1
|
Menon AR, Prest RJ, Tobin DM, Champion PA. Mycobacterium marinum as a model for understanding principles of mycobacterial pathogenesis. J Bacteriol 2025; 207:e0004725. [PMID: 40304497 DOI: 10.1128/jb.00047-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Mycobacterium marinum is a fish pathogen that has become a powerful and well-established model that has accelerated our understanding of the mechanisms of mycobacterial disease. M. marinum is a versatile surrogate for understanding the closely related human pathogen M. tuberculosis, which causes tuberculosis in humans. M. marinum has defined key mechanisms of pathogenesis, both shared with M. tuberculosis and unique to this species. In this review, we discuss the discovery of M. marinum as an occasional human pathogen, the shared aspects of pathogenesis with M. tuberculosis, and how M. marinum has been exploited as a model to define the molecular mechanisms of mycobacterial pathogenesis across several phases of infection.
Collapse
Affiliation(s)
- Aruna R Menon
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Rebecca J Prest
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Patricia A Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
2
|
Willis NB, Papoutsakis ET. Separate, separated, and together: the transcriptional program of the Clostridium acetobutylicum-Clostridium ljungdahlii syntrophy leading to interspecies cell fusion. mSystems 2025; 10:e0003025. [PMID: 40298437 DOI: 10.1128/msystems.00030-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Syntrophic cocultures (hitherto assumed to be commensalistic) of Clostridium acetobutylicum and Clostridium ljungdahlii, whereby CO2 and H2 produced by the former feed the latter, result in interspecies cell fusion involving large-scale exchange of protein, RNA, and DNA between the two organisms. Although mammalian cell fusion is mechanistically dissected, the mechanism for such microbial-cell fusions is unknown. To start exploring this mechanism, we used RNA sequencing to identify genes differentially expressed in this coculture using two types of comparisons. One type compared coculture to the two monocultures, capturing the combined impact of interactions through soluble signals in the medium and through direct cell-to-cell interactions. The second type compared membrane-separated versus -unseparated cocultures, isolating the impact of interspecies physical contact. While we could not firmly identify specific genes that might drive cell fusion, consistent with our hypothesized model for this interspecies microbial cell fusion, we observed differential regulation of genes involved in C. ljungdahlii's autotrophic Wood-Ljungdahl pathway metabolism and genes of the motility machinery. Unexpectedly, we also identified differential regulation of biosynthetic genes of several amino acids, and notably of arginine and histidine. We verified that they are produced by C. acetobutylicum and are metabolized by C. ljungdahlii to its growth advantage. These and other findings, and notably upregulation of C. acetobutylicum ribosomal-protein genes, paint a more complex syntrophic picture and suggest a mutualistic relationship, whereby beyond CO2 and H2, C. acetobutylicum feeds C. ljungdahlii with growth-boosting amino acids, while benefiting from the H2 utilization by C. ljungdahlii.IMPORTANCEThe construction and study of synthetic microbial cocultures is a growing research area due to the untapped potential of defined multi-species industrial bioprocesses and the utility of defined cocultures for generating insight into complex, undefined, natural microbial consortia. Our previous work showed that coculturing C. acetobutylicum and C. ljungdahlii leads to a unique metabolic phenotype (production of isopropanol) and heterologous cell fusion events. Here, we used RNAseq to explore genes involved in and impacted by these fusions. First, we compared gene expression in coculture to each monoculture. Second, we utilized a transwell system to compare gene expression in mixed cocultures to cocultures with both species physically separated by a permeable membrane, isolating the impact of interspecies "touching" on the transcriptome. This study deepens our mechanistic understanding of the C. acetobutylicum-C. ljungdahlii coculture phenotype, laying the groundwork for reverse genetic studies of heterologous cell fusion in Clostridium cocultures.
Collapse
Affiliation(s)
- Noah B Willis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Eleftherios T Papoutsakis
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
- The Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
- 3Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
3
|
Munke K, Wulff L, Lienard J, Carlsson F, Agace WW. In vivo regulation of the monocyte phenotype by Mycobacterium marinum and the ESX-1 type VII secretion system. Sci Rep 2025; 15:4545. [PMID: 39915532 PMCID: PMC11802795 DOI: 10.1038/s41598-025-88212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/25/2025] [Indexed: 02/09/2025] Open
Abstract
Pathogenic mycobacteria require the conserved ESX-1 type VII secretion system to cause disease. In a murine Mycobacterium marinum infection model we previously demonstrated that infiltrating monocytes and neutrophils represent the major bacteria-harbouring cell populations in infected tissue. In the current study we use this model, in combination with scRNA sequencing, to assess the impact of M. marinum infection on the transcriptional profile of infiltrating Ly6C⁺MHCII⁺ monocytes in vivo. Our findings demonstrate that infection of infiltrating monocytes with M. marinum alters their cytokine expression profile, induces glycolytic metabolism, hypoxia-mediated signaling, nitric oxide synthesis, tissue remodeling, and suppresses responsiveness to IFNγ. We further show that the transcriptional response of bystander monocytes is influenced by ESX-1-dependent mechanisms, including a reduced responsiveness to IFNγ. These findings suggest that mycobacterial infection has pleiotropic effects on monocyte phenotype, with potential implications in bacterial growth restriction and granuloma formation.
Collapse
Affiliation(s)
- Kristina Munke
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Line Wulff
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Julia Lienard
- Department of Biology, Lund University, Lund, Sweden
| | | | - William W Agace
- Department of Experimental Medical Science, Lund University, Lund, Sweden.
- Department of Immunology and Microbiology, LEO Foundation Skin Immunology Research Centre, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
4
|
Malik AA, Shariq M, Sheikh JA, Jaiswal U, Fayaz H, Shrivastava G, Ehtesham NZ, Hasnain SE. Mechanisms of immune evasion by Mycobacterium tuberculosis: the impact of T7SS and cell wall lipids on host defenses. Crit Rev Biochem Mol Biol 2024; 59:310-336. [PMID: 39378051 DOI: 10.1080/10409238.2024.2411264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 11/14/2024]
Abstract
Mycobacterium tuberculosis (M. tb) is one of the most successful human pathogens, causing a severe and widespread infectious disease. The frequent emergence of multidrug-resistant (MDR) strains has exacerbated this public health crisis, particularly in underdeveloped regions. M. tb employs a sophisticated array of virulence factors to subvert host immune responses, both innate and adaptive. It utilizes the early secretory antigenic target (ESAT6) secretion system 1 (ESX-1) type VII secretion system (T7SS) and cell wall lipids to disrupt phagosomal integrity, inhibiting phagosome maturation, and fusion with lysosomes. Although host cells activate mechanisms such as ubiquitin (Ub), Ub-ligase, and cyclic GMP-AMP synthase-stimulator of interferon genes 1 (CGAS-STING1)-mediated autophagy to inhibit M. tb survival within macrophages, the pathogen counteracts these defenses with its own virulence factors, thereby inhibiting autophagy and dampening host-directed responses. T7SSs are critical for transporting proteins across the complex mycobacterial cell envelope, performing essential functions, including metabolite uptake, immune evasion, and conjugation. T7SS substrates fall into two main families: ESAT-6 system proteins, which are found in both Firmicutes and Actinobacteria, and proline-glutamic acid (PE) and proline-proline-glutamic acid (PPE) proteins, which are unique to mycobacteria. Recent studies have highlighted the significance of T7SSs in mycobacterial growth, virulence, and pathogenesis. Understanding the mechanisms governing T7SSs could pave the way for novel therapeutic strategies to combat mycobacterial diseases, including tuberculosis (TB).
Collapse
Affiliation(s)
- Asrar Ahmad Malik
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Mohd Shariq
- GITAM School of Science, GITAM University, Rudraram, Telangana, India
| | - Javaid Ahmad Sheikh
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Udyeshita Jaiswal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, India
| | - Haleema Fayaz
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Gauri Shrivastava
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Nasreen Z Ehtesham
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Seyed E Hasnain
- Department of Life Sciences, School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), Hauz Khas, New Delhi, India
| |
Collapse
|
5
|
Yuan L, Wu S, Tian K, Wang S, Wu H, Qiao J. Nisin-relevant antimicrobial peptides: synthesis strategies and applications. Food Funct 2024; 15:9662-9677. [PMID: 39246095 DOI: 10.1039/d3fo05619h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Small pentacyclic peptides, represented by nisin, have been successfully utilized as preservatives in the food industry and have evolved into a paradigm for understanding the genetic structure, expression, and control of genes created by lantibiotics. Due to the ever-increasing antibiotic resistance, nisin-relevant antimicrobial peptides have received much attention, which calls for a summarization of their synthesis, modification and applications. In this review, we first provided a timeline of select highlights in nisin biosynthesis and engineering. Then, we outlined the current developments in nisin synthesis. We also provided an overview of the engineering, screening, and production of nisin-relevant antimicrobial peptides based on enzyme alteration, substrate modification, and sequence mining. Furthermore, an updated summary of applications of nisin-relevant antimicrobial peptides has been developed for food applications. Finally, this study offers insights into emerging technologies, limitations and the future development of nisin-relevant antimicrobial peptides for pathogen inhibition, food preservatives, and improved health.
Collapse
Affiliation(s)
- Lin Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Tianjin Agricultural University, Tianjin 300072, China
| | - Shengbo Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Kairen Tian
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Shengli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Hao Wu
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Research Institute of Tianjin University (Shaoxing), Shaoxing, 312300, China.
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| |
Collapse
|
6
|
Bates TA, Trank-Greene M, Nguyenla X, Anastas A, Gurmessa SK, Merutka IR, Dixon SD, Shumate A, Groncki AR, Parson MAH, Ingram JR, Barklis E, Burke JE, Shinde U, Ploegh HL, Tafesse FG. ESAT-6 undergoes self-association at phagosomal pH and an ESAT-6-specific nanobody restricts M. tuberculosis growth in macrophages. eLife 2024; 12:RP91930. [PMID: 38805257 PMCID: PMC11132683 DOI: 10.7554/elife.91930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism. we employ a series of biochemical analyses, protein modeling techniques, and a novel ESAT-6-specific nanobody to gain insight into the ESAT-6's mode of action. First, we measure the binding kinetics of the tight 1:1 complex formed by ESAT-6 and CFP-10 at neutral pH. Subsequently, we demonstrate a rapid self-association of ESAT-6 into large complexes under acidic conditions, leading to the identification of a stable tetrameric ESAT-6 species. Using molecular dynamics simulations, we pinpoint the most probable interaction interface. Furthermore, we show that cytoplasmic expression of an anti-ESAT-6 nanobody blocks Mtb replication, thereby underlining the pivotal role of ESAT-6 in intracellular survival. Together, these data suggest that ESAT-6 acts by a pH-dependent mechanism to establish two-way communication between the cytoplasm and the Mtb-containing phagosome.
Collapse
Affiliation(s)
- Timothy A Bates
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Mila Trank-Greene
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Xammy Nguyenla
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Aidan Anastas
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Sintayehu K Gurmessa
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Ilaria R Merutka
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Shandee D Dixon
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Anthony Shumate
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | - Abigail R Groncki
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - Matthew AH Parson
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Jessica R Ingram
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| | - John E Burke
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
- Department of Biochemistry and Molecular Biology, The University of British ColumbiaVancouverCanada
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science UniversityPortlandUnited States
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical SchoolBostonUnited States
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences UniversityPortlandUnited States
| |
Collapse
|
7
|
Bates TA, Trank-Greene M, Nguyenla X, Anastas A, Gurmessa SK, Merutka IR, Dixon SD, Shumate A, Groncki AR, Parson MAH, Ingram JR, Barklis E, Burke JE, Shinde U, Ploegh HL, Tafesse FG. ESAT-6 undergoes self-association at phagosomal pH and an ESAT-6 specific nanobody restricts M. tuberculosis growth in macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.16.553641. [PMID: 37645775 PMCID: PMC10462100 DOI: 10.1101/2023.08.16.553641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is known to survive within macrophages by compromising the integrity of the phagosomal compartment in which it resides. This activity primarily relies on the ESX-1 secretion system, predominantly involving the protein duo ESAT-6 and CFP-10. CFP-10 likely acts as a chaperone, while ESAT-6 likely disrupts phagosomal membrane stability via a largely unknown mechanism. we employ a series of biochemical analyses, protein modeling techniques, and a novel ESAT-6-specific nanobody to gain insight into the ESAT-6's mode of action. First, we measure the binding kinetics of the tight 1:1 complex formed by ESAT-6 and CFP-10 at neutral pH. Subsequently, we demonstrate a rapid self-association of ESAT-6 into large complexes under acidic conditions, leading to the identification of a stable tetrameric ESAT-6 species. Using molecular dynamics simulations, we pinpoint the most probable interaction interface. Furthermore, we show that cytoplasmic expression of an anti-ESAT-6 nanobody blocks Mtb replication, thereby underlining the pivotal role of ESAT-6 in intracellular survival. Together, these data suggest that ESAT-6 acts by a pH dependent mechanism to establish two-way communication between the cytoplasm and the Mtb-containing phagosome.
Collapse
Affiliation(s)
- Timothy A Bates
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Mila Trank-Greene
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Xammy Nguyenla
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Aidan Anastas
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Sintayehu K Gurmessa
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Ilaria R Merutka
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Shandee D Dixon
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Anthony Shumate
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Abigail R Groncki
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - Matthew AH Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Jessica R Ingram
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, Canada
| | - Ujwal Shinde
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon, United States
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, United States
| |
Collapse
|
8
|
Zhang B, Phetsang W, Stone MRL, Kc S, Butler MS, Cooper MA, Elliott AG, Łapińska U, Voliotis M, Tsaneva-Atanasova K, Pagliara S, Blaskovich MAT. Synthesis of vancomycin fluorescent probes that retain antimicrobial activity, identify Gram-positive bacteria, and detect Gram-negative outer membrane damage. Commun Biol 2023; 6:409. [PMID: 37055536 PMCID: PMC10102067 DOI: 10.1038/s42003-023-04745-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/22/2023] [Indexed: 04/15/2023] Open
Abstract
Antimicrobial resistance is an urgent threat to human health, and new antibacterial drugs are desperately needed, as are research tools to aid in their discovery and development. Vancomycin is a glycopeptide antibiotic that is widely used for the treatment of Gram-positive infections, such as life-threatening systemic diseases caused by methicillin-resistant Staphylococcus aureus (MRSA). Here we demonstrate that modification of vancomycin by introduction of an azide substituent provides a versatile intermediate that can undergo copper-catalysed azide-alkyne cycloaddition (CuAAC) reaction with various alkynes to readily prepare vancomycin fluorescent probes. We describe the facile synthesis of three probes that retain similar antibacterial profiles to the parent vancomycin antibiotic. We demonstrate the versatility of these probes for the detection and visualisation of Gram-positive bacteria by a range of methods, including plate reader quantification, flow cytometry analysis, high-resolution microscopy imaging, and single cell microfluidics analysis. In parallel, we demonstrate their utility in measuring outer-membrane permeabilisation of Gram-negative bacteria. The probes are useful tools that may facilitate detection of infections and development of new antibiotics.
Collapse
Affiliation(s)
- Bing Zhang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Wanida Phetsang
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - M Rhia L Stone
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sanjaya Kc
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mark S Butler
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Matthew A Cooper
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Alysha G Elliott
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Urszula Łapińska
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4Q, UK
| | - Margaritis Voliotis
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Department of Mathematics, University of Exeter, Stocker Road, Exeter, UK
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Department of Mathematics, University of Exeter, Stocker Road, Exeter, UK
- EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter, EX4 4QJ, UK
- Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Street, 1113, Sofia, Bulgaria
| | - Stefano Pagliara
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4Q, UK
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
9
|
The ESX-1 Substrate PPE68 Has a Key Function in ESX-1-Mediated Secretion in Mycobacterium marinum. mBio 2022; 13:e0281922. [PMID: 36409073 PMCID: PMC9765416 DOI: 10.1128/mbio.02819-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Mycobacteria use specialized type VII secretion systems (T7SSs) to secrete proteins across their diderm cell envelope. One of the T7SS subtypes, named ESX-1, is a major virulence determinant in pathogenic species such as Mycobacterium tuberculosis and the fish pathogen Mycobacterium marinum. ESX-1 secretes a variety of substrates, called Esx, PE, PPE, and Esp proteins, at least some of which are folded heterodimers. Investigation into the functions of these substrates is problematic, because of the intricate network of codependent secretion between several ESX-1 substrates. Here, we describe the ESX-1 substrate PPE68 as essential for secretion of the highly immunogenic substrates EsxA and EspE via the ESX-1 system in M. marinum. While secreted PPE68 is processed on the cell surface, the majority of cell-associated PPE68 of M. marinum and M. tuberculosis is present in a cytosolic complex with its PE partner and the EspG1 chaperone. Interfering with the binding of EspG1 to PPE68 blocked its export and the secretion of EsxA and EspE. In contrast, esxA was not required for the secretion of PPE68, revealing a hierarchy in codependent secretion. Remarkably, the final 10 residues of PPE68, a negatively charged domain, seem essential for EspE secretion, but not for the secretion of EsxA and of PPE68 itself. This indicates that distinctive domains of PPE68 are involved in secretion of the different ESX-1 substrates. Based on these findings, we propose a mechanistic model for the central role of PPE68 in ESX-1-mediated secretion and substrate codependence. IMPORTANCE Pathogenic mycobacteria, such Mycobacterium tuberculosis and Mycobacterium marinum, use a type VII secretion system (T7SS) subtype, called ESX-1, to mediate intracellular survival via phagosomal rupture and subsequent translocation of the mycobacterium to the host cytosol. Identifying the ESX-1 substrate that is responsible for this process is problematic because of the intricate network of codependent secretion between ESX-1 substrates. Here, we show the central role of the ESX-1 substrate PPE68 for the secretion of ESX-1 substrates in Mycobacterium marinum. Unravelling the mechanism of codependent secretion will aid the functional understanding of T7SSs and will allow the analysis of the individual roles of ESX-1 substrates in the virulence caused by the significant human pathogen Mycobacterium tuberculosis.
Collapse
|
10
|
Cronin RM, Ferrell MJ, Cahir CW, Champion MM, Champion PA. Proteo-genetic analysis reveals clear hierarchy of ESX-1 secretion in Mycobacterium marinum. Proc Natl Acad Sci U S A 2022; 119:e2123100119. [PMID: 35671426 PMCID: PMC9214503 DOI: 10.1073/pnas.2123100119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 05/06/2022] [Indexed: 12/14/2022] Open
Abstract
The ESX-1 (ESAT-6-system-1) system and the protein substrates it transports are essential for mycobacterial pathogenesis. The precise ways that ESX-1 substrates contribute to virulence remains unknown. Several known ESX-1 substrates are also required for the secretion of other proteins. We used a proteo-genetic approach to construct high-resolution dependency relationships for the roles of individual ESX-1 substrates in secretion and virulence in Mycobacterium marinum, a pathogen of humans and animals. Characterizing a collection of M. marinum strains with in-frame deletions in each of the known ESX-1 substrate genes and the corresponding complementation strains, we demonstrate that ESX-1 substrates are differentially required for ESX-1 activity and for virulence. Using isobaric-tagged proteomics, we quantified the degree of requirement of each substrate on protein secretion. We conclusively defined distinct contributions of ESX-1 substrates in protein secretion. Our data reveal a hierarchy of ESX-1 substrate secretion, which supports a model for the composition of the extracytoplasmic ESX-1 secretory machinery. Overall, our proteo-genetic analysis demonstrates discrete roles for ESX-1 substrates in ESX-1 function and secretion in M. marinum.
Collapse
Affiliation(s)
- Rachel M. Cronin
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Micah J. Ferrell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Clare W. Cahir
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| | - Matthew M. Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
| | - Patricia A. Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556
| |
Collapse
|
11
|
Kriel NL, Newton-Foot M, Bennion OT, Aldridge BB, Mehaffy C, Belisle JT, Walzl G, Warren RM, Sampson SL, Gey van Pittius NC. Localization of EccA 3 at the growing pole in Mycobacterium smegmatis. BMC Microbiol 2022; 22:140. [PMID: 35590245 PMCID: PMC9118679 DOI: 10.1186/s12866-022-02554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022] Open
Abstract
Background Bacteria require specialized secretion systems for the export of molecules into the extracellular space to modify their environment and scavenge for nutrients. The ESX-3 secretion system is required by mycobacteria for iron homeostasis. The ESX-3 operon encodes for one cytoplasmic component (EccA3) and five membrane components (EccB3 – EccE3 and MycP3). In this study we sought to identify the sub-cellular location of EccA3 of the ESX-3 secretion system in mycobacteria. Results Fluorescently tagged EccA3 localized to a single pole in the majority of Mycobacterium smegmatis cells and time-lapse fluorescent microscopy identified this pole as the growing pole. Deletion of ESX-3 did not prevent polar localization of fluorescently tagged EccA3, suggesting that EccA3 unipolar localization is independent of other ESX-3 components. Affinity purification - mass spectrometry was used to identify EccA3 associated proteins which may contribute to the localization of EccA3 at the growing pole. EccA3 co-purified with fatty acid metabolism proteins (FAS, FadA3, KasA and KasB), mycolic acid synthesis proteins (UmaA, CmaA1), cell division proteins (FtsE and FtsZ), and cell shape and cell cycle proteins (MurS, CwsA and Wag31). Secretion system related proteins Ffh, SecA1, EccA1, and EspI were also identified. Conclusions Time-lapse microscopy demonstrated that EccA3 is located at the growing pole in M. smegmatis. The co-purification of EccA3 with proteins known to be required for polar growth, mycolic acid synthesis, the Sec secretion system (SecA1), and the signal recognition particle pathway (Ffh) also suggests that EccA3 is located at the site of active cell growth. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02554-6.
Collapse
Affiliation(s)
- Nastassja L Kriel
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Mae Newton-Foot
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Owen T Bennion
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Bree B Aldridge
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Carolina Mehaffy
- Mycobacteria Research Laboratories, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - John T Belisle
- Mycobacteria Research Laboratories, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Gerhard Walzl
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robin M Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Samantha L Sampson
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nico C Gey van Pittius
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
12
|
Cai X, Liu L, Qiu C, Wen C, He Y, Cui Y, Li S, Zhang X, Zhang L, Tian C, Bi L, Zhou ZH, Gong W. Identification and architecture of a putative secretion tube across mycobacterial outer envelope. SCIENCE ADVANCES 2021; 7:7/34/eabg5656. [PMID: 34417177 PMCID: PMC8378821 DOI: 10.1126/sciadv.abg5656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Tuberculosis-causing mycobacteria have thick cell-wall and capsule layers that are formed from complex structures. Protein secretion across these barriers depends on a specialized protein secretion system, but none has been reported. We show that Mycobacterium tuberculosis Rv3705c and its homologous MSMEG_6251 in Mycobacterium smegmatis are tube-forming proteins in the mycobacterial envelope (TiME). Crystallographic and cryo-EM structures of these two proteins show that both proteins form rotationally symmetric rings. Two layers of TiME rings pack together in a tail-to-tail manner into a ring-shaped complex, which, in turn, stacks together to form tubes. M. smegmatis TiME was detected mainly in the cell wall and capsule. Knocking out the TiME gene markedly decreased the amount of secreted protein in the M. smegmatis culture medium, and expression of this gene in knocked-out strain partially restored the level of secreted protein. Our structure and functional data thus suggest that TiME forms a protein transport tube across the mycobacterial outer envelope.
Collapse
Affiliation(s)
- Xiaoying Cai
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Chunhong Qiu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Chongzheng Wen
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| | - Yao He
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Yanxiang Cui
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Siyu Li
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuan Zhang
- Institute of Health Science, Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui, China
| | - Longhua Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Changlin Tian
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Lijun Bi
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Z Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA.
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA
| | - Weimin Gong
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China.
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
13
|
Gijsbers A, Vinciauskaite V, Siroy A, Gao Y, Tria G, Mathew A, Sánchez-Puig N, López-Iglesias C, Peters PJ, Ravelli RBG. Priming mycobacterial ESX-secreted protein B to form a channel-like structure. Curr Res Struct Biol 2021; 3:153-164. [PMID: 34337436 PMCID: PMC8313811 DOI: 10.1016/j.crstbi.2021.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/20/2021] [Accepted: 06/17/2021] [Indexed: 01/24/2023] Open
Abstract
ESX-1 is a major virulence factor of Mycobacterium tuberculosis, a secretion machinery directly involved in the survival of the microorganism from the immune system defence. It disrupts the phagosome membrane of the host cell through a contact-dependent mechanism. Recently, the structure of the inner-membrane core complex of the homologous ESX-3 and ESX-5 was resolved; however, the elements involved in the secretion through the outer membrane or those acting on the host cell membrane are unknown. Protein substrates might form this missing element. Here, we describe the oligomerisation process of the ESX-1 substrate EspB, which occurs upon cleavage of its C-terminal region and is favoured by an acidic environment. Cryo-electron microscopy data shows that quaternary structure of EspB is conserved across slow growing species, but not in the fast growing M. smegmatis. EspB assembles into a channel with dimensions and characteristics suitable for the transit of ESX-1 substrates, as shown by the presence of another EspB trapped within. Our results provide insight into the structure and assembly of EspB, and suggests a possible function as a structural element of ESX-1.
Collapse
Affiliation(s)
- Abril Gijsbers
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Vanesa Vinciauskaite
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Axel Siroy
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Ye Gao
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Giancarlo Tria
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Anjusha Mathew
- Division of Imaging Mass Spectrometry, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Nuria Sánchez-Puig
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Carmen López-Iglesias
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Peter J Peters
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Raimond B G Ravelli
- Division of Nanoscopy, Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| |
Collapse
|
14
|
Intracellular localization of the mycobacterial stressosome complex. Sci Rep 2021; 11:10060. [PMID: 33980893 PMCID: PMC8115616 DOI: 10.1038/s41598-021-89069-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/19/2021] [Indexed: 11/09/2022] Open
Abstract
Microorganisms survive stresses by alternating the expression of genes suitable for surviving the immediate and present danger and eventually adapt to new conditions. Many bacteria have evolved a multiprotein "molecular machinery" designated the "Stressosome" that integrates different stress signals and activates alternative sigma factors for appropriate downstream responses. We and others have identified orthologs of some of the Bacillus subtilis stressosome components, RsbR, RsbS, RsbT and RsbUVW in several mycobacteria and we have previously reported mutual interactions among the stressosome components RsbR, RsbS, RsbT and RsbUVW from Mycobacterium marinum. Here we provide evidence that "STAS" domains of both RsbR and RsbS are important for establishing the interaction and thus critical for stressosome assembly. Fluorescence microscopy further suggested co-localization of RsbR and RsbS in multiprotein complexes visible as co-localized fluorescent foci distributed at scattered locations in the M. marinum cytoplasm; the number, intensity and distribution of such foci changed in cells under stressed conditions. Finally, we provide bioinformatics data that 17 (of 244) mycobacteria, which lack the RsbRST genes, carry homologs of Bacillus cereus genes rsbK and rsbM indicating the existence of alternative σF activation pathways among mycobacteria.
Collapse
|
15
|
Judd JA, Canestrari J, Clark R, Joseph A, Lapierre P, Lasek-Nesselquist E, Mir M, Palumbo M, Smith C, Stone M, Upadhyay A, Wirth SE, Dedrick RM, Meier CG, Russell DA, Dills A, Dove E, Kester J, Wolf ID, Zhu J, Rubin ER, Fortune S, Hatfull GF, Gray TA, Wade JT, Derbyshire KM. A Mycobacterial Systems Resource for the Research Community. mBio 2021; 12:e02401-20. [PMID: 33653882 PMCID: PMC8092266 DOI: 10.1128/mbio.02401-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 12/12/2022] Open
Abstract
Functional characterization of bacterial proteins lags far behind the identification of new protein families. This is especially true for bacterial species that are more difficult to grow and genetically manipulate than model systems such as Escherichia coli and Bacillus subtilis To facilitate functional characterization of mycobacterial proteins, we have established a Mycobacterial Systems Resource (MSR) using the model organism Mycobacterium smegmatis This resource focuses specifically on 1,153 highly conserved core genes that are common to many mycobacterial species, including Mycobacterium tuberculosis, in order to provide the most relevant information and resources for the mycobacterial research community. The MSR includes both biological and bioinformatic resources. The biological resource includes (i) an expression plasmid library of 1,116 genes fused to a fluorescent protein for determining protein localization; (ii) a library of 569 precise deletions of nonessential genes; and (iii) a set of 843 CRISPR-interference (CRISPRi) plasmids specifically targeted to silence expression of essential core genes and genes for which a precise deletion was not obtained. The bioinformatic resource includes information about individual genes and a detailed assessment of protein localization. We anticipate that integration of these initial functional analyses and the availability of the biological resource will facilitate studies of these core proteins in many Mycobacterium species, including the less experimentally tractable pathogens M. abscessus, M. avium, M. kansasii, M. leprae, M. marinum, M. tuberculosis, and M. ulceransIMPORTANCE Diseases caused by mycobacterial species result in millions of deaths per year globally, and present a substantial health and economic burden, especially in immunocompromised patients. Difficulties inherent in working with mycobacterial pathogens have hampered the development and application of high-throughput genetics that can inform genome annotations and subsequent functional assays. To facilitate mycobacterial research, we have created a biological and bioinformatic resource (https://msrdb.org/) using Mycobacterium smegmatis as a model organism. The resource focuses specifically on 1,153 proteins that are highly conserved across the mycobacterial genus and, therefore, likely perform conserved mycobacterial core functions. Thus, functional insights from the MSR will apply to all mycobacterial species. We believe that the availability of this mycobacterial systems resource will accelerate research throughout the mycobacterial research community.
Collapse
Affiliation(s)
- J A Judd
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - J Canestrari
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - R Clark
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - A Joseph
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - P Lapierre
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - E Lasek-Nesselquist
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - M Mir
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - M Palumbo
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - C Smith
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - M Stone
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - A Upadhyay
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - S E Wirth
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - R M Dedrick
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - C G Meier
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - D A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - A Dills
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - E Dove
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - J Kester
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - I D Wolf
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - J Zhu
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - E R Rubin
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - S Fortune
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - G F Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - T A Gray
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - J T Wade
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| | - K M Derbyshire
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
- Department of Biomedical Sciences, University at Albany, Albany, New York, USA
| |
Collapse
|
16
|
Rens C, Chao JD, Sexton DL, Tocheva EI, Av-Gay Y. Roles for phthiocerol dimycocerosate lipids in Mycobacterium tuberculosis pathogenesis. MICROBIOLOGY-SGM 2021; 167. [PMID: 33629944 DOI: 10.1099/mic.0.001042] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The success of Mycobacterium tuberculosis as a pathogen is well established: tuberculosis is the leading cause of death by a single infectious agent worldwide. The threat of multi- and extensively drug-resistant bacteria has renewed global concerns about this pathogen and understanding its virulence strategies will be essential in the fight against tuberculosis. The current review will focus on phthiocerol dimycocerosates (PDIMs), a long-known and well-studied group of complex lipids found in the M. tuberculosis cell envelope. Numerous studies show a role for PDIMs in several key steps of M. tuberculosis pathogenesis, with recent studies highlighting its involvement in bacterial virulence, in association with the ESX-1 secretion system. Yet, the mechanisms by which PDIMs help M. tuberculosis to control macrophage phagocytosis, inhibit phagosome acidification and modulate host innate immunity, remain to be fully elucidated.
Collapse
Affiliation(s)
- Céline Rens
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Joseph D Chao
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Danielle L Sexton
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
| | - Elitza I Tocheva
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
| | - Yossef Av-Gay
- Division of Infectious Disease, Department of Medicine, The University of British Columbia, Vancouver, Canada.,Department of Microbiology & Immunology, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
17
|
Modeling Tubercular ESX-1 Secretion Using Mycobacterium marinum. Microbiol Mol Biol Rev 2020; 84:84/4/e00082-19. [DOI: 10.1128/mmbr.00082-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Pathogenic mycobacteria cause chronic and acute diseases ranging from human tuberculosis (TB) to nontubercular infections.
Mycobacterium tuberculosis
causes both acute and chronic human tuberculosis. Environmentally acquired nontubercular mycobacteria (NTM) cause chronic disease in humans and animals. Not surprisingly, NTM and
M. tuberculosis
often use shared molecular mechanisms to survive within the host. The ESX-1 system is a specialized secretion system that is essential for virulence and is functionally conserved between
M. tuberculosis
and
Mycobacterium marinum
.
Collapse
|
18
|
Conserved ESX-1 Substrates EspE and EspF Are Virulence Factors That Regulate Gene Expression. Infect Immun 2020; 88:IAI.00289-20. [PMID: 32900815 DOI: 10.1128/iai.00289-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/28/2020] [Indexed: 12/12/2022] Open
Abstract
Mycobacterium tuberculosis, the cause of human tuberculosis, and Mycobacterium marinum, a nontubercular pathogen with a broad host range, require the ESX-1 secretion system for virulence. The ESX-1 system secretes proteins which cause phagosomal lysis within the macrophage via an unknown mechanism. As reported elsewhere (R. E. Bosserman et al., Proc Natl Acad Sci U S A 114:E10772-E10781, 2017, https://doi.org/10.1073/pnas.1710167114), we recently discovered that the ESX-1 system regulates gene expression in M. marinum This finding was confirmed in M. tuberculosis in reports by C. Sala et al. (PLoS Pathog 14:e1007491, 2018, https://doi.org/10.1371/journal.ppat.1007491) and A. M. Abdallah et al. (PLoS One 14:e0211003, 2019, https://doi.org/10.1371/journal.pone.0211003). We further demonstrated that a feedback control mechanism connects protein secretion to WhiB6-dependent expression of the esx-1 genes via an unknown mechanism. Here, we connect protein secretion and gene expression by showing for the first time that specific ESX-1 substrates have dual functions inside and outside the mycobacterial cell. We demonstrate that the EspE and EspF substrates negatively control esx-1 gene expression in the M. marinum cytoplasm through the conserved WhiB6 transcription factor. We found that EspE and EspF are required for virulence and promote lytic activity independently of the major EsxA and EsxB substrates. We show that the dual functions of EspE and EspF are conserved in the orthologous proteins from M. tuberculosis Our findings support a role for EspE and EspF in virulence that is independent of the EsxA and EsxB substrates and demonstrate that ESX-1 substrates have a conserved role in regulating gene expression.
Collapse
|
19
|
Subcellular Localization and Assembly Process of the Nisin Biosynthesis Machinery in Lactococcus lactis. mBio 2020; 11:mBio.02825-20. [PMID: 33173006 PMCID: PMC7667030 DOI: 10.1128/mbio.02825-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Nisin is the model peptide for LanBC-modified lantibiotics that are commonly modified and exported by a putative synthetase complex. Although the mechanism of maturation, transport, immunity, and regulation is relatively well understood, and structural information is available for some of the proteins involved (B. Li, J. P. J. Yu, J. S. Brunzelle, G. N. Moll, et al., Science 311:1464–1467, 2006, https://doi.org/10.1126/science.1121422; M. A. Ortega, Y. Hao, Q. Zhang, M. C. Walker, et al., Nature 517:509–512, 2015, https://doi.org/10.1038/nature13888; C. Hacker, N. A. Christ, E. Duchardt-Ferner, S. Korn, et al., J Biol Chem 290:28869–28886, 2015, https://doi.org/10.1074/jbc.M115.679969; Y. Y. Xu, X. Li, R. Q. Li, S. S. Li, et al., Acta Crystallogr D Biol Crystallogr 70:1499–1505, 2014, https://doi.org/10.1107/S1399004714004234), the subcellular localization and assembly process of the biosynthesis complex remain to be elucidated. In this study, we determined the spatial distribution of nisin synthesis-related enzymes and the transporter, revealing that the modification and secretion of the precursor nisin mainly occur at the old cell poles of L. lactis and that the transporter NisT is probably recruited later to this spot after the completion of the modification reactions by NisB and NisC. Fluorescently labeled nisin biosynthesis machinery was visualized directly by fluorescence microscopy. To our knowledge, this is the first study to provide direct evidence of the existence of such a complex in vivo. Importantly, the elucidation of the “order of assembly” of the complex will facilitate future endeavors in the investigation of the nisin secretion mechanism and even the isolation and structural characterization of the complete complex. Nisin, a class I lantibiotic, is synthesized as a precursor peptide by a putative membrane-associated lanthionine synthetase complex consisting of the dehydratase NisB, the cyclase NisC, and the ABC transporter NisT. Here, we characterize the subcellular localization and the assembly process of the nisin biosynthesis machinery in Lactococcus lactis by mutational analyses and fluorescence microscopy. Precursor nisin, NisB, and NisC were found to be mainly localized at the cell poles, with a preference for the old poles. They were found to be colocalized at the same spots in these old pole regions, functioning as a nisin modification complex. In contrast, the transporter NisT was found to be distributed uniformly and circumferentially in the membrane. When nisin secretion was blocked by mutagenesis of NisT, the nisin biosynthesis machinery was also visualized directly at a polar position using fluorescence microscopy. The interactions between NisB and other components of the machinery were further studied in vivo, and therefore, the “order of assembly” of the complex was revealed, indicating that NisB directly or indirectly plays the role of a polar “recruiter” in the initial assembly process. Additionally, a potential domain that is located at the surface of the elimination domain of NisB was identified to be crucial for the polar localization of NisB. Based on these data, we propose a model wherein precursor nisin is first completely modified by the nisin biosynthesis machinery, preventing the premature secretion of partially modified peptides, and subsequently secreted by recruited NisT, preferentially at the old pole regions.
Collapse
|
20
|
Roy S, Ghatak D, Das P, BoseDasgupta S. ESX secretion system: The gatekeepers of mycobacterial survivability and pathogenesis. Eur J Microbiol Immunol (Bp) 2020; 10:202-209. [PMID: 33174865 PMCID: PMC7753977 DOI: 10.1556/1886.2020.00028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/25/2020] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis, the causative agent of Tuberculosis has plagued humankind for ages and has surfaced stronger than ever with the advent of drug resistance. Mycobacteria are adept at evading the host immune system and establishing infection by engaging host factors and secreting several virulence factors. Hence these secretion systems play a key role in mycobacterial pathogenesis. The type VII secretion system or ESX (early secretory antigenic target (ESAT6) secretion) system is one such crucial system that comprises five different pathways having distinct roles in mycobacterial proliferation, pathogenesis, cytosolic escape within macrophages, regulation of macrophage apoptosis, metal ion homeostasis, etc. ESX 1–5 systems are implicated in the secretion of a plethora of proteins, of which only a few are functionally characterized. Here we summarize the current knowledge of ESX secretion systems of mycobacteria with a special focus on ESX-1 and ESX-5 systems that subvert macrophage defenses and help mycobacteria to establish their niche within the macrophage.
Collapse
Affiliation(s)
- Sadhana Roy
- Department of Biotechnology, Molecular Immunology and Cellular Microbiology Laboratory, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Debika Ghatak
- Department of Biotechnology, Molecular Immunology and Cellular Microbiology Laboratory, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Payel Das
- Department of Biotechnology, Molecular Immunology and Cellular Microbiology Laboratory, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Somdeb BoseDasgupta
- Department of Biotechnology, Molecular Immunology and Cellular Microbiology Laboratory, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
21
|
Infect and Inject: How Mycobacterium tuberculosis Exploits Its Major Virulence-Associated Type VII Secretion System, ESX-1. Microbiol Spectr 2020; 7. [PMID: 31172908 PMCID: PMC6698389 DOI: 10.1128/microbiolspec.bai-0024-2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mycobacterium tuberculosis is an ancient master of the art of causing human disease. One important weapon within its fully loaded arsenal is the type VII secretion system. M. tuberculosis has five of them: ESAT-6 secretion systems (ESX) 1 to 5. ESX-1 has long been recognized as a major cause of attenuation of the FDA-licensed vaccine Mycobacterium bovis BCG, but its importance in disease progression and transmission has recently been elucidated in more detail. This review summarizes the recent advances in (i) the understanding of the ESX-1 structure and components, (ii) our knowledge of ESX-1's role in hijacking macrophage function to set a path for infection and dissemination, and (iii) the development of interventions that utilize ESX-1 for diagnosis, drug interventions, host-directed therapies, and vaccines.
Collapse
|
22
|
Polarly Localized EccE 1 Is Required for ESX-1 Function and Stabilization of ESX-1 Membrane Proteins in Mycobacterium tuberculosis. J Bacteriol 2020; 202:JB.00662-19. [PMID: 31843799 DOI: 10.1128/jb.00662-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium tuberculosis is a slow-growing intracellular bacterium with the ability to induce host cell death and persist indefinitely in the human body. This pathogen uses the specialized ESX-1 secretion system to secrete virulence factors and potent immunogenic effectors required for disease progression. ESX-1 is a multisubunit apparatus with a membrane complex that is predicted to form a channel in the cytoplasmic membrane. In M. tuberculosis this complex is composed of five membrane proteins: EccB1, EccCa1, EccCb1, EccD1, and EccE1 In this study, we have characterized the membrane component EccE1 and found that deletion of eccE 1 lowers the levels of EccB1, EccCa1, and EccD1, thereby abolishing ESX-1 secretion and attenuating M. tuberculosis ex vivo Surprisingly, secretion of EspB was not affected by loss of EccE1 Furthermore, EccE1 was found to be a membrane- and cell wall-associated protein that needs the presence of other ESX-1 components to assemble into a stable complex at the poles of M. tuberculosis Overall, this investigation provides new insights into the role of EccE1 and its localization in M. tuberculosis IMPORTANCE Tuberculosis (TB), the world's leading cause of death of humans from an infectious disease, is caused by the intracellular bacterium Mycobacterium tuberculosis The development of successful strategies to control TB requires better understanding of the complex interactions between the pathogen and the human host. We investigated the contribution of EccE1, a membrane protein, to the function of the ESX-1 secretion system, the major virulence determinant of M. tuberculosis By combining genetic analysis of selected mutants with eukaryotic cell biology and proteomics, we demonstrate that EccE1 is critical for ESX-1 function, secretion of effector proteins, and pathogenesis. Our research improves knowledge of the molecular basis of M. tuberculosis virulence and enhances our understanding of pathogenesis.
Collapse
|
23
|
Sanchez KG, Ferrell MJ, Chirakos AE, Nicholson KR, Abramovitch RB, Champion MM, Champion PA. EspM Is a Conserved Transcription Factor That Regulates Gene Expression in Response to the ESX-1 System. mBio 2020; 11:e02807-19. [PMID: 32019792 PMCID: PMC7002343 DOI: 10.1128/mbio.02807-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/18/2019] [Indexed: 01/01/2023] Open
Abstract
Pathogenic mycobacteria encounter multiple environments during macrophage infection. Temporally, the bacteria are engulfed into the phagosome, lyse the phagosomal membrane, and interact with the cytosol before spreading to another cell. Virulence factors secreted by the mycobacterial ESX-1 (ESAT-6-system-1) secretion system mediate the essential transition from the phagosome to the cytosol. It was recently discovered that the ESX-1 system also regulates mycobacterial gene expression in Mycobacterium marinum (R. E. Bosserman, T. T. Nguyen, K. G. Sanchez, A. E. Chirakos, et al., Proc Natl Acad Sci U S A 114:E10772-E10781, 2017, https://doi.org/10.1073/pnas.1710167114), a nontuberculous mycobacterial pathogen, and in the human-pathogenic species M. tuberculosis (A. M. Abdallah, E. M. Weerdenburg, Q. Guan, R. Ummels, et al., PLoS One 14:e0211003, 2019, https://doi.org/10.1371/journal.pone.0211003). It is not known how the ESX-1 system regulates gene expression. Here, we identify the first transcription factor required for the ESX-1-dependent transcriptional response in pathogenic mycobacteria. We demonstrate that the gene divergently transcribed from the whiB6 gene and adjacent to the ESX-1 locus in mycobacterial pathogens encodes a conserved transcription factor (MMAR_5438, Rv3863, now espM). We prove that EspM from both M. marinum and M. tuberculosis directly and specifically binds the whiB6-espM intergenic region. We show that EspM is required for ESX-1-dependent repression of whiB6 expression and for the regulation of ESX-1-associated gene expression. Finally, we demonstrate that EspM functions to fine-tune ESX-1 activity in M. marinum Taking the data together, this report extends the esx-1 locus, defines a conserved regulator of the ESX-1 virulence pathway, and begins to elucidate how the ESX-1 system regulates gene expression.IMPORTANCE Mycobacterial pathogens use the ESX-1 system to transport protein substrates that mediate essential interactions with the host during infection. We previously demonstrated that in addition to transporting proteins, the ESX-1 secretion system regulates gene expression. Here, we identify a conserved transcription factor that regulates gene expression in response to the ESX-1 system. We demonstrate that this transcription factor is functionally conserved in M. marinum, a pathogen of ectothermic animals; M. tuberculosis, the human-pathogenic species that causes tuberculosis; and M. smegmatis, a nonpathogenic mycobacterial species. These findings provide the first mechanistic insight into how the ESX-1 system elicits a transcriptional response, a function of this protein transport system that was previously unknown.
Collapse
Affiliation(s)
- Kevin G Sanchez
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Micah J Ferrell
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Alexandra E Chirakos
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Kathleen R Nicholson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Matthew M Champion
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Patricia A Champion
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
24
|
Wang S, Zhou K, Yang X, Zhang B, Zhao Y, Xiao Y, Yang X, Yang H, Guddat LW, Li J, Rao Z. Structural insights into substrate recognition by the type VII secretion system. Protein Cell 2020; 11:124-137. [PMID: 31758528 PMCID: PMC6954902 DOI: 10.1007/s13238-019-00671-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/02/2019] [Indexed: 01/07/2023] Open
Abstract
Type VII secretion systems (T7SSs) are found in many disease related bacteria including Mycobacterium tuberculosis (Mtb). ESX-1 [early secreted antigen 6 kilodaltons (ESAT-6) system 1] is one of the five subtypes (ESX-1~5) of T7SSs in Mtb, where it delivers virulence factors into host macrophages during infection. However, little is known about the molecular details as to how this occurs. Here, we provide high-resolution crystal structures of the C-terminal ATPase3 domains of EccC subunits from four different Mtb T7SS subtypes. These structures adopt a classic RecA-like ɑ/β fold with a conserved Mg-ATP binding site. The structure of EccCb1 in complex with the C-terminal peptide of EsxB identifies the location of substrate recognition site and shows how the specific signaling module "LxxxMxF" for Mtb ESX-1 binds to this site resulting in a translation of the bulge loop. A comparison of all the ATPase3 structures shows there are significant differences in the shape and composition of the signal recognition pockets across the family, suggesting that distinct signaling sequences of substrates are required to be specifically recognized by different T7SSs. A hexameric model of the EccC-ATPase3 is proposed and shows the recognition pocket is located near the central substrate translocation channel. The diameter of the channel is ~25-Å, with a size that would allow helix-bundle shaped substrate proteins to bind and pass through. Thus, our work provides new molecular insights into substrate recognition for Mtb T7SS subtypes and also a possible transportation mechanism for substrate and/or virulence factor secretion.
Collapse
Affiliation(s)
- Shuhui Wang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Kaixuan Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy, Nankai University, Tianjin, 300353, China
| | - Xiaolin Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yao Zhao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Yu Xiao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiuna Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jun Li
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| | - Zihe Rao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences and College of Pharmacy, Nankai University, Tianjin, 300353, China.
- Laboratory of Structural Biology, Tsinghua University, Beijing, 100084, China.
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
25
|
The Mycobacterium marinum ESX-1 system mediates phagosomal permeabilization and type I interferon production via separable mechanisms. Proc Natl Acad Sci U S A 2019; 117:1160-1166. [PMID: 31879349 DOI: 10.1073/pnas.1911646117] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Following mycobacterial entry into macrophages the ESX-1 type VII secretion system promotes phagosomal permeabilization and type I IFN production, key features of tuberculosis pathogenesis. The current model states that the secreted substrate ESAT-6 is required for membrane permeabilization and that a subsequent passive leakage of extracellular bacterial DNA into the host cell cytosol is sensed by the cyclic GMP-AMP synthase (cGAS) and stimulator of IFN genes (STING) pathway to induce type I IFN production. We employed a collection of Mycobacterium marinum ESX-1 transposon mutants in a macrophage infection model and show that permeabilization of the phagosomal membrane does not require ESAT-6 secretion. Moreover, loss of membrane integrity is insufficient to induce type I IFN production. Instead, type I IFN production requires intact ESX-1 function and correlates with release of mitochondrial and nuclear host DNA into the cytosol, indicating that ESX-1 affects host membrane integrity and DNA release via genetically separable mechanisms. These results suggest a revised model for major aspects of ESX-1-mediated host interactions and put focus on elucidating the mechanisms by which ESX-1 permeabilizes host membranes and induces the type I IFN response, questions of importance for our basic understanding of mycobacterial pathogenesis and innate immune sensing.
Collapse
|
26
|
Wang J, Brodmann M, Basler M. Assembly and Subcellular Localization of Bacterial Type VI Secretion Systems. Annu Rev Microbiol 2019; 73:621-638. [DOI: 10.1146/annurev-micro-020518-115420] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria need to deliver large molecules out of the cytosol to the extracellular space or even across membranes of neighboring cells to influence their environment, prevent predation, defeat competitors, or communicate. A variety of protein-secretion systems have evolved to make this process highly regulated and efficient. The type VI secretion system (T6SS) is one of the largest dynamic assemblies in gram-negative bacteria and allows for delivery of toxins into both bacterial and eukaryotic cells. The recent progress in structural biology and live-cell imaging shows the T6SS as a long contractile sheath assembled around a rigid tube with associated toxins anchored to a cell envelope by a baseplate and membrane complex. Rapid sheath contraction releases a large amount of energy used to push the tube and toxins through the membranes of neighboring target cells. Because reach of the T6SS is limited, some bacteria dynamically regulate its subcellular localization to precisely aim at their targets and thus increase efficiency of toxin translocation.
Collapse
Affiliation(s)
- Jing Wang
- Biozentrum, University of Basel, CH 4056 Basel, Switzerland
| | - Maj Brodmann
- Biozentrum, University of Basel, CH 4056 Basel, Switzerland
| | - Marek Basler
- Biozentrum, University of Basel, CH 4056 Basel, Switzerland
| |
Collapse
|
27
|
van Winden VJC, Houben ENG, Braunstein M. Protein Export into and across the Atypical Diderm Cell Envelope of Mycobacteria. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0043-2018. [PMID: 31400094 PMCID: PMC10957183 DOI: 10.1128/microbiolspec.gpp3-0043-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Indexed: 02/07/2023] Open
Abstract
Mycobacteria, including the infamous pathogen Mycobacterium tuberculosis, are high-GC Gram-positive bacteria with a distinctive cell envelope. Although there is a typical inner membrane, the mycobacterial cell envelope is unusual in having its peptidoglycan layer connected to a polymer of arabinogalactan, which in turn is covalently attached to long-chain mycolic acids that help form a highly impermeable mycobacterial outer membrane. This complex double-membrane, or diderm, cell envelope imparts mycobacteria with unique requirements for protein export into and across the cell envelope for secretion into the extracellular environment. In this article, we review the four protein export pathways known to exist in mycobacteria: two conserved systems that exist in all types of bacteria (the Sec and Tat pathways) and two specialized systems that exist in mycobacteria, corynebacteria, and a subset of low-GC Gram-positive bacteria (the SecA2 and type VII secretion pathways). We describe the progress made over the past 15 years in understanding each of these mycobacterial export pathways, and we highlight the need for research to understand the specific steps of protein export across the mycobacterial outer membrane.
Collapse
Affiliation(s)
- Vincent J C van Winden
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Edith N G Houben
- Section of Molecular Microbiology, Amsterdam Institute for Molecules, Medicines, and Systems, Vrije Universiteit, Amsterdam, The Netherlands
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
28
|
A New ESX-1 Substrate in Mycobacterium marinum That Is Required for Hemolysis but Not Host Cell Lysis. J Bacteriol 2019; 201:JB.00760-18. [PMID: 30833360 DOI: 10.1128/jb.00760-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
The ESX-1 (ESAT-6 system 1) secretion system plays a conserved role in the virulence of diverse mycobacterial pathogens, including the human pathogen Mycobacterium tuberculosis and M. marinum, an environmental mycobacterial species. The ESX-1 system promotes the secretion of protein virulence factors to the extracytoplasmic environment. The secretion of these proteins triggers the host response by lysing the phagosome during macrophage infection. Using proteomic analyses of the M. marinum secretome in the presence and absence of a functional ESX-1 system, we and others have hypothesized that MMAR_2894, a PE family protein, is a potential ESX-1 substrate in M. marinum We used genetic and quantitative proteomic approaches to determine if MMAR_2894 is secreted by the ESX-1 system, and we defined the requirement of MMAR_2894 for ESX-1-mediated secretion and virulence. We show that MMAR_2894 is secreted by the ESX-1 system in M. marinum and is itself required for the optimal secretion of the known ESX-1 substrates in M. marinum Moreover, we found that MMAR_2894 was differentially required for hemolysis and cytolysis of macrophages, two lytic activities ascribed to the M. marinum ESX-1 system.IMPORTANCE Both Mycobacterium tuberculosis, the cause of human tuberculosis (TB), and Mycobacterium marinum, a pathogen of ectotherms, use the ESX-1 secretion system to cause disease. There are many established similarities between the ESX-1 systems in M. tuberculosis and in M. marinum Yet the two bacteria infect different hosts, hinting at species-specific functions of the ESX-1 system. Our findings demonstrate that MMAR_2894 is a PE protein secreted by the ESX-1 system of M. marinum We show that MMAR_2894 is required for the optimal secretion of mycobacterial proteins required for disease. Because the MMAR_2894 gene is not conserved in M. tuberculosis, our findings demonstrate that MMAR_2894 may contribute to a species-specific function of the ESX-1 system in M. marinum, providing new insight into how the M. marinum and M. tuberculosis systems differ.
Collapse
|
29
|
Carranza C, Chavez-Galan L. Several Routes to the Same Destination: Inhibition of Phagosome-Lysosome Fusion by Mycobacterium tuberculosis. Am J Med Sci 2019; 357:184-194. [DOI: 10.1016/j.amjms.2018.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/29/2018] [Accepted: 12/06/2018] [Indexed: 02/04/2023]
|
30
|
Abdallah AM, Weerdenburg EM, Guan Q, Ummels R, Borggreve S, Adroub SA, Malas TB, Naeem R, Zhang H, Otto TD, Bitter W, Pain A. Integrated transcriptomic and proteomic analysis of pathogenic mycobacteria and their esx-1 mutants reveal secretion-dependent regulation of ESX-1 substrates and WhiB6 as a transcriptional regulator. PLoS One 2019; 14:e0211003. [PMID: 30673778 PMCID: PMC6343904 DOI: 10.1371/journal.pone.0211003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022] Open
Abstract
The mycobacterial type VII secretion system ESX-1 is responsible for the secretion of a number of proteins that play important roles during host infection. The regulation of the expression of secreted proteins is often essential to establish successful infection. Using transcriptome sequencing, we found that the abrogation of ESX-1 function in Mycobacterium marinum leads to a pronounced increase in gene expression levels of the espA operon during the infection of macrophages. In addition, the disruption of ESX-1-mediated protein secretion also leads to a specific down-regulation of the ESX-1 substrates, but not of the structural components of this system, during growth in culture medium. This effect is observed in both M. marinum and M. tuberculosis. We established that down-regulation of ESX-1 substrates is the result of a regulatory process that is influenced by the putative transcriptional regulator whib6, which is located adjacent to the esx-1 locus. In addition, the overexpression of the ESX-1-associated PE35/PPE68 protein pair resulted in a significantly increased secretion of the ESX-1 substrate EsxA, demonstrating a functional link between these proteins. Taken together, these data show that WhiB6 is required for the secretion-dependent regulation of ESX-1 substrates and that ESX-1 substrates are regulated independently from the structural components, both during infection and as a result of active secretion.
Collapse
Affiliation(s)
- Abdallah M. Abdallah
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal-Jeddah, Kingdom of Saudi Arabia
- * E-mail: (AMA); (WB); (AP)
| | - Eveline M. Weerdenburg
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Qingtian Guan
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal-Jeddah, Kingdom of Saudi Arabia
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Stephanie Borggreve
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
| | - Sabir A. Adroub
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal-Jeddah, Kingdom of Saudi Arabia
| | - Tareq B. Malas
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal-Jeddah, Kingdom of Saudi Arabia
| | - Raeece Naeem
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal-Jeddah, Kingdom of Saudi Arabia
| | - Huoming Zhang
- Bioscience Core Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal-Jeddah, Kingdom of Saudi Arabia
| | - Thomas D. Otto
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, VU University Medical Center, Amsterdam, The Netherlands
- * E-mail: (AMA); (WB); (AP)
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal-Jeddah, Kingdom of Saudi Arabia
- * E-mail: (AMA); (WB); (AP)
| |
Collapse
|
31
|
Phan TH, van Leeuwen LM, Kuijl C, Ummels R, van Stempvoort G, Rubio-Canalejas A, Piersma SR, Jiménez CR, van der Sar AM, Houben ENG, Bitter W. EspH is a hypervirulence factor for Mycobacterium marinum and essential for the secretion of the ESX-1 substrates EspE and EspF. PLoS Pathog 2018; 14:e1007247. [PMID: 30102741 PMCID: PMC6107294 DOI: 10.1371/journal.ppat.1007247] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/23/2018] [Accepted: 07/26/2018] [Indexed: 12/31/2022] Open
Abstract
The pathogen Mycobacterium tuberculosis employs a range of ESX-1 substrates to manipulate the host and build a successful infection. Although the importance of ESX-1 secretion in virulence is well established, the characterization of its individual components and the role of individual substrates is far from complete. Here, we describe the functional characterization of the Mycobacterium marinum accessory ESX-1 proteins EccA1, EspG1 and EspH, i.e. proteins that are neither substrates nor structural components. Proteomic analysis revealed that EspG1 is crucial for ESX-1 secretion, since all detectable ESX-1 substrates were absent from the cell surface and culture supernatant in an espG1 mutant. Deletion of eccA1 resulted in minor secretion defects, but interestingly, the severity of these secretion defects was dependent on the culture conditions. Finally, espH deletion showed a partial secretion defect; whereas several ESX-1 substrates were secreted in normal amounts, secretion of EsxA and EsxB was diminished and secretion of EspE and EspF was fully blocked. Interaction studies showed that EspH binds EspE and therefore could function as a specific chaperone for this substrate. Despite the observed differences in secretion, hemolytic activity was lost in all M. marinum mutants, implying that hemolytic activity is not strictly correlated with EsxA secretion. Surprisingly, while EspH is essential for successful infection of phagocytic host cells, deletion of espH resulted in a significantly increased virulence phenotype in zebrafish larvae, linked to poor granuloma formation and extracellular outgrowth. Together, these data show that different sets of ESX-1 substrates play different roles at various steps of the infection cycle of M. marinum. M. tuberculosis is a facultative intracellular pathogen that has an intimate relationship with host macrophages. Proteins secreted by the ESX-1 secretion system play an important role in this interaction, for instance by orchestrating the escape from the phagosome into the cytosol of the macrophage. However, the exact role of the ESX-1 substrates is unknown, due to their complicated interdependency for secretion. Here, we study the function of ESX-1 accessory proteins EccA1, EspG1 and EspH in ESX-1 secretion in Mycobacterium marium, the causative agent of fish tuberculosis. We found that these proteins affect the secretion of different substrate classes, which offers an approach to study the roles of these substrate groups. An espG1 deletion broadly aborts ESX-1 secretion and thus resulted in severe attenuation in a zebrafish model for tuberculosis, whereas EccA1 is only crucial under specific growth conditions. The most surprising results were obtained for EspH. This protein seems to function as a molecular chaperone for EspE and is as such involved in the secretion of a small subset of ESX-1 substrates. Disruption of espH showed a dual character: whereas this gene is essential for the successful infection of macrophages, deletion of espH resulted in significantly increased virulence in zebrafish larvae. These data convincingly show that different subsets of ESX-1 substrates play different roles at various steps in the mycobacterial infection cycle.
Collapse
Affiliation(s)
- Trang H. Phan
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Lisanne M. van Leeuwen
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Coen Kuijl
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Roy Ummels
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Gunny van Stempvoort
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Alba Rubio-Canalejas
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Connie R. Jiménez
- Department of Medical Oncology, OncoProteomics Laboratory, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Astrid M. van der Sar
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Edith N. G. Houben
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wilbert Bitter
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicines & Systems, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- * E-mail:
| |
Collapse
|
32
|
Lai LY, Lin TL, Chen YY, Hsieh PF, Wang JT. Role of the Mycobacterium marinum ESX-1 Secretion System in Sliding Motility and Biofilm Formation. Front Microbiol 2018; 9:1160. [PMID: 29899738 PMCID: PMC5988883 DOI: 10.3389/fmicb.2018.01160] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium marinum is a close relative of Mycobacterium tuberculosis that can cause systemic tuberculosis-like infections in ectotherms and skin infections in humans. Sliding motility correlates with biofilm formation and virulence in most bacteria. In this study, we used a sliding motility assay to screen 2,304 transposon mutants of M. marinum NTUH-M6885 and identified five transposon mutants with decreased sliding motility. Transposons that interrupted the type VII secretion system (T7SS) ESX-1-related genes, espE (mmar_5439), espF (mmar_5440), and eccA1 (mmar_5443), were present in 3 mutants. We performed reverse-transcription polymerase chain reaction to verify genes from mmar_5438 to mmar_5450, which were found to belong to a single transcriptional unit. Deletion mutants of espE, espF, espG (mmar_5441), and espH (mmar_5442) displayed significant attenuation regarding sliding motility and biofilm formation. M. marinum NTUH-M6885 possesses a functional ESX-1 secretion system. However, deletion of espG or espH resulted in slightly decreased secretion of EsxB (which is also known as CFP-10). Thus, the M. marinum ESX-1 secretion system mediates sliding motility and is crucial for biofilm formation. These data provide new insight into M. marinum biofilm formation.
Collapse
Affiliation(s)
- Li-Yin Lai
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Yin Chen
- Department of Pediatrics, Chang Gung Children's Hospital, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Pei-Fang Hsieh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
33
|
Esx Paralogs Are Functionally Equivalent to ESX-1 Proteins but Are Dispensable for Virulence in Mycobacterium marinum. J Bacteriol 2018; 200:JB.00726-17. [PMID: 29555701 DOI: 10.1128/jb.00726-17] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/11/2018] [Indexed: 12/20/2022] Open
Abstract
Mycobacterium marinum is a nontuberculous pathogen of poikilothermic fish and an opportunistic human pathogen. Like tuberculous mycobacteria, the M. marinum M strain requires the ESX-1 (ESAT-6 system 1) secretion system for virulence in host cells. EsxB and EsxA, two major virulence factors exported by the ESX-1 system, are encoded by the esxBA genes within the ESX-1 locus. Deletion of the esxBA genes abrogates ESX-1 export and attenuates M. marinum in ex vivo and in vivo models of infection. Interestingly, there are several duplications of the esxB and esxA genes (esxB_1, esxB_2, esxA_1, esxA_2, and esxA_3) in the M. marinum M genome located outside the ESX-1 locus. We sought to understand if this region, known as ESX-6, contributes to ESX-1-mediated virulence. We found that deletion of the esxB_1 gene alone or the entire ESX-6 locus did not impact ESX-1 export or function, supporting the idea that the esxBA genes present at the ESX-1 locus are the primary contributors to ESX-1-mediated virulence. Nevertheless, overexpression of the esxB_1 locus complemented ESX-1 function in the ΔesxBA strain, signifying that the two loci are functionally equivalent. Our findings raise questions about why duplicate versions of the esxBA genes are maintained in the M. marinum M genome and how these proteins, which are functionally equivalent to virulence factors, contribute to mycobacterial biology.IMPORTANCEMycobacterium tuberculosis is the causative agent of the human disease tuberculosis (TB). There are 10.4 million cases and 1.7 million TB-associated deaths annually, making TB a leading cause of death globally. Nontuberculous mycobacteria (NTM) cause chronic human infections that are acquired from the environment. Despite differences in disease etiology, both tuberculous and NTM pathogens use the ESX-1 secretion system to cause disease. The nontubercular mycobacterial species, Mycobacterium marinum, has additional copies of specific ESX-1 genes. Our findings demonstrate that the duplicated genes do not contribute to virulence but can substitute for virulence factors in M. marinum These findings suggest that the duplicated genes may play a specific role in NTM biology.
Collapse
|
34
|
Cardenal-Muñoz E, Barisch C, Lefrançois LH, López-Jiménez AT, Soldati T. When Dicty Met Myco, a (Not So) Romantic Story about One Amoeba and Its Intracellular Pathogen. Front Cell Infect Microbiol 2018; 7:529. [PMID: 29376033 PMCID: PMC5767268 DOI: 10.3389/fcimb.2017.00529] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023] Open
Abstract
In recent years, Dictyostelium discoideum has become an important model organism to study the cell biology of professional phagocytes. This amoeba not only shares many molecular features with mammalian macrophages, but most of its fundamental signal transduction pathways are conserved in humans. The broad range of existing genetic and biochemical tools, together with its suitability for cell culture and live microscopy, make D. discoideum an ideal and versatile laboratory organism. In this review, we focus on the use of D. discoideum as a phagocyte model for the study of mycobacterial infections, in particular Mycobacterium marinum. We look in detail at the intracellular cycle of M. marinum, from its uptake by D. discoideum to its active or passive egress into the extracellular medium. In addition, we describe the molecular mechanisms that both the mycobacterial invader and the amoeboid host have developed to fight against each other, and compare and contrast with those developed by mammalian phagocytes. Finally, we introduce the methods and specific tools that have been used so far to monitor the D. discoideum-M. marinum interaction.
Collapse
Affiliation(s)
- Elena Cardenal-Muñoz
- Department of Biochemistry, Sciences II, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
35
|
WhiB6 regulation of ESX-1 gene expression is controlled by a negative feedback loop in Mycobacterium marinum. Proc Natl Acad Sci U S A 2017; 114:E10772-E10781. [PMID: 29180415 DOI: 10.1073/pnas.1710167114] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ESX (ESAT-6 system) export systems play diverse roles across mycobacterial species. Interestingly, genetic disruption of ESX systems in different species does not result in an accumulation of protein substrates in the mycobacterial cell. However, the mechanisms underlying this observation are elusive. We hypothesized that the levels of ESX substrates were regulated by a feedback-control mechanism, linking the levels of substrates to the secretory status of ESX systems. To test this hypothesis, we used a combination of genetic, transcriptomic, and proteomic approaches to define export-dependent mechanisms regulating the levels of ESX-1 substrates in Mycobacterium marinum WhiB6 is a transcription factor that regulates expression of genes encoding ESX-1 substrates. We found that, in the absence of the genes encoding conserved membrane components of the ESX-1 system, the expression of the whiB6 gene and genes encoding ESX-1 substrates were reduced. Accordingly, the levels of ESX-1 substrates were decreased, and WhiB6 was not detected in M. marinum strains lacking genes encoding ESX-1 components. We demonstrated that, in the absence of EccCb1, a conserved ESX-1 component, substrate gene expression was restored by constitutive, but not native, expression of the whiB6 gene. Finally, we found that the loss of WhiB6 resulted in a virulent M. marinum strain with reduced ESX-1 secretion. Together, our findings demonstrate that the levels of ESX-1 substrates in M. marinum are fine-tuned by negative feedback control, linking the expression of the whiB6 gene to the presence, not the functionality, of the ESX-1 membrane complex.
Collapse
|
36
|
Deletion of the β-Propeller Protein Gene Rv1057 Reduces ESAT-6 Secretion and Intracellular Growth of Mycobacterium tuberculosis. Curr Microbiol 2017; 75:401-409. [DOI: 10.1007/s00284-017-1394-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/09/2017] [Indexed: 10/18/2022]
|
37
|
Abstract
Mycobacterial 6-kDa early secreted antigenic target (ESAT-6) system (ESX) exporters transport proteins across the cytoplasmic membrane. Many proteins transported by ESX systems are then translocated across the mycobacterial cell envelope and secreted from the cell. Although the mechanism underlying protein transport across the mycolate outer membrane remains elusive, the ESX systems are closely connected with and localize to the cell envelope. Links between ESX-associated proteins, cell wall synthesis, and the maintenance of cell envelope integrity have been reported. Genes encoding the ESX systems and those required for biosynthesis of the mycobacterial envelope are coregulated. Here, we review the interplay between ESX systems and the mycobacterial cell envelope.
Collapse
|
38
|
Campanerut-Sá PAZ, Ghiraldi-Lopes LD, Meneguello JE, Teixeira JJV, Scodro RBDL, Siqueira VLD, Svidzinski TIE, Pavan FR, Cardoso RF. Systematic review on the proteomic profile of Mycobacterium tuberculosis
exposed to drugs. Proteomics Clin Appl 2017. [DOI: 10.1002/prca.201600077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Jean Eduardo Meneguello
- Department of Clinical Analyses and Biomedicine; State University of Maringá; Maringá Brazil
| | | | | | | | | | - Fernando Rogério Pavan
- Department of Biological Sciences; State University Paulista Júlio de Mesquita Filho; Faculty of Pharmaceutical Sciences of Araraquara; São Paulo Brazil
| | | |
Collapse
|
39
|
Polar delivery of Legionella type IV secretion system substrates is essential for virulence. Proc Natl Acad Sci U S A 2017; 114:8077-8082. [PMID: 28696299 DOI: 10.1073/pnas.1621438114] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A recurrent emerging theme is the targeting of proteins to subcellular microdomains within bacterial cells, particularly to the poles. In most cases, it has been assumed that this localization is critical to the protein's function. Legionella pneumophila uses a type IVB secretion system (T4BSS) to export a large number of protein substrates into the cytoplasm of host cells. Here we show that the Legionella export apparatus is localized to the bacterial poles, as is consistent with many T4SS substrates being retained on the phagosomal membrane adjacent to the poles of the bacterium. More significantly, we were able to demonstrate that polar secretion of substrates is critically required for Legionella's alteration of the host endocytic pathway, an activity required for this pathogen's virulence.
Collapse
|
40
|
Unnikrishnan M, Constantinidou C, Palmer T, Pallen MJ. The Enigmatic Esx Proteins: Looking Beyond Mycobacteria. Trends Microbiol 2017; 25:192-204. [DOI: 10.1016/j.tim.2016.11.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/20/2016] [Accepted: 11/04/2016] [Indexed: 01/17/2023]
|
41
|
A Nonsense Mutation in Mycobacterium marinum That Is Suppressible by a Novel Mechanism. Infect Immun 2017; 85:IAI.00653-16. [PMID: 27789543 DOI: 10.1128/iai.00653-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/17/2016] [Indexed: 11/20/2022] Open
Abstract
Mycobacterial pathogens use the ESAT-6 system 1 (Esx-1) exporter to promote virulence. Previously, we used gene disruption and complementation to conclude that the MMAR_0039 gene in Mycobacterium marinum is required to promote Esx-1 export. Here we applied molecular genetics, proteomics, and whole-genome sequencing to demonstrate that the MMAR_0039 gene is not required for Esx-1 secretion or virulence. These findings suggest that we initially observed an indirect mechanism of genetic complementation. We identified a spontaneous nonsense mutation in a known Esx-1-associated gene which causes a loss of Esx-1 activity. We show that the Esx-1 function was restored by nonsense suppression. Moreover, we identified a polar mutation in the ppsC gene which reduced cellular impermeability but did not impact cytotoxicity in macrophages. Our studies reveal insight into Esx-1 export, nonsense suppression, and cell envelope lipid biogenesis.
Collapse
|
42
|
Abstract
Type VII secretion (T7S) systems of mycobacteria secrete substrates over the unusual diderm cell envelope. Furthermore, T7S gene clusters are present throughout the phylum Actinobacteria, and functional T7S-like systems have been identified in Firmicutes. Most of the T7S substrates can be divided into two families: the Esx proteins, which are found in both Firmicutes and Actinobacteria, and the PE and PPE proteins, which are more mycobacterium-specific. Members of both families have been shown to be secreted as folded heterodimers, suggesting that this is a conserved feature of T7S substrates. Most knowledge of the mechanism of T7S and the roles of T7S systems in virulence comes from studies of pathogenic mycobacteria. These bacteria can contain up to five T7S systems, called ESX-1 to ESX-5, each having its own role in bacterial physiology and virulence. In this article, we discuss the general composition of T7S systems and the role of the individual components in secretion. These conserved components include two membrane proteins with (predicted) enzymatic activities: a predicted ATPase (EccC), likely to be required for energy provision of T7S, and a subtilisin-like protease (MycP) involved in processing of specific substrates. Additionally, we describe the role of a conserved intracellular chaperone in T7S substrate recognition, based on recently published crystal structures and molecular analysis. Finally, we discuss system-specific features of the different T7S systems in mycobacteria and their role in pathogenesis and provide an overview of the role of T7S in virulence of other pathogenic bacteria.
Collapse
|
43
|
Loots DT, Swanepoel CC, Newton-Foot M, Gey van Pittius NC. A metabolomics investigation of the function of the ESX-1 gene cluster in mycobacteria. Microb Pathog 2016; 100:268-275. [PMID: 27744102 DOI: 10.1016/j.micpath.2016.10.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/10/2016] [Accepted: 10/11/2016] [Indexed: 10/20/2022]
Abstract
The ESX-1 gene cluster, encoding the Type-VII secretion (T7S) system and its virulence associated proteins, ESAT-6 and CFP-10, is thought to be responsible for the transport of extracellular proteins across the hydrophobic and highly impermeable, cell envelope of Mycobacterium, and is involved in virulence in Mycobacterium tuberculosis, the causative agent of tuberculosis. Using a GCxGC-TOFMS metabolomics approach, a M. smegmatis ESX-1 knock-out strain (ΔESX-1ms) was compared to that of the M. smegmatis wild-type parent strain, and the metabolite markers due to the presence or absence of the ESX-1 gene cluster were identified. A general increase in specific metabolites in the ΔESX-1ms, confirmed the roles previously described for ESX-1 in mycolic acid biosynthesis and cell wall integrity. However, a number of other metabolite markers identified indicates ESX-1 has an additional role the in cell envelope structure, altering the levels of antioxidants and energy metabolism. Furthermore, the metabolome profiles correlated with the metabolomic variation observed when comparing a hyper- and hypo-virulent Beijing strain of M. tuberculosis, suggesting that the pathways which modulate virulence in M. tuberculosis are also influenced by ESX-1, reaffirming the previously described association of ESX-1 with virulence and cell envelope biogenesis.
Collapse
Affiliation(s)
- Du Toit Loots
- Human Metabolomics, North-West University, Potchefstroom, Private Bag x6001, Box 269, 2531, South Africa.
| | - Conrad C Swanepoel
- Human Metabolomics, North-West University, Potchefstroom, Private Bag x6001, Box 269, 2531, South Africa
| | - Mae Newton-Foot
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Nicolaas C Gey van Pittius
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
44
|
EsxA membrane-permeabilizing activity plays a key role in mycobacterial cytosolic translocation and virulence: effects of single-residue mutations at glutamine 5. Sci Rep 2016; 6:32618. [PMID: 27600772 PMCID: PMC5013644 DOI: 10.1038/srep32618] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022] Open
Abstract
EsxA is required for virulence of Mycobacterium tuberculosis (Mtb) and plays an essential role in phagosome rupture and translocation to the cytosol of macrophages. Recent biochemical studies have demonstrated that EsxA is a membrane-permeabilizing protein. However, evidence that link EsxA membrane-permeabilizing activity to Mtb cytosolic translocation and virulence is lacking. Here we found that mutations at glutamine 5 (Q5) could up or down regulate EsxA membrane-permeabilizing activity. The mutation Q5K significantly diminished the membrane-permeabilizing activity, while Q5V enhanced the activity. By taking advantage of the single-residue mutations, we tested the effects of EsxA membrane-permeabilizing activity on mycobacterial virulence and cytosolic translocation using the esxA/esxB knockout strains of Mycobacterium marinum (Mm) and Mtb. Compared to wild type (WT), the Q5K mutant exhibited significantly attenuated virulence, evidenced by intracellular survival and cytotoxicity in mouse macrophages as well as infection of zebra fish embryos. The attenuated virulence of the Q5K mutant was correlated to the impaired cytosolic translocation. On the contrary, the Q5V mutant had a significantly increased cytosolic translocation and showed an overall increased virulence. This study provides convincing evidence that EsxA contributes to mycobacterial virulence with its membrane-permeabilizing activity that is required for cytosolic translocation.
Collapse
|
45
|
Ates LS, van der Woude AD, Bestebroer J, van Stempvoort G, Musters RJP, Garcia-Vallejo JJ, Picavet DI, Weerd RVD, Maletta M, Kuijl CP, van der Wel NN, Bitter W. The ESX-5 System of Pathogenic Mycobacteria Is Involved In Capsule Integrity and Virulence through Its Substrate PPE10. PLoS Pathog 2016; 12:e1005696. [PMID: 27280885 PMCID: PMC4900558 DOI: 10.1371/journal.ppat.1005696] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 05/20/2016] [Indexed: 11/18/2022] Open
Abstract
Mycobacteria produce a capsule layer, which consists of glycan-like polysaccharides and a number of specific proteins. In this study, we show that, in slow-growing mycobacteria, the type VII secretion system ESX-5 plays a major role in the integrity and stability of the capsule. We have identified PPE10 as the ESX-5 substrate responsible for this effect. Mutants in esx-5 and ppe10 both have impaired capsule integrity as well as reduced surface hydrophobicity. Electron microscopy, immunoblot and flow cytometry analyses demonstrated reduced amounts of surface localized proteins and glycolipids, and morphological differences in the capsular layer. Since capsular proteins secreted by the ESX-1 system are important virulence factors, we tested the effect of the mutations that cause capsular defects on virulence mechanisms. Both esx-5 and ppe10 mutants of Mycobacterium marinum were shown to be impaired in ESX-1-dependent hemolysis. In agreement with this, the ppe10 and esx5 mutants showed reduced recruitment of ubiquitin in early macrophage infection and intermediate attenuation in zebrafish embryos. These results provide a pivotal role for the ESX-5 secretion system and its substrate PPE10, in the capsular integrity of pathogenic mycobacteria. These findings open up new roads for research on the mycobacterial capsule and its role in virulence and immune modulation.
Collapse
Affiliation(s)
- Louis S Ates
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands
| | - Aniek D van der Woude
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands.,Department of Molecular Microbiology, VU University, Amsterdam, the Netherlands
| | - Jovanka Bestebroer
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands
| | | | - René J P Musters
- Department of Physiology and Cardiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, the Netherlands
| | - Daisy I Picavet
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam the Netherlands
| | - Robert van de Weerd
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands
| | | | - Coenraad P Kuijl
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands
| | - Nicole N van der Wel
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Amsterdam the Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands.,Department of Molecular Microbiology, VU University, Amsterdam, the Netherlands
| |
Collapse
|
46
|
Shah S, Briken V. Modular Organization of the ESX-5 Secretion System in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2016; 6:49. [PMID: 27200304 PMCID: PMC4852179 DOI: 10.3389/fcimb.2016.00049] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 04/18/2016] [Indexed: 11/30/2022] Open
Abstract
Mycobacteria utilize type VII secretion systems (T7SS) to export many of their important virulence proteins. The T7SS encompasses five homologous secretion systems (ESX-1 to ESX-5). Most pathogenic mycobacterial species, including the human pathogen Mycobacterium tuberculosis, possess all five ESX systems. The ESX-1, -3, and -5 systems are important for virulence of mycobacteria but the molecular mechanisms of their secretion apparatus and the identity and activity of secreted effector proteins are not well characterized. The different ESX systems show similarities in gene composition due to their common phylogenetic origin but recent studies demonstrate mechanistic as well as functional variations between the systems. For example, the ESX-1 system is involved in lysis of the phagosomal membrane and phagosomal escape of the bacteria while the ESX-5 system is required for mycobacterial cell wall stability and host cell lysis. Mechanistically, the ESX-1 substrates show interdependence during secretion while the ESX-5 system may use a duplicated four-gene region (ESX-5a) as an accessory system for transport of a subset of proteins of the ESX-5 secretome. In the present review we will provide an overview of the molecular components of the T7SS and their function with a particular focus on the ESX-5 system.
Collapse
Affiliation(s)
- Swati Shah
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD, USA
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, MD, USA
| |
Collapse
|
47
|
Majlessi L, Prados-Rosales R, Casadevall A, Brosch R. Release of mycobacterial antigens. Immunol Rev 2015; 264:25-45. [PMID: 25703550 DOI: 10.1111/imr.12251] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Mycobacterium tuberculosis has evolved from a Mycobacterium canettii-like progenitor pool into one of the most successful and widespread human pathogens. The pathogenicity of M. tuberculosis is linked to its ability to secrete/export/release selected mycobacterial proteins, and it is also established that active release of mycobacterial antigens is a prerequisite for strong immune recognition. Recent research has enabled mycobacterial secretion systems and vesicle-based release of mycobacterial antigens to be elucidated, which together with host-related specificities constitute key variables that determine the outcome of infection. Here, we discuss recently discovered, novel aspects on the nature and the regulation of antigen release of the tuberculosis agent with particular emphasis on the biological characterization of mycobacteria-specific ESX/type VII secretion systems and their secreted proteins, belonging to the Esx, PE, and PPE categories. The importance of specific mycobacterial antigen release is probably best exemplified by the striking differences observed between the cellular events during infection with the ESX-1-deficient, attenuated Mycobacterium bovis BCG compared to the virulent M. tuberculosis, which are clearly important for design of more specific diagnostics and more efficient vaccines.
Collapse
Affiliation(s)
- Laleh Majlessi
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, Paris, France
| | | | | | | |
Collapse
|
48
|
A Duplicated ESAT-6 Region of ESX-5 Is Involved in Protein Export and Virulence of Mycobacteria. Infect Immun 2015; 83:4349-61. [PMID: 26303392 DOI: 10.1128/iai.00827-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/19/2015] [Indexed: 11/20/2022] Open
Abstract
The ESX-5 secretion system of Mycobacterium tuberculosis is important for bacterial virulence and for the secretion of the large PE/PPE protein family, whose genes constitute 10% of the M. tuberculosis genome. A four-gene region of the ESX-5 system is duplicated three times in the M. tuberculosis genome, but the functions of these duplicates are unknown. Here we investigated one of these duplicates: the region carrying the esxI, esxJ, ppe15, and pe8 genes (ESX-5a). An ESX-5a deletion mutant in the model system M. marinum background was deficient in the secretion of some members of the PE/PPE family of proteins. Surprisingly, we also identified other proteins that are not members of this family, thus expanding the range of ESX-5 secretion substrates. In addition, we demonstrated that ESX-5a is important for the virulence of M. marinum in the zebrafish model. Furthermore, we showed the role of the M. tuberculosis ESX-5a region in inflammasome activation but not host cell death induction, which is different from the case for the M. tuberculosis ESX-5 system. In conclusion, the ESX-5a region is nonredundant with its ESX-5 paralog and is necessary for secretion of a specific subset of proteins in M. tuberculosis and M. marinum that are important for bacterial virulence of M. marinum. Our findings point to a role for the three ESX-5 duplicate regions in the selection of substrates for secretion via ESX-5, and hence, they provide the basis for a refined model of the molecular mechanism of this type VII secretion system.
Collapse
|
49
|
Structure of EspB, a secreted substrate of the ESX-1 secretion system of Mycobacterium tuberculosis. J Struct Biol 2015; 191:236-44. [PMID: 26051906 DOI: 10.1016/j.jsb.2015.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/16/2015] [Accepted: 06/02/2015] [Indexed: 02/03/2023]
Abstract
Mycobacterium tuberculosis secretes multiple virulence factors during infection via the general Sec and Tat pathways, and via specialized ESX secretion systems, also referred to as type VII secretion systems. The ESX-1 secretion system is an important virulence determinant because deletion of ESX-1 leads to attenuation of M. tuberculosis. ESX-1 secreted protein B (EspB) contains putative PE (Pro-Glu) and PPE (Pro-Pro-Glu) domains, and a C-terminal domain, which is processed by MycP1 protease during secretion. We determined the crystal structure of PE-PPE domains of EspB, which represents an all-helical, elongated molecule closely resembling the structure of the PE25-PPE41 heterodimer despite limited sequence similarity. Also, we determined the structure of full-length EspB, which does not have interpretable electron density for the C-terminal domain confirming that it is largely disordered. Comparative analysis of EspB in cell lysate and culture filtrates of M. tuberculosis revealed that mature secreted EspB forms oligomers. Electron microscopy analysis showed that the N-terminal fragment of EspB forms donut-shaped particles. These data provide a rationale for the future investigation of EspB's role in M. tuberculosis pathogenesis.
Collapse
|
50
|
Structure of EspB from the ESX-1 Type VII Secretion System and Insights into its Export Mechanism. Structure 2015; 23:571-583. [DOI: 10.1016/j.str.2015.01.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/17/2014] [Accepted: 12/23/2014] [Indexed: 12/29/2022]
|