1
|
Gomes DGE. How will we prepare for an uncertain future? The value of open data and code for unborn generations facing climate change. Proc Biol Sci 2025; 292:20241515. [PMID: 39933586 PMCID: PMC11813590 DOI: 10.1098/rspb.2024.1515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/27/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025] Open
Abstract
As the impacts of climate change continue to intensify, humans face new challenges to long-term survival. Humans will likely be battling these problems long after 2100, when many climate projections currently end. A more forward-thinking view on our science and its direction may help better prepare for the future of our species. Researchers may consider datasets the basic units of knowledge, whose preservation is arguably more important than the articles that are written about them. Storing data and code in long-term repositories offers insurance against our uncertain future. To ensure open data are useful, data must be FAIR (Findable, Accessible, Interoperable and Reusable) and be complete with all appropriate metadata. By embracing open science practices, contemporary scientists give the future of humanity the information to make better decisions, save time and other valuable resources, and increase global equity as access to information is made free. This, in turn, could enable and inspire a diversity of solutions, to the benefit of many. Imagine the collective science conducted, the models built, and the questions answered if all of the data researchers have collectively gathered were organized and immediately accessible and usable by everyone. Investing in open science today may ensure a brighter future for unborn generations.
Collapse
Affiliation(s)
- Dylan G. E. Gomes
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Seattle, WA98195, USA
- Former affiliation: National Academy of Sciences NRC Postdoctoral Research Associateship, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA98112, USA
| |
Collapse
|
2
|
Gomes DGE, Ruzicka JJ, Crozier LG, Huff DD, Brodeur RD, Stewart JD. Marine heatwaves disrupt ecosystem structure and function via altered food webs and energy flux. Nat Commun 2024; 15:1988. [PMID: 38480718 PMCID: PMC10937662 DOI: 10.1038/s41467-024-46263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024] Open
Abstract
The prevalence and intensity of marine heatwaves is increasing globally, disrupting local environmental conditions. The individual and population-level impacts of prolonged heatwaves on marine species have recently been demonstrated, yet whole-ecosystem consequences remain unexplored. We leveraged time series abundance data of 361 taxa, grouped into 86 functional groups, from six long-term surveys, diet information from a new diet database, and previous modeling efforts, to build two food web networks using an extension of the popular Ecopath ecosystem modeling framework, Ecotran. We compare ecosystem models parameterized before and after the onset of recent marine heatwaves to evaluate the cascading effects on ecosystem structure and function in the Northeast Pacific Ocean. While the ecosystem-level contribution (prey) and demand (predators) of most functional groups changed following the heatwaves, gelatinous taxa experienced the largest transformations, underscored by the arrival of northward-expanding pyrosomes. We show altered trophic relationships and energy flux have potentially profound consequences for ecosystem structure and function, and raise concerns for populations of threatened and harvested species.
Collapse
Affiliation(s)
- Dylan G E Gomes
- Ocean Ecology Lab, Marine Mammal Institute, Department of Fisheries, Wildlife & Conservation Sciences, Oregon State University, Newport, OR, 97365, USA.
- National Academy of Sciences NRC Postdoctoral Research Associateship, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA.
- Forest and Rangeland Ecosystem Science Center, United States Geological Survey, Seattle, WA, 98195, USA.
| | - James J Ruzicka
- Ecosystem Sciences Division, Pacific Islands Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Honolulu, HI, 96822, USA
| | - Lisa G Crozier
- Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, 98112, USA
| | - David D Huff
- Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Newport, OR, 97365, USA
| | - Richard D Brodeur
- Fish Ecology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Newport, OR, 97365, USA
| | - Joshua D Stewart
- Ocean Ecology Lab, Marine Mammal Institute, Department of Fisheries, Wildlife & Conservation Sciences, Oregon State University, Newport, OR, 97365, USA
| |
Collapse
|