1
|
Kockler ZW, Gordenin DA. From RNA World to SARS-CoV-2: The Edited Story of RNA Viral Evolution. Cells 2021; 10:1557. [PMID: 34202997 PMCID: PMC8234929 DOI: 10.3390/cells10061557] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/13/2022] Open
Abstract
The current SARS-CoV-2 pandemic underscores the importance of understanding the evolution of RNA genomes. While RNA is subject to the formation of similar lesions as DNA, the evolutionary and physiological impacts RNA lesions have on viral genomes are yet to be characterized. Lesions that may drive the evolution of RNA genomes can induce breaks that are repaired by recombination or can cause base substitution mutagenesis, also known as base editing. Over the past decade or so, base editing mutagenesis of DNA genomes has been subject to many studies, revealing that exposure of ssDNA is subject to hypermutation that is involved in the etiology of cancer. However, base editing of RNA genomes has not been studied to the same extent. Recently hypermutation of single-stranded RNA viral genomes have also been documented though its role in evolution and population dynamics. Here, we will summarize the current knowledge of key mechanisms and causes of RNA genome instability covering areas from the RNA world theory to the SARS-CoV-2 pandemic of today. We will also highlight the key questions that remain as it pertains to RNA genome instability, mutations accumulation, and experimental strategies for addressing these questions.
Collapse
Affiliation(s)
| | - Dmitry A. Gordenin
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Durham, NC 27709, USA;
| |
Collapse
|
2
|
Evans N, Martinez E, Petrosillo N, Nichols J, Islam E, Pruitt K, Almodovar S. SARS-CoV-2 and Human Immunodeficiency Virus: Pathogen Pincer Attack. HIV AIDS (Auckl) 2021; 13:361-375. [PMID: 33833585 PMCID: PMC8020331 DOI: 10.2147/hiv.s300055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 02/22/2021] [Indexed: 12/16/2022] Open
Abstract
Paramount efforts worldwide are seeking to increase understanding of the basic virology of SARS-CoV-2, characterize the spectrum of complications associated with COVID-19, and develop vaccines that can protect from new and recurrent infections with SARS-CoV-2. While we continue learning about this new virus, it is clear that 1) the virus is spread via the respiratory route, primarily by droplets and contact with contaminated surfaces and fomites, as well as by aerosol formation during invasive respiratory procedures; 2) the airborne route is still controversial; and 3) that those infected can spread the virus without necessarily developing COVID-19 (ie, asymptomatic). With the number of SARS-CoV-2 infections increasing globally, the possibility of co-infections and/or co-morbidities is becoming more concerning. Co-infection with Human Immunodeficiency Virus (HIV) is one such example of polyparasitism of interest. This military-themed comparative review of SARS-CoV-2 and HIV details their virology and describes them figuratively as separate enemy armies. HIV, an old enemy dug into trenches in individuals already infected, and SARS-CoV-2 the new army, attempting to attack and capture territories, tissues and organs, in order to provide resources for their expansion. This analogy serves to aid in discussion of three main areas of focus and draw attention to how these viruses may cooperate to gain the upper hand in securing a host. Here we compare their target, the key receptors found on those tissues, viral lifecycles and tactics for immune response surveillance. The last focus is on the immune response to infection, addressing similarities in cytokines released. While the majority of HIV cases can be successfully managed with antiretroviral therapy nowadays, treatments for SARS-CoV-2 are still undergoing research given the novelty of this army.
Collapse
Affiliation(s)
- Nicholas Evans
- Texas Tech University Health Sciences Center, Department of Immunology & Molecular Microbiology, Lubbock, TX, USA
| | - Edgar Martinez
- Texas Tech University Health Sciences Center, Department of Immunology & Molecular Microbiology, Lubbock, TX, USA
| | - Nicola Petrosillo
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, Italy
| | - Jacob Nichols
- Texas Tech University Health Sciences Center, Department of Internal Medicine, Lubbock, TX, USA
| | - Ebtesam Islam
- Texas Tech University Health Sciences Center, Department of Internal Medicine, Lubbock, TX, USA
| | - Kevin Pruitt
- Texas Tech University Health Sciences Center, Department of Immunology & Molecular Microbiology, Lubbock, TX, USA
| | - Sharilyn Almodovar
- Texas Tech University Health Sciences Center, Department of Immunology & Molecular Microbiology, Lubbock, TX, USA
| |
Collapse
|
3
|
How Active Are Porcine Endogenous Retroviruses (PERVs)? Viruses 2016; 8:v8080215. [PMID: 27527207 PMCID: PMC4997577 DOI: 10.3390/v8080215] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 07/04/2016] [Accepted: 07/22/2016] [Indexed: 01/12/2023] Open
Abstract
Porcine endogenous retroviruses (PERVs) represent a risk factor if porcine cells, tissues, or organs were to be transplanted into human recipients to alleviate the shortage of human transplants; a procedure called xenotransplantation. In contrast to human endogenous retroviruses (HERVs), which are mostly defective and not replication-competent, PERVs are released from normal pig cells and are infectious. PERV-A and PERV-B are polytropic viruses infecting cells of several species, among them humans; whereas PERV-C is an ecotropic virus infecting only pig cells. Virus infection was shown in co-culture experiments, but also in vivo, in the pig, leading to de novo integration of proviruses in certain organs. This was shown by measurement of the copy number per cell, finding different numbers in different organs. In addition, recombinations between PERV-A and PERV-C were observed and the recombinant PERV-A/C were found to be integrated in cells of different organs, but not in the germ line of the animals. Here, the evidence for such in vivo activities of PERVs, including expression as mRNA, protein and virus particles, de novo infection and recombination, will be summarised. These activities make screening of pigs for provirus number and PERV expression level difficult, especially when only blood or ear biopsies are available for analysis. Highly sensitive methods to measure the copy number and the expression level will be required when selecting pigs with low copy number and low expression of PERV as well as when inactivating PERVs using the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (CRISPR/Cas) technology.
Collapse
|
4
|
An P, Penugonda S, Thorball CW, Bartha I, Goedert JJ, Donfield S, Buchbinder S, Binns-Roemer E, Kirk GD, Zhang W, Fellay J, Yu XF, Winkler CA. Role of APOBEC3F Gene Variation in HIV-1 Disease Progression and Pneumocystis Pneumonia. PLoS Genet 2016; 12:e1005921. [PMID: 26942578 PMCID: PMC4778847 DOI: 10.1371/journal.pgen.1005921] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 02/16/2016] [Indexed: 12/26/2022] Open
Abstract
Human APOBEC3 cytidine deaminases are intrinsic resistance factors to HIV-1. However, HIV-1 encodes a viral infectivity factor (Vif) that degrades APOBEC3 proteins. In vitro APOBEC3F (A3F) anti-HIV-1 activity is weaker than A3G but is partially resistant to Vif degradation unlike A3G. It is unknown whether A3F protein affects HIV-1 disease in vivo. To assess the effect of A3F gene on host susceptibility to HIV- acquisition and disease progression, we performed a genetic association study in six well-characterized HIV-1 natural cohorts. A common six-Single Nucleotide Polymorphism (SNP) haplotype of A3F tagged by a codon-changing variant (p. I231V, with allele (V) frequency of 48% in European Americans) was associated with significantly lower set-point viral load and slower rate of progression to AIDS (Relative Hazards (RH) = 0.71, 95% CI: 0.56, 0.91) and delayed development of pneumocystis pneumonia (PCP) (RH = 0.53, 95% CI: 0.37-0.76). A validation study in the International Collaboration for the Genomics of HIV (ICGH) showed a consistent association with lower set-point viral load. An in vitro assay revealed that the A3F I231V variant may influence Vif mediated A3F degradation. Our results provide genetic epidemiological evidence that A3F modulates HIV-1/AIDS disease progression.
Collapse
Affiliation(s)
- Ping An
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- * E-mail: (PA); (CAW)
| | - Sudhir Penugonda
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Christian W. Thorball
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Istvan Bartha
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - James J. Goedert
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Sharyne Donfield
- Rho, Inc., Chapel Hill, North Carolina, United States of America
| | - Susan Buchbinder
- San Francisco Department of Public Health, San Francisco, California, United States of America
| | - Elizabeth Binns-Roemer
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Gregory D. Kirk
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Xiao-Fang Yu
- Institute of Virology and AIDS Research, First Hospital of Jilin University, Changchun, China
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, Maryland, United States of America
| | - Cheryl A. Winkler
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- * E-mail: (PA); (CAW)
| |
Collapse
|
5
|
Stavrou S, Ross SR. APOBEC3 Proteins in Viral Immunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2015; 195:4565-70. [PMID: 26546688 PMCID: PMC4638160 DOI: 10.4049/jimmunol.1501504] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Apolipoprotein B editing complex 3 family members are cytidine deaminases that play important roles in intrinsic responses to infection by retroviruses and have been implicated in the control of other viruses, such as parvoviruses, herpesviruses, papillomaviruses, hepatitis B virus, and retrotransposons. Although their direct effect on modification of viral DNA has been clearly demonstrated, whether they play additional roles in innate and adaptive immunity to viruses is less clear. We review the data regarding the various steps in the innate and adaptive immune response to virus infection in which apolipoprotein B editing complex 3 proteins have been implicated.
Collapse
Affiliation(s)
- Spyridon Stavrou
- Department of Microbiology, Abramson Cancer Center, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6142
| | - Susan R Ross
- Department of Microbiology, Abramson Cancer Center, Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6142
| |
Collapse
|
6
|
Biasin M, De Luca M, Gnudi F, Clerici M. The genetic basis of resistance to HIV infection and disease progression. Expert Rev Clin Immunol 2013; 9:319-34. [PMID: 23557268 DOI: 10.1586/eci.13.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Susceptibility to HIV infection and the modulation of disease progression are strictly dependent on inter-individual variability, much of which is secondary to host genetic heterogeneity. The study of host factors that control these phenomena relies not only on candidate gene approaches but also on unbiased genome-wide genetic and functional analyses. Additional new insights stem from the study of mechanisms that control the expression of host and viral genes, such as miRNA. The genetic host factors that have been suggested to be associated either with resistance to HIV-1 infection or with absent/delayed progression to AIDS are nevertheless unable to fully justify the phenomenon of differential susceptibility to HIV. Multidisciplinary approaches are needed to further analyze individuals who deviate from the expected response to HIV exposure/infection. Results of these analyses will facilitate the identification of novel targets that could be exploited in the setting up of innovative therapeutic or vaccine approaches.
Collapse
Affiliation(s)
- Mara Biasin
- Department of Biomedical and Clinical Sciences, University of Milan, Via GB Grassi 74, 20157 Milan, Italy.
| | | | | | | |
Collapse
|
7
|
Forlani G, Abdallah R, Accolla RS, Tosi G. The MHC-II transactivator CIITA, a restriction factor against oncogenic HTLV-1 and HTLV-2 retroviruses: similarities and differences in the inhibition of Tax-1 and Tax-2 viral transactivators. Front Microbiol 2013; 4:234. [PMID: 23986750 PMCID: PMC3749491 DOI: 10.3389/fmicb.2013.00234] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 07/30/2013] [Indexed: 11/13/2022] Open
Abstract
The activation of CD4(+) T helper cells is strictly dependent on the presentation of antigenic peptides by MHC class II (MHC-II) molecules. MHC-II expression is primarily regulated at the transcriptional level by the AIR-1 gene product CIITA (class II transactivator). Thus, CIITA plays a pivotal role in the triggering of the adaptive immune response against pathogens. Besides this well known function, we recently found that CIITA acts as an endogenous restriction factor against HTLV-1 (human T cell lymphotropic virus type 1) and HTLV-2 oncogenic retroviruses by targeting their viral transactivators Tax-1 and Tax-2, respectively. Here we review our findings on CIITA-mediated inhibition of viral replication and discuss similarities and differences in the molecular mechanisms by which CIITA specifically counteracts the function of Tax-1 and Tax-2 molecules. The dual function of CIITA as a key regulator of adaptive and intrinsic immunity represents a rather unique example of adaptation of host-derived factors against pathogen infections during evolution.
Collapse
Affiliation(s)
| | | | - Roberto S. Accolla
- Laboratory of General Pathology and Immunology, Department of Surgical and Morphological Sciences, University of InsubriaVarese, Italy
| | | |
Collapse
|
8
|
Leblanc J, Weil J, Beemon K. Posttranscriptional regulation of retroviral gene expression: primary RNA transcripts play three roles as pre-mRNA, mRNA, and genomic RNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:567-80. [PMID: 23754689 DOI: 10.1002/wrna.1179] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/09/2013] [Accepted: 05/11/2013] [Indexed: 12/11/2022]
Abstract
After reverse transcription of the retroviral RNA genome and integration of the DNA provirus into the host genome, host machinery is used for viral gene expression along with viral proteins and RNA regulatory elements. Here, we discuss co-transcriptional and posttranscriptional regulation of retroviral gene expression, comparing simple and complex retroviruses. Cellular RNA polymerase II synthesizes full-length viral primary RNA transcripts that are capped and polyadenylated. All retroviruses generate a singly spliced env mRNA from this primary transcript, which encodes the viral glycoproteins. In addition, complex viral RNAs are alternatively spliced to generate accessory proteins, such as Rev, which is involved in posttranscriptional regulation of HIV-1 RNA. Importantly, the splicing of all retroviruses is incomplete; they must maintain and export a fraction of their primary RNA transcripts. This unspliced RNA functions both as the major mRNA for Gag and Pol proteins and as the packaged genomic RNA. Different retroviruses export their unspliced viral RNA from the nucleus to the cytoplasm by either Tap-dependent or Rev/CRM1-dependent routes. Translation of the unspliced mRNA involves frame-shifting or termination codon suppression so that the Gag proteins, which make up the capsid, are expressed more abundantly than the Pol proteins, which are the viral enzymes. After the viral polyproteins assemble into viral particles and bud from the cell membrane, a viral encoded protease cleaves them. Some retroviruses have evolved mechanisms to protect their unspliced RNA from decay by nonsense-mediated RNA decay and to prevent genome editing by the cellular APOBEC deaminases.
Collapse
Affiliation(s)
- Jason Leblanc
- Biology Department, Johns Hopkins University, Baltimore, MD, USA
| | | | | |
Collapse
|
9
|
Johnson WE. Rapid adversarial co-evolution of viruses and cellular restriction factors. Curr Top Microbiol Immunol 2013; 371:123-51. [PMID: 23686234 DOI: 10.1007/978-3-642-37765-5_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the discovery of viruses over a century ago, virologists have recognized that host genetics plays a major role in viral tropism and the distribution of viruses in nature. Traditionally, studies of tropism have centered on identification of cellular factors required for viral replication, such as cell-surface entry receptors. However, over the past 20 years, there has been a steady increase in the identification and characterization of restriction factors (RFs), here defined as dominant cellular factors that have evolved specifically to interfere with viral replication. Genetic studies suggest that restriction factors impose significant barriers to interspecies movement of viruses and are therefore critical determinants of viral tropism. Furthermore, the scope of the ever-expanding list of restriction factors, and the variety of antiviral mechanisms they represent, testifies to the extraordinary impact viruses have had on organismal evolution-an impact hitherto underappreciated by evolutionary biologists and virologists alike. Recent studies of RF-encoding genes that combine molecular evolutionary analysis with functional assays illustrate the potential for asking questions about virus-host interactions as they play out in natural populations and across evolutionary timescales. Most notably, it has become common to apply tests of positive selection to RF genes and couple these analyses with virological assays, to reveal evidence for antagonistic virus-host co-evolution. Herein, I summarize recent work on the evolutionary genetics of mammalian RFs, particularly those of humans, non-human primates, and model organisms, and how RFs can reveal the influence of virus-host interactions on organismal evolution. Because intensive investigation of RF evolution is fairly new (and because there is still much to learn), the discussion is organized around five broad, outstanding questions that will need to be answered before we can fully appreciate the evolutionary biology of restriction.
Collapse
|
10
|
APOBEC3 versus Retroviruses, Immunity versus Invasion: Clash of the Titans. Mol Biol Int 2012; 2012:974924. [PMID: 22720156 PMCID: PMC3375093 DOI: 10.1155/2012/974924] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 04/01/2012] [Indexed: 11/17/2022] Open
Abstract
Since the identification of APOBEC3G (A3G) as a potent restriction factor of HIV-1, a tremendous amount of effort has led to a broadened understanding of both A3G and the APOBEC3 (A3) family to which it belongs. In spite of the fine-tuned viral counterattack to A3 activity, in the form of the HIV-1 Vif protein, enthusiasm for leveraging the Vif : A3G axis as a point of clinical intervention remains high. In an impressive explosion of information over the last decade, additional A3 family members have been identified as antiviral proteins, mechanistic details of the restrictive capacity of these proteins have been elucidated, structure-function studies have revealed important molecular details of the Vif : A3G interaction, and clinical cohorts have been scrutinized for correlations between A3 expression and function and viral pathogenesis. In the last year, novel and unexpected findings regarding the role of A3G in immunity have refocused efforts on exploring the potential of harnessing the natural power of this immune defense. These most recent reports allude to functions of the A3 proteins that extend beyond their well-characterized designation as restriction factors. The emerging story implicates the A3 family as not only defense proteins, but also as participants in the broader innate immune response.
Collapse
|
11
|
Miyazawa M. [Molecular evolution of physiologically functioning anti-retroviral APOBEC3 deaminases]. Uirusu 2012; 62:27-38. [PMID: 23189822 DOI: 10.2222/jsv.62.27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Recent in vivo findings clearly indicate that mammalian cytidine deaminase APOBEC3 can function as a physiological restriction factor to retrotransposons and infectious retroviruses. However, some retroviruses, including primate lentiviruses, have evolved to counter their natural host's APOBEC3. To survive this arms race, primates seem to have acquired multiple copies of APOBEC3 genes. Surprisingly, however, during the process of the diversification of rodent species, as well as the human race, some ancestral individuals acquired genetic variants that reduced the protein levels of APOBEC3 expression, and these variants currently show unexpectedly wide geographic distributions. These data suggest that in the absence of a heavy burden of infectious retroviruses, high-level expression of APOBEC3 cytidine deaminase might be costly to the integrity of the host genome.
Collapse
Affiliation(s)
- Masaaki Miyazawa
- Department of Immunology, Kinki University School of Medicine, 377-2 Ohno-Higashi, Osaka-Sayama, Osaka 589-8511, Japan.
| |
Collapse
|
12
|
Münk C, Willemsen A, Bravo IG. An ancient history of gene duplications, fusions and losses in the evolution of APOBEC3 mutators in mammals. BMC Evol Biol 2012; 12:71. [PMID: 22640020 PMCID: PMC3495650 DOI: 10.1186/1471-2148-12-71] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 05/01/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The APOBEC3 (A3) genes play a key role in innate antiviral defense in mammals by introducing directed mutations in the DNA. The human genome encodes for seven A3 genes, with multiple splice alternatives. Different A3 proteins display different substrate specificity, but the very basic question on how discerning self from non-self still remains unresolved. Further, the expression of A3 activity/ies shapes the way both viral and host genomes evolve. RESULTS We present here a detailed temporal analysis of the origin and expansion of the A3 repertoire in mammals. Our data support an evolutionary scenario where the genome of the mammalian ancestor encoded for at least one ancestral A3 gene, and where the genome of the ancestor of placental mammals (and possibly of the ancestor of all mammals) already encoded for an A3Z1-A3Z2-A3Z3 arrangement. Duplication events of the A3 genes have occurred independently in different lineages: humans, cats and horses. In all of them, gene duplication has resulted in changes in enzyme activity and/or substrate specificity, in a paradigmatic example of convergent adaptive evolution at the genomic level. Finally, our results show that evolutionary rates for the three A3Z1, A3Z2 and A3Z3 motifs have significantly decreased in the last 100 Mya. The analysis constitutes a textbook example of the evolution of a gene locus by duplication and sub/neofunctionalization in the context of virus-host arms race. CONCLUSIONS Our results provide a time framework for identifying ancestral and derived genomic arrangements in the APOBEC loci, and to date the expansion of this gene family for different lineages through time, as a response to changes in viral/retroviral/retrotransposon pressure.
Collapse
Affiliation(s)
- Carsten Münk
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anouk Willemsen
- Genomics and Health, Centre for Public Health Research (CSISP), Valencia, Spain
| | - Ignacio G Bravo
- Genomics and Health, Centre for Public Health Research (CSISP), Valencia, Spain
- Infections and Cancer, Catalan Institute of Oncology (ICO) | Bellvitge Institute of Biomedical Research (IDIBELL), Barcelona, Spain
- Infections and Cancer, Catalan Institute of Oncology (ICO), Avda. Gran Via, 199-203, L’Hospitalet de Llobregat, Barcelona, 08908, Spain
| |
Collapse
|
13
|
Denner J, Tönjes RR. Infection barriers to successful xenotransplantation focusing on porcine endogenous retroviruses. Clin Microbiol Rev 2012; 25:318-43. [PMID: 22491774 PMCID: PMC3346299 DOI: 10.1128/cmr.05011-11] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Xenotransplantation may be a solution to overcome the shortage of organs for the treatment of patients with organ failure, but it may be associated with the transmission of porcine microorganisms and the development of xenozoonoses. Whereas most microorganisms may be eliminated by pathogen-free breeding of the donor animals, porcine endogenous retroviruses (PERVs) cannot be eliminated, since these are integrated into the genomes of all pigs. Human-tropic PERV-A and -B are present in all pigs and are able to infect human cells. Infection of ecotropic PERV-C is limited to pig cells. PERVs may adapt to host cells by varying the number of LTR-binding transcription factor binding sites. Like all retroviruses, they may induce tumors and/or immunodeficiencies. To date, all experimental, preclinical, and clinical xenotransplantations using pig cells, tissues, and organs have not shown transmission of PERV. Highly sensitive and specific methods have been developed to analyze the PERV status of donor pigs and to monitor recipients for PERV infection. Strategies have been developed to prevent PERV transmission, including selection of PERV-C-negative, low-producer pigs, generation of an effective vaccine, selection of effective antiretrovirals, and generation of animals transgenic for a PERV-specific short hairpin RNA inhibiting PERV expression by RNA interference.
Collapse
|
14
|
APOBEC3A, APOBEC3B, and APOBEC3H haplotype 2 restrict human T-lymphotropic virus type 1. J Virol 2012; 86:6097-108. [PMID: 22457529 DOI: 10.1128/jvi.06570-11] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human APOBEC3 family consists of seven cytidine deaminases (A3A to A3H), some of which display potent antiretroviral activity against HIV-1 and other retroviruses. Studies that analyzed the effect of A3G on human T-lymphotropic virus type 1 (HTLV-1) infectivity resulted in conflicting findings, and our knowledge of HTLV-1 restriction by other A3 proteins remains limited. Since HTLV-1, much like HIV, targets CD4(+) T cells, we hypothesized that A3 proteins other than A3G restrict HTLV-1. All seven human A3 proteins were tested in HTLV-1 reporter and HIV-1 infectivity assays. We show that A3A, A3B, and A3H haplotype 2 (A3H hapII) acted as potent inhibitors of HTLV-1. Wild-type HIV-1, in contrast, was restricted by A3B and A3H hapII, but not by A3A. Catalytic site mutants of A3A, A3B, and A3H hapII showed that A3A and A3B restriction of HTLV-1 required deaminase activity. However, A3H hapII acted in a deaminase-independent manner when restricting HTLV-1, while requiring deaminase activity for HIV-1 restriction. We also analyzed A3 editing of HTLV-1 in five T-cell lines obtained from HTLV-1-infected patients. These cell lines contained extensively edited HTLV-1 sequences with G-to-A mutations in dinucleotide contexts suggestive of APOBEC3 mutagenesis. Comparison of the A3-induced mutations from reporter cells and the patient-derived cell lines indicate that A3G but also other A3 members, possibly A3A and A3B, affect HTLV-1 in vivo. Taken together, our data indicate that HTLV-1 is a likely target for multiple A3 proteins.
Collapse
|
15
|
Innate antiviral response: role in HIV-1 infection. Viruses 2011; 3:1179-203. [PMID: 21994776 PMCID: PMC3185785 DOI: 10.3390/v3071179] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 12/14/2022] Open
Abstract
As an early response to infection, cells induce a profile of the early inflammatory proteins including antiviral cytokines and chemokines. Two families of transcriptional factors play a major role in the transcriptional activation of the early inflammatory genes: The well-characterized family of NFkB factors and the family of interferon regulatory factors (IRF). The IRFs play a critical role in the induction of type I interferon (IFN) and chemokine genes, as well as genes mediating antiviral, antibacterial, and inflammatory responses. Type I IFNs represent critical components of innate antiviral immunity. These proteins not only exert direct antiviral effects, but also induce maturation of dendritic cells (DC), and enhance functions of NK, T and B cells, and macrophages. This review will summarize the current knowledge of the mechanisms leading to the innate antiviral response with a focus on its role in the regulation of HIV-1 infection and pathogenicity. We would like this review to be both historical and a future perspective.
Collapse
|
16
|
Cagliani R, Riva S, Fumagalli M, Biasin M, Caputo SL, Mazzotta F, Piacentini L, Pozzoli U, Bresolin N, Clerici M, Sironi M. A positively selected APOBEC3H haplotype is associated with natural resistance to HIV-1 infection. Evolution 2011; 65:3311-22. [PMID: 22023594 DOI: 10.1111/j.1558-5646.2011.01368.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
APOBEC3 genes encode cytidine deaminases endowed with the ability to inhibit retroviruses and retrotransposons. These genes have been targets of natural selection throughout primate evolutionary history. We analyzed their selection pattern in human populations observing that APOBEC3F and 3G are neutrally evolving. Conversely, nucleotide diversity was extremely high for APOBEC3H, and most tests rejected the hypothesis of selective neutrality in Eurasian populations. Haplotype analysis and the derived intraallelic nucleotide diversity test indicated that positive selection has driven the increase in frequency of one haplotype (Hap I) outside Africa. Consistently, population genetic differentiation between African and non-African populations was higher than expected under neutrality. A case-control association analysis indicated that Hap I is associated with protection from sexually transmitted HIV-1 infection. Hap I carries a protein-destabilizing variant and a residue conferring resistance to Vif-mediated degradation. Data herein suggest that lower protein stability might have been traded-off with a higher ability to circumvent Vif-mediated hijacking. Alternatively, transcription regulatory variants might represent the selection target. Our data represent an example of how the selective pressures exerted by extinct or unknown viral agents can be exploited to provide valuable information on the allelic determinants of susceptibility to modern infections.
Collapse
Affiliation(s)
- Rachele Cagliani
- Scientific Institute IRCCS E. Medea, Via don L. Monza 20, Bosisio Parini (LC), Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Restriction of porcine endogenous retrovirus by porcine APOBEC3 cytidine deaminases. J Virol 2011; 85:3842-57. [PMID: 21307203 DOI: 10.1128/jvi.01880-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Xenotransplantation of porcine cells, tissues, and organs shows promise to surmount the shortage of human donor materials. Among the barriers to pig-to-human xenotransplantation are porcine endogenous retroviruses (PERV) since functional representatives of the two polytropic classes, PERV-A and PERV-B, are able to infect human embryonic kidney cells in vitro, suggesting that a xenozoonosis in vivo could occur. To assess the capacity of human and porcine cells to counteract PERV infections, we analyzed human and porcine APOBEC3 (A3) proteins. This multigene family of cytidine deaminases contributes to the cellular intrinsic immunity and act as potent inhibitors of retroviruses and retrotransposons. Our data show that the porcine A3 gene locus on chromosome 5 consists of the two single-domain genes A3Z2 and A3Z3. The evolutionary relationships of the A3Z3 genes reflect the evolutionary history of mammals. The two A3 genes encode at least four different mRNAs: A3Z2, A3Z3, A3Z2-Z3, and A3Z2-Z3 splice variant A (SVA). Porcine and human A3s have been tested toward their antiretroviral activity against PERV and murine leukemia virus (MuLV) using novel single-round reporter viruses. The porcine A3Z2, A3Z3 and A3Z2-Z3 were packaged into PERV particles and inhibited PERV replication in a dose-dependent manner. The antiretroviral effect correlated with editing by the porcine A3s with a trinucleotide preference for 5' TGC for A3Z2 and A3Z2-Z3 and 5' CAC for A3Z3. These results strongly imply that human and porcine A3s could inhibit PERV replication in vivo, thereby reducing the risk of infection of human cells by PERV in the context of pig-to-human xenotransplantation.
Collapse
|
18
|
Chakrabarti LA, Simon V. Immune mechanisms of HIV control. Curr Opin Immunol 2010; 22:488-96. [PMID: 20650621 DOI: 10.1016/j.coi.2010.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/16/2010] [Accepted: 06/17/2010] [Indexed: 12/20/2022]
Abstract
HIV-1 can be contained by the immune system, as demonstrated by the existence of rare individuals who spontaneously control HIV-1 replication in the absence of antiretroviral therapy. Emerging evidence points to the importance of a very active cellular immune response in mediating HIV-1 control. The rapid induction of interferon-dependent HIV restriction factors, the presence of protective MHC class I alleles, and the development of a high avidity T-cell response may all cooperate in limiting HIV replication at an early stage. This review will focus on recent advances in understanding the immune mechanisms of HIV control, and on the lessons that may be drawn for the development of candidate HIV vaccines.
Collapse
Affiliation(s)
- Lisa A Chakrabarti
- Institut Pasteur, Unité d'Immunogénétique Cellulaire, 25 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
19
|
Groom HCT, Yap MW, Galão RP, Neil SJD, Bishop KN. Susceptibility of xenotropic murine leukemia virus-related virus (XMRV) to retroviral restriction factors. Proc Natl Acad Sci U S A 2010; 107:5166-71. [PMID: 20194752 PMCID: PMC2841911 DOI: 10.1073/pnas.0913650107] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Xenotropic murine leukemia virus-related virus (XMRV) is a recently discovered gammaretrovirus that has been linked to prostate cancer and chronic fatigue syndrome. This virus is therefore an important potential human pathogen and, as such, it is essential to understand its host cell tropism. Intriguingly, infectious virus has been recovered from patient-derived peripheral blood mononuclear cells. These cells express several antiviral restriction factors that are capable of inhibiting the replication of a wide range of retroviruses, including other gamma retroviruses. This raises the possibility that, similar to HIV, XMRV may have acquired resistance to restriction. We therefore investigated the susceptibility of XMRV to a panel of different restriction factors. We found that both human APOBEC3 and tetherin proteins are able to block XMRV replication. Expression of human TRIM5alpha, however, had no effect on viral infectivity. There was no evidence that XMRV expressed countermeasures to overcome restriction. In addition, the virus was inhibited by factors from nonhuman species, including mouse Apobec3, tetherin, and Fv1 proteins. These results have important implications for predicting the natural target cells for XMRV replication, for relating infection to viral pathogenicity and pathology, and for the design of model systems with which to study XMRV-related diseases.
Collapse
Affiliation(s)
- Harriet C. T. Groom
- Division of Virology, MRC National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - Melvyn W. Yap
- Division of Virology, MRC National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| | - Rui Pedro Galão
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Stuart J. D. Neil
- Department of Infectious Diseases, King's College London School of Medicine, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Kate N. Bishop
- Division of Virology, MRC National Institute for Medical Research, London NW7 1AA, United Kingdom; and
| |
Collapse
|
20
|
Overview of Retrovirology. RETROVIRUSES AND INSIGHTS INTO CANCER 2010. [PMCID: PMC7122640 DOI: 10.1007/978-0-387-09581-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the 100 years since their discovery, retroviruses have played a special role in virology and in molecular biology. These agents have been at the center of cancer research and shaped our understanding of cell growth, differentiation and survival in ways that stretch far beyond investigations using these viruses. The discovery of retroviral oncogenes established the central paradigm that altered cellular genes can provide a dominant signal initiating cancer development. Their unique replication mechanism and their integration into cellular DNA allow these viruses to alter the properties of their hosts beyond the life span of the infected individual and contribute to the evolution of species. This same property has made retroviral vectors an important tool for gene therapy. Indeed, the impact of retrovirus research has been far-reaching and despite the amazing progress that has been made, retroviruses continue to reveal new insights into the host – pathogen interaction.
Collapse
|
21
|
Strebel K, Luban J, Jeang KT. Human cellular restriction factors that target HIV-1 replication. BMC Med 2009; 7:48. [PMID: 19758442 PMCID: PMC2759957 DOI: 10.1186/1741-7015-7-48] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Accepted: 09/16/2009] [Indexed: 01/23/2023] Open
Abstract
Recent findings have highlighted roles played by innate cellular factors in restricting intracellular viral replication. In this review, we discuss in brief the activities of apolipoprotein B mRNA-editing enzyme 3G (APOBEC3G), bone marrow stromal cell antigen 2 (BST-2), cyclophilin A, tripartite motif protein 5 alpha (Trim5alpha), and cellular microRNAs as examples of host restriction factors that target HIV-1. We point to countermeasures encoded by HIV-1 for moderating the potency of these cellular restriction functions.
Collapse
Affiliation(s)
- Klaus Strebel
- Laboratory of Molecular Microbiology, NIAID, the National Institutes of Health, Bethesda, Maryland, USA
| | | | | |
Collapse
|
22
|
Zielonka J, Bravo IG, Marino D, Conrad E, Perković M, Battenberg M, Cichutek K, Münk C. Restriction of equine infectious anemia virus by equine APOBEC3 cytidine deaminases. J Virol 2009; 83:7547-59. [PMID: 19458006 PMCID: PMC2708611 DOI: 10.1128/jvi.00015-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 05/11/2009] [Indexed: 11/20/2022] Open
Abstract
The mammalian APOBEC3 (A3) proteins comprise a multigene family of cytidine deaminases that act as potent inhibitors of retroviruses and retrotransposons. The A3 locus on the chromosome 28 of the horse genome contains multiple A3 genes: two copies of A3Z1, five copies of A3Z2, and a single copy of A3Z3, indicating a complex evolution of multiple gene duplications. We have cloned and analyzed for expression the different equine A3 genes and examined as well the subcellular distribution of the corresponding proteins. Additionally, we have tested the functional antiretroviral activity of the equine and of several of the human and nonprimate A3 proteins against the Equine infectious anemia virus (EIAV), the Simian immunodeficiency virus (SIV), and the Adeno-associated virus type 2 (AAV-2). Hematopoietic cells of horses express at least five different A3s: A3Z1b, A3Z2a-Z2b, A3Z2c-Z2d, A3Z2e, and A3Z3, whereas circulating macrophages, the natural target of EIAV, express only part of the A3 repertoire. The five A3Z2 tandem copies arose after three consecutive, recent duplication events in the horse lineage, after the split between Equidae and Carnivora. The duplicated genes show different antiviral activities against different viruses: equine A3Z3 and A3Z2c-Z2d are potent inhibitors of EIAV while equine A3Z1b, A3Z2a-Z2b, A3Z2e showed only weak anti-EIAV activity. Equine A3Z1b and A3Z3 restricted AAV and all equine A3s, except A3Z1b, inhibited SIV. We hypothesize that the horse A3 genes are undergoing a process of subfunctionalization in their respective viral specificities, which might provide the evolutionary advantage for keeping five copies of the original gene.
Collapse
Affiliation(s)
- Jörg Zielonka
- Division of Medical Biotechnology, Paul Ehrlich Institut, Langen, Germany
| | | | | | | | | | | | | | | |
Collapse
|