1
|
Jaroenlak P, McCarty KL, Xia B, Lam C, Zwack EE, Almasri NL, Sudar J, Aubry M, Yanai I, Bhabha G, Ekiert DC. scRNA-seq uncovers the transcriptional dynamics of Encephalitozoon intestinalis parasites in human macrophages. Nat Commun 2025; 16:3269. [PMID: 40188181 PMCID: PMC11972355 DOI: 10.1038/s41467-025-57837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/05/2025] [Indexed: 04/07/2025] Open
Abstract
Microsporidia are single-celled intracellular parasites that cause opportunistic diseases in humans. Encephalitozoon intestinalis is a prevalent human-infecting species that invades the small intestine. Macrophages are potential reservoirs of infection, and dissemination to other organ systems is also observed. The macrophage response to infection and the developmental trajectory of the parasite are not well studied. Here we use single cell RNA sequencing to investigate transcriptional changes in both the parasite and the host during E. intestinalis infection of human macrophages in vitro. The parasite undergoes large transcriptional changes throughout the life cycle, providing a blueprint for parasite development. While a small population of infected macrophages mount a response, most remain transcriptionally unchanged, suggesting that the majority of parasites may avoid host detection. The stealthy microsporidian lifestyle likely allows these parasites to harness macrophages for replication. Together, our data provide insights into the host response in primary human macrophages and the E. intestinalis developmental program.
Collapse
Affiliation(s)
- Pattana Jaroenlak
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Department of Cell Biology, New York University Grossman School of Medicine, New York, 10016, USA
| | - Kacie L McCarty
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
- Vilcek Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY, 10016, USA
| | - Bo Xia
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Cherry Lam
- Department of Cell Biology, New York University Grossman School of Medicine, New York, 10016, USA
| | - Erin E Zwack
- Department of Microbiology, New York University Grossman School of Medicine, New York, 10016, USA
| | - Nadia L Almasri
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Joseph Sudar
- Vilcek Institute of Graduate Biomedical Sciences, NYU School of Medicine, New York, NY, 10016, USA
| | - Maelle Aubry
- Department of Cell Biology, New York University Grossman School of Medicine, New York, 10016, USA
| | - Itai Yanai
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Gira Bhabha
- Department of Cell Biology, New York University Grossman School of Medicine, New York, 10016, USA.
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Damian C Ekiert
- Department of Cell Biology, New York University Grossman School of Medicine, New York, 10016, USA.
- Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA.
- Department of Microbiology, New York University Grossman School of Medicine, New York, 10016, USA.
| |
Collapse
|
2
|
Gang SS, Lažetić V. Microsporidia: Pervasive natural pathogens of Caenorhabditis elegans and related nematodes. J Eukaryot Microbiol 2024; 71:e13027. [PMID: 38702921 DOI: 10.1111/jeu.13027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/02/2024] [Indexed: 05/06/2024]
Abstract
The nematode Caenorhabditis elegans is an invaluable host model for studying infections caused by various pathogens, including microsporidia. Microsporidia represent the first natural pathogens identified in C. elegans, revealing the previously unknown Nematocida genus of microsporidia. Following this discovery, the utilization of nematodes as a model host has rapidly expanded our understanding of microsporidia biology and has provided key insights into the cell and molecular mechanisms of antimicrosporidia defenses. Here, we first review the isolation history, morphological characteristics, life cycles, tissue tropism, genetics, and host immune responses for the four most well-characterized Nematocida species that infect C. elegans. We then highlight additional examples of microsporidia that infect related terrestrial and aquatic nematodes, including parasitic nematodes. To conclude, we assess exciting potential applications of the nematode-microsporidia system while addressing the technical advances necessary to facilitate future growth in this field.
Collapse
Affiliation(s)
- Spencer S Gang
- Molecular Biology Department, Colorado College, Colorado Springs, Colorado, USA
| | - Vladimir Lažetić
- Department of Biological Sciences, Columbian College of Arts & Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
3
|
Jaroenlak P, McCarty KL, Xia B, Lam C, Zwack EE, Yanai I, Bhabha G, Ekiert DC. scRNA-seq reveals transcriptional dynamics of Encephalitozoon intestinalis parasites in human macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596468. [PMID: 38853846 PMCID: PMC11160751 DOI: 10.1101/2024.05.30.596468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Microsporidia are single-celled intracellular parasites that cause opportunistic diseases in humans. Encephalitozoon intestinalis is a prevalent human-infecting species that invades the small intestine. Dissemination to other organ systems is also observed, and is potentially facilitated by macrophages. The macrophage response to infection and the developmental trajectory of the parasite are not well studied. Here we use single cell RNA sequencing to investigate transcriptional changes in both the host and parasite during infection. While a small population of infected macrophages mount a response, most remain transcriptionally unchanged, suggesting that the majority of parasites may avoid host detection. The parasite transcriptome reveals large transcriptional changes throughout the life cycle, providing a blueprint for parasite development. The stealthy microsporidian lifestyle likely allows these parasites to harness macrophages for replication and dissemination. Together, our data provide insights into the host response in primary human macrophages and the E. intestinalis developmental program.
Collapse
Affiliation(s)
- Pattana Jaroenlak
- Department of Cell Biology, New York University Grossman School of Medicine, New York 10016, USA
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kacie L. McCarty
- Department of Cell Biology, New York University Grossman School of Medicine, New York 10016, USA
- Department of Microbiology, New York University Grossman School of Medicine, New York 10016, USA
| | - Bo Xia
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Cherry Lam
- Department of Cell Biology, New York University Grossman School of Medicine, New York 10016, USA
| | - Erin E. Zwack
- Department of Microbiology, New York University Grossman School of Medicine, New York 10016, USA
| | - Itai Yanai
- Institute for Computational Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gira Bhabha
- Department of Cell Biology, New York University Grossman School of Medicine, New York 10016, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Damian C. Ekiert
- Department of Cell Biology, New York University Grossman School of Medicine, New York 10016, USA
- Department of Microbiology, New York University Grossman School of Medicine, New York 10016, USA
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
4
|
González R, Félix MA. Caenorhabditis elegans immune responses to microsporidia and viruses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 154:105148. [PMID: 38325500 DOI: 10.1016/j.dci.2024.105148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 01/30/2024] [Accepted: 02/03/2024] [Indexed: 02/09/2024]
Abstract
The model organism Caenorhabditis elegans is susceptible to infection by obligate intracellular pathogens, specifically microsporidia and viruses. These intracellular pathogens infect intestinal cells, or, for some microsporidia, epidermal cells. Strikingly, intestinal cell infections by viruses or microsporidia trigger a common transcriptional response, activated in part by the ZIP-1 transcription factor. Among the strongest activated genes in this response are ubiquitin-pathway members and members of the pals family, an intriguing gene family with cross-regulations of different members of genomic clusters. Some of the induced genes participate in host defense against the pathogens, for example through ubiquitin-mediated inhibition. Other mechanisms defend the host specifically against viral infections, including antiviral RNA interference and uridylation. These various immune responses are altered by environmental factors and by intraspecific genetic variation of the host. These pathogens were first isolated 15 years ago and much remains to be discovered using C. elegans genetics; also, other intracellular pathogens of C. elegans may yet to be discovered.
Collapse
Affiliation(s)
- Rubén González
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005, Paris, France.
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005, Paris, France
| |
Collapse
|
5
|
Zhang L, Zhang S, Qiao Y, Cao X, Jiang G, Cheng J, Wan X, Meng Q, Shen H. A comparative transcriptome analysis of how shrimp endure and adapt to long-term symbiosis with Enterocytozoon hepatopenaei infection. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109088. [PMID: 37778737 DOI: 10.1016/j.fsi.2023.109088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/06/2023] [Accepted: 09/16/2023] [Indexed: 10/03/2023]
Abstract
Enterocytozoon hepatopenaei (EHP) is a prevalent microsporidian pathogen responsible for hepatopancreatic microsporidiosis (HPM) in Litopenaeus vannamei. This infection not only leads to slowed growth in shrimp abut aslo inflicts substantial economic losses in the global aquaculture industry. However, the molecular mechanisms by which EHP influences the host during various infection stages remain unclear. This study employed comparative transcriptomics to examine the effects of EHP infection on Litopenaeus vannamei between early and late stage of infection groups. Utilizing transcriptomic approaches, we identified differentially expressed genes (DEGs) with notable biological significance through the COG, GO, KEGG, GSEA, and Mufzz time-series methodologies. The results reveal that EHP infection considerably influences host gene expression, with marked differences between early and late infection across distinct timeframes. Key processes such as detoxification, cell apoptosis, and lipid metabolism are pivotal during host-parasite interactions. Hexokinase and phosphatidic acid phosphatase emerge as key factors enabling invasion and sustained effects. Cytochrome P450 and glucose-6-phosphate dehydrogenase could facilitate infection progression. EHP significantly impacts growth, especially through ecdysteroids and 17β-estradiol dehydrogenase. By delineating stage-specific effects, we gain insights into interaction between EHP and Litopenaeus vannamei, showing how intracellular pathogens reprogram host defenses into mechanisms enabling long-term persistence. This study provides a deeper understanding of host-pathogen dynamics, emphasizing the interplay between detoxification, metabolism, immunity, apoptosis and growth regulation over the course of long-term symbiosis.
Collapse
Affiliation(s)
- Leiting Zhang
- Nanjing Normal University, Nanjing, 210023, China; Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China
| | - Sheng Zhang
- Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China
| | - Yi Qiao
- Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China
| | - Xiaowei Cao
- Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China
| | - Ge Jiang
- Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China
| | - Jie Cheng
- Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China
| | - Xihe Wan
- Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China
| | - Qingguo Meng
- Nanjing Normal University, Nanjing, 210023, China
| | - Hui Shen
- Nanjing Normal University, Nanjing, 210023, China; Jiangsu Ocean University, Lianyungang, 222005, China; Jiangsu Marine Fisheries Research Institute, Nantong, 226007, China.
| |
Collapse
|
6
|
Akossi RF, Delbac F, El Alaoui H, Wawrzyniak I, Peyretaillade E. The intracellular parasite Anncaliia algerae induces a massive miRNA down-regulation in human cells. Noncoding RNA Res 2023; 8:363-375. [PMID: 37275245 PMCID: PMC10238475 DOI: 10.1016/j.ncrna.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 06/07/2023] Open
Abstract
Anncaliia algerae belongs to microsporidia, a group of obligate intracellular parasites related to fungi. These parasites are largely spread in water and food-webs and can infect a wide variety of hosts ranging from invertebrates to vertebrates including humans. In humans, microsporidian infections are mainly opportunistic as immunocompetent hosts can clear parasites naturally. Recent studies however have reported persistent microsporidian infections and have highlighted them as a risk factor in colon cancer. This may be a direct result of cell infection or may be an indirect effect of the infectious microenvironment and the host's response. In both cases, this raises the question of the effects of microsporidian infection at the host and host-cell levels. We aimed to address the question of human host intracellular response to microsporidian infection through a transcriptomic kinetic study of human foreskin fibroblasts (HFF) infected with A.algerae, a human infecting microsporidia with an exceptionally wide host range. We focused solely on host response studying both coding and small non-coding miRNA expression. Our study revealed a generalized down-regulation of cell miRNAs throughout infection with up to 547 different miRNAs downregulated at some timepoints and also transcriptomic dysregulations that could facilitate parasite development with immune and lipid metabolism genes modulation. We also hypothesize possible small nucleic acid expropriation explaining the miRNA downregulation. This work contributes to a better understanding of the dialogue that can occur between an intracellular parasite and its host at the cellular level, and can guide future studies on microsporidian infection biology to unravel the mode of action of these minimalist parasites at the tissue or host levels.We have also generated a kinetic and comprehensive transcriptomic data set of an infectious process that can help support comparative studies in the broader field of parasitology. Lastly, these results may warrant for caution regarding microsporidian exposure and persistent infections.
Collapse
Affiliation(s)
- Reginald Florian Akossi
- Laboratoire “Microorganismes: Génome et Environnement” (LMGE), UMR 6023, Université Clermont Auvergne and CNRS, F-63000, Clermont-Ferrand, France
| | - Fréderic Delbac
- Laboratoire “Microorganismes: Génome et Environnement” (LMGE), UMR 6023, Université Clermont Auvergne and CNRS, F-63000, Clermont-Ferrand, France
| | - Hicham El Alaoui
- Laboratoire “Microorganismes: Génome et Environnement” (LMGE), UMR 6023, Université Clermont Auvergne and CNRS, F-63000, Clermont-Ferrand, France
| | - Ivan Wawrzyniak
- Laboratoire “Microorganismes: Génome et Environnement” (LMGE), UMR 6023, Université Clermont Auvergne and CNRS, F-63000, Clermont-Ferrand, France
| | - Eric Peyretaillade
- Laboratoire “Microorganismes: Génome et Environnement” (LMGE), UMR 6023, Université Clermont Auvergne and CNRS, F-63000, Clermont-Ferrand, France
| |
Collapse
|
7
|
Wadi L, El Jarkass HT, Tran TD, Islah N, Luallen RJ, Reinke AW. Genomic and phenotypic evolution of nematode-infecting microsporidia. PLoS Pathog 2023; 19:e1011510. [PMID: 37471459 PMCID: PMC10393165 DOI: 10.1371/journal.ppat.1011510] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 06/24/2023] [Indexed: 07/22/2023] Open
Abstract
Microsporidia are a large phylum of intracellular parasites that can infect most types of animals. Species in the Nematocida genus can infect nematodes including Caenorhabditis elegans, which has become an important model to study mechanisms of microsporidia infection. To understand the genomic properties and evolution of nematode-infecting microsporidia, we sequenced the genomes of nine species of microsporidia, including two genera, Enteropsectra and Pancytospora, without any previously sequenced genomes. Core cellular processes, including metabolic pathways, are mostly conserved across genera of nematode-infecting microsporidia. Each species encodes unique proteins belonging to large gene families that are likely used to interact with host cells. Most strikingly, we observed one such family, NemLGF1, is present in both Nematocida and Pancytospora species, but not any other microsporidia. To understand how Nematocida phenotypic traits evolved, we measured the host range, tissue specificity, spore size, and polar tube length of several species in the genus. Our phylogenetic analysis shows that Nematocida is composed of two groups of species with distinct traits and that species with longer polar tubes infect multiple tissues. Together, our work details both genomic and trait evolution between related microsporidia species and provides a useful resource for further understanding microsporidia evolution and infection mechanisms.
Collapse
Affiliation(s)
- Lina Wadi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | | | - Tuan D Tran
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Nizar Islah
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Robert J Luallen
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Aaron W Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
8
|
Mok C, Xiao MA, Wan YC, Zhao W, Ahmed SM, Luallen RJ, Reinke AW. High-throughput phenotyping of infection by diverse microsporidia species reveals a wild C. elegans strain with opposing resistance and susceptibility traits. PLoS Pathog 2023; 19:e1011225. [PMID: 36893187 PMCID: PMC10030041 DOI: 10.1371/journal.ppat.1011225] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/21/2023] [Accepted: 02/20/2023] [Indexed: 03/10/2023] Open
Abstract
Animals are under constant selective pressure from a myriad of diverse pathogens. Microsporidia are ubiquitous animal parasites, but the influence they exert on shaping animal genomes is mostly unknown. Using multiplexed competition assays, we measured the impact of four different species of microsporidia on 22 wild isolates of Caenorhabditis elegans. This resulted in the identification and confirmation of 13 strains with significantly altered population fitness profiles under infection conditions. One of these identified strains, JU1400, is sensitive to an epidermal-infecting species by lacking tolerance to infection. JU1400 is also resistant to an intestinal-infecting species and can specifically recognize and destroy this pathogen. Genetic mapping of JU1400 demonstrates that these two opposing phenotypes are caused by separate loci. Transcriptional analysis reveals the JU1400 sensitivity to epidermal microsporidia infection results in a response pattern that shares similarity to toxin-induced responses. In contrast, we do not observe JU1400 intestinal resistance being regulated at the transcriptional level. The transcriptional response to these four microsporidia species is conserved, with C. elegans strain-specific differences in potential immune genes. Together, our results show that phenotypic differences to microsporidia infection amongst C. elegans are common and that animals can evolve species-specific genetic interactions.
Collapse
Affiliation(s)
- Calvin Mok
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Meng A. Xiao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Yin C. Wan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Winnie Zhao
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Shanzeh M. Ahmed
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Robert J. Luallen
- Department of Biology, San Diego State University, San Diego, California, United States of America
| | - Aaron W. Reinke
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|