1
|
Chaiamarit T, Verhelle A, Chassefeyre R, Shukla N, Novak SW, Andrade LR, Manor U, Encalada SE. Mutant Prion Protein Endoggresomes are Hubs for Local Axonal Organelle-Cytoskeletal Remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.19.533383. [PMID: 36993610 PMCID: PMC10055262 DOI: 10.1101/2023.03.19.533383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Dystrophic axons comprising misfolded mutant prion protein (PrP) aggregates are a characteristic pathological feature in the prionopathies. These aggregates form inside endolysosomes -called endoggresomes-, within swellings that line up the length of axons of degenerating neurons. The pathways impaired by endoggresomes that result in failed axonal and consequently neuronal health, remain undefined. Here, we dissect the local subcellular impairments that occur within individual mutant PrP endoggresome swelling sites in axons. Quantitative high-resolution light and electron microscopy revealed the selective impairment of the acetylated vs tyrosinated microtubule cytoskeleton, while micro-domain image analysis of live organelle dynamics within swelling sites revealed deficits uniquely to the MT-based active transport system that translocates mitochondria and endosomes toward the synapse. Cytoskeletal and defective transport results in the retention of mitochondria, endosomes, and molecular motors at swelling sites, enhancing mitochondria-Rab7 late endosome contacts that induce mitochondrial fission via the activity of Rab7, and render mitochondria dysfunctional. Our findings point to mutant Pr Pendoggresome swelling sites as selective hubs of cytoskeletal deficits and organelle retention that drive the remodeling of organelles along axons. We propose that the dysfunction imparted locally within these axonal micro-domains spreads throughout the axon over time, leading to axonal dysfunction in prionopathies.
Collapse
|
2
|
Loss of small GTPase Rab7 activation in prion infection negatively affects a feedback loop regulating neuronal cholesterol metabolism. J Biol Chem 2023; 299:102883. [PMID: 36623732 PMCID: PMC9926124 DOI: 10.1016/j.jbc.2023.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 01/09/2023] Open
Abstract
Prion diseases are fatal and infectious neurodegenerative diseases that occur in humans and animals. They are caused by the misfolding of the cellular prion protein PrPc into the infectious isoform PrPSc. PrPSc accumulates mostly in endolysosomal vesicles of prion-infected cells, eventually causing neurodegeneration. In response to prion infection, elevated cholesterol levels and a reduction in membrane-attached small GTPase Rab7 have been observed in neuronal cells. Here, we investigated the molecular events causing an impaired Rab7 membrane attachment and the potential mechanistic link with elevated cholesterol levels in prion infection. We demonstrate that prion infection is associated with reduced levels of active Rab7 (Rab7.GTP) in persistently prion-infected neuronal cell lines, primary cerebellar granular neurons, and neurons in the brain of mice with terminal prion disease. In primary cerebellar granular neurons, levels of active Rab7 were increased during the very early stages of the prion infection prior to a significant decrease concomitant with PrPSc accumulation. The reduced activation of Rab7 in prion-infected neuronal cell lines is also associated with its reduced ubiquitination status, decreased interaction with its effector RILP, and altered lysosomal positioning. Consequently, the Rab7-mediated trafficking of low-density lipoprotein to lysosomes is delayed. This results in an impaired feedback regulation of cholesterol synthesis leading to an increase in cholesterol levels. Notably, transient overexpression of the constitutively active mutant of Rab7 rescues the delay in the low-density lipoprotein trafficking, hence reducing cholesterol levels and attenuating PrPSc propagation, demonstrating a mechanistic link between the loss of Rab7.GTP and elevated cholesterol levels.
Collapse
|
3
|
Cholesterol and its reciprocal association with prion infection. Cell Tissue Res 2022; 392:235-246. [PMID: 35821439 DOI: 10.1007/s00441-022-03669-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/04/2022] [Indexed: 11/02/2022]
Abstract
Prion diseases are incurable, infectious and fatal neurodegenerative diseases that affect both humans and animals. The pathogenesis of prion disease involves the misfolding of the cellular prion protein, PrPC, to a disease-causing conformation, PrPSc, in the brain. The exact mechanism of conversion of PrPC to PrPSc is not clear; however, there are numerous studies supporting that this process of misfolding requires the association of PrPC with lipid raft domains of the plasma membrane. An increase in the cellular cholesterol content with prion infection has been observed in both in vivo and in vitro studies. As cholesterol is critical for the formation of lipid rafts, on the one hand, this increase may be related to, or aiding in, the process of prion conversion. On the other hand, increased cholesterol levels may affect neuronal viability. Here, we discuss current literature on the underlying mechanisms and potential consequences of elevated neuronal cholesterol in prion infection and advancements in prion disease therapeutics targeting brain cholesterol homeostasis.
Collapse
|
4
|
Chassefeyre R, Chaiamarit T, Verhelle A, Novak SW, Andrade LR, Leitão ADG, Manor U, Encalada SE. Endosomal sorting drives the formation of axonal prion protein endoggresomes. SCIENCE ADVANCES 2021; 7:eabg3693. [PMID: 34936461 PMCID: PMC8694590 DOI: 10.1126/sciadv.abg3693] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 11/05/2021] [Indexed: 05/15/2023]
Abstract
The pathogenic aggregation of misfolded prion protein (PrP) in axons underlies prion disease pathologies. The molecular mechanisms driving axonal misfolded PrP aggregate formation leading to neurotoxicity are unknown. We found that the small endolysosomal guanosine triphosphatase (GTPase) Arl8b recruits kinesin-1 and Vps41 (HOPS) onto endosomes carrying misfolded mutant PrP to promote their axonal entry and homotypic fusion toward aggregation inside enlarged endomembranes that we call endoggresomes. This axonal rapid endosomal sorting and transport-dependent aggregation (ARESTA) mechanism forms pathologic PrP endoggresomes that impair calcium dynamics and reduce neuronal viability. Inhibiting ARESTA diminishes endoggresome formation, rescues calcium influx, and prevents neuronal death. Our results identify ARESTA as a key pathway for the regulation of endoggresome formation and a new actionable antiaggregation target to ameliorate neuronal dysfunction in the prionopathies.
Collapse
Affiliation(s)
- Romain Chassefeyre
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tai Chaiamarit
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adriaan Verhelle
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sammy Weiser Novak
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Leonardo R. Andrade
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - André D. G. Leitão
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Sandra E. Encalada
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Neurodegeneration New Medicines Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
5
|
The Role of Vesicle Trafficking Defects in the Pathogenesis of Prion and Prion-Like Disorders. Int J Mol Sci 2020; 21:ijms21197016. [PMID: 32977678 PMCID: PMC7582986 DOI: 10.3390/ijms21197016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 11/26/2022] Open
Abstract
Prion diseases are fatal and transmissible neurodegenerative diseases in which the cellular form of the prion protein ‘PrPc’, misfolds into an infectious and aggregation prone isoform termed PrPSc, which is the primary component of prions. Many neurodegenerative diseases, like Alzheimer’s disease, Parkinson’s disease, and polyglutamine diseases, such as Huntington’s disease, are considered prion-like disorders because of the common characteristics in the propagation and spreading of misfolded proteins that they share with the prion diseases. Unlike prion diseases, these are non-infectious outside experimental settings. Many vesicular trafficking impairments, which are observed in prion and prion-like disorders, favor the accumulation of the pathogenic amyloid aggregates. In addition, many of the vesicular trafficking impairments that arise in these diseases, turn out to be further aggravating factors. This review offers an insight into the currently known vesicular trafficking defects in these neurodegenerative diseases and their implications on disease progression. These findings suggest that these impaired trafficking pathways may represent similar therapeutic targets in these classes of neurodegenerative disorders.
Collapse
|
6
|
Zamponi E, Pigino GF. Protein Misfolding, Signaling Abnormalities and Altered Fast Axonal Transport: Implications for Alzheimer and Prion Diseases. Front Cell Neurosci 2019; 13:350. [PMID: 31417367 PMCID: PMC6683957 DOI: 10.3389/fncel.2019.00350] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022] Open
Abstract
Histopathological studies revealed that progressive neuropathies including Alzheimer, and Prion diseases among others, include accumulations of misfolded proteins intracellularly, extracellularly, or both. Experimental evidence suggests that among the accumulated misfolded proteins, small soluble oligomeric conformers represent the most neurotoxic species. Concomitant phenomena shared by different protein misfolding diseases includes alterations in phosphorylation-based signaling pathways synaptic dysfunction, and axonal pathology, but mechanisms linking these pathogenic features to aggregated neuropathogenic proteins remain unknown. Relevant to this issue, results from recent work revealed inhibition of fast axonal transport (AT) as a novel toxic effect elicited by oligomeric forms of amyloid beta and cellular prion protein PrPC, signature pathological proteins associated with Alzheimer and Prion diseases, respectively. Interestingly, the toxic effect of these oligomers was fully prevented by pharmacological inhibitors of casein kinase 2 (CK2), a remarkable discovery with major implications for the development of pharmacological target-driven therapeutic intervention for Alzheimer and Prion diseases.
Collapse
Affiliation(s)
- Emiliano Zamponi
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, United States
| | - Gustavo F Pigino
- Laboratorio de Neuropatología Experimental, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
7
|
The Prion Protein Regulates Synaptic Transmission by Controlling the Expression of Proteins Key to Synaptic Vesicle Recycling and Exocytosis. Mol Neurobiol 2018; 56:3420-3436. [PMID: 30128651 DOI: 10.1007/s12035-018-1293-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/01/2018] [Indexed: 12/16/2022]
Abstract
The cellular prion protein (PrPC), whose misfolded conformers are implicated in prion diseases, localizes to both the presynaptic membrane and postsynaptic density. To explore possible molecular contributions of PrPC to synaptic transmission, we utilized a mass spectrometry approach to quantify the release of glutamate from primary cerebellar granule neurons (CGN) expressing, or deprived of (PrP-KO), PrPC, following a depolarizing stimulus. Under the same conditions, we also tracked recycling of synaptic vesicles (SVs) in the two neuronal populations. We found that in PrP-KO CGN these processes decreased by 40 and 60%, respectively, compared to PrPC-expressing neurons. Unbiased quantitative mass spectrometry was then employed to compare the whole proteome of CGN with the two PrP genotypes. This approach allowed us to assess that, relative to the PrPC-expressing counterpart, the absence of PrPC modified the protein expression profile, including diminution of some components of SV recycling and fusion machinery. Subsequent quantitative RT-PCR closely reproduced proteomic data, indicating that PrPC is committed to ensuring optimal synaptic transmission by regulating genes involved in SV dynamics and neurotransmitter release. These novel molecular and cellular aspects of PrPC add insight into the underlying mechanisms for synaptic dysfunctions occurring in neurodegenerative disorders in which a compromised PrPC is likely to intervene.
Collapse
|
8
|
Prion protein inhibits fast axonal transport through a mechanism involving casein kinase 2. PLoS One 2017; 12:e0188340. [PMID: 29261664 PMCID: PMC5737884 DOI: 10.1371/journal.pone.0188340] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/06/2017] [Indexed: 12/13/2022] Open
Abstract
Prion diseases include a number of progressive neuropathies involving conformational changes in cellular prion protein (PrPc) that may be fatal sporadic, familial or infectious. Pathological evidence indicated that neurons affected in prion diseases follow a dying-back pattern of degeneration. However, specific cellular processes affected by PrPc that explain such a pattern have not yet been identified. Results from cell biological and pharmacological experiments in isolated squid axoplasm and primary cultured neurons reveal inhibition of fast axonal transport (FAT) as a novel toxic effect elicited by PrPc. Pharmacological, biochemical and cell biological experiments further indicate this toxic effect involves casein kinase 2 (CK2) activation, providing a molecular basis for the toxic effect of PrPc on FAT. CK2 was found to phosphorylate and inhibit light chain subunits of the major motor protein conventional kinesin. Collectively, these findings suggest CK2 as a novel therapeutic target to prevent the gradual loss of neuronal connectivity that characterizes prion diseases.
Collapse
|
9
|
Majumder P, Chakrabarti O. Lysosomal Quality Control in Prion Diseases. Mol Neurobiol 2017; 55:2631-2644. [PMID: 28421536 DOI: 10.1007/s12035-017-0512-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/04/2017] [Indexed: 11/28/2022]
Abstract
Prion diseases are transmissible, familial or sporadic. The prion protein (PrP), a normal cell surface glycoprotein, is ubiquitously expressed throughout the body. While loss of function of PrP does not elicit apparent phenotypes, generation of misfolded forms of the protein or its aberrant metabolic isoforms has been implicated in a number of neurodegenerative disorders such as scrapie, kuru, Creutzfeldt-Jakob disease, fatal familial insomnia, Gerstmann-Sträussler-Scheinker and bovine spongiform encephalopathy. These diseases are all phenotypically characterised by spongiform vacuolation of the adult brain, hence collectively termed as late-onset spongiform neurodegeneration. Misfolded form of PrP (PrPSc) and one of its abnormal metabolic isoforms (the transmembrane CtmPrP) are known to be disease-causing agents that lead to progressive loss of structure or function of neurons culminating in neuronal death. The aberrant forms of PrP utilise and manipulate the various intracellular quality control mechanisms during pathogenesis of these diseases. Amongst these, the lysosomal quality control machinery emerges as one of the primary targets exploited by the disease-causing isoforms of PrP. The autophagosomal-lysosomal degradation pathway is adversely affected in multiple ways in prion diseases and may hence be regarded as an important modulator of neurodegeneration. Some of the ESCRT pathway proteins have also been shown to be involved in the manifestation of disease phenotype. This review discusses the significance of the lysosomal quality control pathway in affecting transmissible and familial types of prion diseases.
Collapse
Affiliation(s)
- Priyanka Majumder
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal, 700064, India
| | - Oishee Chakrabarti
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Sector-1, Block-AF, Bidhannagar, Kolkata, West Bengal, 700064, India.
| |
Collapse
|
10
|
Shim SY, Karri S, Law S, Schatzl HM, Gilch S. Prion infection impairs lysosomal degradation capacity by interfering with rab7 membrane attachment in neuronal cells. Sci Rep 2016; 6:21658. [PMID: 26865414 PMCID: PMC4749993 DOI: 10.1038/srep21658] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/28/2016] [Indexed: 11/24/2022] Open
Abstract
Prions are proteinaceous infectious particles which cause fatal neurodegenerative disorders in humans and animals. They consist of a mostly β-sheeted aggregated isoform (PrPSc) of the cellular prion protein (PrPc). Prions replicate autocatalytically in neurons and other cell types by inducing conformational conversion of PrPc into PrPSc. Within neurons, PrPSc accumulates at the plasma membrane and in vesicles of the endocytic pathway. To better understand the mechanisms underlying neuronal dysfunction and death it is critical to know the impact of PrPSc accumulation on cellular pathways. We have investigated the effects of prion infection on endo-lysosomal transport. Our study demonstrates that prion infection interferes with rab7 membrane association. Consequently, lysosomal maturation and degradation are impaired. Our findings indicate a mechanism induced by prion infection that supports stable prion replication. We suggest modulation of endo-lysosomal vesicle trafficking and enhancement of lysosomal maturation as novel targets for the treatment of prion diseases.
Collapse
Affiliation(s)
- Su Yeon Shim
- Dept. of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Srinivasarao Karri
- Dept. of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Sampson Law
- Dept. of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada
| | - Hermann M Schatzl
- Dept. of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Sabine Gilch
- Dept. of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
11
|
Cantone M, Di Pino G, Capone F, Piombo M, Chiarello D, Cheeran B, Pennisi G, Di Lazzaro V. The contribution of transcranial magnetic stimulation in the diagnosis and in the management of dementia. Clin Neurophysiol 2014; 125:1509-32. [PMID: 24840904 DOI: 10.1016/j.clinph.2014.04.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/01/2014] [Accepted: 04/19/2014] [Indexed: 12/11/2022]
Abstract
Transcranial magnetic stimulation (TMS) is emerging as a promising tool to non-invasively assess specific cortical circuits in neurological diseases. A number of studies have reported the abnormalities in TMS assays of cortical function in dementias. A PubMed-based literature review on TMS studies targeting primary and secondary dementia has been conducted using the key words "transcranial magnetic stimulation" or "motor cortex excitability" and "dementia" or "cognitive impairment" or "memory impairment" or "memory decline". Cortical excitability is increased in Alzheimer's disease (AD) and in vascular dementia (VaD), generally reduced in secondary dementias. Short-latency afferent inhibition (SAI), a measure of central cholinergic circuitry, is normal in VaD and in frontotemporal dementia (FTD), but suppressed in AD. In mild cognitive impairment, abnormal SAI may predict the progression to AD. No change in cortical excitability has been observed in FTD, in Parkinson's dementia and in dementia with Lewy bodies. Short-interval intracortical inhibition and controlateral silent period (cSP), two measures of gabaergic cortical inhibition, are abnormal in most dementias associated with parkinsonian symptoms. Ipsilateral silent period (iSP), which is dependent on integrity of the corpus callosum is abnormal in AD. While single TMS measure owns low specificity, a panel of measures can support the clinical diagnosis, predict progression and possibly identify earlier the "brain at risk". In dementias, TMS can be also exploited to select and evaluate the responders to specific drugs and, it might become a rehabilitative tool, in the attempt to restore impaired brain plasticity.
Collapse
Affiliation(s)
- Mariagiovanna Cantone
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy
| | - Giovanni Di Pino
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy; Fondazione Alberto Sordi - Research Institute for Ageing, Via Álvaro del Portillo 5, 00128 Rome, Italy
| | - Fioravante Capone
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy; Fondazione Alberto Sordi - Research Institute for Ageing, Via Álvaro del Portillo 5, 00128 Rome, Italy
| | - Marianna Piombo
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy; Fondazione Alberto Sordi - Research Institute for Ageing, Via Álvaro del Portillo 5, 00128 Rome, Italy
| | - Daniela Chiarello
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy; Fondazione Alberto Sordi - Research Institute for Ageing, Via Álvaro del Portillo 5, 00128 Rome, Italy
| | - Binith Cheeran
- Nuffield Department of Clinical Neurosciences, University of Oxford, Level 6, West Wing, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Giovanni Pennisi
- Department "G.F. Ingrassia", Section of Neurosciences, University of Catania, Via Santa Sofia, 78-95123 Catania, Italy
| | - Vincenzo Di Lazzaro
- Institute of Neurology, Campus Bio-Medico University, Via Álvaro del Portillo 200, 00128 Rome, Italy; Fondazione Alberto Sordi - Research Institute for Ageing, Via Álvaro del Portillo 5, 00128 Rome, Italy.
| |
Collapse
|
12
|
Godsave SF, Wille H, Pierson J, Prusiner SB, Peters PJ. Plasma membrane invaginations containing clusters of full-length PrPSc are an early form of prion-associated neuropathology in vivo. Neurobiol Aging 2013; 34:1621-31. [PMID: 23481568 DOI: 10.1016/j.neurobiolaging.2012.12.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 10/27/2022]
Abstract
During prion disease, cellular prion protein (PrP(C)) is refolded into a pathogenic isoform (PrP(Sc)) that accumulates in the central nervous system and causes neurodegeneration and death. We used immunofluorescence, quantitative cryo-immunogold EM, and tomography to detect nascent, full-length PrP(Sc) in the hippocampus of prion-infected mice from early preclinical disease stages onward. Comparison of uninfected and infected brains showed that sites containing full-length PrP(Sc) could be recognized in the neuropil by bright spots and streaks of immunofluorescence on semi-thin (200-nm) sections, and by clusters of cryo-immunogold EM labeling. PrP(Sc) was found mainly on neuronal plasma membranes, most strikingly on membrane invaginations and sites of cell-to-cell contact, and was evident by 65 days postinoculation, or 54% of the incubation period to terminal disease. Both axons and dendrites in the neuropil were affected. We hypothesize that closely apposed plasma membranes provide a favorable environment for prion conversion and intercellular prion transfer. Only a small proportion of clustered PrP immunogold labeling was found at synapses, indicating that synapses are not targeted specifically in prion disease.
Collapse
Affiliation(s)
- Susan F Godsave
- Department of Cell Biology II, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | | | | | | | | |
Collapse
|
13
|
Schiavo G, Greensmith L, Hafezparast M, Fisher EMC. Cytoplasmic dynein heavy chain: the servant of many masters. Trends Neurosci 2013; 36:641-51. [PMID: 24035135 PMCID: PMC3824068 DOI: 10.1016/j.tins.2013.08.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/23/2013] [Accepted: 08/05/2013] [Indexed: 12/20/2022]
Abstract
The cytoplasmic dynein complex is the main retrograde motor in all eukaryotic cells. This complex is built around a dimer of cytoplasmic dynein heavy chains (DYNC1H1). Mouse DYNC1H1 mutants have sensory defects, but motor defects have been controversial. Now human DYNC1H1 mutations with sensory, motor, and cognitive deficits are being found. The study of these mutations will give us new insight into DYNC1H1 function in the nervous system.
Cytoplasmic dynein is the main retrograde motor in all eukaryotic cells. This complex comprises different subunits assembled on a cytoplasmic dynein heavy chain 1 (DYNC1H1) dimer. Cytoplasmic dynein is particularly important for neurons because it carries essential signals and organelles from distal sites to the cell body. In the past decade, several mouse models have helped to dissect the numerous functions of DYNC1H1. Additionally, several DYNC1H1 mutations have recently been found in human patients that give rise to a broad spectrum of developmental and midlife-onset disorders. Here, we discuss the effects of mutations of mouse and human DYNC1H1 and how these studies are giving us new insight into the many critical roles DYNC1H1 plays in the nervous system.
Collapse
Affiliation(s)
- Giampietro Schiavo
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, National Hospital for Neurology and Neurosurgery, University College London, Queen Square, London WC1N 3BG, UK; Molecular NeuroPathobiology, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| | | | | | | |
Collapse
|
14
|
Ohsawa N, Song CH, Suzuki A, Furuoka H, Hasebe R, Horiuchi M. Therapeutic effect of peripheral administration of an anti-prion protein antibody on mice infected with prions. Microbiol Immunol 2013; 57:288-97. [DOI: 10.1111/1348-0421.12037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 12/24/2012] [Accepted: 01/10/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Natsuo Ohsawa
- Laboratory of Veterinary Hygiene; Graduate School of Veterinary Medicine, Hokkaido University; Kita 18, Nishi 9; Kita-ku; Sapporo; 060-0818
| | - Chang-Hyun Song
- Laboratory of Veterinary Hygiene; Graduate School of Veterinary Medicine, Hokkaido University; Kita 18, Nishi 9; Kita-ku; Sapporo; 060-0818
| | - Akio Suzuki
- Laboratory of Veterinary Hygiene; Graduate School of Veterinary Medicine, Hokkaido University; Kita 18, Nishi 9; Kita-ku; Sapporo; 060-0818
| | - Hidefumi Furuoka
- Department of Pathobiological Science; Obihiro University of Agriculture and Veterinary Medicine; Inada-cho; Obihiro; 080-8555; Japan
| | - Rie Hasebe
- Laboratory of Veterinary Hygiene; Graduate School of Veterinary Medicine, Hokkaido University; Kita 18, Nishi 9; Kita-ku; Sapporo; 060-0818
| | - Motohiro Horiuchi
- Laboratory of Veterinary Hygiene; Graduate School of Veterinary Medicine, Hokkaido University; Kita 18, Nishi 9; Kita-ku; Sapporo; 060-0818
| |
Collapse
|
15
|
Tian C, Liu D, Chen C, Xu Y, Gong HS, Chen C, Shi Q, Zhang BY, Han J, Dong XP. Global transcriptional profiling of the postmortem brain of a patient with G114V genetic Creutzfeldt-Jakob disease. Int J Mol Med 2013; 31:676-88. [PMID: 23314178 DOI: 10.3892/ijmm.2013.1239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 12/18/2012] [Indexed: 11/06/2022] Open
Abstract
Familial or genetic Creutzfeldt-Jakob disease (fCJD or gCJD) is an inherent human prion disease caused by mutation of the prion protein gene (PRNP). In the present study, global expression patterns of the parietal cortex from a patient with G114V gCJD were analyzed using the Affymetrix Human Genome U133+ 2.0 chip with a commercial normal human parietal cortex RNA pool as a normal control. In total, 8,774 genes showed differential expression; among them 2,769 genes were upregulated and 6,005 genes were downregulated. The reliability of the results was confirmed using real-time RT-PCR assays. The most differentially expressed genes (DEGs) were involved in transcription regulation, ion transport, transcription, cell adhesion, and signal transduction. The genes associated with gliosis were upregulated and the genes marked for neurons were downregulated, while the transcription of the PRNP gene remained unaltered. A total of 169 different pathways exhibited significant changes in the brain of G114V gCJD. The most significantly regulated pathways included Alzheimer's and Parkinson's disease, oxidative phosphorylation, regulation of actin cytoskeleton, MAPK signaling and proteasome, which have previously been linked to prion diseases. In addition, we found some pathways that have rarely been explored in regards to prion diseases that were also significantly altered in G114V gCJD, such as axon guidance, gap junction and purine metabolism. The majority of the genes in the 10 most altered pathways were downregulated. The data of the present study provide useful insights into the pathogenesis of G114V gCJD and potential biomarkers for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Chan Tian
- State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
PARK YANGGYU, JEONG JAEKYO, LEE JUHEE, LEE YOUJIN, SEOL JAEWON, KIM SHANGJIN, HUR TAIYOUNG, JUNG YOUNGHUN, KANG SEOGJIN, PARK SANGYOUEL. Lactoferrin protects against prion protein-induced cell death in neuronal cells by preventing mitochondrial dysfunction. Int J Mol Med 2012; 31:325-30. [DOI: 10.3892/ijmm.2012.1198] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/18/2012] [Indexed: 11/06/2022] Open
|
17
|
Abstract
Gene products such as organelles, proteins and RNAs are actively transported to synaptic terminals for the remodeling of pre-existing neuronal connections and formation of new ones. Proteins described as molecular motors mediate this transport and utilize specialized cytoskeletal proteins that function as molecular tracks for the motor based transport of cargos. Molecular motors such as kinesins and dynein's move along microtubule tracks formed by tubulins whereas myosin motors utilize tracks formed by actin. Deficits in active transport of gene products have been implicated in a number of neurological disorders. We describe such disorders collectively as "transportopathies". Here we review current knowledge of critical components of active transport and their relevance to neurodegenerative diseases.
Collapse
|
18
|
Friedrich M, Nozadze R, de Keijzer S, Steinmeyer R, Ermolayev V, Harms GS. Detection of Single Quantum Dots in Model Systems with Sheet Illumination Microscopy. J Fluoresc 2011; 28:29-39. [DOI: 10.1007/s10895-011-0966-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 08/30/2011] [Indexed: 11/28/2022]
|
19
|
Borner R, Bento-Torres J, Souza DRV, Sadala DB, Trevia N, Farias JA, Lins N, Passos A, Quintairos A, Diniz JA, Perry VH, Vasconcelos PF, Cunningham C, Picanço-Diniz CW. Early behavioral changes and quantitative analysis of neuropathological features in murine prion disease: stereological analysis in the albino Swiss mice model. Prion 2011; 5:215-27. [PMID: 21862877 DOI: 10.4161/pri.5.3.16936] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Behavioral and neuropathological changes have been widely investigated in murine prion disease but stereological based unbiased estimates of key neuropathological features have not been carried out. After injections of ME7 infected (ME7) or normal brain homogenates (NBH) into dorsal CA1 of albino Swiss mice and C57BL6, we assessed behavioral changes on hippocampal-dependent tasks. We also estimated by optical fractionator at 15 and 18 weeks post-injections (w.p.i.) the total number of neurons, reactive astrocytes, activated microglia and perineuronal nets (PN) in the polymorphic layer of dentate gyrus (PolDG), CA1 and septum in albino Swiss mice. On average, early behavioral changes in albino Swiss mice start four weeks later than in C57BL6. Cluster and discriminant analysis of behavioral data in albino Swiss mice revealed that four of nine subjects start to change their behavior at 12 w.p.i. and reach terminal stage at 22 w.p.i and the remaining subjects start at 22 w.p.i. and reach terminal stage at 26 w.p.i. Biotinylated dextran-amine BDA-tracer experiments in mossy fiber pathway confirmed axonal degeneration, and stereological data showed that early astrocytosis, microgliosis and reduction in the perineuronal nets are independent of a change in the number of neuronal cell bodies. Statistical analysis revealed that the septal region had greater levels of neuroinflammation and extracellular matrix damage than CA1. This stereological and multivariate analysis at early stages of disease in an outbred model of prion disease provided new insights connecting behavioral changes and neuroinflammation and seems to be important to understand the mechanisms of prion disease progression.
Collapse
Affiliation(s)
- Roseane Borner
- Laboratory of Neurodegeneration and Infection at the University Hospital João de Barros Barreto, Federal University of Pará, Belém, Pará, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lee YJ, Savtchenko R, Ostapchenko VG, Makarava N, Baskakov IV. Molecular structure of amyloid fibrils controls the relationship between fibrillar size and toxicity. PLoS One 2011; 6:e20244. [PMID: 21625461 PMCID: PMC3098877 DOI: 10.1371/journal.pone.0020244] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/26/2011] [Indexed: 12/29/2022] Open
Abstract
Background According to the prevailing view, soluble oligomers or small fibrillar fragments are considered to be the most toxic species in prion diseases. To test this hypothesis, two conformationally different amyloid states were produced from the same highly pure recombinant full-length prion protein (rPrP). The cytotoxic potential of intact fibrils and fibrillar fragments generated by sonication from these two states was tested using cultured cells. Methodology/Principal Findings For one amyloid state, fibril fragmentation was found to enhance its cytotoxic potential, whereas for another amyloid state formed within the same amino acid sequence, the fragmented fibrils were found to be substantially less toxic than the intact fibrils. Consistent with the previous studies, the toxic effects were more pronounced for cell cultures expressing normal isoform of the prion protein (PrPC) at high levels confirming that cytotoxicity was in part PrPC-dependent. Silencing of PrPC expression by small hairpin RNAs designed to silence expression of human PrPC (shRNA-PrPC) deminished the deleterious effects of the two amyloid states to a different extent, suggesting that the role of PrPC-mediated and PrPC-independent mechanisms depends on the structure of the aggregates. Conclusions/Significance This work provides a direct illustration that the relationship between an amyloid's physical dimension and its toxic potential is not unidirectional but is controlled by the molecular structure of prion protein (PrP) molecules within aggregated states. Depending on the structure, a decrease in size of amyloid fibrils can either enhance or abolish their cytotoxic effect. Regardless of the molecular structure or size of PrP aggregates, silencing of PrPC expression can be exploited to reduce their deleterious effects.
Collapse
Affiliation(s)
- Young Jin Lee
- Department of Anatomy and Neurobiology and Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Regina Savtchenko
- Department of Anatomy and Neurobiology and Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Valeriy G. Ostapchenko
- Department of Anatomy and Neurobiology and Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Natallia Makarava
- Department of Anatomy and Neurobiology and Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ilia V. Baskakov
- Department of Anatomy and Neurobiology and Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
21
|
Eschbach J, Dupuis L. Cytoplasmic dynein in neurodegeneration. Pharmacol Ther 2011; 130:348-63. [PMID: 21420428 DOI: 10.1016/j.pharmthera.2011.03.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 03/01/2011] [Indexed: 12/11/2022]
Abstract
Cytoplasmic dynein 1 (later referred to as dynein) is the major molecular motor moving cargoes such as mitochondria, organelles and proteins towards the minus end of microtubules. Dynein is involved in multiple basic cellular functions, such as mitosis, autophagy and structure of endoplasmic reticulum and Golgi, but also in neuron specific functions in particular retrograde axonal transport. Dynein is regulated by a number of protein complexes, notably by dynactin. Several studies have supported indirectly the involvement of dynein in neurodegeneration associated with Alzheimer's disease, Parkinson's disease, Huntington's disease and motor neuron diseases. First, axonal transport disruption represents a common feature occurring in neurodegenerative diseases. Second, a number of dynein-dependent processes, including autophagy or clearance of aggregation-prone proteins, are found defective in most of these diseases. Third, a number of mutant genes in various neurodegenerative diseases are involved in the regulation of dynein transport. This includes notably mutations in the P150Glued subunit of dynactin that are found in Perry syndrome and motor neuron diseases. Interestingly, gene products that are mutant in Huntington's disease, Parkinson's disease, motor neuron disease or spino-cerebellar ataxia are also involved in the regulation of dynein motor activity or of cargo binding. Despite a constellation of indirect evidence, direct links between the motor itself and neurodegeneration are few, and this might be due to the requirement of fully active dynein for development. Here, we critically review the evidence of dynein involvement in different neurodegenerative diseases and discuss potential underlying mechanisms.
Collapse
Affiliation(s)
- Judith Eschbach
- Inserm U692, Laboratoire de Signalisations Moléculaires et Neurodégénérescence, Strasbourg, F-67085, France
| | | |
Collapse
|
22
|
Salinas S, Schiavo G, Kremer EJ. A hitchhiker's guide to the nervous system: the complex journey of viruses and toxins. Nat Rev Microbiol 2010; 8:645-55. [PMID: 20706281 DOI: 10.1038/nrmicro2395] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To reach the central nervous system (CNS), pathogens have to circumvent the wall of tightly sealed endothelial cells that compose the blood-brain barrier. Neuronal projections that connect to peripheral cells and organs are the Achilles heels in CNS isolation. Some viruses and bacterial toxins interact with membrane receptors that are present at nerve terminals to enter the axoplasm. Pathogens can then be mistaken for cargo and recruit trafficking components, allowing them to undergo long-range axonal transport to neuronal cell bodies. In this Review, we highlight the strategies used by pathogens to exploit axonal transport during CNS invasion.
Collapse
Affiliation(s)
- Sara Salinas
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535, 34293 Montpellier Cedex 5, France.
| | | | | |
Collapse
|
23
|
Abstract
Prion strain interference can influence the emergence of a dominant strain from a mixture; however, the mechanisms underlying prion strain interference are poorly understood. In our model of strain interference, inoculation of the sciatic nerve with the drowsy (DY) strain of the transmissible mink encephalopathy (TME) agent prior to superinfection with the hyper (HY) strain of TME can completely block HY TME from causing disease. We show here that the deposition of PrP(Sc), in the absence of neuronal loss or spongiform change, in the central nervous system corresponds with the ability of DY TME to block HY TME infection. This suggests that DY TME agent-induced damage is not responsible for strain interference but rather prions compete for a cellular resource. We show that protein misfolding cyclic amplification (PMCA) of DY and HY TME maintains the strain-specific properties of PrP(Sc) and replicates infectious agent and that DY TME can interfere, or completely block, the emergence of HY TME. DY PrP(Sc) does not convert all of the available PrP(C) to PrP(Sc) in PMCA, suggesting the mechanism of prion strain interference is due to the sequestering of PrP(C) and/or other cellular components required for prion conversion. The emergence of HY TME in PMCA was controlled by the initial ratio of the TME agents. A higher ratio of DY to HY TME agent is required for complete blockage of HY TME in PMCA compared to several previous in vivo studies, suggesting that HY TME persists in animals coinfected with the two strains. This was confirmed by PMCA detection of HY PrP(Sc) in animals where DY TME had completely blocked HY TME from causing disease.
Collapse
|