1
|
Kunkle DE, Cai Y, Eichman BF, Skaar EP. An interstrand DNA crosslink glycosylase aids Acinetobacter baumannii pathogenesis. Proc Natl Acad Sci U S A 2024; 121:e2402422121. [PMID: 38923984 PMCID: PMC11228520 DOI: 10.1073/pnas.2402422121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Maintenance of DNA integrity is essential to all forms of life. DNA damage generated by reaction with genotoxic chemicals results in deleterious mutations, genome instability, and cell death. Pathogenic bacteria encounter several genotoxic agents during infection. In keeping with this, the loss of DNA repair networks results in virulence attenuation in several bacterial species. Interstrand DNA crosslinks (ICLs) are a type of DNA lesion formed by covalent linkage of opposing DNA strands and are particularly toxic as they interfere with replication and transcription. Bacteria have evolved specialized DNA glycosylases that unhook ICLs, thereby initiating their repair. In this study, we describe AlkX, a DNA glycosylase encoded by the multidrug resistant pathogen Acinetobacter baumannii. AlkX exhibits ICL unhooking activity similar to that of its Escherichia coli homolog YcaQ. Interrogation of the in vivo role of AlkX revealed that its loss sensitizes cells to DNA crosslinking and impairs A. baumannii colonization of the lungs and dissemination to distal tissues during pneumonia. These results suggest that AlkX participates in A. baumannii pathogenesis and protects the bacterium from stress conditions encountered in vivo. Consistent with this, we found that acidic pH, an environment encountered during host colonization, results in A. baumannii DNA damage and that alkX is induced by, and contributes to, defense against acidic conditions. Collectively, these studies reveal functions for a recently described class of proteins encoded in a broad range of pathogenic bacterial species.
Collapse
Affiliation(s)
- Dillon E. Kunkle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN37232
| | - Yujuan Cai
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37232
| | - Brandt F. Eichman
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37232
- Department of Biochemistry, Vanderbilt University, Nashville, TN37232
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN37232
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN37232
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37232
| |
Collapse
|
2
|
Abramov VM, Kosarev IV, Machulin AV, Deryusheva EI, Priputnevich TV, Panin AN, Chikileva IO, Abashina TN, Manoyan AM, Akhmetzyanova AA, Blumenkrants DA, Ivanova OE, Papazyan TT, Nikonov IN, Suzina NE, Melnikov VG, Khlebnikov VS, Sakulin VK, Samoilenko VA, Gordeev AB, Sukhikh GT, Uversky VN, Karlyshev AV. Anti- Salmonella Defence and Intestinal Homeostatic Maintenance In Vitro of a Consortium Containing Limosilactobacillus fermentum 3872 and Ligilactobacillus salivarius 7247 Strains in Human, Porcine, and Chicken Enterocytes. Antibiotics (Basel) 2023; 13:30. [PMID: 38247590 PMCID: PMC10812507 DOI: 10.3390/antibiotics13010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Limosilactobacillus fermentum strain 3872 (LF3872) was originally isolated from the breast milk of a healthy woman during lactation and the breastfeeding of a child. Ligilactobacillus salivarius strain 7247 (LS7247) was isolated at the same time from the intestines and reproductive system of a healthy woman. The genomes of these strains contain genes responsible for the production of peptidoglycan-degrading enzymes and factors that increase the permeability of the outer membrane of Gram-negative pathogens. In this work, the anti-Salmonella and intestinal homeostatic features of the LF3872 and LS7247 consortium were studied. A multi-drug resistant (MDR) strain of Salmonella enteritidis (SE) was used in the experiments. The consortium effectively inhibited the adhesion of SE to intact and activated human, porcine, and chicken enterocytes and reduced invasion. The consortium had a bactericidal effect on SE in 6 h of co-culturing. A gene expression analysis of SE showed that the cell-free supernatant (CFS) of the consortium inhibited the expression of virulence genes critical for the colonization of human and animal enterocytes. The CFS stimulated the production of an intestinal homeostatic factor-intestinal alkaline phosphatase (IAP)-in Caco-2 and HT-29 enterocytes. The consortium decreased the production of pro-inflammatory cytokines IL-8, TNF-α, and IL-1β, and TLR4 mRNA expression in human and animal enterocytes. It stimulated the expression of TLR9 in human and porcine enterocytes and stimulated the expression of TLR21 in chicken enterocytes. The consortium also protected the intestinal barrier functions through the increase of transepithelial electrical resistance (TEER) and the inhibition of paracellular permeability in the monolayers of human and animal enterocytes. The results obtained suggest that a LF3872 and LS7247 consortium can be used as an innovative feed additive to reduce the spread of MDR SE among the population and farm animals.
Collapse
Affiliation(s)
- Vyacheslav M. Abramov
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Igor V. Kosarev
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Evgenia I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Tatiana V. Priputnevich
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Alexander N. Panin
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Irina O. Chikileva
- Blokhin National Research Center of Oncology, Ministry of Health RF, 115478 Moscow, Russia
| | - Tatiana N. Abashina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Ashot M. Manoyan
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Anna A. Akhmetzyanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Dmitriy A. Blumenkrants
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | - Olga E. Ivanova
- Federal Service for Veterinary and Phytosanitary Surveillance (Rosselkhoznadzor) Federal State Budgetary Institution “The Russian State Center for Animal Feed and Drug Standardization and Quality” (FGBU VGNKI), 123022 Moscow, Russia
| | | | - Ilia N. Nikonov
- Federal State Educational Institution of Higher Professional Education, Moscow State Academy of Veterinary Medicine and Biotechnology Named after K.I. Skryabin, 109472 Moscow, Russia;
| | - Nataliya E. Suzina
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Vyacheslav G. Melnikov
- Gabrichevsky Research Institute for Epidemiology and Microbiology, 125212 Moscow, Russia
| | | | - Vadim K. Sakulin
- Institute of Immunological Engineering, 142380 Lyubuchany, Russia; (V.S.K.); (V.K.S.)
| | - Vladimir A. Samoilenko
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Science”, Russian Academy of Science, 142290 Pushchino, Russia
| | - Alexey B. Gordeev
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Gennady T. Sukhikh
- Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology, Ministry of Health, 117997 Moscow, Russia (A.B.G.)
| | - Vladimir N. Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Andrey V. Karlyshev
- Department of Biomolecular Sciences, School of Life Sciences, Chemistry and Pharmacy, Faculty of Health, Science, Social Care and Education, Kingston University London, Kingston upon Thames KT1 2EE, UK
| |
Collapse
|
3
|
Hurley KE, Banerjee SK, Stephens AC, Scribner MR, Cooper VS, Richardson AR. The contribution of DNA repair pathways to Staphylococcus aureus fitness and fidelity during nitric oxide stress. mBio 2023; 14:e0215623. [PMID: 37948342 PMCID: PMC10746251 DOI: 10.1128/mbio.02156-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/04/2023] [Indexed: 11/12/2023] Open
Abstract
IMPORTANCE Pathogenic bacteria must evolve various mechanisms in order to evade the host immune response that they are infecting. One aspect of the primary host immune response to an infection is the production of an inflammatory effector component, nitric oxide (NO⋅). Staphylococcus aureus has uniquely evolved a diverse array of strategies to circumvent the inhibitory activity of nitric oxide. One such mechanism by which S. aureus has evolved allows the pathogen to survive and maintain its genomic integrity in this environment. For instance, here, our results suggest that S. aureus employs several DNA repair pathways to ensure replicative fitness and fidelity under NO⋅ stress. Thus, our study presents evidence of an additional strategy that allows S. aureus to evade the cytotoxic effects of host NO⋅.
Collapse
Affiliation(s)
- Kelly E. Hurley
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Srijon K. Banerjee
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Amelia C. Stephens
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michelle R. Scribner
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Vaughn S. Cooper
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anthony R. Richardson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
Li W, Ren Q, Ni T, Zhao Y, Sang Z, Luo R, Li Z, Li S. Strategies adopted by Salmonella to survive in host: a review. Arch Microbiol 2023; 205:362. [PMID: 37904066 DOI: 10.1007/s00203-023-03702-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/30/2023] [Accepted: 10/05/2023] [Indexed: 11/01/2023]
Abstract
Salmonella, a Gram-negative bacterium that infects humans and animals, causes diseases ranging from gastroenteritis to severe systemic infections. Here, we discuss various strategies used by Salmonella against host cell defenses. Epithelial cell invasion largely depends on a Salmonella pathogenicity island (SPI)-1-encoded type 3 secretion system, a molecular syringe for injecting effector proteins directly into host cells. The internalization of Salmonella into macrophages is primarily driven by phagocytosis. After entering the host cell cytoplasm, Salmonella releases many effectors to achieve intracellular survival and replication using several secretion systems, primarily an SPI-2-encoded type 3 secretion system. Salmonella-containing vacuoles protect Salmonella from contacting bactericidal substances in epithelial cells and macrophages. Salmonella modulates the immunity, metabolism, cell cycle, and viability of host cells to expand its survival in the host, and the intracellular environment of Salmonella-infected cells promotes its virulence. This review provides insights into how Salmonella subverts host cell defenses for survival.
Collapse
Affiliation(s)
- Wanwu Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Qili Ren
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Ting Ni
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Yifei Zhao
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Zichun Sang
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Renli Luo
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China
| | - Zhongjie Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| | - Sanqiang Li
- College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
5
|
Revajová V, Benková T, Karaffová V, Levkut M, Selecká E, Dvorožňáková E, Ševčíková Z, Herich R, Levkut M. Influence of Immune Parameters after Enterococcus faecium AL41 Administration and Salmonella Infection in Chickens. Life (Basel) 2022; 12:life12020201. [PMID: 35207488 PMCID: PMC8878764 DOI: 10.3390/life12020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Immune response of day-old chicks infected with Salmonella Enteritidis PT4 and preventive administration of Enterococcus faecium AL41 were studied using hematology and flow cytometry of immunocompetent cells in blood, cecum, bursa and spleen for 11 days, and included 220 animals divided into four groups (n = 55). E. faecium AL41 was administered for 7 days to EF and EFSE groups and on day 4 SE and EFSE groups were infected with Salmonella Enteritidis. Values of monocytes at 4 dpi significantly increased in EFSE and lymphocytes at 7 dpi in EF groups. Blood CD3, CD4, CD8 and IgM lymphocytes improved in EF and EFSE groups and IgA in EF group at 4 dpi. Phagocytic activity of probiotic groups was improved in both samples. Cecal IEL and LPL lymphocytes showed at 7 dpi stimulation of CD3, CD4 and CD8 subpopulations in probiotic groups, especially in EFSE group, IgA IEL and IgA with IgM LPL in EF groups. Bursa Fabricii at 7 dpi presented overstimulation of IgG subpopulation in SE group, spleen CD3 and CD8 in EF and EFSE groups. E. faecium AL41 revealed the protective effect and positive influence on the local and systemic immune response in Salmonella Enteritidis PT4 infected chickens.
Collapse
Affiliation(s)
- Viera Revajová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
| | - Terézia Benková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
| | - Viera Karaffová
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
- Correspondence: ; Tel.: +421-905871840
| | - Martin Levkut
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
| | - Emília Selecká
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
| | - Emília Dvorožňáková
- Institute of Parasitology, Slovak Academy of Sciences, 040 01 Košice, Slovakia;
| | - Zuzana Ševčíková
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
| | - Róbert Herich
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
| | - Mikuláš Levkut
- Department of Morphological Disciplines, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia; (V.R.); (T.B.); (M.L.); (E.S.); (Z.Š.); (R.H.); (M.L.)
- Institute of Neuroimmunology, Slovak Academy of Science, 845 10 Bratislava, Slovakia
| |
Collapse
|
6
|
Abstract
The disruption of gut microbiota homeostasis has been associated with numerous diseases and with a disproportionate inflammatory response, including overproduction of nitric oxide (NO) in the intestinal lumen. However, the influence of NO on the human gut microbiota has not been well characterized yet. We used in vitro fermentation systems inoculated with human fecal samples to monitor the effect of repetitive NO pulses on the gut microbiota. NO exposure increased the redox potential and modified the fermentation profile and gas production. The overall metabolome was modified, reflecting less strict anaerobic conditions and shifts in amino acid and nitrogen metabolism. NO exposure led to a microbial shift in diversity with a decrease in Clostridium leptum group and Faecalibacterium prausnitzii biomass and an increased abundance of the Dialister genus. Escherichia coli, Enterococcus faecalis, and Proteus mirabilis operational taxonomic unit abundance increased, and strains from those species isolated after NO stress showed resistance to high NO concentrations. As a whole, NO quickly changed microbial fermentations, functions, and composition in a pulse- and dose-dependent manner. NO could shift, over time, the trophic chain to conditions that are unfavorable for strict anaerobic microbial processes, implying that a prolonged or uncontrolled inflammation has detrimental and irreversible consequences on the human microbiome. IMPORTANCE Gut microbiota dysbiosis has been associated with inflammatory diseases. The human inflammatory response leads to an overproduction of nitric oxide (NO) in the gut. However, so far, the influence of NO on the human gut microbiota has not been characterized. In this study, we used in vitro fermentation systems with human fecal samples to understand the effect of NO on the microbiota: NO modified the microbial composition and its functionality. High NO concentration depleted the microbiota of beneficial butyrate-producing species and favored potentially deleterious species (E. coli, E. faecalis, and P. mirabilis), which we showed can sustain high NO concentrations. Our work shows that NO may participate in the vicious circle of inflammation, leading to detrimental and irreversible consequences on human health.
Collapse
|
7
|
Porrini C, Ramarao N, Tran SL. Dr. NO and Mr. Toxic - the versatile role of nitric oxide. Biol Chem 2021; 401:547-572. [PMID: 31811798 DOI: 10.1515/hsz-2019-0368] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/04/2019] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) is present in various organisms from humans, to plants, fungus and bacteria. NO is a fundamental signaling molecule implicated in major cellular functions. The role of NO ranges from an essential molecule to a potent mediator of cellular damages. The ability of NO to react with a broad range of biomolecules allows on one hand its regulation and a gradient concentration and on the other hand to exert physiological as well as pathological functions. In humans, NO is implicated in cardiovascular homeostasis, neurotransmission and immunity. However, NO can also contribute to cardiovascular diseases (CVDs) or septic shock. For certain denitrifying bacteria, NO is part of their metabolism as a required intermediate of the nitrogen cycle. However, for other bacteria, NO is toxic and harmful. To survive, those bacteria have developed processes to resist this toxic effect and persist inside their host. NO also contributes to maintain the host/microbiota homeostasis. But little is known about the impact of NO produced during prolonged inflammation on microbiota integrity, and some pathogenic bacteria take advantage of the NO response to colonize the gut over the microbiota. Taken together, depending on the environmental context (prolonged production, gradient concentration, presence of partners for interaction, presence of oxygen, etc.), NO will exert its beneficial or detrimental function. In this review, we highlight the dual role of NO for humans, pathogenic bacteria and microbiota, and the mechanisms used by each organism to produce, use or resist NO.
Collapse
Affiliation(s)
- Constance Porrini
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Nalini Ramarao
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Seav-Ly Tran
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
8
|
Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The Role of Macrophages in Staphylococcus aureus Infection. Front Immunol 2021; 11:620339. [PMID: 33542723 PMCID: PMC7850989 DOI: 10.3389/fimmu.2020.620339] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a member of the human commensal microflora that exists, apparently benignly, at multiple sites on the host. However, as an opportunist pathogen it can also cause a range of serious diseases. This requires an ability to circumvent the innate immune system to establish an infection. Professional phagocytes, primarily macrophages and neutrophils, are key innate immune cells which interact with S. aureus, acting as gatekeepers to contain and resolve infection. Recent studies have highlighted the important roles of macrophages during S. aureus infections, using a wide array of killing mechanisms. In defense, S. aureus has evolved multiple strategies to survive within, manipulate and escape from macrophages, allowing them to not only subvert but also exploit this key element of our immune system. Macrophage-S. aureus interactions are multifaceted and have direct roles in infection outcome. In depth understanding of these host-pathogen interactions may be useful for future therapeutic developments. This review examines macrophage interactions with S. aureus throughout all stages of infection, with special emphasis on mechanisms that determine infection outcome.
Collapse
Affiliation(s)
- Grace R. Pidwill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Josie F. Gibson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
9
|
Zhang J, Wang S, Abee T, van der Veen S. Role of Base Excision Repair in Listeria monocytogenes DNA Stress Survival During Infections. J Infect Dis 2020; 223:721-732. [PMID: 32644146 DOI: 10.1093/infdis/jiaa412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/07/2020] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Base excision repair (BER), consisting mostly of lesion-specific DNA glycosylases and apurinic/apyrimidinic (AP) endonucleases, is one of the most important DNA repair mechanisms for repair of single nucleobase lesions generated by reactive oxygen and nitrogen species as part of an immune response against bacterial infections. However, few studies have addressed the contribution of BER to bacterial virulence and Listeria monocytogenes BER has thus far remained completely uncharacterized. METHODS Analysis of the L. monocytogenes EGDe genome identified 7 DNA glycosylases (MutM, MutY, Nth, Tag, Mpg, Ung, and Ung2) and 2 apurinic/apyrimidinic endonucleases (Xth and Nfo) as part of BER. Markerless in-frame deletion mutants were generated for all 9 genes, and mutants were tested for DNA damage survival, mutagenesis, and the ability to colonize a mouse model of infection. RESULTS Distinct lesion-specific phenotypes were identified for all deletion mutants. Importantly, the Δnth, ΔmutY, and Δnfo mutants were significantly attenuated for virulence in the mouse model and showed much lower colonization of the liver and spleen or were unable to compete with the wild-type strain during in vivo competition assays. CONCLUSIONS Our results highlight the importance of BER for L. monocytogenes virulence and survival of DNA-damaging insults during host colonization.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuyi Wang
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tjakko Abee
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Stijn van der Veen
- Department of Microbiology and Parasitology, School of Medicine, Zhejiang University, Hangzhou, China.,Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Mechetin GV, Endutkin AV, Diatlova EA, Zharkov DO. Inhibitors of DNA Glycosylases as Prospective Drugs. Int J Mol Sci 2020; 21:ijms21093118. [PMID: 32354123 PMCID: PMC7247160 DOI: 10.3390/ijms21093118] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022] Open
Abstract
DNA glycosylases are enzymes that initiate the base excision repair pathway, a major biochemical process that protects the genomes of all living organisms from intrinsically and environmentally inflicted damage. Recently, base excision repair inhibition proved to be a viable strategy for the therapy of tumors that have lost alternative repair pathways, such as BRCA-deficient cancers sensitive to poly(ADP-ribose)polymerase inhibition. However, drugs targeting DNA glycosylases are still in development and so far have not advanced to clinical trials. In this review, we cover the attempts to validate DNA glycosylases as suitable targets for inhibition in the pharmacological treatment of cancer, neurodegenerative diseases, chronic inflammation, bacterial and viral infections. We discuss the glycosylase inhibitors described so far and survey the advances in the assays for DNA glycosylase reactions that may be used to screen pharmacological libraries for new active compounds.
Collapse
Affiliation(s)
- Grigory V. Mechetin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Anton V. Endutkin
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Evgeniia A. Diatlova
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
| | - Dmitry O. Zharkov
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 8 Lavrentieva Ave., 630090 Novosibirsk, Russia; (G.V.M.); (A.V.E.); (E.A.D.)
- Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-383-363-5187
| |
Collapse
|
11
|
Multi-functionalized nanocarriers targeting bacterial reservoirs to overcome challenges of multi drug-resistance. ACTA ACUST UNITED AC 2020; 28:319-332. [PMID: 32193748 DOI: 10.1007/s40199-020-00337-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Infectious diseases associated with intracellular bacteria such as Staphylococcus aureus, Salmonella typhimurium and Mycobacterium tuberculosis are important public health concern. Emergence of multi and extensively drug-resistant bacterial strains have made it even more obstinate to offset such infections. Bacteria residing within intracellular compartments provide additional barriers to effective treatment. METHOD Information provided in this review has been collected by accessing various electronic databases including Google scholar, Web of science, Scopus, and Nature index. Search was performed using keywords nanoparticles, intracellular targeting, multidrug resistance, Staphylococcus aureus; Salmonella typhimurium; Mycobacterium tuberculosis. Information gathered was categorized into three major sections as 'Intracellular targeting of Staphylococcus aureus, Intracellular targeting of Salmonella typhimurium and Intracellular targeting of Mycobacterium tuberculosis' using variety of nanocarrier systems. RESULTS Conventional management for infectious diseases typically comprises of long-term treatment with a combination of antibiotics, which may lead to side effects and decreased patient compliance. A wide range of multi-functionalized nanocarrier systems have been studied for delivery of drugs within cellular compartments where bacteria including Staphylococcus aureus, Salmonella typhimurium and Mycobacterium tuberculosis reside. Such carrier systems along with targeted delivery have been utilized for sustained and controlled delivery of drugs. These strategies have been found useful in overcoming the drawbacks of conventional treatments including multi-drug resistance. CONCLUSION Development of multi-functional nanocargoes encapsulating antibiotics that are proficient in targeting and releasing drug into infected reservoirs seems to be a promising strategy to circumvent the challenge of multidrug resistance. Graphical abstract.
Collapse
|
12
|
Base excision repair pathways of bacteria: new promise for an old problem. Future Med Chem 2020; 12:339-355. [PMID: 32031026 DOI: 10.4155/fmc-2019-0267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases continue to be a major cause of human mortality. With the emergence of drug resistance, diseases that were long thought to have been curable by antibiotics are resurging. There is an urgent clinical need for newer antibiotics that target novel cellular pathways to overcome resistance to currently used therapeutics. The base excision repair (BER) pathways of the pathogen restore altered bases and safeguard the genomic integrity of the pathogen from the host's immune response. Although the BER machinery is of paramount importance to the survival of the pathogens, its potential as a drug target is largely unexplored. In this review, we discuss the importance of BER in different pathogenic organisms and the potential of its inhibition with small molecules.
Collapse
|
13
|
The Response of nor and nos Contributes to Staphylococcus aureus Virulence and Metabolism. J Bacteriol 2019; 201:JB.00107-19. [PMID: 30782631 DOI: 10.1128/jb.00107-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus causes a wide spectrum of disease, with the site and severity of infection dependent on virulence traits encoded within genetically distinct clonal complexes (CCs) and bacterial responses to host innate immunity. The production of nitric oxide (NO) by activated phagocytes is a major host response to which S. aureus metabolically adapts through multiple strategies that are conserved in all CCs, including an S. aureus nitric oxide synthase (Nos). Previous genome analysis of CC30, a lineage associated with chronic endocardial and osteoarticular infections, revealed a putative NO reductase (Nor) not found in other CCs that potentially contributes to NO resistance and clinical outcome. Here, we demonstrate that Nor has true nitric oxide reductase activity, with nor expression enhanced by NO stress and anaerobic growth. Furthermore, we demonstrate that nor is regulated by MgrA and SrrAB, which modulate S. aureus virulence and hypoxic response. Transcriptome analysis of the S. aureus UAMS-1, UAMS-1 Δnor, and UAMS-1 Δnos strains under NO stress and anaerobic growth demonstrates that Nor contributes to nucleotide metabolism and Nos to glycolysis. We demonstrate that Nor and Nos contribute to enhanced survival in the presence of human human polymorphonuclear cells and have organ-specific seeding in a tail vein infection model. Nor contributes to abscess formation in an osteological implant model. We also demonstrate that Nor has a role in S. aureus metabolism and virulence. The regulation overlap between Nor and Nos points to an intriguing link between regulation of intracellular NO, metabolic adaptation, and persistence in the CC30 lineage.IMPORTANCE Staphylococcus aureus can cause disease at most body sites, and illness spans asymptomatic infection to death. The variety of clinical presentations is due to the diversity of strains, which are grouped into distinct clonal complexes (CCs) based on genetic differences. The ability of S. aureus CC30 to cause chronic infections relies on its ability to evade the oxidative/nitrosative defenses of the immune system and survive under different environmental conditions, including differences in oxygen and nitric oxide concentrations. The significance of this work is the exploration of unique genes involved in resisting NO stress and anoxia. A better understanding of the functions that control the response of S. aureus CC30 to NO and oxygen will guide the treatment of severe disease presentations.
Collapse
|
14
|
Ragheb MN, Thomason MK, Hsu C, Nugent P, Gage J, Samadpour AN, Kariisa A, Merrikh CN, Miller SI, Sherman DR, Merrikh H. Inhibiting the Evolution of Antibiotic Resistance. Mol Cell 2018; 73:157-165.e5. [PMID: 30449724 PMCID: PMC6320318 DOI: 10.1016/j.molcel.2018.10.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/17/2018] [Accepted: 10/09/2018] [Indexed: 11/30/2022]
Abstract
Efforts to battle antimicrobial resistance (AMR) are generally focused on developing novel antibiotics. However, history shows that resistance arises regardless of the nature or potency of new drugs. Here, we propose and provide evidence for an alternate strategy to resolve this problem: inhibiting evolution. We determined that the DNA translocase Mfd is an “evolvability factor” that promotes mutagenesis and is required for rapid resistance development to all antibiotics tested across highly divergent bacterial species. Importantly, hypermutator alleles that accelerate AMR development did not arise without Mfd, at least during evolution of trimethoprim resistance. We also show that Mfd’s role in AMR development depends on its interactions with the RNA polymerase subunit RpoB and the nucleotide excision repair protein UvrA. Our findings suggest that AMR development can be inhibited through inactivation of evolvability factors (potentially with “anti-evolution” drugs)—in particular, Mfd—providing an unexplored route toward battling the AMR crisis. The bacterial transcription-coupled repair (TCR) factor Mfd promotes mutagenesis Mfd-driven mutagenesis accelerates the evolution of antimicrobial resistance (AMR) The rapid evolution of AMR requires Mfd’s interaction with RpoB and UvrA Mfd may be an ideal target for “anti-evolution” drugs that inhibit AMR development
Collapse
Affiliation(s)
- Mark N Ragheb
- Department of Microbiology, University of Washington, Seattle, WA, USA; Molecular and Cellular Biology Graduate Program and Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | | | - Chris Hsu
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Patrick Nugent
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - John Gage
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | - Ankunda Kariisa
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | | | - Samuel I Miller
- Department of Microbiology, University of Washington, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - David R Sherman
- Center for Infectious Disease Research, Seattle, WA, USA; Interdiscipinary Program of Pathobiology, Department of Global Health, University of Washington, Seattle, WA, USA
| | - Houra Merrikh
- Department of Microbiology, University of Washington, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
15
|
Characterization of biochemical properties of an apurinic/apyrimidinic endonuclease from Helicobacter pylori. PLoS One 2018; 13:e0202232. [PMID: 30110394 PMCID: PMC6093668 DOI: 10.1371/journal.pone.0202232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 07/30/2018] [Indexed: 01/08/2023] Open
Abstract
Apurinic/apyrimidinic (AP) endonucleases play critical roles in the repair of abasic sites and strand breaks in DNA. Complete genome sequences of Helicobacter pylori reveal that this bacterial specie has a single AP endonuclease. An H. pylori homolog of Xth (HpXth) is a member of exonuclease III family, which is represented by Escherichia coli Xth. Currently, it remains unknown whether this single AP endonuclease has DNA repair activities similar to those of its counterpart in E. coli and other bacteria. We report that HpXth possesses efficient AP site cleavage, 3’-repair phosphodiesterase, and 3’-phosphatase activities but not the nucleotide incision repair function. Optimal reaction conditions for HpXth’s AP endonuclease activity are low ionic strength, high Mg2+ concentration, pH in the range 7–8, and temperature 30 °C. The kinetic parameters measured under steady-state conditions showed that HpXth removes the AP site, 3’-blocking sugar-phosphate, and 3’-terminal phosphate in DNA strand breaks with good efficiency (kcat/KM = 1240, 44, and 5,4 μM–1·min–1, respectively), similar to that of E. coli Xth. As expected, the presence of HpXth protein in AP endonuclease—deficient E. coli xth nfo strain significantly reduced the sensitivity to an alkylating agent and H2O2. Mutation of active site residue D144 in HpXth predicted to be essential for catalysis resulted in a complete loss of enzyme activities. Several important structural features of HpXth were uncovered by homology modeling and phylogenetic analysis. Our data show the DNA substrate specificity of H. pylori AP endonuclease and suggest that HpXth counteracts the genotoxic effects of DNA damage generated by endogenous and host-imposed factors.
Collapse
|
16
|
Abstract
Nitric oxide (NO·) produced by mammalian cells exerts antimicrobial actions that result primarily from the modification of protein thiols (S-nitrosylation) and metal centers. A comprehensive approach was used to identify novel targets of NO· in Salmonella enterica serovar Typhimurium (S. Typhimurium). Newly identified targets include zinc metalloproteins required for DNA replication and repair (DnaG, PriA, and TopA), protein synthesis (AlaS and RpmE), and various metabolic activities (ClpX, GloB, MetE, PepA, and QueC). The cytotoxic actions of free zinc are mitigated by the ZntA and ZitB zinc efflux transporters, which are required for S. Typhimurium resistance to zinc overload and nitrosative stress in vitro Zinc efflux also ameliorates NO·-dependent zinc mobilization following internalization by activated macrophages and is required for virulence in NO·-producing mice, demonstrating that host-derived NO· causes zinc stress in intracellular bacteria.IMPORTANCE Nitric oxide (NO·) is produced by macrophages in response to inflammatory stimuli and restricts the growth of intracellular bacteria. Mechanisms of NO·-dependent antimicrobial actions are incompletely understood. Here, we show that zinc metalloproteins are important targets of NO· in Salmonella, including the DNA replication proteins DnaG and PriA, which were hypothesized to be NO· targets in earlier studies. Like iron, zinc is a cofactor for several essential proteins but is toxic at elevated concentrations. This study demonstrates that NO· mobilizes free zinc in Salmonella and that specific efflux transporters ameliorate the cytotoxic effects of free zinc during infection.
Collapse
|
17
|
Uribe-Querol E, Rosales C. Control of Phagocytosis by Microbial Pathogens. Front Immunol 2017; 8:1368. [PMID: 29114249 PMCID: PMC5660709 DOI: 10.3389/fimmu.2017.01368] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/05/2017] [Indexed: 12/17/2022] Open
Abstract
Phagocytosis is a fundamental process of cells to capture and ingest foreign particles. Small unicellular organisms such as free-living amoeba use this process to acquire food. In pluricellular organisms, phagocytosis is a universal phenomenon that all cells are able to perform (including epithelial, endothelial, fibroblasts, etc.), but some specialized cells (such as neutrophils and macrophages) perform this very efficiently and were therefore named professional phagocytes by Rabinovitch. Cells use phagocytosis to capture and clear all particles larger than 0.5 µm, including pathogenic microorganisms and cellular debris. Phagocytosis involves a series of steps from recognition of the target particle, ingestion of it in a phagosome (phagocytic vacuole), maturation of this phagosome into a phagolysosome, to the final destruction of the ingested particle in the robust antimicrobial environment of the phagolysosome. For the most part, phagocytosis is an efficient process that eliminates invading pathogens and helps maintaining homeostasis. However, several pathogens have also evolved different strategies to prevent phagocytosis from proceeding in a normal way. These pathogens have a clear advantage to perpetuate the infection and continue their replication. Here, we present an overview of the phagocytic process with emphasis on the antimicrobial elements professional phagocytes use. We also summarize the current knowledge on the microbial strategies different pathogens use to prevent phagocytosis either at the level of ingestion, phagosome formation, and maturation, and even complete escape from phagosomes.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
18
|
Chen X, Li SJ, Ojcius DM, Sun AH, Hu WL, Lin X, Yan J. Mononuclear-macrophages but not neutrophils act as major infiltrating anti-leptospiral phagocytes during leptospirosis. PLoS One 2017; 12:e0181014. [PMID: 28700741 PMCID: PMC5507415 DOI: 10.1371/journal.pone.0181014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/23/2017] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To identify the major infiltrating phagocytes during leptospirosis and examine the killing mechanism used by the host to eliminate Leptospira interrogans. METHODS Major infiltrating phagocytes in Leptospira-infected C3H/HeJ mice were detected by immunohistochemistry. Chemokines and vascular endothelial cell adhesion molecules (VECAMs) of Leptospira-infected mice and leptospirosis patients were detected by microarray and immunohistochemistry. Leptospira-phagocytosing and -killing abilities of human or mouse macrophages and neutrophils, and the roles of intracellular ROS, NO and [Ca2+]i in Leptospira-killing process were evaluated by confocal microscopy and spectrofluorimetry. RESULTS Peripheral blood mononuclear-macrophages rather than neutrophils were the main infiltrating phagocytes in the lungs, liver and kidneys of infected mice. Levels of macrophage- but not neutrophil-specific chemokines and VECAMs were significantly increased in the samples from infected mice and patients. All macrophages tested had a higher ability than neutrophils to phagocytose and kill leptospires. Higher ROS and NO levels and [Ca2+]i in the macrophages were involved in killing leptospires. Human macrophages displayed more phagolysosome formation and a stronger leptospire-killing ability to than mouse macrophages. CONCLUSIONS Mononuclear-macrophages but not neutrophils represent the main infiltrating and anti-leptospiral phagocytes during leptospirosis. A lower level of phagosome-lysosome fusion may be responsible for the lower Leptospira-killing ability of human macrophages.
Collapse
Affiliation(s)
- Xu Chen
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Shi-Jun Li
- Guizhou Provincial Center for Disease Control and Prevention, Guiyang, Guizhou, P.R. China
| | - David M. Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, California, United States of America
| | - Ai-Hua Sun
- Faculty of Basic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, P.R. China
| | - Wei-Lin Hu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xu’ai Lin
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Jie Yan
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Department of Medical Microbiology and Parasitology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Division of Basic Medical Microbiology, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
19
|
Gart EV, Suchodolski JS, Welsh TH, Alaniz RC, Randel RD, Lawhon SD. Salmonella Typhimurium and Multidirectional Communication in the Gut. Front Microbiol 2016; 7:1827. [PMID: 27920756 PMCID: PMC5118420 DOI: 10.3389/fmicb.2016.01827] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 10/31/2016] [Indexed: 12/20/2022] Open
Abstract
The mammalian digestive tract is home to trillions of microbes, including bacteria, archaea, protozoa, fungi, and viruses. In monogastric mammals the stomach and small intestine harbor diverse bacterial populations but are typically less populated than the colon. The gut bacterial community (microbiota hereafter) varies widely among different host species and individuals within a species. It is influenced by season of the year, age of the host, stress and disease. Ideally, the host and microbiota benefit each other. The host provides nutrients to the microbiota and the microbiota assists the host with digestion and nutrient metabolism. The resident microbiota competes with pathogens for space and nutrients and, through this competition, protects the host in a phenomenon called colonization resistance. The microbiota participates in development of the host immune system, particularly regulation of autoimmunity and mucosal immune response. The microbiota also shapes gut–brain communication and host responses to stress; and, indeed, the microbiota is a newly recognized endocrine organ within mammalian hosts. Salmonella enterica serovar Typhimurium (S. Typhimurium hereafter) is a food-borne pathogen which adapts to and alters the gastrointestinal (GI) environment. In the GI tract, S. Typhimurium competes with the microbiota for nutrients and overcomes colonization resistance to establish infection. To do this, S. Typhimurium uses multiple defense mechanisms to resist environmental stressors, like the acidic pH of the stomach, and virulence mechanisms which allow it to invade the intestinal epithelium and disseminate throughout the host. To coordinate gene expression and disrupt signaling within the microbiota and between host and microbiota, S. Typhimurium employs its own chemical signaling and may regulate host hormone metabolism. This review will discuss the multidirectional interaction between S. Typhimurium, host and microbiota as well as mechanisms that allow S. Typhimurium to succeed in the gut.
Collapse
Affiliation(s)
- Elena V Gart
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station TX, USA
| | - Jan S Suchodolski
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station TX, USA
| | - Thomas H Welsh
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station TX, USA
| | - Robert C Alaniz
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station TX, USA
| | | | - Sara D Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station TX, USA
| |
Collapse
|
20
|
Darrigo C, Guillemet E, Dervyn R, Ramarao N. The Bacterial Mfd Protein Prevents DNA Damage Induced by the Host Nitrogen Immune Response in a NER-Independent but RecBC-Dependent Pathway. PLoS One 2016; 11:e0163321. [PMID: 27711223 PMCID: PMC5053507 DOI: 10.1371/journal.pone.0163321] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 09/07/2016] [Indexed: 11/28/2022] Open
Abstract
Production of reactive nitrogen species is an important component of the host immune defence against bacteria. Here, we show that the bacterial protein Mfd (Mutation frequency decline), a highly conserved and ubiquitous bacterial protein involved in DNA repair, confers bacterial resistance to the eukaryotic nitrogen response produced by macrophage cells and during mice infection. In addition, we show that RecBC is also necessary to survive this stress. The inactivation of recBC and mfd genes is epistatic showing that Mfd follows the RecBC repair pathway to protect the bacteria against the genotoxic effect of nitrite. Surprisingly given the role of Mfd in transcription-coupled repair, UvrA is not necessary to survive the nitrite response. Taken together, our data reveal that during the eukaryotic nitrogen response, Mfd is required to maintain bacterial genome integrity in a NER-independent but RecBC-dependent pathway.
Collapse
Affiliation(s)
- Claire Darrigo
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Elisabeth Guillemet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Rozenn Dervyn
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Nalini Ramarao
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| |
Collapse
|
21
|
Abstract
Pathogenic bacteria must withstand diverse host environments during infection. Environmental signals, such as pH, temperature, nutrient limitation, etc., not only trigger adaptive responses within bacteria to these specific stress conditions but also direct the expression of virulence genes at an appropriate time and place. An appreciation of stress responses and their regulation is therefore essential for an understanding of bacterial pathogenesis. This review considers specific stresses in the host environment and their relevance to pathogenesis, with a particular focus on the enteric pathogen Salmonella.
Collapse
Affiliation(s)
- Ferric C Fang
- Department of Microbiology, University of Washington School of Medicine, Seattle, WA 98195-7735, USA; Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195-7735, USA.
| | - Elaine R Frawley
- Department of Laboratory Medicine, University of Washington School of Medicine, Seattle, WA 98195-7735, USA
| | - Timothy Tapscott
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
22
|
The Bacterial iprA Gene Is Conserved across Enterobacteriaceae, Is Involved in Oxidative Stress Resistance, and Influences Gene Expression in Salmonella enterica Serovar Typhimurium. J Bacteriol 2016; 198:2166-79. [PMID: 27246569 DOI: 10.1128/jb.00144-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/24/2016] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED The iprA gene (formerly known as yaiV or STM0374) is located in a two-gene operon in the Salmonella enterica serovar Typhimurium genome and is associated with altered expression during spaceflight and rotating-wall-vessel culture conditions that increase virulence. However, iprA is uncharacterized in the literature. In this report, we present the first targeted characterization of this gene, which revealed that iprA is highly conserved across Enterobacteriaceae We found that S Typhimurium, Escherichia coli, and Enterobacter cloacae ΔiprA mutant strains display a multi-log-fold increase in oxidative stress resistance that is complemented using a plasmid-borne wild-type (WT) copy of the S Typhimurium iprA gene. This observation was also associated with increased catalase activity, increased S Typhimurium survival in macrophages, and partial dependence on the katE gene and full dependence on the rpoS gene. Our results indicate that IprA protein activity is sensitive to deletion of the N- and C-terminal 10 amino acids, while a region that includes amino acids 56 to 80 is dispensable for activity. RNA sequencing (RNA-Seq) analysis revealed several genes altered in expression in the S Typhimurium ΔiprA mutant strain compared to the WT, including those involved in fimbria formation, spvABCD-mediated virulence, ethanolamine utilization, the phosphotransferase system (PTS) transport, and flagellin phase switching from FlgB to FliC (likely a stochastic event) and several genes of hypothetical or putative function. IMPORTANCE Overall, this work reveals that the conserved iprA gene measurably influences bacterial biology and highlights the pool of currently uncharacterized genes that are conserved across bacterial genomes. These genes represent potentially useful targets for bacterial engineering, vaccine design, and other possible applications.
Collapse
|
23
|
The bacterial DNA repair protein Mfd confers resistance to the host nitrogen immune response. Sci Rep 2016; 6:29349. [PMID: 27435260 PMCID: PMC4951645 DOI: 10.1038/srep29349] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/17/2016] [Indexed: 01/23/2023] Open
Abstract
Production of reactive nitrogen species (NO) is a key step in the immune response following infections. NO induces lesions to bacterial DNA, thus limiting bacterial growth within hosts. Using two pathogenic bacteria, Bacillus cereus and Shigella flexneri, we show that the DNA-repair protein Mfd (Mutation-Frequency-Decline) is required for bacterial resistance to the host-NO-response. In both species, a mutant deficient for mfd does not survive to NO, produced in vitro or by phagocytic cells. In vivo, the ∆mfd mutant is avirulent and unable to survive the NO-stress. Moreover, NO induces DNA-double-strand-breaks and point mutations in the Δmfd mutant. In overall, these observations demonstrate that NO damages bacterial DNA and that Mfd is required to maintain bacterial genomic integrity. This unexpected discovery reveals that Mfd, a typical housekeeping gene, turns out to be a true virulence factor allowing survival and growth of the pathogen in its host, due to its capacity to protect the bacterium against NO, a key molecule of the innate immune defense. As Mfd is widely conserved in the bacterial kingdom, these data highlight a mechanism that may be used by a large spectrum of bacteria to overcome the host immune response and especially the mutagenic properties of NO.
Collapse
|
24
|
Runkel S, Wells HC, Rowley G. Living with Stress: A Lesson from the Enteric Pathogen Salmonella enterica. ADVANCES IN APPLIED MICROBIOLOGY 2016; 83:87-144. [PMID: 23651595 DOI: 10.1016/b978-0-12-407678-5.00003-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The ability to sense and respond to the environment is essential for the survival of all living organisms. Bacterial pathogens such as Salmonella enterica are of particular interest due to their ability to sense and adapt to the diverse range of conditions they encounter, both in vivo and in environmental reservoirs. During this cycling from host to non-host environments, Salmonella encounter a variety of environmental insults ranging from temperature fluctuations, nutrient availability and changes in osmolarity, to the presence of antimicrobial peptides and reactive oxygen/nitrogen species. Such fluctuating conditions impact on various areas of bacterial physiology including virulence, growth and antimicrobial resistance. A key component of the success of any bacterial pathogen is the ability to recognize and mount a suitable response to the discrete chemical and physical stresses elicited by the host. Such responses occur through a coordinated and complex programme of gene expression and protein activity, involving a range of transcriptional regulators, sigma factors and two component regulatory systems. This review briefly outlines the various stresses encountered throughout the Salmonella life cycle and the repertoire of regulatory responses with which Salmonella counters. In particular, how these Gram-negative bacteria are able to alleviate disruption in periplasmic envelope homeostasis through a group of stress responses, known collectively as the Envelope Stress Responses, alongside the mechanisms used to overcome nitrosative stress, will be examined in more detail.
Collapse
Affiliation(s)
- Sebastian Runkel
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | | | | |
Collapse
|
25
|
Flannagan RS, Heit B, Heinrichs DE. Antimicrobial Mechanisms of Macrophages and the Immune Evasion Strategies of Staphylococcus aureus. Pathogens 2015; 4:826-68. [PMID: 26633519 PMCID: PMC4693167 DOI: 10.3390/pathogens4040826] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/17/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022] Open
Abstract
Habitually professional phagocytes, including macrophages, eradicate microbial invaders from the human body without overt signs of infection. Despite this, there exist select bacteria that are professional pathogens, causing significant morbidity and mortality across the globe and Staphylococcus aureus is no exception. S. aureus is a highly successful pathogen that can infect virtually every tissue that comprises the human body causing a broad spectrum of diseases. The profound pathogenic capacity of S. aureus can be attributed, in part, to its ability to elaborate a profusion of bacterial effectors that circumvent host immunity. Macrophages are important professional phagocytes that contribute to both the innate and adaptive immune response, however from in vitro and in vivo studies, it is evident that they fail to eradicate S. aureus. This review provides an overview of the antimicrobial mechanisms employed by macrophages to combat bacteria and describes the immune evasion strategies and some representative effectors that enable S. aureus to evade macrophage-mediated killing.
Collapse
Affiliation(s)
- Ronald S Flannagan
- Department of Microbiology and Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
| | - Bryan Heit
- Department of Microbiology and Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
- Centre for Human Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
| | - David E Heinrichs
- Department of Microbiology and Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
- Centre for Human Immunology, the University of Western Ontario, London, ON N6A 5C1, Canada.
| |
Collapse
|
26
|
Expression of cytokines in chicken peripheral mononuclear blood cells (PMBCs) exposed to probiotic strains and Salmonella Enteritidis. ACTA VET BRNO 2015. [DOI: 10.2754/avb201585010029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The mRNA expression of interleukin (IL)-1β, LITAF, iNOS, macrophage inflammatory protein (MIP1-ß), and K60 were examined in peripheral blood mononuclear cells (PMBCs). The PMBCs were isolated from the chicken blood and in vitro exposed to the probiotic strains E. faecium AL41, E. faecium H31, L. fermentum AD1, and infected with Salmonella enterica serovar Enteritidis (SE147). The PMBCs were evaluated for mRNA expression levels at 24 h and 48 h post infection (p.i.) using the reverse transcriptase polymerase chain reaction (RT-PCR). The level of expression of IL-1ß and MIP1-ß was upregulated (P < 0.001) in the EFAL41+SE (S. Enteritidis + E. faecium AL41) group 48 h p.i. compared to 24 h p.i. Similarly, expression of LITAF was upregulated (P < 0.001) in the EFAL41 + SE group compared to the control (C - no infected) and S. Enteritidis (SE) group 48 h p.i. In PMBCs treated with E. faecium H31 and S. Enteritidis expression of IL-1ß (P < 0.01) and chemokines K60 and MIP1-ß was upregulated (P < 0.001) in the EFH31 + SE group 24 h p.i. The iNOS showed upregulated expression (P < 0.001) in the EFAL41 + SE group compared to the control 24 h p.i. and to the C and SE groups 48 h p.i. The results showed that E. faecium AL41 demonstrated the highest immunostimulatory effect on expression of selected cytokines by chicken PMBCs after Salmonella infection. It is supposed that the differences in cytokine induction within SE groups are related to lymphocytes isolated from different animals.
Collapse
|
27
|
Label-free proteomic analysis to confirm the predicted proteome of Corynebacterium pseudotuberculosis under nitrosative stress mediated by nitric oxide. BMC Genomics 2014; 15:1065. [PMID: 25477071 PMCID: PMC4289026 DOI: 10.1186/1471-2164-15-1065] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/24/2014] [Indexed: 11/23/2022] Open
Abstract
Background Corynebacterium pseudotuberculosis biovar ovis is a facultative intracellular pathogen, and the etiological agent of caseous lymphadenitis in small ruminants. During the infection process, the bacterium is subjected to several stress conditions, including nitrosative stress, which is caused by nitric oxide (NO). In silico analysis of the genome of C. pseudotuberculosis ovis 1002 predicted several genes that could influence the resistance of this pathogen to nitrosative stress. Here, we applied high-throughput proteomics using high definition mass spectrometry to characterize the functional genome of C. pseudotuberculosis ovis 1002 in the presence of NO-donor Diethylenetriamine/nitric oxide adduct (DETA/NO), with the aim of identifying proteins involved in nitrosative stress resistance. Results We characterized 835 proteins, representing approximately 41% of the predicted proteome of C. pseudotuberculosis ovis 1002, following exposure to nitrosative stress. In total, 102 proteins were exclusive to the proteome of DETA/NO-induced cells, and a further 58 proteins were differentially regulated between the DETA/NO and control conditions. An interactomic analysis of the differential proteome of C. pseudotuberculosis in response to nitrosative stress was also performed. Our proteomic data set suggested the activation of both a general stress response and a specific nitrosative stress response, as well as changes in proteins involved in cellular metabolism, detoxification, transcriptional regulation, and DNA synthesis and repair. Conclusions Our proteomic analysis validated previously-determined in silico data for C. pseudotuberculosis ovis 1002. In addition, proteomic screening performed in the presence of NO enabled the identification of a set of factors that can influence the resistance and survival of C. pseudotuberculosis during exposure to nitrosative stress. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1065) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Stress response of Salmonella enterica serovar typhimurium to acidified nitrite. Appl Environ Microbiol 2014; 80:6373-82. [PMID: 25107963 DOI: 10.1128/aem.01696-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The antimicrobial action of the curing agent sodium nitrite (NaNO2), which is added as a preservative to raw meat products, depends on its conversion to nitric oxide and other reactive nitrogen species under acidic conditions. In this study, we used RNA sequencing to analyze the acidified-NaNO2 shock and adaptive responses of Salmonella enterica serovar Typhimurium, a frequent contaminant in raw meat, considering parameters relevant for the production of raw-cured sausages. Upon a 10-min exposure to 150 mg/liter NaNO2 in LB (pH 5.5) acidified with lactic acid, genes involved in nitrosative-stress protection, together with several other stress-related genes, were induced. In contrast, genes involved in translation, transcription, replication, and motility were downregulated. The induction of stress tolerance and the reduction of cell proliferation obviously promote survival under harsh acidified-NaNO2 stress. The subsequent adaptive response was characterized by upregulation of NsrR-regulated genes and iron uptake systems and by downregulation of genes involved in anaerobic respiratory pathways. Strikingly, amino acid decarboxylase systems, which contribute to acid tolerance, displayed increased transcript levels in response to acidified NaNO2. The induction of systems known to be involved in acid resistance indicates a nitrite-mediated increase in the level of acid stress. Deletion of cadA, which encodes lysine decarboxylase, resulted in increased sensitivity to acidified NaNO2. Intracellular pH measurements using a pH-sensitive green fluorescent protein (GFP) variant showed that the cytoplasmic pH of S. Typhimurium in LB medium (pH 5.5) is decreased upon the addition of NaNO2. This study provides the first evidence that intracellular acidification is an additional antibacterial mode of action of acidified NaNO2.
Collapse
|
29
|
Robinson JL, Adolfsen KJ, Brynildsen MP. Deciphering nitric oxide stress in bacteria with quantitative modeling. Curr Opin Microbiol 2014; 19:16-24. [PMID: 24983704 DOI: 10.1016/j.mib.2014.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 05/02/2014] [Accepted: 05/26/2014] [Indexed: 12/22/2022]
Abstract
Many pathogens depend on nitric oxide (NO•) detoxification and repair to establish an infection, and inhibitors of these systems are under investigation as next-generation antibiotics. Because of the broad reactivity of NO• and its derivatives with biomolecules, a deep understanding of how pathogens sense and respond to NO•, as an integrated system, has been elusive. Quantitative kinetic modeling has been proposed as a method to enhance analysis and understanding of NO• stress at the systems-level. Here we review the motivation for, current state of, and future prospects of quantitative modeling of NO• stress in bacteria, and suggest that such mathematical approaches would prove equally useful in the study of other broadly reactive antimicrobials, such as hydrogen peroxide (H2O2).
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Kristin J Adolfsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Mark P Brynildsen
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
30
|
Deficiency of double-strand DNA break repair does not impair Mycobacterium tuberculosis virulence in multiple animal models of infection. Infect Immun 2014; 82:3177-85. [PMID: 24842925 DOI: 10.1128/iai.01540-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis persistence within its human host requires mechanisms to resist the effector molecules of host immunity, which exert their bactericidal effects through damaging pathogen proteins, membranes, and DNA. Substantial evidence indicates that bacterial pathogens, including M. tuberculosis, require DNA repair systems to repair the DNA damage inflicted by the host during infection, but the role of double-strand DNA break (DSB) repair systems is unclear. Double-strand DNA breaks are the most cytotoxic form of DNA damage and must be repaired for chromosome replication to proceed. M. tuberculosis elaborates three genetically distinct DSB repair systems: homologous recombination (HR), nonhomologous end joining (NHEJ), and single-strand annealing (SSA). NHEJ, which repairs DSBs in quiescent cells, may be particularly relevant to M. tuberculosis latency. However, very little information is available about the phenotype of DSB repair-deficient M. tuberculosis in animal models of infection. Here we tested M. tuberculosis strains lacking NHEJ (a Δku ΔligD strain), HR (a ΔrecA strain), or both (a ΔrecA Δku strain) in C57BL/6J mice, C3HeB/FeJ mice, guinea pigs, and a mouse hollow-fiber model of infection. We found no difference in bacterial load, histopathology, or host mortality between wild-type and DSB repair mutant strains in any model of infection. These results suggest that the animal models tested do not inflict DSBs on the mycobacterial chromosome, that other repair pathways can compensate for the loss of NHEJ and HR, or that DSB repair is not required for M. tuberculosis pathogenesis.
Collapse
|
31
|
Brzostek A, Szulc I, Klink M, Brzezinska M, Sulowska Z, Dziadek J. Either non-homologous ends joining or homologous recombination is required to repair double-strand breaks in the genome of macrophage-internalized Mycobacterium tuberculosis. PLoS One 2014; 9:e92799. [PMID: 24658131 PMCID: PMC3962454 DOI: 10.1371/journal.pone.0092799] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 02/25/2014] [Indexed: 12/20/2022] Open
Abstract
The intracellular pathogen Mycobacterium tuberculosis (Mtb) is constantly exposed to a multitude of hostile conditions and is confronted by a variety of potentially DNA-damaging assaults in vivo, primarily from host-generated antimicrobial toxic radicals. Exposure to reactive nitrogen species and/or reactive oxygen species causes different types of DNA damage, including oxidation, depurination, methylation and deamination, that can result in single- or double-strand breaks (DSBs). These breaks affect the integrity of the whole genome and, when left unrepaired, can lead to cell death. Here, we investigated the role of the DSB repair pathways, homologous recombination (HR) and non-homologous ends joining (NHEJ), in the survival of Mtb inside macrophages. To this end, we constructed Mtb strains defective for HR (ΔrecA), NHEJ [Δ(ku,ligD)], or both DSB repair systems [Δ(ku,ligD,recA)]. Experiments using these strains revealed that either HR or NHEJ is sufficient for the survival and propagation of tubercle bacilli inside macrophages. Inhibition of nitric oxide or superoxide anion production with L-NIL or apocynin, respectively, enabled the Δ(ku,ligD,recA) mutant strain lacking both systems to survive intracellularly. Complementation of the Δ(ku,ligD,recA) mutant with an intact recA or ku-ligD rescued the ability of Mtb to propagate inside macrophages.
Collapse
Affiliation(s)
- Anna Brzostek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Izabela Szulc
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Magdalena Klink
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Marta Brzezinska
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Zofia Sulowska
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Jaroslaw Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
- * E-mail:
| |
Collapse
|
32
|
Henard CA, Tapscott T, Crawford MA, Husain M, Doulias PT, Porwollik S, Liu L, McClelland M, Ischiropoulos H, Vázquez-Torres A. The 4-cysteine zinc-finger motif of the RNA polymerase regulator DksA serves as a thiol switch for sensing oxidative and nitrosative stress. Mol Microbiol 2014; 91:790-804. [PMID: 24354846 DOI: 10.1111/mmi.12498] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2013] [Indexed: 02/03/2023]
Abstract
We show that thiols in the 4-cysteine zinc-finger motif of DksA, an RNA polymerase accessory protein known to regulate the stringent response, sense oxidative and nitrosative stress. Hydrogen peroxide- or nitric oxide (NO)-mediated modifications of thiols in the DksA 4-cysteine zinc-finger motif release the metal cofactor and drive reversible changes in the α-helicity of the protein. Wild-type and relA spoT mutant Salmonella, but not isogenic dksA-deficient bacteria, experience the downregulation of r-protein and amino acid transport expression after NO treatment, suggesting that DksA can regulate gene expression in response to NO congeners independently of the ppGpp alarmone. Oxidative stress enhances the DksA-dependent repression of rpsM, while preventing the activation of livJ and hisG gene transcription that is supported by reduced, zinc-bound DksA. The inhibitory effects of oxidized DksA on transcription are reversible with dithiothreitol. Our investigations indicate that sensing of reactive species by DksA redox active thiols fine-tunes the expression of translational machinery and amino acid assimilation and biosynthesis in accord with the metabolic stress imposed by oxidative and nitrosative stress. Given the conservation of Cys(114) , and neighbouring hydrophobic and charged amino acids in DksA orthologues, phylogenetically diverse microorganisms may use the DksA thiol switch to regulate transcriptional responses to oxidative and nitrosative stress.
Collapse
Affiliation(s)
- Calvin A Henard
- Department of Microbiology, University of Colorado School of Medicine, Aurora, CO, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Stern AM, Zhu J. An introduction to nitric oxide sensing and response in bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2014; 87:187-220. [PMID: 24581392 DOI: 10.1016/b978-0-12-800261-2.00005-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nitric oxide (NO) is a radical gas that has been intensively studied for its role as a bacteriostatic agent. NO reacts in complex ways with biological molecules, especially metal centers and other radicals, to generate other bioactive compounds that inhibit enzymes, oxidize macromolecules, and arrest bacterial growth. Bacteria encounter not only NO derived from the host during infection but also NO derived from other bacteria and inorganic sources. The transcriptional responses used by bacteria to respond to NO are diverse but usually involve an iron-containing transcription factor that binds NO and alters its affinity for either DNA or factors involved in transcription, leading to the production of enzymatic tolerance systems. Some of these systems, such as flavohemoglobin and flavorubredoxin, directly remove NO. Some do not but are still important for NO tolerance through other mechanisms. The targets of NO that are protected by these systems include many metabolic pathways such as the tricarboxylic acid cycle and branched chain amino acid synthesis. This chapter discusses these topics and others and serves as a general introduction to microbial NO biology.
Collapse
|
34
|
Wong VK, Pickard DJ, Barquist L, Sivaraman K, Page AJ, Hart PJ, Arends MJ, Holt KE, Kane L, Mottram LF, Ellison L, Bautista R, McGee CJ, Kay SJ, Wileman TM, Kenney LJ, MacLennan CA, Kingsley RA, Dougan G. Characterization of the yehUT two-component regulatory system of Salmonella enterica Serovar Typhi and Typhimurium. PLoS One 2013; 8:e84567. [PMID: 24386394 PMCID: PMC3875573 DOI: 10.1371/journal.pone.0084567] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/24/2013] [Indexed: 12/29/2022] Open
Abstract
Proteins exhibiting hyper-variable sequences within a bacterial pathogen may be associated with host adaptation. Several lineages of the monophyletic pathogen Salmonella enterica serovar Typhi (S. Typhi) have accumulated non-synonymous mutations in the putative two-component regulatory system yehUT. Consequently we evaluated the function of yehUT in S. Typhi BRD948 and S. Typhimurium ST4/74. Transcriptome analysis identified the cstA gene, encoding a carbon starvation protein as the predominantly yehUT regulated gene in both these serovars. Deletion of yehUT had no detectable effect on the ability of these mutant Salmonella to invade cultured epithelial cells (S. Typhi and S. Typhimurium) or induce colitis in a murine model (S. Typhimurium only). Growth, metabolic and antimicrobial susceptibility tests identified no obvious influences of yehUT on these phenotypes.
Collapse
Affiliation(s)
- Vanessa K. Wong
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- University of Cambridge Department of Pathology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Derek J. Pickard
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Lars Barquist
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Karthikeyan Sivaraman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Positive Bioscience Ltd, Mumbai, India
| | - Andrew J. Page
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Peter J. Hart
- Medical Research Council Centre for Immune Regulation and Clinical Immunology Service, Institute of Biomedical Research, School of Immunity and Infection, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Mark J. Arends
- University of Cambridge Department of Pathology, Addenbrooke's Hospital, Cambridge, United Kingdom
- University of Edinburgh Division of Pathology, Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh, United Kingdom
| | - Kathryn E. Holt
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Leanne Kane
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Lynda F. Mottram
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
- Novartis Vaccines Institute for Global Health, Siena, Italy
| | - Louise Ellison
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Ruben Bautista
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Chris J. McGee
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sally J. Kay
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Thomas M. Wileman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Linda J. Kenney
- Mechanobiology Institute, National University of Singapore, T-Lab, Singapore, Singapore
- Department of Microbiology and Immunology (M/C 790), University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Calman A. MacLennan
- Medical Research Council Centre for Immune Regulation and Clinical Immunology Service, Institute of Biomedical Research, School of Immunity and Infection, College of Medicine and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Novartis Vaccines Institute for Global Health, Siena, Italy
| | - Robert A. Kingsley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Gordon Dougan
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
35
|
Ferric uptake regulator-dependent antinitrosative defenses in Salmonella enterica serovar Typhimurium pathogenesis. Infect Immun 2013; 82:333-40. [PMID: 24166960 DOI: 10.1128/iai.01201-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Herein we report an important role for the ferric uptake regulator (Fur) in the resistance of Salmonella enterica serovar Typhimurium to the reactive nitrogen species produced by inducible nitric oxide (NO) synthase in an NRAMP1(r) murine model of acute systemic infection. The expression of fur protected Salmonella grown under normoxic and hypoxic conditions against the bacteriostatic activity of NO. The hypersusceptibility of fur-deficient Salmonella to the cytotoxic actions of NO coincides with a marked repression of respiratory activity and the reduced ability of the bacteria to detoxify NO. A fur mutant Salmonella strain contained reduced levels of the terminal quinol oxidases of the electron transport chain. Addition of the heme precursor δ-aminolevulinic acid restored the cytochrome content, respiratory activity, NO consumption, and wild-type growth in bacteria undergoing nitrosative stress. The innate antinitrosative defenses regulated by Fur added to the adaptive response associated with the NO-detoxifying activity of the flavohemoprotein Hmp. Our investigations indicate that, in addition to playing a critical role in iron homeostasis, Fur is an important antinitrosative determinant of Salmonella pathogenesis.
Collapse
|
36
|
Belcheva A, Green B, Weiss A, Streutker C, Martin A. Elevated incidence of polyp formation in APC(Min/⁺)Msh2⁻/⁻ mice is independent of nitric oxide-induced DNA mutations. PLoS One 2013; 8:e65204. [PMID: 23741483 PMCID: PMC3669241 DOI: 10.1371/journal.pone.0065204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 04/21/2013] [Indexed: 01/19/2023] Open
Abstract
Gut microbiota has been linked to a number of human diseases including colon cancer. However, the mechanism through which gut bacteria influence colon cancer development and progression remains unclear. Perturbation of the homeostasis between the host immune system and microbiota leads to inflammation and activation of macrophages which produce large amounts of nitric oxide that acts as a genotoxic effector molecule to suppress bacterial growth. However, nitric oxide also has genotoxic effects to host cells by producing mutations that can predispose to colon cancer development. The major DNA lesions caused by nitric oxide are 8oxoG and deamination of deoxycytosine bases. Cellular glycosylases that belong to the base excision repair pathway have been demonstrated to repair these mutations. Recent evidence suggests that the mismatch repair pathway (MMR) might also repair nitric oxide-induced DNA damage. Since deficiency in MMR predisposes to colon cancer, we hypothesized that MMR-deficient colon epithelial cells are incapable of repairing nitric-oxide induced genetic lesions that can promote colon cancer. Indeed, we found that the MMR pathway repairs nitric oxide-induced DNA mutations in cell lines. To test whether nitric oxide promotes colon cancer, we genetically ablated the inducible nitric oxide synthase (iNOS) or inhibited iNOS activity in the APC(Min/+)Msh2(-/-) mouse model of colon cancer. However, despite the fact that nitric oxide production was strongly reduced in the colon using both approaches, colon cancer incidence was not affected. These data show that nitric oxide and iNOS do not promote colon cancer in APC(Min/+)Msh2(-/-) mice.
Collapse
Affiliation(s)
- Antoaneta Belcheva
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Blerta Green
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Ashley Weiss
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Catherine Streutker
- Department of Laboratory Medicine, St. Michael’s Hospital, Toronto, Ontario, Canada
| | - Alberto Martin
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Folkes LK, O'Neill P. Modification of DNA damage mechanisms by nitric oxide during ionizing radiation. Free Radic Biol Med 2013; 58:14-25. [PMID: 23376236 DOI: 10.1016/j.freeradbiomed.2013.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 01/04/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
Nitric oxide ((•)NO) is a very effective radiosensitizer of hypoxic mammalian cells. In vivo (•)NO may have effects on tumor vasculature and hence on tumor oxygenation and it may also interact with radiation-produced radicals to modify DNA lesions. Few studies have addressed this last aspect, and we report here specific base modifications that result from reaction of (•)NO with radicals in DNA bases and in plasmid DNA after irradiation. 2'-Deoxyxanthosine monophosphate and 2'-deoxy-8-azaguanosine monophosphate (8azadGMP) are formed upon γ-irradiation of 2'-deoxyguanosine monophosphate (dGMP) in the presence of micromolar levels of (•)NO in anoxia. In addition, the presence of (•)NO at physiological pH inhibits the formation of the well-described (•)OH-induced oxidation product of dGMP, 8-oxo-2'-deoxyguanosine monophosphate. Single-strand breaks are induced in plasmid DNA when γ-irradiated in anoxia, whereas in the presence of (•)NO the number of breaks is reduced by approximately threefold, and evidence is shown for the formation of 8azadGMP in these plasmids. The consequence of the base modifications by (•)NO are as yet unknown although additional breaks are revealed in irradiated plasmid DNA after treatment with glycosylases involved in base excision repair. V79-4 cells irradiated in anoxia show an enhancement in the number of γH2AX foci when (•)NO is present, particularly evident a few hours postirradiation, indicative of the formation of replication-induced DNA damage. We propose that the consequence of (•)NO-induced base modifications in anoxia contributes to its radiosensitization of cells.
Collapse
Affiliation(s)
- Lisa K Folkes
- Gray Institute for Radiation Oncology and Biology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | | |
Collapse
|
38
|
Abstract
Fundamental aspects of the lifestyle of Mycobacterium tuberculosis implicate DNA metabolism in bacillary survival and adaptive evolution. The environments encountered by M. tuberculosis during successive cycles of infection and transmission are genotoxic. Moreover, as an obligate pathogen, M. tuberculosis has the ability to persist for extended periods in a subclinical state, suggesting that active DNA repair is critical to maintain genome integrity and bacterial viability during prolonged infection. In this chapter, we provide an overview of the major DNA metabolic pathways identified in M. tuberculosis, and situate key recent findings within the context of mycobacterial pathogenesis. Unlike many other bacterial pathogens, M. tuberculosis is genetically secluded, and appears to rely solely on chromosomal mutagenesis to drive its microevolution within the human host. In turn, this implies that a balance between high versus relaxed fidelity mechanisms of DNA metabolism ensures the maintenance of genome integrity, while accommodating the evolutionary imperative to adapt to hostile and fluctuating environments. The inferred relationship between mycobacterial DNA repair and genome dynamics is considered in the light of emerging data from whole-genome sequencing studies of clinical M. tuberculosis isolates which have revealed the potential for considerable heterogeneity within and between different bacterial and host populations.
Collapse
|
39
|
Song M, Husain M, Jones-Carson J, Liu L, Henard CA, Vázquez-Torres A. Low-molecular-weight thiol-dependent antioxidant and antinitrosative defences in Salmonella pathogenesis. Mol Microbiol 2012; 87:609-22. [PMID: 23217033 DOI: 10.1111/mmi.12119] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2012] [Indexed: 12/22/2022]
Abstract
We found herein that the intracytoplasmic pool of the low-molecular-weight (LMW) thiol glutathione (GSH) is readily oxidized in Salmonella exposed to nitric oxide (NO). The hypersusceptibility of gshA and gshB mutants lacking γ-glutamylcysteine and glutathione synthetases to NO and S-nitrosoglutathione indicates that GSH antagonizes the bacteriostatic activity of reactive nitrogen species. Metabolites of the GSH biosynthetic pathway do not affect the enzymatic activity of classical NO targets such as quinol oxidases. In contrast, LMW thiols diminish the nitrosative stress experienced by enzymes, such as glutamine oxoglutarate amidotransferase, that contain redox active cysteines. LMW thiols also preserve the transcription of Salmonella pathogenicity island 2 gene targets from the inhibitory activity of nitrogen oxides. These findings are consistent with the idea that GSH scavenges reactive nitrogen species (RNS) other than NO. Compared with the adaptive response afforded by inducible systems such as the hmp-encoded flavohaemoprotein, gshA, encoding the first step of GSH biosynthesis, is constitutively expressed in Salmonella. An acute model of salmonellosis has revealed that the antioxidant and antinitrosative properties associated with the GSH biosynthetic pathway represent a first line of Salmonella resistance against reactive oxygen and nitrogen species engendered in the context of a functional NRAMP1(R) divalent metal transporter.
Collapse
Affiliation(s)
- Miryoung Song
- Department of Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
40
|
Evolution in fast forward: a potential role for mutators in accelerating Staphylococcus aureus pathoadaptation. J Bacteriol 2012. [PMID: 23204459 DOI: 10.1128/jb.00733-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pathogen evolution and subsequent phenotypic heterogeneity during chronic infection are proposed to enhance Staphylococcus aureus survival during human infection. We tested this theory by genetically and phenotypically characterizing strains with mutations constructed in the mismatch repair (MMR) and oxidized guanine (GO) system, termed mutators, which exhibit increased spontaneous-mutation frequencies. Analysis of these mutators revealed not only strain-dependent increases in the spontaneous-mutation frequency but also shifts in mutational type and hot spots consistent with loss of GO or MMR functions. Although the GO and MMR systems are relied upon in some bacterial species to prevent reactive oxygen species-induced DNA damage, no deficit in hydrogen peroxide sensitivity was found when either of these DNA repair pathways was lost in S. aureus. To gain insight into the contribution of increased mutation supply to S. aureus pathoadaptation, we measured the rate of α-hemolysin and staphyloxanthin inactivation during serial passage. Detection of increased rates of α-hemolysin and staphyloxanthin inactivation in GO and MMR mutants suggests that these strains are capable of modifying virulence phenotypes implicated in mediating infection. Accelerated derivation of altered virulence phenotypes, combined with the absence of increased ROS sensitivity, highlights the potential of mutators to drive pathoadaptation in the host and serve as catalysts for persistent infections.
Collapse
|
41
|
Convergent molecular evolution of genomic cores in Salmonella enterica and Escherichia coli. J Bacteriol 2012; 194:5002-11. [PMID: 22797756 DOI: 10.1128/jb.00552-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the strongest signals of adaptive molecular evolution of proteins is the occurrence of convergent hot spot mutations: repeated changes in the same amino acid positions. We performed a comparative genome-wide analysis of mutation-driven evolution of core (omnipresent) genes in 17 strains of Salmonella enterica subspecies I and 22 strains of Escherichia coli. More than 20% of core genes in both Salmonella and E. coli accumulated hot spot mutations, with a predominance of identical changes having recent evolutionary origin. There is a significant overlap in the functional categories of the adaptively evolving genes in both species, although mostly via separate molecular mechanisms. As a strong evidence of the link between adaptive mutations and virulence in Salmonella, two human-restricted serovars, Typhi and Paratyphi A, shared the highest number of genes with serovar-specific hot spot mutations. Many of the core genes affected by Typhi/Paratyphi A-specific mutations have known virulence functions. For each species, a list of nonrecombinant core genes (and the hot spot mutations therein) under positive selection is provided.
Collapse
|
42
|
Trypanosomes lacking uracil-DNA glycosylase are hypersensitive to antifolates and present a mutator phenotype. Int J Biochem Cell Biol 2012; 44:1555-68. [PMID: 22728162 DOI: 10.1016/j.biocel.2012.06.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Revised: 06/04/2012] [Accepted: 06/12/2012] [Indexed: 01/13/2023]
Abstract
Cells contain low amounts of uracil in DNA which can be the result of dUTP misincorporation during replication or cytosine deamination. Elimination of uracil in the base excision repair pathway yields an abasic site, which is potentially mutagenic unless repaired. The Trypanosoma brucei genome presents a single uracil-DNA glycosylase responsible for removal of uracil from DNA. Here we establish that no excision activity is detected on U:G, U:A pairs or single-strand uracil-containing DNA in uracil-DNA glycosylase null mutant cell extracts, indicating the absence of back-up uracil excision activities. While procyclic forms can survive with moderate amounts of uracil in DNA, an analysis of the mutation rate and spectra in mutant cells revealed a hypermutator phenotype where the predominant events were GC to AT transitions and insertions. Defective elimination of uracil via the base excision repair pathway gives rise to hypersensitivity to antifolates and oxidative stress and an increased number of DNA strand breaks, suggesting the activation of alternative DNA repair pathways. Finally, we show that uracil-DNA glycosylase defective cells exhibit reduced infectivity in vivo demonstrating that efficient uracil elimination is important for survival within the mammalian host.
Collapse
|
43
|
Gonzalez K, Faustoferri RC, Quivey RG. Role of DNA base excision repair in the mutability and virulence of Streptococcus mutans. Mol Microbiol 2012; 85:361-77. [PMID: 22651851 DOI: 10.1111/j.1365-2958.2012.08116.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The oral pathogen, Streptococcus mutans, possesses inducible DNA repair defences for protection against pH fluctuations and production of reactive oxygen metabolites such as hydrogen peroxide (H(2) O(2) ), which are present in the oral cavity. DNA base excision repair (BER) has a critical role in genome maintenance by preventing the accumulation of mutations associated with environmental factors and normal products of cellular metabolism. In this study, we examined the consequences of compromising the DNA glycosylases (Fpg and MutY) and endonucleases (Smx and Smn) of the BER pathway and their relative role in adaptation and virulence. Enzymatic characterization of the BER system showed that it protects the organism against the effects of the highly mutagenic lesion, 7,8-dihydro-8-oxo-2'-deoxyguanine (8-oxo-dG). S. mutans strains lacking a functional Fpg, MutY or Smn showed elevated spontaneous mutation frequencies; and, these mutator phenotypes correlated with the ability of the strains to survive killing by acid and oxidative agents. In addition, in the Galleria mellonella virulence model, strains of S. mutans deficient in Fpg, MutY and Smn showed increased virulence as compared with the parent strain. Our results suggest that, for S. mutans, mutator phenotypes, due to loss of BER enzymes, may confer an advantage to virulence of the organism.
Collapse
Affiliation(s)
- Kaisha Gonzalez
- Department of Microbiology and Immunology Center for Oral Biology, University of Rochester, Rochester, NY 14642, USA
| | | | | |
Collapse
|
44
|
Nagorska K, Silhan J, Li Y, Pelicic V, Freemont PS, Baldwin GS, Tang CM. A network of enzymes involved in repair of oxidative DNA damage in Neisseria meningitidis. Mol Microbiol 2012; 83:1064-1079. [PMID: 22296581 PMCID: PMC3749813 DOI: 10.1111/j.1365-2958.2012.07989.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Although oxidative stress is a key aspect of innate immunity, little is known about how host-restricted pathogens successfully repair DNA damage. Base excision repair is responsible for correcting nucleobases damaged by oxidative stress, and is essential for bloodstream infection caused by the human pathogen, Neisseria meningitidis. We have characterized meningococcal base excision repair enzymes involved in the recognition and removal of damaged nucleobases, and incision of the DNA backbone. We demonstrate that the bi-functional glycosylase/lyases Nth and MutM share several overlapping activities and functional redundancy. However, MutM and other members of the GO system, which deal with 8-oxoG, a common lesion of oxidative damage, are not required for survival of N. meningitidis under oxidative stress. Instead, the mismatch repair pathway provides back-up for the GO system, while the lyase activity of Nth can substitute for the meningococcal AP endonuclease, NApe. Our genetic and biochemical evidence shows that DNA repair is achieved through a robust network of enzymes that provides a flexible system of DNA repair. This network is likely to reflect successful adaptation to the human nasopharynx, and might provide a paradigm for DNA repair in other prokaryotes.
Collapse
Affiliation(s)
- Krzysztofa Nagorska
- Centre for Molecular Microbiology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Jan Silhan
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| | - Yanwen Li
- Centre for Molecular Microbiology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Vladimir Pelicic
- Centre for Molecular Microbiology and Infection, Imperial College London, London, SW7 2AZ, UK
| | - Paul S. Freemont
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| | - Geoff S. Baldwin
- Division of Molecular Biosciences, Imperial College London, London, SW7 2AZ, UK
| | - Christoph M. Tang
- Centre for Molecular Microbiology and Infection, Imperial College London, London, SW7 2AZ, UK
- Sir William Dunn School of Pathology, South Parks Road, University of Oxford, Oxford, OX1 3RE, UK
| |
Collapse
|
45
|
DksA-dependent resistance of Salmonella enterica serovar Typhimurium against the antimicrobial activity of inducible nitric oxide synthase. Infect Immun 2012; 80:1373-80. [PMID: 22311927 DOI: 10.1128/iai.06316-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In coordination with the ppGpp alarmone, the RNA polymerase regulatory protein DksA controls the stringent response of eubacteria, negatively regulating transcription of translational machinery and directly activating amino acid promoters and de novo amino acid biosynthesis. Given the effects of nitric oxide (NO) on amino acid biosynthetic pathways and the intimate relationship of DksA with amino acid synthesis and transport, we tested whether DksA contributes to the resistance of Salmonella to reactive nitrogen species (RNS). Our studies show that the zinc finger predicted to position DksA in the secondary channel of the RNA polymerase is essential for the resistance of Salmonella enterica serovar Typhimurium to RNS in a murine model of systemic salmonellosis. Despite exhibiting auxotrophies for various amino acids, ΔdksA mutant Salmonella strains regain virulence in mice lacking inducible NO synthase (iNOS). DksA is also important for growth of this intracellular pathogen in the presence of NO congeners generated by iNOS during the innate response of murine macrophages. Accordingly, dksA mutant Salmonella strains are hypersusceptible to chemically generated NO, a phenotype that can be prevented by adding amino acids. The DksA-dependent antinitrosative defenses do not rely on the Hmp flavohemoprotein that detoxifies NO to NO(3)(-) and appear to operate independently of the ppGpp alarmone. Our investigations are consistent with a model by which NO produced in the innate response to Salmonella exerts considerable pressure on amino acid biosynthesis. The cytotoxicity of NO against Salmonella amino acid biosynthetic pathways is antagonized in great part by the DksA-dependent regulation of amino acid biosynthesis and transport.
Collapse
|
46
|
Fuller JR, Vitko NP, Perkowski EF, Scott E, Khatri D, Spontak JS, Thurlow LR, Richardson AR. Identification of a lactate-quinone oxidoreductase in Staphylococcus aureus that is essential for virulence. Front Cell Infect Microbiol 2011; 1:19. [PMID: 22919585 PMCID: PMC3417369 DOI: 10.3389/fcimb.2011.00019] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Accepted: 12/05/2011] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus aureus is an important human pathogen commonly infecting nearly every host tissue. The ability of S. aureus to resist innate immunity is critical to its success as a pathogen, including its propensity to grow in the presence of host nitric oxide (NO·). Upon exogenous NO· exposure, S. aureus immediately excretes copious amounts of L-lactate to maintain redox balance. However, after prolonged NO·-exposure, S. aureus reassimilates L-lactate specifically and in this work, we identify the enzyme responsible for this L-lactate-consumption as a L-lactate-quinone oxidoreductase (Lqo, SACOL2623). Originally annotated as Mqo2 and thought to oxidize malate, we show that this enzyme exhibits no affinity for malate but reacts specifically with L-lactate (KM = ∼330 μM). In addition to its requirement for reassimilation of L-lactate during NO·-stress, Lqo is also critical to respiratory growth on L-lactate as a sole carbon source. Moreover, Δlqo mutants exhibit attenuation in a murine model of sepsis, particularly in their ability to cause myocarditis. Interestingly, this cardiac-specific attenuation is completely abrogated in mice unable to synthesize inflammatory NO· (iNOS−/−). We demonstrate that S. aureus NO·-resistance is highly dependent on the availability of a glycolytic carbon sources. However, S. aureus can utilize the combination of peptides and L-lactate as carbon sources during NO·-stress in an Lqo-dependent fashion. Murine cardiac tissue has markedly high levels of L-lactate in comparison to renal or hepatic tissue consistent with the NO·-dependent requirement for Lqo in S. aureus myocarditis. Thus, Lqo provides S. aureus with yet another means of replicating in the presence of host NO·.
Collapse
Affiliation(s)
- James R Fuller
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Richardson AR, Payne EC, Younger N, Karlinsey JE, Thomas VC, Becker LA, Navarre WW, Castor ME, Libby SJ, Fang FC. Multiple targets of nitric oxide in the tricarboxylic acid cycle of Salmonella enterica serovar typhimurium. Cell Host Microbe 2011; 10:33-43. [PMID: 21767810 DOI: 10.1016/j.chom.2011.06.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/06/2011] [Accepted: 06/15/2011] [Indexed: 12/22/2022]
Abstract
Host nitric oxide (NO⋅) production is important for controlling intracellular bacterial pathogens, including Salmonella enterica serovar Typhimurium, but the underlying mechanisms are incompletely understood. S. Typhmurium 14028s is prototrophic for all amino acids but cannot synthesize methionine (M) or lysine (K) during nitrosative stress. Here, we show that NO⋅-induced MK auxotrophy results from reduced succinyl-CoA availability as a consequence of NO⋅ targeting of lipoamide-dependent lipoamide dehydrogenase (LpdA) activity. LpdA is an essential component of the pyruvate and α-ketoglutarate dehydrogenase complexes. Additional effects of NO⋅ on gene regulation prevent compensatory pathways of succinyl-CoA production. Microarray analysis indicates that over 50% of the transcriptional response of S. Typhimurium to nitrosative stress is attributable to LpdA inhibition. Bacterial methionine transport is essential for virulence in NO⋅-producing mice, demonstrating that NO⋅-induced MK auxotrophy occurs in vivo. These observations underscore the importance of metabolic targets for antimicrobial actions of NO⋅.
Collapse
Affiliation(s)
- Anthony R Richardson
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Everything should be as simple as it can be, but not simpler. —Attributed to Albert Einstein (1)
Reactive oxygen species (ROS) are produced by host phagocytes and exert antimicrobial actions against a broad range of pathogens. The observable antimicrobial actions of ROS are highly dependent on experimental conditions. This perspective reviews recent controversies regarding ROS in Salmonella-phagocyte interactions and attempts to reconcile conflicting observations from different laboratories.
Collapse
|
49
|
Jantsch J, Chikkaballi D, Hensel M. Cellular aspects of immunity to intracellular Salmonella enterica. Immunol Rev 2011; 240:185-95. [PMID: 21349094 DOI: 10.1111/j.1600-065x.2010.00981.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Salmonella enterica is a frequent gastrointestinal pathogen with ability to cause diseases ranging from local gastrointestinal inflammation and diarrhea to life-threatening typhoid fever. Salmonella is an invasive, facultative intracellular pathogen that infects various cell types of the host and can survive and proliferate in different populations of immune cells. During pathogenesis, Salmonella is confronted with various lines of immune defense. To successfully colonize host organisms, the pathogen deploys a set of sophisticated mechanisms of immune evasion and direct manipulation of immune cell functions. In addition to resistance against innate immune mechanisms, including the ability to avoid killing by macrophages and dendritic cells (DCs), Salmonella interferes with antigen presentation by DCs and the formation of an efficient adaptive immune response. In this review, we describe the current understanding of Salmonella virulence factors during intracellular life and focus on the recent advances in the understanding of interference of intracellular Salmonella with cellular functions of immune cells.
Collapse
Affiliation(s)
- Jonathan Jantsch
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
50
|
Henard CA, Vázquez-Torres A. Nitric oxide and salmonella pathogenesis. Front Microbiol 2011; 2:84. [PMID: 21833325 PMCID: PMC3153045 DOI: 10.3389/fmicb.2011.00084] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 04/08/2011] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) and its congeners contribute to the innate immune response to Salmonella. This enteric pathogen is exposed to reactive nitrogen species (RNS) in the environment and at different anatomical locations during its infectious cycle in vertebrate hosts. Chemical generation of RNS enhances the gastric barrier to enteropathogenic bacteria, while products of the Salmonella pathogenicity island 1 type III secretion system and Salmonella-associated molecular patterns stimulate transcription of inducible NO synthase (iNOS) by cells of the mononuclear phagocytic cell lineage. The resulting NO, or products that arise from its interactions with oxygen (O2) or iron and low-molecular weight thiols, are preferentially bacteriostatic against Salmonella, while reaction of NO and superoxide (O2−) generates the bactericidal compound peroxynitrite (ONOO−). The anti-Salmonella activity of RNS emanates from the modification of redox active thiols and metal prosthetic groups of key molecular targets of the electron transport chain, central metabolic enzymes, transcription factors, and DNA and DNA-associated proteins. In turn, Salmonella display a plethora of defenses that modulate the delivery of iNOS-containing vesicles to phagosomes, scavenge and detoxify RNS, and repair biomolecules damaged by these toxic species. Traditionally, RNS have been recognized as important mediators of host defense against Salmonella. However, exciting new findings indicate that Salmonella can exploit the RNS produced during the infection to foster virulence. More knowledge of the primary RNS produced in response to Salmonella infection, the bacterial processes affected by these toxic species, and the adaptive bacterial responses that protect Salmonella from nitrosative and oxidative stress associated with NO will increase our understanding of Salmonella pathogenesis. This information may assist in the development of novel therapeutics against this common enteropathogen.
Collapse
Affiliation(s)
- Calvin A Henard
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| | | |
Collapse
|