced the transcriptional expression of the targeted genes, leading to a significant increase in di-RL production. The findings confirm that Cr (VI) significantly impacts RL production, altering its structural compositions and enhancing the transcriptional expression of RL-encoded genes in P. aeruginosa RW9. This study represents a novel exploration of Cr (VI)'s influence on RL production, providing valuable insights into the biochemical pathways involved and supporting the potential of RL in Cr (VI) bioremediation.
Collapse
Affiliation(s)
- Fatini Mat Arisah
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norhayati Ramli
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Hidayah Ariffin
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Toshinari Maeda
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - Mohammed Abdillah Ahmad Farid
- Department of Biological Functions Engineering, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu-ku, Kitakyushu 808-0196, Japan
| | - Mohd Zulkhairi Mohd Yusoff
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Li Y, Shi X, Chen Y, Luo S, Qin Z, Chen S, Wu Y, Yu F. Quantitative proteomic analysis of the mechanism of Cd toxicity in Enterobacter sp. FM-1: Comparison of different growth stages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122513. [PMID: 37673320 DOI: 10.1016/j.envpol.2023.122513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/31/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
Enterobacter sp. are widely used in bioremediation, but the mechanism of Cadmium (Cd) toxicity in Enterobacter sp. has been poorly studied. In the present study, we determined the tolerance of Enterobacter sp. FM-1 to Cd by analyzing the physiological and biochemical responses of FM-1 induced under Cd stress. Differentially expressed proteins (DEPs) under exposure to different Cd environments were analyzed by 4D-label-free proteomics to provide a comprehensive understanding of Cd toxicity in FM-1. The greatest total number of DEPs, 1148, was found in the High concentration vs. Control comparison group at 10 h. When protein expression was compared after different incubation times, FM-1 showed the highest Cd tolerance at 48 h. Additionally, with an increasing incubation time, different comparison groups gradually began to show similar growth patterns, which was reflected in the GO enrichment analysis. Notably, only 815 proteins were identified in the High concentration vs. Control group, and KEGG enrichment analysis revealed that these proteins were significantly enriched in the pyruvate metabolism, oxidative phosphorylation, peroxisome, glyoxylate and dicarboxylate metabolism, and citrate cycle pathways. These results suggested that an increased incubation time allows FM-1 adapt and survive in an environment with Cd toxicity, and protein expression significantly increased in response to oxidative stress in a Cd-contaminated environment during the pre-growth period. This study provides new perspectives on bacterial participation in bioremediation and expands our understanding of the mechanism of bacterial resistance under Cd exposure.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Xinwei Shi
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Yuyuan Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Shiyu Luo
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Zhongkai Qin
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Shuairen Chen
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Yamei Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Fangming Yu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China; Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin, Guangxi Normal University, 541004, Guilin, China; College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China.
| |
Collapse
|
6
|
Salam LB, Obayori OS, Ilori MO, Amund OO. Chromium contamination accentuates changes in the microbiome and heavy metal resistome of a tropical agricultural soil. World J Microbiol Biotechnol 2023; 39:228. [PMID: 37338635 DOI: 10.1007/s11274-023-03681-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/15/2023] [Indexed: 06/21/2023]
Abstract
The impacts of hexavalent chromium (Cr) contamination on the microbiome, soil physicochemistry, and heavy metal resistome of a tropical agricultural soil were evaluated for 6 weeks in field-moist microcosms consisting of a Cr-inundated agricultural soil (SL9) and an untreated control (SL7). The physicochemistry of the two microcosms revealed a diminution in the total organic matter content and a significant dip in macronutrients phosphorus, potassium, and nitrogen concentration in the SL9 microcosm. Heavy metals analysis revealed the detection of seven heavy metals (Zn, Cu, Fe, Cd, Se, Pb, Cr) in the agricultural soil (SL7), whose concentrations drastically reduced in the SL9 microcosm. Illumina shotgun sequencing of the DNA extracted from the two microcosms showed the preponderance of the phyla, classes, genera, and species of Actinobacteria (33.11%), Actinobacteria_class (38.20%), Candidatus Saccharimonas (11.67%), and Candidatus Saccharimonas aalborgensis (19.70%) in SL7, and Proteobacteria (47.52%), Betaproteobacteria (22.88%), Staphylococcus (16.18%), Staphylococcus aureus (9.76%) in SL9, respectively. Functional annotation of the two metagenomes for heavy metal resistance genes revealed diverse heavy metal resistomes involved in the uptake, transport, efflux, and detoxification of various heavy metals. It also revealed the exclusive detection in SL9 metagenome of resistance genes for chromium (chrB, chrF, chrR, nfsA, yieF), cadmium (czcB/czrB, czcD), and iron (fbpB, yqjH, rcnA, fetB, bfrA, fecE) not annotated in SL7 metagenome. The findings from this study revealed that Cr contamination induces significant shifts in the soil microbiome and heavy metal resistome, alters the soil physicochemistry, and facilitates the loss of prominent members of the microbiome not adapted to Cr stress.
Collapse
Affiliation(s)
- Lateef Babatunde Salam
- Department of Biological Sciences, Microbiology unit, Elizade University, Ilara-Mokin, Ondo State, Nigeria.
| | | | - Matthew O Ilori
- Department of Microbiology, University of Lagos, Akoka, Lagos, Nigeria
| | - Olukayode O Amund
- Department of Microbiology, University of Lagos, Akoka, Lagos, Nigeria
| |
Collapse
|
7
|
Sundarraj S, Sudarmani DNP, Samuel P, Sevarkodiyone SP. Bioremediation of hexavalent chromium by transformation of Escherichia coli DH5α with chromate reductase (ChrR) genes of Pseudomonas putida isolated from tannery effluent. J Appl Microbiol 2022; 134:lxac019. [PMID: 36626743 DOI: 10.1093/jambio/lxac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 01/12/2023]
Abstract
AIMS Hexavalent chromium Cr(VI), a toxic heavy metal, is a serious pollutant of tannery effluent, and its accumulation in soil and water causes severe environmental concerns of increasing public health issues. The present study focus on the isolation and identification of chromium-reducing bacteria collected from the tannery industry in Dindigul, Tamil Nadu. Chromium-reducing bacteria Pseudomonas putida were identified by 16S rRNA sequencing followed by BLAST search. The plasmid with Cr(VI) reductase gene was isolated from Pseudomonas putida and transferred to E. coli DH5α for further studies. METHODS AND RESULTS The bacterial cultures were kept under controlled conditions for 72 h to observe the growth rates and bacterial resistance to chromium. When strains wild type and transformant E. coli DH5α were grown in chromium supplemented media revealed significant growth, but strains cured type Pseudomonas putida and E. coli DH5α were minimum growth. The Cr(VI) reduction employed by transformant E. coli DH5α and wild Pseudomonas putida was 42.52 ± 1.48% and 44.46 ± 0.55%, respectively. The culture supernatant of the wild Pseudomonas putida and transformant E. coli DH5α showed an increased reduction of Cr(VI) compared to cell extract supernatant and cell debris due to the extracellular activity of chromium reductase has been responsible for Cr(VI) reduction. Besides, the chromium reductase gene was confirmed in the isolated Pseudomonas putida and transformant E. coli DH5α. CONCLUSIONS Transformant bacteria could employ an alternative method for heavy metal detoxification in contaminated environments like tannery effluent and mining processes.
Collapse
Affiliation(s)
- Shenbagamoorthy Sundarraj
- Centre for Environmental Toxicology and Pharmacology, Department of Zoology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi - 626 124, Virudhunagar District, Tamil Nadu, India
| | - D N P Sudarmani
- Centre for Environmental Toxicology and Pharmacology, Department of Zoology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi - 626 124, Virudhunagar District, Tamil Nadu, India
| | - P Samuel
- Department of Biotechnology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi - 626 124, Virudhunagar District, Tamil Nadu, India
| | - S P Sevarkodiyone
- Centre for Environmental Toxicology and Pharmacology, Department of Zoology, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi - 626 124, Virudhunagar District, Tamil Nadu, India
| |
Collapse
|