1
|
He C, He J. Metabolic reprogramming and signaling adaptations in anoikis resistance: mechanisms and therapeutic targets. Mol Cell Biochem 2025; 480:3315-3342. [PMID: 39821582 DOI: 10.1007/s11010-024-05199-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/20/2024] [Indexed: 01/19/2025]
Abstract
Anoikis, a form of programmed cell death triggered by detachment from the extracellular matrix (ECM), maintains tissue homeostasis by removing mislocalized or detached cells. Cancer cells, however, have evolved multiple mechanisms to evade anoikis under conditions of ECM detachment, enabling survival and distant metastasis. Studies have identified differentially expressed proteins between suspended and adherent cancer cells, revealing that key metabolic and signaling pathways undergo significant alterations during the acquisition of anoikis resistance. This review explores the regulatory roles of epithelial-mesenchymal transition, cancer stem cell characteristics, metabolic reprogramming, and various signaling pathway alterations in promoting anoikis resistance. And the corresponding reagents and non-coding RNAs that target the aforementioned pathways are reviewed. By discussing the regulatory mechanisms that facilitate anoikis resistance in cancer cells, this review aims to shed light on potential strategies for inhibiting tumor progression and preventing metastasis.
Collapse
Affiliation(s)
- Chao He
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jie He
- Department of Nursing, Operating Room, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
2
|
Jiang D, Kwon HK, Kwon OW, Choi Y. A Comparative Molecular Dynamics Study of Food-Derived Compounds as PD-L1 Inhibitors: Insights Across Six Flavonoid Subgroups. Molecules 2025; 30:907. [PMID: 40005217 PMCID: PMC11858612 DOI: 10.3390/molecules30040907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/25/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
In this study, we investigated the inhibitory potential of 60 flavonoids from six distinct subgroups on the programmed cell death ligand 1 (PD-L1) dimer through molecular docking and dynamics simulations. Using AutoDock Vina for docking, the binding poses and affinities were evaluated, revealing an average binding affinity of -8.5 kcal/mol for the flavonoids. Among them, ginkgetin exhibited the highest binding free energy of -46.73 kcal/mol, indicating a strong interaction with PD-L1, while diosmin followed closely, with -44.96 kcal/mol. Molecular dynamics simulations were used to further elucidate the dynamic interactions and stability of the flavonoid-PD-L1 complexes, with the analyses showing minimal root mean square deviation (RMSD) and favorable root mean square fluctuation (RMSF) profiles for several compounds, particularly formononetin, idaein, and neohesperidin. Additionally, contact number and hydrogen bond analyses were performed, which highlighted ginkgetin and diosmin as key flavonoids with significant binding interactions, evidenced by their stable conformations and robust molecular interactions throughout the simulations. Ultimately, a cell-based assay confirmed their ability to inhibit the proliferation of cancer cells. These results, validated through cell-based assays, indicate that the strategy of identifying natural compounds with anticancer activity using computational modeling is highly effective.
Collapse
Affiliation(s)
- Dejun Jiang
- Department of Environmental Engineering, Hoseo University, Asan 31499, Republic of Korea; (D.J.); (H.-K.K.)
| | - Hyuk-Ku Kwon
- Department of Environmental Engineering, Hoseo University, Asan 31499, Republic of Korea; (D.J.); (H.-K.K.)
| | - Oh Wook Kwon
- Pet-Loss Center, Hoseo University, Asan 31499, Republic of Korea;
| | - Youngjin Choi
- Department of Food Science & Technology, Hoseo University, Asan 31499, Republic of Korea
| |
Collapse
|
3
|
Sangprasat K, Bulaon CJI, Rattanapisit K, Srisangsung T, Jirarojwattana P, Wongwatanasin A, Phoolcharoen W. Production of monoclonal antibodies against botulinum neurotoxin in Nicotiana benthamiana. Hum Vaccin Immunother 2024; 20:2329446. [PMID: 38525945 PMCID: PMC10965107 DOI: 10.1080/21645515.2024.2329446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
Botulism is a fatal neurologic disease caused by the botulinum toxin (BoNT) produced by Clostridium botulinum. It is a rare but highly toxic disease with symptoms, such as cramps, nausea, vomiting, diarrhea, dysphagia, respiratory failure, muscle weakness, and even death. Currently, two types of antitoxin are used: equine-derived heptavalent antitoxin and human-derived immunoglobulin (BabyBIG®). However, heptavalent treatment may result in hypersensitivity, whereas BabyBIG®, has a low yield. The present study focused on the development of three anti-BoNT monoclonal antibodies (mAbs), 1B18, C25, and M2, in Nicotiana benthamiana. The plant-expressed mAbs were purified and examined for size, purity and integrity by SDS-PAGE, western blotting and size-exclusion chromatography. Analysis showed that plant-produced anti-BoNT mAbs can fully assemble in plants, can be purified in a single purification step, and mostly remain as monomeric proteins. The efficiency of anti-BoNT mAbs binding to BoNT/A and B was then tested. Plant-produced 1B18 retained its ability to recognize both mBoNT/A1 and ciBoNT/B1. At the same time, the binding specificities of two other mAbs were determined: C25 for mBoNT/A1 and M2 for ciBoNT/B1. In conclusion, our results confirm the use of plants as an alternative platform for the production of anti-BoNT mAbs. This plant-based technology will serve as a versatile system for the development botulism immunotherapeutics.
Collapse
Affiliation(s)
- Kornchanok Sangprasat
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Graduate Program of Program in Research for Enterprise, Chulalongkorn University, Bangkok, Thailand
| | | | - Kaewta Rattanapisit
- Department of Research and Development, Baiya Phytopharm Co. Ltd, Bangkok, Thailand
| | - Theerakarn Srisangsung
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Graduate Program of Program in Research for Enterprise, Chulalongkorn University, Bangkok, Thailand
| | - Perawat Jirarojwattana
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Krittanai S, Rattanapisit K, Bulaon CJI, Pitaksajjakul P, Keadsanti S, Ramasoota P, Strasser R, Phoolcharoen W. Nicotiana benthamiana as a potential source for producing anti-dengue virus D54 neutralizing therapeutic antibody. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2024; 42:e00844. [PMID: 38881650 PMCID: PMC11179242 DOI: 10.1016/j.btre.2024.e00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/18/2024]
Abstract
Dengue virus (DENV), transmitted by mosquitoes, is classified into four serotypes (DENV1-4) and typically causes mild, self-limiting symptoms upon initial infection. However, secondary infection can lead to severe symptoms due to antibody-dependent enhancement (ADE). To address this, anti-DENV antibodies are being developed with the goal of neutralizing infection without ADE activity. Previous attempts using a 54_hG1 antibody from CHO-K1 mammalian cells resulted in ADE induction, increasing viral infection. This study aimed to express the D54 monoclonal antibody in Nicotiana benthamiana. The plant-produced antibody had a similar neutralizing profile to the previous 54_hG1 antibody. Notably, the ADE activities of the plant-derived antibody were successfully eliminated, with no sign of viral induction. These findings suggest that N. benthamiana could be a source of therapeutic DENV antibodies. The method offers several advantages, including lower ADE, cost-effectiveness, simple facility requirements, scalability, and potential industrial-scale production in GMP facilities.
Collapse
Affiliation(s)
- Supaluk Krittanai
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | - Pannamthip Pitaksajjakul
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Sujitra Keadsanti
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Pongrama Ramasoota
- Center of Excellence for Antibody Research, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
5
|
Izadi S, Gumpelmair S, Coelho P, Duarte HO, Gomes J, Leitner J, Kunnummel V, Mach L, Reis CA, Steinberger P, Castilho A. Plant-derived Durvalumab variants show efficient PD-1/PD-L1 blockade and therapeutically favourable FcR binding. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1224-1237. [PMID: 38050338 PMCID: PMC11022803 DOI: 10.1111/pbi.14260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023]
Abstract
Immune checkpoint blocking therapy targeting the PD-1/PD-L1 inhibitory signalling pathway has produced encouraging results in the treatment of a variety of cancers. Durvalumab (Imfinzi®) targeting PD-L1 is currently used for immunotherapy of several tumour malignancies. The Fc region of this IgG1 antibody has been engineered to reduce FcγR interactions with the aim of enhancing blockade of PD-1/PD-L1 interactions without the depletion of PD-L1-expressing immune cells. Here, we used Nicotiana benthamiana to produce four variants of Durvalumab (DL): wild-type IgG1 and its 'Fc-effector-silent' variant (LALAPG) carrying further modifications to increase antibody half-life (YTE); IgG4S228P and its variant (PVA) with Fc mutations to decrease binding to FcγRI. In addition, DL variants were produced with two distinct glycosylation profiles: afucosylated and decorated with α1,6-core fucose. Plant-derived DL variants were compared to the therapeutic antibody regarding their ability to (i) bind to PD-L1, (ii) block PD-1/PD-L1 inhibitory signalling and (iii) engage with the neonatal Fc receptor (FcRn) and various Fcγ receptors. It was found that plant-derived DL variants bind to recombinant PD-L1 and to PD-L1 expressed in gastrointestinal cancer cells and are able to effectively block its interaction with PD-1 on T cells, thereby enhancing their activation. Furthermore, we show a positive impact of Fc amino acid mutations and core fucosylation on DL's therapeutic potential. Compared to Imfinzi®, DL-IgG1 (LALAPG) and DL-IgG4 (PVA)S228P show lower affinity to CD32B inhibitory receptor which can be therapeutically favourable. Importantly, DL-IgG1 (LALAPG) also shows enhanced binding to FcRn, a key determinant of serum half-life of IgGs.
Collapse
Affiliation(s)
- Shiva Izadi
- Department of Applied Genetics and Cell BiologyInstitute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life SciencesViennaAustria
| | - Simon Gumpelmair
- Division of Immune Receptors and T Cell ActivationInstitute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
| | - Pedro Coelho
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do PortoPortoPortugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
| | - Henrique O. Duarte
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do PortoPortoPortugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
| | - Joana Gomes
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do PortoPortoPortugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
| | - Judith Leitner
- Division of Immune Receptors and T Cell ActivationInstitute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
| | - Vinny Kunnummel
- Department of Applied Genetics and Cell BiologyInstitute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life SciencesViennaAustria
| | - Lukas Mach
- Department of Applied Genetics and Cell BiologyInstitute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life SciencesViennaAustria
| | - Celso A. Reis
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do PortoPortoPortugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do PortoPortoPortugal
- Faculty of Medicine (FMUP)University of PortoPortoPortugal
| | - Peter Steinberger
- Division of Immune Receptors and T Cell ActivationInstitute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
| | - Alexandra Castilho
- Department of Applied Genetics and Cell BiologyInstitute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
6
|
Bulaon CJI, Khorattanakulchai N, Rattanapisit K, Sun H, Pisuttinusart N, Phoolcharoen W. Development of Plant-Derived Bispecific Monoclonal Antibody Targeting PD-L1 and CTLA-4 against Mouse Colorectal Cancer. PLANTA MEDICA 2024; 90:305-315. [PMID: 38373705 DOI: 10.1055/a-2240-7534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Checkpoint blockade immunotherapy has revolutionized cancer treatment, with monoclonal antibodies targeting immune checkpoints, yielding promising clinical benefits. However, with the advent of resistance to immune checkpoint inhibitor treatment in clinical trials, developing next-generation antibodies with potentially increased efficacy is critical. Here, we aimed to generate a recombinant bispecific monoclonal antibody for dual inhibition of programmed cell death protein 1/programmed cell death ligand 1 and cytotoxic T-lymphocyte-associated protein 4 axes. The plant system was used as an alternative platform for bispecific monoclonal antibody production. Dual variable domain immunoglobulin atezolizumab × 2C8 is a plant-derived bispecific monoclonal antibody that combines both programmed cell death ligand 1 and cytotoxic T-lymphocyte-associated protein 4 blockade into a single molecule. Dual variable domain immunoglobulin atezolizumab × 2C8 was transiently expressed in Nicotiana benthamiana and the expression level was determined to be the highest after 4 days of infiltration. The size and assembly of the purified bispecific monoclonal antibody were determined, and its function was investigated in vitro and in vivo. The molecular structures of plant-produced dual variable domain immunoglobulin atezolizumab × 2C8 are as expected, and it was mostly present as a monomer. The plant-produced dual variable domain immunoglobulin atezolizumab × 2C8 showed in vitro binding to programmed cell death ligand 1 and cytotoxic T-lymphocyte-associated protein 4 proteins. The antitumor activity of plant-produced bispecific monoclonal antibody was tested in vivo by treating humanized Balb/c mice bearing a CT26 colorectal tumor. Plant-produced dual variable domain immunoglobulin atezolizumab × 2C8 significantly inhibited tumor growth by reducing tumor volume and weight. Body weight changes indicated that the plant-produced bispecific monoclonal antibody was safe and tolerable. Overall, this proof of concept study demonstrated the viability of plants to produce functional plant-based bispecific immunotherapy.
Collapse
Affiliation(s)
- Christine Joy I Bulaon
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | - Nuttapat Pisuttinusart
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Lin Y, Liu J. Anoikis-related genes as potential prognostic biomarkers in gastric cancer: A multilevel integrative analysis and predictive therapeutic value. IET Syst Biol 2024; 18:41-54. [PMID: 38377622 PMCID: PMC10996445 DOI: 10.1049/syb2.12088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/11/2023] [Accepted: 02/11/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is a frequent malignancy of the gastrointestinal tract. Exploring the potential anoikis mechanisms and pathways might facilitate GC research. PURPOSE The authors aim to determine the significance of anoikis-related genes (ARGs) in GC prognosis and explore the regulatory mechanisms in epigenetics. METHODS After describing the genetic and transcriptional alterations of ARGs, we searched differentially expressed genes (DEGs) from the cancer genome atlas and gene expression omnibus databases to identify major cancer marker pathways. The non-negative matrix factorisation algorithm, Lasso, and Cox regression analysis were used to construct a risk model, and we validated and assessed the nomogram. Based on multiple levels and online platforms, this research evaluated the regulatory relationship of ARGs with GC. RESULTS Overexpression of ARGs is associated with poor prognosis, which modulates immune signalling and promotes anti-anoikis. The consistency of the DEGs clustering with weighted gene co-expression network analysis results and the nomogram containing 10 variable genes improved the clinical applicability of ARGs. In anti-anoikis mode, cytology, histology, and epigenetics could facilitate the analysis of immunophenotypes, tumour immune microenvironment (TIME), and treatment prognosis. CONCLUSION A novel anoikis-related prognostic model for GC is constructed, and the significance of anoikis-related prognostic genes in the TIME and the metabolic pathways of tumours is initially explored.
Collapse
Affiliation(s)
- Yongjian Lin
- Department of Gastrointestinal and Gland Surgerythe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Jinlu Liu
- Department of Gastrointestinal and Gland Surgerythe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| |
Collapse
|
8
|
Kogelmann B, Melnik S, Bogner M, Kallolimath S, Stöger E, Sun L, Strasser R, D'Aoust M, Lavoie P, Saxena P, Gach JS, Steinkellner H. A genome-edited N. benthamiana line for industrial-scale production of recombinant glycoproteins with targeted N-glycosylation. Biotechnol J 2024; 19:e2300323. [PMID: 37804142 PMCID: PMC11475529 DOI: 10.1002/biot.202300323] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/09/2023]
Abstract
Control over glycosylation is an important quality parameter in recombinant protein production. Here, we demonstrate the generation of a marker-free genome edited Nicotiana benthamiana N-glycosylation mutant (NbXF-KO) carrying inactivated β1,2-xylosyltransferase and α1,3-fucosyltransferase genes. The knockout of seven genes and their stable inheritance was confirmed by DNA sequencing. Mass spectrometric analyses showed the synthesis of N-glycans devoid of plant-specific β1,2-xylose and core α 1,3-fucose on endogenous proteins and a series of recombinantly expressed glycoproteins with different complexities. Further transient glycan engineering towards more diverse human-type N-glycans resulted in the production of recombinant proteins decorated with β1,4-galactosylated and α2,6-sialylated structures, respectively. Notably, a monoclonal antibody expressed in the NbXF-KO displayed glycosylation-dependent activities. Collectively, the engineered plants grow normally and are well suited for upscaling, thereby meeting industrial and regulatory requirements for the production of high-quality therapeutic proteins.
Collapse
Affiliation(s)
- Benjamin Kogelmann
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
- acib – Austrian Centre of Industrial BiotechnologyViennaAustria
| | - Stanislav Melnik
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
- acib – Austrian Centre of Industrial BiotechnologyViennaAustria
| | - Michaela Bogner
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Somanath Kallolimath
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Eva Stöger
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Lin Sun
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Richard Strasser
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| | | | | | | | - Johannes S. Gach
- Division of Infectious Diseases, University of California, IrvineIrvineCaliforniaUSA
| | - Herta Steinkellner
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
9
|
Parvez A, Choudhary F, Mudgal P, Khan R, Qureshi KA, Farooqi H, Aspatwar A. PD-1 and PD-L1: architects of immune symphony and immunotherapy breakthroughs in cancer treatment. Front Immunol 2023; 14:1296341. [PMID: 38106415 PMCID: PMC10722272 DOI: 10.3389/fimmu.2023.1296341] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
PD-1 (Programmed Cell Death Protein-1) and PD-L1 (Programmed Cell Death Ligand-1) play a crucial role in regulating the immune system and preventing autoimmunity. Cancer cells can manipulate this system, allowing them to escape immune detection and promote tumor growth. Therapies targeting the PD-1/PD-L1 pathway have transformed cancer treatment and have demonstrated significant effectiveness against various cancer types. This study delves into the structure and signaling dynamics of PD-1 and its ligands PD-L1/PD-L2, the diverse PD-1/PD-L1 inhibitors and their efficacy, and the resistance observed in some patients. Furthermore, this study explored the challenges associated with the PD-1/PD-L1 inhibitor treatment approach. Recent advancements in the combination of immunotherapy with chemotherapy, radiation, and surgical procedures to enhance patient outcomes have also been highlighted. Overall, this study offers an in-depth overview of the significance of PD-1/PD-L1 in cancer immunotherapy and its future implications in oncology.
Collapse
Affiliation(s)
- Adil Parvez
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia, Hamdard, New Delhi, India
| | - Furqan Choudhary
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia, Hamdard, New Delhi, India
| | - Priyal Mudgal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia, Hamdard, New Delhi, India
| | - Rahila Khan
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia, Hamdard, New Delhi, India
| | - Kamal A. Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah, Qassim, Saudi Arabia
| | - Humaira Farooqi
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia, Hamdard, New Delhi, India
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
10
|
Rattanapisit K, Bulaon CJI, Strasser R, Sun H, Phoolcharoen W. In vitro and in vivo studies of plant-produced Atezolizumab as a potential immunotherapeutic antibody. Sci Rep 2023; 13:14146. [PMID: 37644118 PMCID: PMC10465495 DOI: 10.1038/s41598-023-41510-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 08/28/2023] [Indexed: 08/31/2023] Open
Abstract
Immune checkpoint inhibitors are a well-known class of immunotherapeutic drugs that have been used for effective treatment of several cancers. Atezolizumab (Tecentriq) was the first antibody to target immune checkpoint PD-L1 and is now among the most commonly used anticancer therapies. However, this anti-PD-L1 antibody is produced in mammalian cells with high manufacturing costs, limiting cancer patients' access to the antibody treatment. Plant expression system is another platform that can be utilized, as they can synthesize complex glycoproteins, are rapidly scalable, and relatively cost-efficient. Herein, Atezolizumab was transiently produced in Nicotiana benthamiana and demonstrated high expression level within 4-6 days post-infiltration. After purification by affinity chromatography, the purified plant-produced Atezolizumab was compared to Tecentriq and showed the absence of glycosylation. Furthermore, the plant-produced Atezolizumab could bind to PD-L1 with comparable affinity to Tecentriq in ELISA. The tumor growth inhibitory activity of plant-produced Atezolizumab in mice was also found to be similar to that of Tecentriq. These findings confirm the plant's capability to serve as an efficient production platform for immunotherapeutic antibodies and suggest that it could be used to alleviate the cost of existing anticancer products.
Collapse
Affiliation(s)
| | - Christine Joy I Bulaon
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190, Vienna, Austria
| | | | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, 10330, Thailand.
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
11
|
Bulaon CJI, Khorattanakulchai N, Rattanapisit K, Sun H, Pisuttinusart N, Strasser R, Tanaka S, Soon-Shiong P, Phoolcharoen W. Antitumor effect of plant-produced anti-CTLA-4 monoclonal antibody in a murine model of colon cancer. FRONTIERS IN PLANT SCIENCE 2023; 14:1149455. [PMID: 37711295 PMCID: PMC10497774 DOI: 10.3389/fpls.2023.1149455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023]
Abstract
Cytotoxic T lymphocyte-associated protein 4 (CTLA-4) is an immune checkpoint regulator exclusively expressed on T cells that obstructs the cell's effector functions. Ipilimumab (Yervoy®), a CTLA-4 blocking antibody, emerged as a notable breakthrough in modern cancer treatment, showing upfront clinical benefits in multiple carcinomas. However, the exhilarating cost of checkpoint blockade therapy is discouraging and even utmost prominent in developing countries. Thereby, affordability of cancer care has become a point of emphasis in drug development pipelines. Plant expression system blossomed as a cutting-edge platform for rapid, facile to scale-up, and economical production of recombinant therapeutics. Here, we describe the production of an anti-CTLA-4 2C8 antibody in Nicotiana benthamiana. ELISA and bio-layer interferometry were used to analyze antigen binding and binding kinetics. Anticancer responses in vivo were evaluated using knocked-in mice implanted with syngeneic colon tumor. At 4 days post-infiltration, the antibody was transiently expressed in plants with yields of up to 39.65 ± 8.42 μg/g fresh weight. Plant-produced 2C8 binds to both human and murine CTLA-4, and the plant-produced IgG1 also binds to human FcγRIIIa (V158). In addition, the plant-produced 2C8 monoclonal antibody is as effective as Yervoy® in inhibiting tumor growth in vivo. In conclusion, our study underlines the applicability of plant platform to produce functional therapeutic antibodies with promising potential in cancer immunotherapy.
Collapse
Affiliation(s)
- Christine Joy I. Bulaon
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | - Nuttapat Pisuttinusart
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Shiho Tanaka
- ImmunityBio, Inc., Culver City, CA, United States
| | | | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
12
|
Kaewbandit N, Malla A, Boonyayothin W, Rattanapisit K, Phetphoung T, Pisuttinusart N, Strasser R, Saetung R, Tawinwung S, Phoolcharoen W. Effect of plant produced Anti-hIL-6 receptor antibody blockade on pSTAT3 expression in human peripheral blood mononuclear cells. Sci Rep 2023; 13:11927. [PMID: 37488213 PMCID: PMC10366097 DOI: 10.1038/s41598-023-39106-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
As a response to invasion by pathogens, the secretion of interleukin 6 (IL-6) which is a cytokine, activates IL-6/JAKs/STAT3 intracellular signaling via., phosphorylation. Over expression of pSTAT3 induces IL-6 positive feedback loop causing cytokine release syndrome or cytokine storm. Plants have gained momentum as an alternative expression system. Hence, this study aims to produce mAb targeting human IL-6 receptor (hIL-6R) in Nicotiana benthamiana for down regulating its cellular signaling thus, decreasing the expression of pSTAT3. The variable regions of heavy and light chains of anti-hIL-6R mAb were constructed in pBYK2e geminiviral plant expression vector and transiently co-expressed in N. benthamiana. The results demonstrate the proper protein assembly of anti-hIL-6R mAb with highest expression level of 2.24 mg/g FW at 5 dpi, with a yield of 21.4 µg/g FW after purification. The purity and N-glycosylation of plant produced antibody was analyzed, including its specificity to human IL-6 receptor by ELISA. Additionally, we investigated the effect to pSTAT3 expression in human PBMC's by flow cytometry wherein, the results confirmed lower expression of pSTAT3 with increasing concentrations of plant produced anti-hIL-6R mAb. Although, further in vivo studies are key to unveil the absolute functionality of anti-hIL-6R, we hereby show the potential of the plant platform and its suitability for the production of this therapeutic antibody.
Collapse
Affiliation(s)
- Namthip Kaewbandit
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Wanuttha Boonyayothin
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Thareeya Phetphoung
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Nuttapat Pisuttinusart
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rattana Saetung
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supannikar Tawinwung
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.
- Cellular Immunotherapy Research Unit, Chulalongkorn University, Bangkok, Thailand.
| | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand.
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|