1
|
Coticchio G, Ahlström A, Arroyo G, Balaban B, Campbell A, De Los Santos MJ, Ebner T, Gardner DK, Kovačič B, Lundin K, Magli MC, Mcheik S, Morbeck DE, Rienzi L, Sfontouris I, Vermeulen N, Alikani M. The Istanbul Consensus update: a revised ESHRE/ALPHA consensus on oocyte and embryo static and dynamic morphological assessment † ‡. Reprod Biomed Online 2025:104955. [PMID: 40300986 DOI: 10.1016/j.rbmo.2025.104955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 05/01/2025]
Abstract
This European Society of Human Reproduction and Embryology (ESHRE)/Alpha Scientists in Reproductive Medicine (ALPHA) consensus document provides several novel recommendations to assess oocyte and embryo morphology and rank embryos for transfer. A previous ALPHA/ESHRE consensus on oocyte and embryo morphological assessment was published in 2011. After more than a decade, and the integration of time-lapse technology into embryo culture and assessment, a thorough review and update was needed. A working group consisting of ALPHA members and ESHRE Special interest group of Embryology members formulated recommendations on oocyte and embryo assessment. The working group included 17 internationally recognized experts with extensive experience in clinical embryology. Seven members represented ALPHA and eight members represented ESHRE, along with two methodological experts from the ESHRE central office. Based on a systematic literature search and discussion of existing evidence, the recommendations of the Istanbul Consensus (2011) were reassessed and, where appropriate, updated based on consensus within the working group. A stakeholder review was organized after the updated draft was finalized. The final version was approved by the working group, the ALPHA Executive Committee and the ESHRE Executive Committee. This updated consensus paper provides 20 recommendations focused on the timeline of preimplantation developmental events and morphological criteria for oocyte, zygote and embryo assessment. Based on the duration of embryo culture, recommendations are given on the frequency and timing of assessments to ensure consistency and effectiveness. Several criteria relevant to oocyte and embryo morphology have not been well studied, leading to either a recommendation against their use for grading or for their use in ranking rather than grading. Future updates may require further revision of these recommendations. This document provides embryologists with advice on best practices when assessing oocyte and embryo quality based on the most recent evidence.
Collapse
Affiliation(s)
| | | | - Gemma Arroyo
- Institut Universitari Dexeus, Dpt d'Obstetrícia i Ginecologia, Barcelona, Spain
| | - Basak Balaban
- VKF American Hospital of Istanbul, Assisted Reproduction Unit, Istanbul, Turkiye
| | - Alison Campbell
- CARE Fertility Group, Nottingham, UK; University of Kent, Kent, UK
| | - Maria José De Los Santos
- IVIRMA Valencia Global Research Alliance, IVF Laboratory, Valencia, Spain; Fundación IVI Instituto de Investigaciones Sanitarias, Valencia, Spain
| | - Thomas Ebner
- Kepler Universitatsklinikum GmbH, Gynecology Obstetrics and Gynecological Endocrinology, Linz, Austria
| | - David K Gardner
- Melbourne IVF, East Melbourne, Victoria, Australia; School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Borut Kovačič
- Department for Reproductive Medicine and Gynecological Endocrinology, University Medical Centre Maribor, Maribor, Slovenia
| | - Kersti Lundin
- Dept of Obstetrics and Gynecology, The Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Dean E Morbeck
- Genea Fertility, Sydney, New South Wales, Australia; Department of Obstetrics and Gynecology, Monash University, Melbourne, Victoria, Australia
| | | | | | | | - Mina Alikani
- Alpha Scientists in Reproductive Medicine, London, UK.
| |
Collapse
|
2
|
Coticchio G, Ahlström A, Arroyo G, Balaban B, Campbell A, De Los Santos MJ, Ebner T, Gardner DK, Kovačič B, Lundin K, Magli MC, Mcheik S, Morbeck DE, Rienzi L, Sfontouris I, Vermeulen N, Alikani M. The Istanbul consensus update: a revised ESHRE/ALPHA consensus on oocyte and embryo static and dynamic morphological assessment†,‡. Hum Reprod 2025:deaf021. [PMID: 40288770 DOI: 10.1093/humrep/deaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Indexed: 04/29/2025] Open
Abstract
STUDY QUESTION What are the current recommended criteria for morphological assessment of oocytes, zygotes, and embryos? SUMMARY ANSWER The present ESHRE/Alpha Scientists in Reproductive Medicine consensus document provides several novel recommendations to assess oocyte and embryo morphology and rank embryos for transfer. WHAT IS KNOWN ALREADY A previous Alpha Scientists in Reproductive Medicine/ESHRE consensus on oocyte and embryo morphological assessment was published in 2011. After more than a decade, and the integration of time-lapse technology into embryo culture and assessment, a thorough review and update was needed. STUDY DESIGN, SIZE, DURATION A working group consisting of Alpha Scientists in Reproductive Medicine executive committee members and ESHRE Special interest group of Embryology members formulated recommendations on oocyte and embryo assessment. PARTICIPANTS/MATERIALS, SETTING, METHODS The working group included 17 internationally recognized experts with extensive experience in clinical embryology. Seven members represented Alpha Scientists in Reproductive Medicine and eight members represented ESHRE, along with to two methodological experts from the ESHRE central office. Based on a systematic literature search and discussion of existing evidence, the recommendations of the Istanbul Consensus (2011) were reassessed and, where appropriate, updated based on consensus within the working group. A stakeholder review was organized after the updated draft was finalized. The final version was approved by the working group, the Alpha executive committee and the ESHRE Executive Committee. MAIN RESULTS AND THE ROLE OF CHANCE This updated consensus paper provides 20 recommendations focused on the timeline of preimplantation developmental events and morphological criteria for oocyte, zygote, and embryo assessment. Based on duration of embryo culture, recommendations are given on the frequency and timing of assessments to ensure consistency and effectiveness. LIMITATIONS, REASONS FOR CAUTION Several criteria relevant to oocyte and embryo morphology have not been well studied, leading to either a recommendation against their use for grading or for their use in ranking rather than grading. Future updates may require further revision of these recommendations. WIDER IMPLICATIONS OF THE FINDINGS This document provides embryologists with advice on best practices when assessing oocyte and embryo quality based on the most recent evidence. STUDY FUNDING/COMPETING INTEREST(S) The consensus meeting and writing of the paper were supported by funds from ESHRE and Alpha Scientists in Reproductive Medicine. The working group members did not receive any payment. G.C. declared payments or honoraria for lectures from Gedeon Richter and Cooper Surgical. A.C. declared text book royalties (Mastering Clinical Embryology, published 2024), consulting fees from Cooper Surgical, Gedeon Richter and TMRW Life Sciences, honoraria for lectures from Merck, Ferring, and Gedeon Richter, and participation in the HFEA Scientific Advances Committee; she also disclosed being treasurer and vice-president of Alpha Scientists in Reproductive Medicine, a shareholder in Care Fertility Limited and Fertile Mind Limited, and having stock options in TMRW Life Sciences and U-Ploid Biotechnology Ltd. L.R. declared consulting fees from Organon, payments or honoraria for lectures from Merck, Organon, IBSA, Finox, Geden Richter, Origio, Organon, Ferring, Fundation IVI; she also disclosed being a member of the Advisory Scientific Board of IVIRMA (Paid) and a member of the Advisory Scientific Board of Nterilizer (unpaid). I.S. declared payments or honoraria for lectures from Vitrolife and Cooper Surgical, and stock options from Alife Health. M.A. declared payments or honoraria for lectures from Vitrolife and support for attending meetings from Vitrolife and Cooper Surgical (both unrelated to this manuscript). The other authors have no conflicts of interest to declare. DISCLAIMER This Good Practice Recommendations (GPRs) document represents the consensus views of the members of this working group based on the scientific evidence available at the time of the meeting. GPRs should be used for information and educational purposes. They should not be interpreted as setting a standard of care or be deemed inclusive of all proper methods of care or be exclusive of other methods of care reasonably directed to obtaining the same results. They do not replace the need for application of clinical judgement to each individual presentation, or variations based on locality and facility type.
Collapse
Affiliation(s)
| | | | - Gemma Arroyo
- Dpt d'Obstetrícia i Ginecologia, Institut Universitari Dexeus, Barcelona, Spain
| | - Basak Balaban
- Assisted Reproduction Unit, VKF American Hospital of Istanbul, Istanbul, Turkiye
| | - Alison Campbell
- CARE Fertility Group, Nottingham, UK
- University of Kent, Kent, UK
| | - Maria José De Los Santos
- IVIRMA Valencia Global Research Alliance, IVF Laboratory, Valencia, Spain
- Fundación IVI Instituto de Investigaciones Sanitarias, Valencia, Spain
| | - Thomas Ebner
- Gynecology Obstetrics and Gynecological Endocrinology, Kepler Universitatsklinikum GmbH, Linz, Austria
| | - David K Gardner
- Melbourne IVF, East Melbourne, VIC, Australia
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Borut Kovačič
- Department for Reproductive Medicine and Gynecological Endocrinology, University Medical Centre Maribor, Maribor, Slovenia
| | - Kersti Lundin
- Dept of Obstetrics and Gynecology, The Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Dean E Morbeck
- Genea Fertility, Sydney, NSW, Australia
- Department of Obstetrics and Gynecology, Monash University, Melbourne, VIC, Australia
| | | | | | | | - Mina Alikani
- Alpha Scientists in Reproductive Medicine, London, UK
| |
Collapse
|
3
|
Sayed S, Petersen BM, Reigstad MM, Schwennicke A, Hausken JW, Storeng R. Predicting IVF live -birth probability using time-lapse data: Implications of including or excluding age in a day 2 embryo transfer model. PLoS One 2025; 20:e0318480. [PMID: 39999051 PMCID: PMC11856505 DOI: 10.1371/journal.pone.0318480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
The primary objective of this study was to develop predictive models for the likelihood of live births following In Vitro Fertilisation (IVF) treatment, based on a retrospective analysis of time-lapse data from Day 2 embryo transfers at Klinikk Hausken, Norway. This analysis encompassed 1,506 IVF treatment cycles, which included 865 single and 641 double embryo transfer cycles, totalling 2,147 embryos transferred. The model covariates included nucleation error, timing of two-cell stage (t2) and duration between t2 and the three-cell stage (t3). The predictive ability was assessed using Area Under Curve (AUC). Generalised Additive Mixed Models (GAMM) were utilised to address clustering effects from Single Embryo Transfers (SET) and Double Embryo Transfers (DETs), as well as the non-linear effects of female age and t2 timings. A stratification of age and model scores demonstrated the impact of incorporating age into the model. The" Base Model, not incorporating age, achieved an AUC of 0.641, while the "Age Model", using maternal age, significantly enhanced AUC to 0.745, as estimated through bootstrap analysis. However, when the Age Model was subjected to average ages across three respective age intervals, the AUC values were comparable to the Base Model, rather than the original Age Model scores. Adjusting the Intracytoplasmic Sperm Injection (ICSI) timing by ± 2 hours, purely as a theoretical exercise, has minimal impacts on model predictions. This highlights the value of including t2 despite fertilisation timing variations between ICSI and IVF. The Age Model did not show superiority in predicting live birth within single treatment cohorts. However, given its distinct AUC values for broader age ranges, the Age Model can serve as a counselling tool on live-birth probabilities. With further validation, we suggest only using the Age Model for general counselling, while the Base Model is preferable for the embryo selection decision support.
Collapse
Affiliation(s)
- Shabana Sayed
- Klinikk Hausken, IVF and Gynaecology, Haugesund, Norway,
| | | | - Marte Myhre Reigstad
- Norwegian National Advisory Unit on Women’s Health, Oslo University Hospital, Oslo, Norway
| | | | | | - Ritsa Storeng
- Norwegian National Advisory Unit on Women’s Health, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Stenberg A, Baumgart J, Adolfsson E. Nuclear error phenotypes in the two-cell embryo are correlated to blastocyst formation rate after assisted reproduction. J Assist Reprod Genet 2025; 42:115-124. [PMID: 39730945 PMCID: PMC11805727 DOI: 10.1007/s10815-024-03354-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/11/2024] [Indexed: 12/29/2024] Open
Abstract
PURPOSE Map the nuclear error phenotypes in the two-cell embryo after assisted reproduction using time lapse images and the effect on good quality blastocyst formation. METHODS Retrospective cohort study using time lapse images, categorizing 2331 two-cell embryos from 392 patient couples and 504 ART cycles categorizing each embryo as mononucleated, multinucleated, micronucleated, binucleated, split nucleation or mixed error. Correlating nuclear error phenotype with good quality blastocyst formation rate (BFR) using contingency tables and unadjusted odds ratio. RESULTS An overall nuclear error rate of 47.1% was observed in two-cell embryos. The most frequent error was multi-nucleation (14.2%) followed by mixed error (11%), micro-nucleation (8.6%), bi-nucleation (7.4%) and split nucleation (5.8%). Blastocyst formation rate (BFR) was reduced in embryos with nuclear errors, 46.2% for embryos with one cell affected, 27.6% for embryos with both cells affected, compared to 58.6% for mononucleated cells, p < 0.001 for both. Binucleated embryos were as likely as mononucleated embryos to become clinically useful blastocysts (56.8% vs 58.6%, n.s., unadjusted OR 0.94), whereas all the other phenotypes were less likely to develop into good quality blastocysts. The worst outcome was noted for embryos with split nucleation, with just 12.4% BFR, OR 0.12 (0-08-0.21), p < 0.001. CONCLUSION Nuclear errors are common at the two-cell stage. Overall, presence of nuclear errors reduces the likelihood of becoming good quality blastocysts. Both the number of affected cells and the different nuclear error phenotypes have impact on blastocyst formation rate, except binucleated embryos.
Collapse
Affiliation(s)
- Amanda Stenberg
- Department of Obstetrics and Gynecology, Örebro University Hospital, Örebro, Sweden
| | - Juliane Baumgart
- Department of Obstetrics and Gynecology, Örebro University Hospital, Örebro, Sweden
| | - Emma Adolfsson
- Department of Obstetrics and Gynecology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| |
Collapse
|
5
|
Coticchio G, Lagalla C, Taggi M, Cimadomo D, Rienzi L. Embryo multinucleation: detection, possible origins, and implications for treatment. Hum Reprod 2024; 39:2392-2399. [PMID: 39173609 DOI: 10.1093/humrep/deae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Cell cycle regulation is crucial to assure expansion of a cell population, while preserving genome integrity. This notion is especially relevant to fertilization and early embryo development, a time when the cell cycle transforms from meiotic into mitotic cycles. Zygote-to-embryo transition is acutely error-prone, causing major developmental perturbations, including cleavage delays, tri- and multi-chotomous cleavages, and cell fragmentation. Another such alteration is bi- and multinucleation, consisting of the simultaneous formation of two or more nuclei at interphase. Indeed, multinucleation affects a large proportion of early human embryos, typically at the two-cell stage. Mechanistically, several factors, including spindle dysfunction, failed cleavage, and cell fusion, may generate this cell anomaly. In assisted reproduction treatment, multinucleation is associated with reduced developmental rates and lower implantation rates in Days 2-3 embryo transfers. However, many multinucleated embryos can develop to the blastocyst stage. In blastocyst transfers, the current evidence does not suggest a major impact of a previous history of multinucleation on the odds of euploidy or successful treatment outcomes. Human embryo multinucleation remains a not-fully-understood but developmentally relevant and intriguing phenomenon which requires further research of its generative mechanisms and clinical implications.
Collapse
Affiliation(s)
| | | | - Marilena Taggi
- IVIRMA Global Research Alliance, Genera, Clinica Valle Giulia, Rome, Italy
| | - Danilo Cimadomo
- IVIRMA Global Research Alliance, Genera, Clinica Valle Giulia, Rome, Italy
| | - Laura Rienzi
- IVIRMA Global Research Alliance, Genera, Clinica Valle Giulia, Rome, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| |
Collapse
|
6
|
Bayram A, Elkhatib I, Kalafat E, Abdala A, Ferracuti V, Melado L, Lawrenz B, Fatemi H, Nogueira D. Steady morphokinetic progression is an independent predictor of live birth: a descriptive reference for euploid embryos. Hum Reprod Open 2024; 2024:hoae059. [PMID: 39507416 PMCID: PMC11540439 DOI: 10.1093/hropen/hoae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/17/2024] [Indexed: 11/08/2024] Open
Abstract
STUDY QUESTION Can modelling the longitudinal morphokinetic pattern of euploid embryos during time-lapse monitoring (TLM) be helpful for selecting embryos with the highest live birth potential? SUMMARY ANSWER Longitudinal reference ranges of morphokinetic development of euploid embryos have been identified, and embryos with steadier progression during TLM are associated with higher chances of live birth. WHAT IS KNOWN ALREADY TLM imaging is increasingly adopted by fertility clinics as an attempt to improve the ability of selecting embryos with the highest potential for implantation. Many markers of embryonic morphokinetics have been incorporated into decision algorithms for embryo (de)selection. However, longitudinal changes during this temporal process, and the impact of such changes on embryonic competence remain unknown. Aiming to model the reference ranges of morphokinetic development of euploid embryos and using it as a single longitudinal trajectory might provide an additive value to the blastocyst morphological grade in identifying highly competent embryos. STUDY DESIGN SIZE DURATION This observational, retrospective cohort study was performed in a single IVF clinic between October 2017 and June 2021 and included only autologous single euploid frozen embryo transfers (seFET). PARTICIPANTS/MATERIALS SETTING METHODS Reference ranges were developed from [hours post-insemination (hpi)] of the standard morphokinetic parameters of euploid embryos assessed as tPB2, tPNa, tPNf, t2-t9, tSC, tM, tSB, and tB. Variance in morphokinetic patterns was measured and reported as morphokinetic variance score (MVS). Nuclear errors (micronucleation, binucleation, and multinucleation) were annotated when present in at least one blastomere at the two- or four-cell stages. The blastocyst grade of expansion, trophectoderm (TE), and inner cell mass (ICM) were assessed immediately before biopsy using Gardner's criteria. Pre-implantation genetic diagnosis for aneuploidy (PGT-A) was performed by next-generation sequencing. All euploid embryos were singly transferred in a frozen transferred cycle and outcomes were assessed as live birth, pregnancy loss, or not pregnant. Association of MVS with live birth was investigated with regression analyses. MAIN RESULTS AND THE ROLE OF CHANCE TLM data from 340 seFET blastocysts were included in the study, of which 189 (55.6%) resulted in a live birth. The median time for euploid embryos to reach blastulation was 109.9 hpi (95% CI: 98.8-121.0 hpi). The MVS was calculated from the variance in time taken for the embryo to reach all morphokinetic points and reflects the total morphokinetic variability it exhibits during its development. Embryos with more erratic kinetics, i.e. higher morphokinetic variance, had higher rates of pregnancy loss (P = 0.004) and no pregnancy (P < 0.001) compared to embryos with steadier morphokinetic patterns. In the multivariable analysis adjusting for ICM, TE grade, presence of nuclear errors, and time of blastulation, MVS was independently associated with live birth (odds ratio [OR]: 0.62, 95% CI: 0.46-0.84, P = 0.002) along with ICM quality. Live birth rate of embryos with the same ICM grading but different morphokinetic variance patterns differed significantly. Live birth rates of embryos exhibiting low MVS with ICM grades A, B, and C were 85%, 76%, and 67%, respectively. However, ICM grades A, B, and C embryos with high MVS had live birth rates of 65%, 48%, and 21% (P < 0.001). The addition of the MVS to embryo morphology score (ICM and TE grading) significantly improved the model's AUC value (0.67 vs 0.62, P = 0.015) and this finding persisted through repeat cross-validation (0.64 ± 0.08 vs 0.60 ± 0.07, P < 0.001). LIMITATIONS REASONS FOR CAUTION The exclusion of IVF cases limits, for now, the utility of the model to only ICSI-derived embryos. The utility of these reference ranges and the association of MVS with various clinical outcomes should be further investigated. WIDER IMPLICATIONS OF THE FINDINGS We have developed reference ranges for morphokinetic development of euploid embryos and a marker for measuring total morphokinetic variability exhibited by developed blastocysts. Longitudinal assessment of embryonic morphokinetics rather than static time points may provide more insight about which embryos have higher live birth potential. The developed reference ranges and MVS show an association with live birth that is independent of known morphological factors and could emerge as a valuable tool in prioritizing embryos for transfer. STUDY FUNDING/COMPETING INTERESTS This study received no external funding. The authors declare no conflicting interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Aşina Bayram
- IVF Department, ART Fertility Clinics, Abu Dhabi, UAE
- Department of Reproductive Medicine, UZ Ghent, Ghent, Belgium
| | - Ibrahim Elkhatib
- IVF Department, ART Fertility Clinics, Abu Dhabi, UAE
- School of Biosciences, University of Kent, Canterbury, UK
| | - Erkan Kalafat
- IVF Department, ART Fertility Clinics, Abu Dhabi, UAE
- Division of Reproductive Endocrinology and Infertility, Koc University School of Medicine, Istanbul, Turkey
| | - Andrea Abdala
- IVF Department, ART Fertility Clinics, Abu Dhabi, UAE
| | | | - Laura Melado
- IVF Department, ART Fertility Clinics, Abu Dhabi, UAE
| | - Barbara Lawrenz
- IVF Department, ART Fertility Clinics, Abu Dhabi, UAE
- Department of Reproductive Medicine, UZ Ghent, Ghent, Belgium
| | - Human Fatemi
- IVF Department, ART Fertility Clinics, Abu Dhabi, UAE
| | - Daniela Nogueira
- IVF Department, ART Fertility Clinics, Abu Dhabi, UAE
- Inovie Fertilité, France
| |
Collapse
|
7
|
Ono Y, Shirasawa H, Takahashi K, Goto M, Ono T, Sakaguchi T, Okabe M, Hirakawa T, Iwasawa T, Fujishima A, Sugawara T, Makino K, Miura H, Fukunaga N, Asada Y, Kumazawa Y, Terada Y. Shape of the first mitotic spindles impacts multinucleation in human embryos. Nat Commun 2024; 15:5381. [PMID: 38918406 PMCID: PMC11199590 DOI: 10.1038/s41467-024-49815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/18/2024] [Indexed: 06/27/2024] Open
Abstract
During human embryonic development, early cleavage-stage embryos are more susceptible to errors. Studies have shown that many problems occur during the first mitosis, such as direct cleavage, chromosome segregation errors, and multinucleation. However, the mechanisms whereby these errors occur during the first mitosis in human embryos remain unknown. To clarify this aspect, in the present study, we image discarded living human two-pronuclear stage zygotes using fluorescent labeling and confocal microscopy without microinjection of DNA or mRNA and investigate the association between spindle shape and nuclear abnormality during the first mitosis. We observe that the first mitotic spindles vary, and low-aspect-ratio-shaped spindles tend to lead to the formation of multiple nuclei at the 2-cell stage. Moreover, we observe defocusing poles in many of the first mitotic spindles, which are strongly associated with multinucleation. Additionally, we show that differences in the positions of the centrosomes cause spindle abnormality in the first mitosis. Furthermore, many multinuclei are modified to form mononuclei after the second mitosis because the occurrence of pole defocusing is firmly reduced. Our study will contribute markedly to research on the occurrence of mitotic errors during the early cleavage of human embryos.
Collapse
Affiliation(s)
- Yuki Ono
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan.
| | - Hiromitsu Shirasawa
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kazumasa Takahashi
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Mayumi Goto
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takahiro Ono
- Department of Neurosurgery, Akita University Graduate School of Medicine, Akita, Japan
| | - Taichi Sakaguchi
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Motonari Okabe
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takeo Hirakawa
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Takuya Iwasawa
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Akiko Fujishima
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Tae Sugawara
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Kenichi Makino
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Hiroshi Miura
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Noritaka Fukunaga
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic, Nagoya, Aichi, Japan
| | - Yoshimasa Asada
- Asada Institute for Reproductive Medicine, Asada Ladies Clinic, Nagoya, Aichi, Japan
| | - Yukiyo Kumazawa
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| | - Yukihiro Terada
- Department of Obstetrics and Gynecology, Akita University Graduate School of Medicine, Akita, Japan
| |
Collapse
|
8
|
Sobkowiak A, Fluks M, Kosyl E, Milewski R, Szpila M, Tamborski S, Szkulmowski M, Ajduk A. The number of nuclei in compacted embryos, assessed by optical coherence microscopy, is a non-invasive and robust marker of mouse embryo quality. Mol Hum Reprod 2024; 30:gaae012. [PMID: 38407286 PMCID: PMC10978378 DOI: 10.1093/molehr/gaae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/15/2024] [Indexed: 02/27/2024] Open
Abstract
Optical coherence microscopy (OCM) visualizes nuclei in live, unlabeled cells. As most cells are uninucleated, the number of nuclei in embryos may serve as a proxy of the cell number, providing important information on developmental status of the embryo. Importantly, no other non-invasive method currently allows for the cell number count in compacted embryos. We addressed the question of whether OCM, by providing the number of nuclei in compacted mouse embryos, may help evaluate embryo quality. We subjected compacted embryonic Day 3 (E3.0: 72 h after onset of insemination) mouse embryos to OCM scanning and correlated nuclei number and developmental potential. Implantation was assessed using an outgrowth assay (in vitro model meant to reflect embryonic ability to implant in vivo). Embryos with more cells at E3.0 (>18 cells) were more likely to reach the blastocyst stage by E4.0 and E5.0 (P ≪ 0.001) and initiate hatching by E5.0 (P < 0.05) than those with fewer cells (<12 cells). Moreover, the number of cells at E3.0 strongly correlated with the total number of cells in E4.0 and E5.0 embryos (ρ = 0.71, P ≪ 0.001 and ρ = 0.61, P ≪ 0.001, respectively), also when only E4.0 and E5.0 blastocysts were considered (ρ = 0.58, P ≪ 0.001 and ρ = 0.56, P ≪ 0.001, respectively). Additionally, we observed a strong correlation between the number of cells at E3.0 and the number of trophectoderm cells in E4.0 and E5.0 blastocysts (ρ = 0.59, P ≪ 0.001 and ρ = 0.57, P ≪ 0.001, respectively). Importantly, embryos that had more cells at E3.0 (>18 cells) were also more likely to implant in vitro than their counterparts with fewer cells (<12 cells; P ≪ 0.001). Finally, we tested the safety of OCM imaging, demonstrating that OCM scanning affected neither the amount of reactive oxygen species nor mitochondrial activity in the embryos. OCM also did not hinder their preimplantation development, ability to implant in vitro, or to develop to term after transfer to recipient females. Our data indicate that OCM imaging provides important information on embryo quality. As the method seems to be safe for embryos, it could be a valuable addition to the current repertoire of embryo evaluation methods. However, our study was conducted only on mouse embryos, so the proposed protocol would require optimization in order to be applied in other species.
Collapse
Affiliation(s)
- Aleksandra Sobkowiak
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Monika Fluks
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Ewa Kosyl
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Robert Milewski
- Department of Biostatistics and Medical Informatics, Medical University of Bialystok, Białystok, Poland
| | - Marcin Szpila
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Szymon Tamborski
- Department of Biophotonics and Optical Engineering, Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Maciej Szkulmowski
- Department of Biophotonics and Optical Engineering, Institute of Physics, Faculty of Physics, Astronomy, and Informatics, Nicolaus Copernicus University in Torun, Toruń, Poland
| | - Anna Ajduk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|