1
|
Ridha MAS, Kahlol MK, Al-Hakeim HK. Alterations in trace elements and cation profiles in transfusion-dependent thalassemia patients. Transfus Apher Sci 2024; 63:103954. [PMID: 38851117 DOI: 10.1016/j.transci.2024.103954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/10/2024] [Accepted: 05/18/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Transfusion-dependent thalassemia (TDT) is a severe form of beta-thalassemia, characterized by defective-globin production, resulting in a buildup of unpaired alpha globin chains. Patients with TDT can only survive if they receive safe blood transfusions regularly, which causes iron overload in their blood, which causes a variety of disorders. Cations and trace elements in TDT patients as a drug target deserve more studies. OBJECTIVES In the present study, the cations and some trace elements were studied in TDT patients as a tool to adjust their level in the case of any disturbances. METHODS Serum calcium, magnesium, zinc, copper, and iron were measured spectrophotometrically while manganese and cobalt were measured by flameless atomic absorption spectroscopy in 100 TDT patients and compared with 35 healthy control children. RESULTS Patients with TDT exhibit a notable elevation in blood levels of iron, copper, copper/zinc ratio, and manganese, with a substantial reduction in serum levels of zinc, magnesium, calcium, and cobalt, as compared to the control group. These minerals have diverse associations with clinical data and transfusion frequencies. The receiver operating characteristic (ROC) analysis revealed that the elevated levels of iron, manganese, and calcium exhibit the greatest diagnostic capability, with a sensitivity and specificity of over 80 %, and a Youdin's J value of more than 0.6. CONCLUSION The levels of cations and trace elements are disturbed in TDT patients. Hence, the monitoring and adjustment of the level of these minerals are important to prevent further consequences.
Collapse
Affiliation(s)
| | - Mohammed K Kahlol
- Department of Chemistry, Faculty of Science, University of Kufa, Iraq
| | | |
Collapse
|
2
|
Rodrat M, Wongdee K, Teerapornpuntakit J, Thongbunchoo J, Tanramluk D, Aeimlapa R, Thammayon N, Thonapan N, Wattano P, Charoenphandhu N. Vasoactive intestinal peptide and cystic fibrosis transmembrane conductance regulator contribute to the transepithelial calcium transport across intestinal epithelium-like Caco-2 monolayer. PLoS One 2022; 17:e0277096. [PMID: 36399482 PMCID: PMC9674163 DOI: 10.1371/journal.pone.0277096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/20/2022] [Indexed: 11/19/2022] Open
Abstract
Vasoactive intestinal peptide (VIP) as a neurocrine factor released by enteric neurons has been postulated to participate in the regulation of transcellular active calcium transport across intestinal epithelium, but the preceding evidence is scant and inconclusive. Herein, transepithelial calcium flux and epithelial electrical parameters were determined by Ussing chamber technique with radioactive tracer in the intestinal epithelium-like Caco-2 monolayer grown on Snapwell. After 3-day culture, Caco-2 cells expressed mRNA of calcium transporters, i.e., TRPV6, calbindin-D9k, PMCA1b and NCX1, and exhibited transepithelial resistance of ~200 Ω cm2, a characteristic of leaky epithelium similar to the small intestine. VIP receptor agonist was able to enhance transcellular calcium flux, whereas VIP receptor antagonist totally abolished calcium fluxes induced by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. Since the intestinal cystic fibrosis transmembrane conductance regulator (CFTR) could be activated by VIP and calciotropic hormones, particularly parathyroid hormone, we sought to determine whether CFTR also contributed to the 1,25(OH)2D3-induced calcium transport. A selective CFTR inhibitor (20-200 μM CFTRinh-172) appeared to diminish calcium fluxes as well as transepithelial potential difference and short-circuit current, both of which indicated a decrease in electrogenic ion transport. On the other hand, 50 μM genistein-a molecule that could rapidly activate CFTR-was found to increase calcium transport. Our in silico molecular docking analysis confirmed direct binding of CFTRinh-172 and genistein to CFTR channels. In conclusion, VIP and CFTR apparently contributed to the intestinal calcium transport, especially in the presence of 1,25(OH)2D3, thereby supporting the existence of the neurocrine control of intestinal calcium absorption.
Collapse
Affiliation(s)
- Mayuree Rodrat
- Faculty of Science, Center of Calcium and Bone Research (COCAB), Mahidol University, Bangkok, Thailand
- Faculty of Science, Department of Physiology, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- Center of Research and Development for Biomedical Instrumentation, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Kannikar Wongdee
- Faculty of Science, Center of Calcium and Bone Research (COCAB), Mahidol University, Bangkok, Thailand
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Jarinthorn Teerapornpuntakit
- Faculty of Science, Center of Calcium and Bone Research (COCAB), Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Jirawan Thongbunchoo
- Faculty of Science, Center of Calcium and Bone Research (COCAB), Mahidol University, Bangkok, Thailand
- Faculty of Science, Department of Physiology, Mahidol University, Bangkok, Thailand
| | - Duangrudee Tanramluk
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- Integrative Computational BioScience (ICBS) Center, Mahidol University, Nakhon Pathom, Thailand
| | - Ratchaneevan Aeimlapa
- Faculty of Science, Center of Calcium and Bone Research (COCAB), Mahidol University, Bangkok, Thailand
- Faculty of Science, Department of Physiology, Mahidol University, Bangkok, Thailand
| | - Nithipak Thammayon
- Faculty of Science, Center of Calcium and Bone Research (COCAB), Mahidol University, Bangkok, Thailand
- Faculty of Science, Graduate Program in Molecular Medicine, Mahidol University, Bangkok, Thailand
| | - Natchayaporn Thonapan
- Faculty of Science, Center of Calcium and Bone Research (COCAB), Mahidol University, Bangkok, Thailand
- Faculty of Science, Graduate Program in Molecular Medicine, Mahidol University, Bangkok, Thailand
| | - Pathnaree Wattano
- Faculty of Science, Center of Calcium and Bone Research (COCAB), Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Faculty of Science, Center of Calcium and Bone Research (COCAB), Mahidol University, Bangkok, Thailand
- Faculty of Science, Department of Physiology, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|