1
|
Eraso JM, Olsen RJ, Long SW, Gadd R, Boukthir S, Faili A, Kayal S, Musser JM. Integrative genomic, virulence, and transcriptomic analysis of emergent Streptococcus dysgalactiae subspecies equisimilis (SDSE) emm type stG62647 isolates causing human infections. mBio 2024; 15:e0257824. [PMID: 39417630 PMCID: PMC11559094 DOI: 10.1128/mbio.02578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
Streptococcus dysgalactiae subspecies equisimilis (SDSE) is a Gram-positive bacterial pathogen that infects humans and is closely related to group A streptococcus (GAS). Compared with GAS, far less is known about SDSE pathobiology. Increased rates of invasive SDSE infections have recently been reported in many countries. One SDSE emm type (stG62647) is known to cause severe diseases, including necrotizing soft-tissue infections, endocarditis, and osteoarticular infections. To increase our understanding of the molecular pathogenesis of stG62647 SDSE isolates causing human infections, we sequenced to closure the genomes of 120 stG62647 SDSE isolates. The genomes varied in size from 2.1 to 2.24 Mb pairs. The great majority of stG62647 isolates had IS1548 integrated into the silB gene, thereby inactivating it. Regions of difference, such as mobile genetic elements, were the largest source of genomic diversity. All 120 stG62647 isolates were assayed for virulence using a well-established mouse model of necrotizing myositis. An unexpectedly wide range of virulence was identified (20% to 95%), as assessed by near-mortality data. To explore the molecular mechanisms underlying virulence differences, we analyzed RNAseq transcriptome profiles for 38 stG62647 isolates (comprising the 19 least and most virulent) grown in vitro. Genetic polymorphisms were identified from whole-genome sequence data. Collectively, the results suggest that these SDSE isolates use multiple genetic pathways to alter virulence phenotype. The data also suggest that human genetics and underlying medical conditions contribute to disease severity. Our study integrates genomic, mouse virulence, and RNAseq data to advance our understanding of SDSE pathobiology and its molecular pathogenesis. IMPORTANCE This study integrated genomic sequencing, mouse virulence assays, and bacterial transcriptomic analysis to advance our understanding of the molecular mechanisms contributing to Streptococcus dysgalactiae subsp. equisimilis emm type stG62647 pathogenesis. We tested a large cohort of genetically closely related stG62647 isolates for virulence using an established mouse model of necrotizing myositis and discovered a broad spectrum of virulence phenotypes, with near-mortality rates ranging from 20% to 95%. This variation was unexpected, given their close genetic proximity. Transcriptome analysis of stG62647 isolates responsible for the lowest and highest near-mortality rates suggested that these isolates used multiple molecular pathways to alter their virulence. In addition, some genes encoding transcriptional regulators and putative virulence factors likely contribute to SDSE emm type stG62647 pathogenesis. These data underscore the complexity of pathogen-host interactions in an emerging SDSE clonal group.
Collapse
Affiliation(s)
- Jesus M. Eraso
- Laboratory for Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Randall J. Olsen
- Laboratory for Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - S. Wesley Long
- Laboratory for Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| | - Ryan Gadd
- Laboratory for Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Sarrah Boukthir
- CHU de Rennes, Service de Bacteriologie-Hygiène Hospitalière, Rennes, France
- INSERM, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Médecine, Rennes, France
| | - Ahmad Faili
- INSERM, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Pharmacie, Rennes, France
- OSS-Oncogenesis, Stress, and Signaling, INSERM 1242, Rennes, France
| | - Samer Kayal
- CHU de Rennes, Service de Bacteriologie-Hygiène Hospitalière, Rennes, France
- INSERM, CIC 1414, Rennes, France
- Université Rennes 1, Faculté de Médecine, Rennes, France
- OSS-Oncogenesis, Stress, and Signaling, INSERM 1242, Rennes, France
| | - James M. Musser
- Laboratory for Molecular and Translational Human Infectious Diseases Research, Center for Infectious Diseases, Houston Methodist Research Institute, Houston, Texas, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, New York, USA
| |
Collapse
|
2
|
Xie O, Davies MR, Tong SYC. Streptococcus dysgalactiae subsp. equisimilis infection and its intersection with Streptococcus pyogenes. Clin Microbiol Rev 2024; 37:e0017523. [PMID: 38856686 PMCID: PMC11392527 DOI: 10.1128/cmr.00175-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024] Open
Abstract
SUMMARYStreptococcus dysgalactiae subsp. equisimilis (SDSE) is an increasingly recognized cause of disease in humans. Disease manifestations range from non-invasive superficial skin and soft tissue infections to life-threatening streptococcal toxic shock syndrome and necrotizing fasciitis. Invasive disease is usually associated with co-morbidities, immunosuppression, and advancing age. The crude incidence of invasive disease approaches that of the closely related pathogen, Streptococcus pyogenes. Genomic epidemiology using whole-genome sequencing has revealed important insights into global SDSE population dynamics including emerging lineages and spread of anti-microbial resistance. It has also complemented observations of overlapping pathobiology between SDSE and S. pyogenes, including shared virulence factors and mobile gene content, potentially underlying shared pathogen phenotypes. This review provides an overview of the clinical and genomic epidemiology, disease manifestations, treatment, and virulence determinants of human infections with SDSE with a particular focus on its overlap with S. pyogenes. In doing so, we highlight the importance of understanding the overlap of SDSE and S. pyogenes to inform surveillance and disease control strategies.
Collapse
Affiliation(s)
- Ouli Xie
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Monash Infectious Diseases, Monash Health, Melbourne, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Victorian Infectious Disease Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
3
|
Xie O, Zachreson C, Tonkin-Hill G, Price DJ, Lacey JA, Morris JM, McDonald MI, Bowen AC, Giffard PM, Currie BJ, Carapetis JR, Holt DC, Bentley SD, Davies MR, Tong SYC. Overlapping Streptococcus pyogenes and Streptococcus dysgalactiae subspecies equisimilis household transmission and mobile genetic element exchange. Nat Commun 2024; 15:3477. [PMID: 38658529 PMCID: PMC11043366 DOI: 10.1038/s41467-024-47816-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024] Open
Abstract
Streptococcus dysgalactiae subspecies equisimilis (SDSE) and Streptococcus pyogenes share skin and throat niches with extensive genomic homology and horizontal gene transfer (HGT) possibly underlying shared disease phenotypes. It is unknown if cross-species transmission interaction occurs. Here, we conduct a genomic analysis of a longitudinal household survey in remote Australian First Nations communities for patterns of cross-species transmission interaction and HGT. Collected from 4547 person-consultations, we analyse 294 SDSE and 315 S. pyogenes genomes. We find SDSE and S. pyogenes transmission intersects extensively among households and show that patterns of co-occurrence and transmission links are consistent with independent transmission without inter-species interference. We identify at least one of three near-identical cross-species mobile genetic elements (MGEs) carrying antimicrobial resistance or streptodornase virulence genes in 55 (19%) SDSE and 23 (7%) S. pyogenes isolates. These findings demonstrate co-circulation of both pathogens and HGT in communities with a high burden of streptococcal disease, supporting a need to integrate SDSE and S. pyogenes surveillance and control efforts.
Collapse
Affiliation(s)
- Ouli Xie
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Monash Infectious Diseases, Monash Health, Melbourne, VIC, Australia
| | - Cameron Zachreson
- School of Computing and Information Systems, University of Melbourne, Melbourne, VIC, Australia
| | | | - David J Price
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Jake A Lacey
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Jacqueline M Morris
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Malcolm I McDonald
- Division of Tropical Health and Medicine, James Cook University, Townsville, QLD, Australia
| | - Asha C Bowen
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia and Perth Children's Hospital, Perth, WA, Australia
| | - Philip M Giffard
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Faculty of Health, Charles Darwin University, Darwin, NT, Australia
| | - Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
- Infectious Diseases Department, Royal Darwin Hospital, Darwin, NT, Australia
| | - Jonathan R Carapetis
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia and Perth Children's Hospital, Perth, WA, Australia
| | - Deborah C Holt
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | | | - Mark R Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Steven Y C Tong
- Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| |
Collapse
|
4
|
Wahlenmayer ER, Hammers DE. Streptococcal peptides and their roles in host-microbe interactions. Front Cell Infect Microbiol 2023; 13:1282622. [PMID: 37915845 PMCID: PMC10617681 DOI: 10.3389/fcimb.2023.1282622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 11/03/2023] Open
Abstract
The genus Streptococcus encompasses many bacterial species that are associated with hosts, ranging from asymptomatic colonizers and commensals to pathogens with a significant global health burden. Streptococci produce numerous factors that enable them to occupy their host-associated niches, many of which alter their host environment to the benefit of the bacteria. The ability to manipulate host immune systems to either evade detection and clearance or induce a hyperinflammatory state influences whether bacteria are able to survive and persist in a given environment, while also influencing the propensity of the bacteria to cause disease. Several bacterial factors that contribute to this inter-species interaction have been identified. Recently, small peptides have become increasingly appreciated as factors that contribute to Streptococcal relationships with their hosts. Peptides are utilized by streptococci to modulate their host environment in several ways, including by directly interacting with host factors to disrupt immune system function and signaling to other bacteria to control the expression of genes that contribute to immune modulation. In this review, we discuss the many contributions of Streptococcal peptides in terms of their ability to contribute to pathogenesis and disruption of host immunity. This discussion will highlight the importance of continuing to elucidate the functions of these Streptococcal peptides and pursuing the identification of new peptides that contribute to modulation of host environments. Developing a greater understanding of how bacteria interact with their hosts has the potential to enable the development of techniques to inhibit these peptides as therapeutic approaches against Streptococcal infections.
Collapse
Affiliation(s)
| | - Daniel E. Hammers
- Biology Department, Houghton University, Houghton, NY, United States
| |
Collapse
|
5
|
Vogel V, Fuchs M, Jachmann M, Bitzer A, Mauerer S, Münch J, Spellerberg B. The Role of SilX in Bacteriocin Production of Streptococcus anginosus. Front Microbiol 2022; 13:904318. [PMID: 35875552 PMCID: PMC9298176 DOI: 10.3389/fmicb.2022.904318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
Streptococcus anginosus produces the novel antimicrobial peptide Angicin, which inhibits Gram positive microorganisms and is classified as a group IId bacteriocin. Production of Angicin is regulated by the quorum sensing system Sil (Streptococcus invasion locus), which is located adjacent to the bacteriocin gene cluster. Within this genetic region a typical CAAX protease is encoded, which was designated SilX. Nelfinavir, a HIV protease inhibitor, led to a concentration dependent reduction in antimicrobial activity, presumably through the inhibition of SilX. Concentrations exceeding 25 μM Nelfinavir caused a complete abolishment of bacteriocin activity against Listeria monocytogenes. These results are supported by the observation, that a SilX deletion mutant of S. anginosus strain BSU 1211 no longer inhibits the growth of L. monocytogenes. Antimicrobial activity could be restored by addition of synthetically synthesized mature SilCR, implying that SilX may be involved in the export and processing of the signal peptide SilCR. Some CAAX proteases have been reported to provide immunity against bacteriocins. However, in a radial diffusion assay the deletion mutant S. anginosus BSU 1211ΔSilX showed no sensitivity toward Angicin arguing against a role of SilX in the immunity of S. anginosus. The putative processing of the signal peptide SilCR indicates a novel function of the CAAX protease SilX, in the context of S. anginosus bacteriocin production.
Collapse
Affiliation(s)
- Verena Vogel
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Miki Fuchs
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Marie Jachmann
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Alina Bitzer
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Stefanie Mauerer
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
- *Correspondence: Barbara Spellerberg,
| |
Collapse
|
6
|
Vogel V, Bauer R, Mauerer S, Schiffelholz N, Haupt C, Seibold GM, Fändrich M, Walther P, Spellerberg B. Angicin, a novel bacteriocin of Streptococcus anginosus. Sci Rep 2021; 11:24377. [PMID: 34934110 PMCID: PMC8692603 DOI: 10.1038/s41598-021-03797-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/01/2021] [Indexed: 11/09/2022] Open
Abstract
As a conserved defense mechanism, many bacteria produce antimicrobial peptides, called bacteriocins, which provide a colonization advantage in a multispecies environment. Here the first bacteriocin of Streptococcus anginosus, designated Angicin, is described. S. anginosus is commonly described as a commensal, however it also possesses a high pathogenic potential. Therefore, understanding factors contributing to its host colonization and persistence are important. A radial diffusion assay was used to identify S. anginosus BSU 1211 as a potent bacteriocin producer. By genetic mutagenesis the background of bacteriocin production and the bacteriocin gene itself were identified. Synthetic Angicin shows high activity against closely related streptococci, listeria and vancomycin resistant enterococci. It has a fast mechanism of action and causes a membrane disruption in target cells. Angicin, present in cell free supernatant, is insensitive to changes in temperature from - 70 to 90 °C and pH values from 2 to 10, suggesting that it represents an interesting compound for potential applications in food preservation or clinical settings.
Collapse
Affiliation(s)
- Verena Vogel
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Richard Bauer
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Stefanie Mauerer
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | | | - Christian Haupt
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Gerd M Seibold
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Marcus Fändrich
- Institute of Protein Biochemistry, Ulm University, Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany.
| |
Collapse
|
7
|
Vyas HKN, Proctor EJ, McArthur J, Gorman J, Sanderson-Smith M. Current Understanding of Group A Streptococcal Biofilms. Curr Drug Targets 2020; 20:982-993. [PMID: 30947646 PMCID: PMC6700754 DOI: 10.2174/1389450120666190405095712] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 02/01/2023]
Abstract
Background: It has been proposed that GAS may form biofilms. Biofilms are microbial communities that aggregate on a surface, and exist within a self-produced matrix of extracellular polymeric substances. Biofilms offer bacteria an increased survival advantage, in which bacteria persist, and resist host immunity and antimicrobial treatment. The biofilm phenotype has long been recognized as a virulence mechanism for many Gram-positive and Gram-negative bacteria, however very little is known about the role of biofilms in GAS pathogenesis. Objective: This review provides an overview of the current knowledge of biofilms in GAS pathogenesis. This review assesses the evidence of GAS biofilm formation, the role of GAS virulence factors in GAS biofilm formation, modelling GAS biofilms, and discusses the polymicrobial nature of biofilms in the oropharynx in relation to GAS. Conclusion: Further study is needed to improve the current understanding of GAS as both a mono-species biofilm, and as a member of a polymicrobial biofilm. Improved modelling of GAS biofilm formation in settings closely mimicking in vivo conditions will ensure that biofilms generated in the lab closely reflect those occurring during clinical infection.
Collapse
Affiliation(s)
- Heema K N Vyas
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Emma-Jayne Proctor
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Jason McArthur
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Jody Gorman
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| | - Martina Sanderson-Smith
- School of Chemistry and Molecular Bioscience, and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, Australia
| |
Collapse
|
8
|
Piewngam P, Chiou J, Chatterjee P, Otto M. Alternative approaches to treat bacterial infections: targeting quorum-sensing. Expert Rev Anti Infect Ther 2020; 18:499-510. [PMID: 32243194 PMCID: PMC11032741 DOI: 10.1080/14787210.2020.1750951] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
Introduction: The emergence of multi- and pan-drug-resistant bacteria represents a global crisis that calls for the development of alternative anti-infective strategies. These comprise anti-virulence approaches, which target pathogenicity without exerting a bacteriostatic or bactericidal effect and are claimed to reduce the development of resistance. Because in many pathogens, quorum-sensing (QS) systems control the expression of virulence factors, interference with QS, or quorum-quenching, is often proposed as a strategy with a broad anti-virulence effect.Areas covered: We discuss the role and regulatory targets of QS control in selected Gram-positive and Gram-negative bacteria, focusing on those with clinical importance and QS control of virulence. We present the components of QS systems that form possible targets for the development of anti-virulence drugs and discuss recent research on quorum-quenching approaches to control bacterial infection.Expert opinion: While there has been extensive research on QS systems and quorum-quenching approaches, there is a paucity of in-vivo research using adequate animal models to substantiate applicability. In-vivo research on QS blockers needs to be intensified and optimized to use clinically relevant setups, in order to underscore that such drugs can be used effectively to overcome problems associated with the treatment of severe infections by antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Pipat Piewngam
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, Maryland 20814, USA
| | - Janice Chiou
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, Maryland 20814, USA
| | - Priyanka Chatterjee
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, Maryland 20814, USA
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, 50 South Drive, Bethesda, Maryland 20814, USA
| |
Collapse
|
9
|
Ishihara H, Ogura K, Miyoshi‐Akiyama T, Nakamura M, Kaya H, Okamoto S. Prevalence and genomic characterization of Group A
Streptococcus dysgalactiae
subsp.
equisimilis
isolated from patients with invasive infections in Toyama prefecture, Japan. Microbiol Immunol 2019; 64:113-122. [DOI: 10.1111/1348-0421.12760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Haruka Ishihara
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawa Ishikawa Japan
| | - Kohei Ogura
- Advanced Health Care Science Research Unit, Institute for Frontier Science InitiativeKanazawa UniversityKanazawa Ishikawa Japan
| | - Tohru Miyoshi‐Akiyama
- Pathogenic Microbe Laboratory, Research InstituteNational Center for Global Health and MedicineShinjuku‐ku Tokyo Japan
| | - Masahiko Nakamura
- Department of Medical LaboratoryToyama Prefectural Central HospitalToyama Toyama Japan
| | - Hiroyasu Kaya
- Department of Internal MedicineToyama Prefectural Central HospitalToyama Toyama Japan
| | - Shigefumi Okamoto
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawa Ishikawa Japan
| |
Collapse
|
10
|
Hertzog BB, Kaufman Y, Biswas D, Ravins M, Ambalavanan P, Wiener R, Angeli V, Chen SL, Hanski E. A Sub-population of Group A Streptococcus Elicits a Population-wide Production of Bacteriocins to Establish Dominance in the Host. Cell Host Microbe 2018; 23:312-323.e6. [PMID: 29544095 DOI: 10.1016/j.chom.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/26/2017] [Accepted: 02/07/2018] [Indexed: 11/30/2022]
Abstract
Bacteria use quorum sensing (QS) to regulate gene expression. We identified a group A Streptococcus (GAS) strain possessing the QS system sil, which produces functional bacteriocins, through a sequential signaling pathway integrating host and bacterial signals. Host cells infected by GAS release asparagine (ASN), which is sensed by the bacteria to alter its gene expression and rate of proliferation. We show that upon ASN sensing, GAS upregulates expression of the QS autoinducer peptide SilCR. Initial SilCR expression activates the autoinduction cycle for further SilCR production. The autoinduction process propagates throughout the GAS population, resulting in bacteriocin production. Subcutaneous co-injection of mice with a bacteriocin-producing strain and the globally disseminated M1T1 GAS clone results in M1T1 killing within soft tissue. Thus, by sensing host signals, a fraction of a bacterial population can trigger an autoinduction mechanism mediated by QS, which acts on the entire bacterial community to outcompete other bacteria within the infection.
Collapse
Affiliation(s)
- Baruch B Hertzog
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Yael Kaufman
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Debabrata Biswas
- NUS-HUJ-CREATE Programme for Inflammation Research, Center for Research Excellence & Technological Enterprise (CREATE), Department of Microbiology and Immunology, National University of Singapore, Singapore 138602, Singapore
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Poornima Ambalavanan
- NUS-HUJ-CREATE Programme for Inflammation Research, Center for Research Excellence & Technological Enterprise (CREATE), Department of Microbiology and Immunology, National University of Singapore, Singapore 138602, Singapore
| | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Veronique Angeli
- Department of Microbiology and Immunology, National University of Singapore; LSI Immunology Programme, National University of Singapore, Singapore 117456, Singapore
| | - Swaine L Chen
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, and Infectious Diseases Group, Genome Institute of Singapore, Singapore 119074, Singapore
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel; NUS-HUJ-CREATE Programme for Inflammation Research, Center for Research Excellence & Technological Enterprise (CREATE), Department of Microbiology and Immunology, National University of Singapore, Singapore 138602, Singapore.
| |
Collapse
|
11
|
Buckley SJ, Timms P, Davies MR, McMillan DJ. In silico characterisation of the two-component system regulators of Streptococcus pyogenes. PLoS One 2018; 13:e0199163. [PMID: 29927994 PMCID: PMC6013163 DOI: 10.1371/journal.pone.0199163] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/02/2018] [Indexed: 12/14/2022] Open
Abstract
Bacteria respond to environmental changes through the co-ordinated regulation of gene expression, often mediated by two-component regulatory systems (TCS). Group A Streptococcus (GAS), a bacterium which infects multiple human body sites and causes multiple diseases, possesses up to 14 TCS. In this study we examined genetic variation in the coding sequences and non-coding DNA upstream of these TCS as a method for evaluating relationships between different GAS emm-types, and potential associations with GAS disease. Twelve of the 14 TCS were present in 90% of the genomes examined. The length of the intergenic regions (IGRs) upstream of TCS coding regions varied from 39 to 345 nucleotides, with an average nucleotide diversity of 0.0064. Overall, IGR allelic variation was generally conserved with an emm-type. Subsequent phylogenetic analysis of concatenated sequences based on all TCS IGR sequences grouped genomes of the same emm-type together. However grouping with emm-pattern and emm-cluster-types was much weaker, suggesting epidemiological and functional properties associated with the latter are not due to evolutionary relatedness of emm-types. All emm5, emm6 and most of the emm18 genomes, all historically considered rheumatogenic emm-types clustered together, suggesting a shared evolutionary history. However emm1, emm3 and several emm18 genomes did not cluster within this group. These latter emm18 isolates were epidemiologically distinct from other emm18 genomes in study, providing evidence for local variation. emm-types associated with invasive disease or nephritogenicity also did not cluster together. Considering the TCS coding sequences (cds), correlation with emm-type was weaker than for the IGRs, and no strong correlation with disease was observed. Deletion of the malate transporter, maeP, was identified that serves as a putative marker for the emm89.0 subtype, which has been implicated in invasive outbreaks. A recombination-related, subclade-forming DNA motif was identified in the putative receiver domain of the Spy1556 response regulator that correlated with throat-associated emm-pattern-type A-C strains.
Collapse
Affiliation(s)
- Sean J. Buckley
- Inflammation and Healing Biomedical Research Cluster, and School of Health and Sports Sciences, Faculty of Science, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Peter Timms
- Inflammation and Healing Biomedical Research Cluster, and School of Health and Sports Sciences, Faculty of Science, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Mark R. Davies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - David J. McMillan
- Inflammation and Healing Biomedical Research Cluster, and School of Health and Sports Sciences, Faculty of Science, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
12
|
Makthal N, Do H, VanderWal AR, Olsen RJ, Musser JM, Kumaraswami M. Signaling by a Conserved Quorum Sensing Pathway Contributes to Growth Ex Vivo and Oropharyngeal Colonization of Human Pathogen Group A Streptococcus. Infect Immun 2018; 86:e00169-18. [PMID: 29531135 PMCID: PMC5913841 DOI: 10.1128/iai.00169-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 02/06/2023] Open
Abstract
Bacterial virulence factor production is a highly coordinated process. The temporal pattern of bacterial gene expression varies in different host anatomic sites to overcome niche-specific challenges. The human pathogen group A streptococcus (GAS) produces a potent secreted protease, SpeB, that is crucial for pathogenesis. Recently, we discovered that a quorum sensing pathway comprised of a leaderless short peptide, SpeB-inducing peptide (SIP), and a cytosolic global regulator, RopB, controls speB expression in concert with bacterial population density. The SIP signaling pathway is active in vivo and contributes significantly to GAS invasive infections. In the current study, we investigated the role of the SIP signaling pathway in GAS-host interactions during oropharyngeal colonization. The SIP signaling pathway is functional during growth ex vivo in human saliva. SIP-mediated speB expression plays a crucial role in GAS colonization of the mouse oropharynx. GAS employs a distinct pattern of SpeB production during growth ex vivo in saliva that includes a transient burst of speB expression during early stages of growth coupled with sustained levels of secreted SpeB protein. SpeB production aids GAS survival by degrading LL37, an abundant human antimicrobial peptide. We found that SIP signaling occurs during growth in human blood ex vivo. Moreover, the SIP signaling pathway is critical for GAS survival in blood. SIP-dependent speB regulation is functional in strains of diverse emm types, indicating that SIP signaling is a conserved virulence regulatory mechanism. Our discoveries have implications for future translational studies.
Collapse
Affiliation(s)
- Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Arica R VanderWal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Randall J Olsen
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - James M Musser
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, New York, USA
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| |
Collapse
|
13
|
Oppegaard O, Mylvaganam H, Skrede S, Lindemann PC, Kittang BR. Emergence of a Streptococcus dysgalactiae subspecies equisimilis stG62647-lineage associated with severe clinical manifestations. Sci Rep 2017; 7:7589. [PMID: 28790435 PMCID: PMC5548910 DOI: 10.1038/s41598-017-08162-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 07/07/2017] [Indexed: 12/03/2022] Open
Abstract
Increasing incidence rates of invasive Streptococcus dysgalactiae subspecies equisimilis (SDSE) infections have been reported worldwide, but the evolutionary mechanisms underlying this development remain elusive. Through prospective surveillance of invasive SDSE infections in western Norway, we observed the emergence of a novel and virulent SDSE genotype, stG62647. This emm-type, rarely encountered as a cause of invasive disease during 1999–2012, emerged in 2013 as the predominant SDSE-genotype. The stG62647-infections were associated with an aggressive clinical course, including the occurrence of streptococcal toxic shock syndrome, necrotizing soft-tissue infections and endocarditis. All the invasive stG62647-isolates were subjected to whole genome sequencing, attempting to explore the genetic events underpinning its epidemicity. Although 10% of the genomes was unique for stG62647-genotype, notably 18 out of 19 isolates contained a disrupted streptococcal invasive locus (sil) due to the insertion of a transposase, IS1548, into the silB-gene. We postulate that the virulence of stG6267-isolates could be partly attributable to the abrogation of the attenuating control normally exerted by this regulon, although experimental verification was not performed. To the best of our knowledge, this is the first study employing large scale whole genome sequencing to illuminate the genetic landscape of epidemic lineages in SDSE.
Collapse
Affiliation(s)
- Oddvar Oppegaard
- Department of Medicine, Haukeland University Hospital, Bergen, Norway. .,Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Haima Mylvaganam
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Steinar Skrede
- Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | |
Collapse
|
14
|
Complete Genome Sequence of Streptococcus pyogenes emm14 JS95, a Necrotizing Fasciitis Strain Isolated in Israel. GENOME ANNOUNCEMENTS 2017; 5:5/11/e00025-17. [PMID: 28302774 PMCID: PMC5356051 DOI: 10.1128/genomea.00025-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the complete genome sequence of the Streptococcus pyogenes emm14 strain JS95, isolated from a patient with necrotizing fasciitis. The streptococcal invasion locus (sil), the first quorum-sensing system characterized in S. pyogenes, was identified in this strain.
Collapse
|
15
|
Mendonca ML, Szamosi JC, Lacroix AM, Fontes ME, Bowdish DM, Surette MG. The sil Locus in Streptococcus Anginosus Group: Interspecies Competition and a Hotspot of Genetic Diversity. Front Microbiol 2017; 7:2156. [PMID: 28119678 PMCID: PMC5222867 DOI: 10.3389/fmicb.2016.02156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 12/21/2016] [Indexed: 01/09/2023] Open
Abstract
The Streptococcus Invasion Locus (Sil) was first described in Streptococcus pyogenes and Streptococcus pneumoniae, where it has been implicated in virulence. The two-component peptide signaling system consists of the SilA response regulator and SilB histidine kinase along with the SilCR signaling peptide and SilD/E export/processing proteins. The presence of an associated bacteriocin region suggests this system may play a role in competitive interactions with other microbes. Comparative analysis of 42 Streptococcus Anginosus/Milleri Group (SAG) genomes reveals this to be a hot spot for genomic variability. A cluster of bacteriocin/immunity genes is found adjacent to the sil system in most SAG isolates (typically 6–10 per strain). In addition, there were two distinct SilCR peptides identified in this group, denoted here as SilCRSAG-A and SilCRSAG-B, with corresponding alleles in silB. Our analysis of the 42 sil loci showed that SilCRSAG-A is only found in Streptococcus intermedius while all three species can carry SilCRSAG-B. In S. intermedius B196, a putative SilA operator is located upstream of bacteriocin gene clusters, implicating the sil system in regulation of microbe–microbe interactions at mucosal surfaces where the group resides. We demonstrate that S. intermedius B196 responds to its cognate SilCRSAG-A, and, less effectively, to SilCRSAG-B released by other Anginosus group members, to produce putative bacteriocins and inhibit the growth of a sensitive strain of S. constellatus.
Collapse
Affiliation(s)
- Michelle L Mendonca
- Department of Biochemistry and Biomedical Sciences, McMaster University, HamiltonON, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, HamiltonON, Canada
| | - Jake C Szamosi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton ON, Canada
| | - Anne-Marie Lacroix
- Department of Biochemistry and Biomedical Sciences, McMaster University, HamiltonON, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, HamiltonON, Canada
| | - Michelle E Fontes
- Department of Biochemistry and Biomedical Sciences, McMaster University, HamiltonON, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, HamiltonON, Canada
| | - Dawn M Bowdish
- Department of Pathology and Molecular Medicine, McMaster University, HamiltonON, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, HamiltonON, Canada
| | - Michael G Surette
- Department of Biochemistry and Biomedical Sciences, McMaster University, HamiltonON, Canada; Farncombe Family Digestive Health Research Institute, McMaster University, HamiltonON, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, HamiltonON, Canada; Department of Medicine, McMaster University, HamiltonON, Canada
| |
Collapse
|
16
|
Identification of a two-component Class IIb bacteriocin in Streptococcus pyogenes by recombinase-based in vivo expression technology. Sci Rep 2016; 6:36233. [PMID: 27808235 PMCID: PMC5093712 DOI: 10.1038/srep36233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 10/10/2016] [Indexed: 12/30/2022] Open
Abstract
Streptococcus pyogenes is a globally prominent bacterial pathogen that exhibits strict tropism for the human host, yet bacterial factors responsible for the ability of S. pyogenes to compete within this limited biological niche are not well understood. Using an engineered recombinase-based in vivo expression technology (RIVET) system, we identified an in vivo-induced promoter region upstream of a predicted Class IIb bacteriocin system in the M18 serotype S. pyogenes strain MGAS8232. This promoter element was not active under in vitro laboratory conditions, but was highly induced within the mouse nasopharynx. Recombinant expression of the predicted mature S. pyogenes bacteriocin peptides (designated SpbM and SpbN) revealed that both peptides were required for antimicrobial activity. Using a gain of function experiment in Lactococcus lactis, we further demonstrated S. pyogenes immunity function is encoded downstream of spbN. These data highlight the importance of bacterial gene regulation within appropriate environments to help understand mechanisms of niche adaptation by bacterial pathogens.
Collapse
|
17
|
de Steenhuijsen Piters WAA, Sanders EAM, Bogaert D. The role of the local microbial ecosystem in respiratory health and disease. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0294. [PMID: 26150660 DOI: 10.1098/rstb.2014.0294] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Respiratory tract infections are a major global health concern, accounting for high morbidity and mortality, especially in young children and elderly individuals. Traditionally, highly common bacterial respiratory tract infections, including otitis media and pneumonia, were thought to be caused by a limited number of pathogens including Streptococcus pneumoniae and Haemophilus influenzae. However, these pathogens are also frequently observed commensal residents of the upper respiratory tract (URT) and form-together with harmless commensal bacteria, viruses and fungi-intricate ecological networks, collectively known as the 'microbiome'. Analogous to the gut microbiome, the respiratory microbiome at equilibrium is thought to be beneficial to the host by priming the immune system and providing colonization resistance, while an imbalanced ecosystem might predispose to bacterial overgrowth and development of respiratory infections. We postulate that specific ecological perturbations of the bacterial communities in the URT can occur in response to various lifestyle or environmental effectors, leading to diminished colonization resistance, loss of containment of newly acquired or resident pathogens, preluding bacterial overgrowth, ultimately resulting in local or systemic bacterial infections. Here, we review the current body of literature regarding niche-specific upper respiratory microbiota profiles within human hosts and the changes occurring within these profiles that are associated with respiratory infections.
Collapse
Affiliation(s)
- Wouter A A de Steenhuijsen Piters
- Department of Paediatric Immunology and Infectious Diseases, The Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Elisabeth A M Sanders
- Department of Paediatric Immunology and Infectious Diseases, The Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, The Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
18
|
de Steenhuijsen Piters WAA, Sanders EAM, Bogaert D. The role of the local microbial ecosystem in respiratory health and disease. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140294. [PMID: 26150660 PMCID: PMC4528492 DOI: 10.1098/rstb.2014.0294;] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Respiratory tract infections are a major global health concern, accounting for high morbidity and mortality, especially in young children and elderly individuals. Traditionally, highly common bacterial respiratory tract infections, including otitis media and pneumonia, were thought to be caused by a limited number of pathogens including Streptococcus pneumoniae and Haemophilus influenzae. However, these pathogens are also frequently observed commensal residents of the upper respiratory tract (URT) and form-together with harmless commensal bacteria, viruses and fungi-intricate ecological networks, collectively known as the 'microbiome'. Analogous to the gut microbiome, the respiratory microbiome at equilibrium is thought to be beneficial to the host by priming the immune system and providing colonization resistance, while an imbalanced ecosystem might predispose to bacterial overgrowth and development of respiratory infections. We postulate that specific ecological perturbations of the bacterial communities in the URT can occur in response to various lifestyle or environmental effectors, leading to diminished colonization resistance, loss of containment of newly acquired or resident pathogens, preluding bacterial overgrowth, ultimately resulting in local or systemic bacterial infections. Here, we review the current body of literature regarding niche-specific upper respiratory microbiota profiles within human hosts and the changes occurring within these profiles that are associated with respiratory infections.
Collapse
Affiliation(s)
- Wouter A. A. de Steenhuijsen Piters
- Department of Paediatric Immunology and Infectious Diseases, The Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Elisabeth A. M. Sanders
- Department of Paediatric Immunology and Infectious Diseases, The Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands,Centre for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Debby Bogaert
- Department of Paediatric Immunology and Infectious Diseases, The Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands,e-mail:
| |
Collapse
|
19
|
Bessen DE, McShan WM, Nguyen SV, Shetty A, Agrawal S, Tettelin H. Molecular epidemiology and genomics of group A Streptococcus. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2015; 33:393-418. [PMID: 25460818 PMCID: PMC4416080 DOI: 10.1016/j.meegid.2014.10.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/11/2014] [Accepted: 10/13/2014] [Indexed: 12/15/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus; GAS) is a strict human pathogen with a very high prevalence worldwide. This review highlights the genetic organization of the species and the important ecological considerations that impact its evolution. Recent advances are presented on the topics of molecular epidemiology, population biology, molecular basis for genetic change, genome structure and genetic flux, phylogenomics and closely related streptococcal species, and the long- and short-term evolution of GAS. The application of whole genome sequence data to addressing key biological questions is discussed.
Collapse
Affiliation(s)
- Debra E Bessen
- Department of Microbiology & Immunology, New York Medical College, Valhalla, NY 10595, USA.
| | - W Michael McShan
- University of Oklahoma Health Sciences Center, Department of Pharmaceutical Sciences, College of Pharmacy, Oklahoma City, OK 73117, USA.
| | - Scott V Nguyen
- University of Oklahoma Health Sciences Center, Department of Pharmaceutical Sciences, College of Pharmacy, Oklahoma City, OK 73117, USA.
| | - Amol Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Sonia Agrawal
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Hervé Tettelin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
20
|
Baruch M, Hertzog BB, Ravins M, Youting CC, Hanski E. Group A streptococcus and host metabolism: virulence influences and potential treatments. Future Microbiol 2015; 9:713-6. [PMID: 25046517 DOI: 10.2217/fmb.14.39] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Moshe Baruch
- Dept. of Microbiology & Molecular Genetics, The Institute for Medical Research - Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem, Israel
| | | | | | | | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Increasing disease caused by beta-haemolytic streptococci indicates the need for improved understanding of pathogenesis. RECENT FINDINGS Streptococcus pyogenes, or group A Streptococcus (GAS), causes significant disease worldwide. The closely related Streptococcus dysgalactiae subspecies equisimilis (SDSE) is increasingly recognized as causing a similar disease spectrum. Whole-genome sequencing applied to the study of outbreaks may reveal factors that contribute to pathogenesis and changes in epidemiology. The role of quorum sensing in biofilm formation, and interspecies communication with other streptococci, is discussed. GAS has evolved multiple mechanisms to evade the humoral arm of innate immunity, including complement, which is well known in protecting the host from bacteria, and the coagulation-fibrinolytic system, which is increasingly recognized as an innate immune effector. SUMMARY Molecular biology has enhanced our understanding of the intricate balance of host-pathogen interactions that result in clearance or establishment of invasive streptococcal infection. Although the skin and oropharynx remain the usual ecological niche of GAS and SDSE, occasionally the bacteria find themselves within deeper tissues and blood. Recent research has armed us with better knowledge of bacterial adaptations to this alternative environment. However, the challenge is to translate this knowledge into clinical practice, through the development of novel therapeutic options and ultimately a vaccine against GAS.
Collapse
|
22
|
Jimenez JC, Federle MJ. Quorum sensing in group A Streptococcus. Front Cell Infect Microbiol 2014; 4:127. [PMID: 25309879 PMCID: PMC4162386 DOI: 10.3389/fcimb.2014.00127] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/26/2014] [Indexed: 01/05/2023] Open
Abstract
Quorum sensing (QS) is a widespread phenomenon in the microbial world that has important implications in the coordination of population-wide responses in several bacterial pathogens. In Group A Streptococcus (GAS), many questions surrounding QS systems remain to be solved pertaining to their function and their contribution to the GAS lifestyle in the host. The QS systems of GAS described to date can be categorized into four groups: regulator gene of glucosyltransferase (Rgg), Sil, lantibiotic systems, and LuxS/AI-2. The Rgg family of proteins, a conserved group of transcription factors that modify their activity in response to signaling peptides, has been shown to regulate genes involved in virulence, biofilm formation and competence. The sil locus, whose expression is regulated by the activity of signaling peptides and a putative two-component system (TCS), has been implicated on regulating genes involved with invasive disease in GAS isolates. Lantibiotic regulatory systems are involved in the production of bacteriocins and their autoregulation, and some of these genes have been shown to target both bacterial organisms as well as processes of survival inside the infected host. Finally AI-2 (dihydroxy pentanedione, DPD), synthesized by the LuxS enzyme in several bacteria including GAS, has been proposed to be a universal bacterial communication molecule. In this review we discuss the mechanisms of these four systems, the putative functions of their targets, and pose critical questions for future studies.
Collapse
Affiliation(s)
- Juan Cristobal Jimenez
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago Chicago, IL, USA
| | - Michael J Federle
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, College of Pharmacy, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
23
|
Miller EW, Cao TN, Pflughoeft KJ, Sumby P. RNA-mediated regulation in Gram-positive pathogens: an overview punctuated with examples from the group A Streptococcus. Mol Microbiol 2014; 94:9-20. [PMID: 25091277 DOI: 10.1111/mmi.12742] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2014] [Indexed: 11/29/2022]
Abstract
RNA-based mechanisms of regulation represent a ubiquitous class of regulators that are associated with diverse processes including nutrient sensing, stress response, modulation of horizontal gene transfer, and virulence factor expression. While better studied in Gram-negative bacteria, the literature is replete with examples of the importance of RNA-mediated regulatory mechanisms to the virulence and fitness of Gram-positives. Regulatory RNAs are classified as cis-acting, e.g. riboswitches, which modulate the transcription, translation, or stability of co-transcribed RNA, or trans-acting, e.g. small regulatory RNAs, which target separate mRNAs or proteins. The group A Streptococcus (GAS, Streptococcus pyogenes) is a Gram-positive bacterial pathogen from which several regulatory RNA mechanisms have been characterized. The study of RNA-mediated regulation in GAS has uncovered novel concepts with respect to how small regulatory RNAs may positively regulate target mRNA stability, and to how CRISPR RNAs are processed from longer precursors. This review provides an overview of RNA-mediated regulation in Gram-positive bacteria, and is highlighted with specific examples from GAS research. The key roles that these systems play in regulating bacterial virulence are discussed and future perspectives outlined.
Collapse
Affiliation(s)
- Eric W Miller
- Center for Molecular Medicine, Department of Microbiology & Immunology, University of Nevada, School of Medicine, Reno, NV, USA
| | | | | | | |
Collapse
|
24
|
Baruch M, Hertzog BB, Ravins M, Anand A, Cheng CY, Biswas D, Tirosh B, Hanski E. Induction of endoplasmic reticulum stress and unfolded protein response constitutes a pathogenic strategy of group A streptococcus. Front Cell Infect Microbiol 2014; 4:105. [PMID: 25136516 PMCID: PMC4120759 DOI: 10.3389/fcimb.2014.00105] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/14/2014] [Indexed: 11/30/2022] Open
Abstract
The connection between bacterial pathogens and unfolded protein response (UPR) is poorly explored. In this review we highlight the evidence showing that group A streptococcus (GAS) induces endoplasmic reticulum (ER) stress and UPR through which it captures the amino acid asparagine (ASN) from the host. GAS acts extracellularly and during adherence to host cells it delivers the hemolysin toxins; streptolysin O (SLO) and streptolysin S (SLS). By poorly understood pathways, these toxins trigger UPR leading to the induction of the transcriptional regulator ATF4 and consequently to the upregulation of asparagine synthetase (ASNS) transcription leading to production and release of ASN. GAS senses ASN and alters gene expression profile accordingly, and increases the rate of multiplication. We suggest that induction of UPR by GAS and by other bacterial pathogens represent means through which bacterial pathogens gain nutrients from the host, obviating the need to become internalized or inflict irreversible cell damage.
Collapse
Affiliation(s)
- Moshe Baruch
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem (HUJI) Jerusalem, Israel
| | - Baruch B Hertzog
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem (HUJI) Jerusalem, Israel
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem (HUJI) Jerusalem, Israel
| | - Aparna Anand
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem (HUJI) Jerusalem, Israel
| | - Catherine Youting Cheng
- Department of Microbiology, Center for Research Excellence and Technological Enterprise (CREATE), National University of Singapore (NUS) and NUS-HUJI Singapore
| | - Debabrata Biswas
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem (HUJI) Jerusalem, Israel ; Department of Microbiology, Center for Research Excellence and Technological Enterprise (CREATE), National University of Singapore (NUS) and NUS-HUJI Singapore
| | - Boaz Tirosh
- The School of Pharmacy, Institute for Drug Research, The Hebrew University of Jerusalem Jerusalem, Israel
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Hebrew University of Jerusalem (HUJI) Jerusalem, Israel ; Department of Microbiology, Center for Research Excellence and Technological Enterprise (CREATE), National University of Singapore (NUS) and NUS-HUJI Singapore
| |
Collapse
|
25
|
Campbell-Valois FX, Sansonetti PJ. Tracking bacterial pathogens with genetically-encoded reporters. FEBS Lett 2014; 588:2428-36. [PMID: 24859085 DOI: 10.1016/j.febslet.2014.05.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 05/12/2014] [Indexed: 11/15/2022]
Abstract
During the infectious process, bacterial pathogens are subject to changes in environmental conditions such as nutrient availability, immune response challenges, bacterial density and physical contacts with targeted host cells. These conditions occur in the colonized organs, in diverse regions within infected tissues or even at the subcellular level for intracellular pathogens. Integration of environmental cues leads to measurable biological responses in the bacterium required for adaptation. Recent progress in technology enabled the study of bacterial adaptation in situ using genetically encoded reporters that allow single cell analysis or whole body imaging based on fluorescent proteins, alternative fluorescent assays or luciferases. This review presents a historical perspective and technical details on the methods used to develop transcriptional reporters, protein-protein interaction assays and secretion detection assays to study pathogenic bacteria adaptation in situ. Finally, studies published in the last 5 years on gram positive and gram negative bacterial adaptation to the host during infection are discussed. However, the methods described here could easily be extended to study complex microbial communities within host tissue and in the environment.
Collapse
Affiliation(s)
- F-X Campbell-Valois
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 25-28 rue du Docteur-Roux, 75724 Paris, France; INSERM, U786, 75015 Paris, France
| | - Philippe J Sansonetti
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, 25-28 rue du Docteur-Roux, 75724 Paris, France; INSERM, U786, 75015 Paris, France; Collège de France, Chaire de Microbiologie et Maladies infectieuses, 11 Place Marcelin Berthelot, 75005 Paris, France.
| |
Collapse
|
26
|
Baruch M, Belotserkovsky I, Hertzog BB, Ravins M, Dov E, McIver KS, Le Breton YS, Zhou Y, Cheng CY, Chen CY, Hanski E. An extracellular bacterial pathogen modulates host metabolism to regulate its own sensing and proliferation. Cell 2014; 156:97-108. [PMID: 24439371 DOI: 10.1016/j.cell.2013.12.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 09/16/2013] [Accepted: 11/15/2013] [Indexed: 01/10/2023]
Abstract
Successful infection depends on the ability of the pathogen to gain nutrients from the host. The extracellular pathogenic bacterium group A Streptococcus (GAS) causes a vast array of human diseases. By using the quorum-sensing sil system as a reporter, we found that, during adherence to host cells, GAS delivers streptolysin toxins, creating endoplasmic reticulum stress. This, in turn, increases asparagine (ASN) synthetase expression and the production of ASN. The released ASN is sensed by the bacteria, altering the expression of ∼17% of GAS genes of which about one-third are dependent on the two-component system TrxSR. The expression of the streptolysin toxins is strongly upregulated, whereas genes linked to proliferation are downregulated in ASN absence. Asparaginase, a widely used chemotherapeutic agent, arrests GAS growth in human blood and blocks GAS proliferation in a mouse model of human bacteremia. These results delineate a pathogenic pathway and propose a therapeutic strategy against GAS infections.
Collapse
Affiliation(s)
- Moshe Baruch
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
| | - Ilia Belotserkovsky
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
| | - Baruch B Hertzog
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
| | - Eran Dov
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel
| | - Kevin S McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institut, University of Maryland, College Park, MD 20742, USA
| | - Yoann S Le Breton
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institut, University of Maryland, College Park, MD 20742, USA
| | - Yiting Zhou
- Mechanism of Inflammation Program, Center for Research Excellence & Technological Enterprise (CREATE), National University of Singapore and The Hebrew University of Jerusalem (HUJI), Singapore 138602, Singapore
| | - Catherine Youting Cheng
- Mechanism of Inflammation Program, Center for Research Excellence & Technological Enterprise (CREATE), National University of Singapore and The Hebrew University of Jerusalem (HUJI), Singapore 138602, Singapore
| | | | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 91120, Israel; Mechanism of Inflammation Program, Center for Research Excellence & Technological Enterprise (CREATE), National University of Singapore and The Hebrew University of Jerusalem (HUJI), Singapore 138602, Singapore.
| |
Collapse
|
27
|
Molecular epidemiology of sil locus in clinical Streptococcus pyogenes strains. J Clin Microbiol 2014; 52:2003-10. [PMID: 24671796 DOI: 10.1128/jcm.00290-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Streptococcus pyogenes (group A Streptococcus [GAS]) causes a wide variety of diseases, ranging from mild noninvasive to severe invasive infections. Mutations in regulatory components have been implicated in the switch from colonization to invasive phenotypes. The inactivation of the sil locus, composed of six genes encoding a quorum-sensing complex, gives rise to a highly invasive strain. However, studies conducted on limited collections of GAS strains suggested that sil prevalence is around 15%; furthermore, whereas a correlation between the presence of sil and the genetic background was suggested, no link between the presence of a functional sil locus and the invasive status was assessed. We established a collection of 637 nonredundant strains covering all emm genotypes present in France and of known clinical history; 68%, 22%, and 10% were from invasive infections, noninvasive infections, and asymptomatic carriage, respectively. Among the 637 strains, 206 were sil positive. The prevalence of the sil locus varied according to the emm genotype, being present in >85% of the emm4, emm18, emm32, emm60, emm87, and emm90 strains and absent from all emm1, emm28, and emm89 strains. A random selection based on 2009 French epidemiological data indicated that 16% of GAS strains are sil positive. Moreover, due to mutations leading to truncated proteins, only 9% of GAS strains harbor a predicted functional sil system. No correlation was observed between the presence or absence of a functional sil locus and the strain invasiveness status.
Collapse
|
28
|
Cook LC, Federle MJ. Peptide pheromone signaling in Streptococcus and Enterococcus. FEMS Microbiol Rev 2013; 38:473-92. [PMID: 24118108 DOI: 10.1111/1574-6976.12046] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 01/08/2023] Open
Abstract
Intercellular chemical signaling in bacteria, commonly referred to as quorum sensing (QS), relies on the production and detection of compounds known as pheromones to elicit coordinated responses among members of a community. Pheromones produced by Gram-positive bacteria are comprised of small peptides. Based on both peptide structure and sensory system architectures, Gram-positive bacterial signaling pathways may be classified into one of four groups with a defining hallmark: cyclical peptides of the Agr type, peptides that contain Gly-Gly processing motifs, sensory systems of the RNPP family, or the recently characterized Rgg-like regulatory family. The recent discovery that Rgg family members respond to peptide pheromones increases substantially the number of species in which QS is likely a key regulatory component. These pathways control a variety of fundamental behaviors including conjugation, natural competence for transformation, biofilm development, and virulence factor regulation. Overlapping QS pathways found in multiple species and pathways that utilize conserved peptide pheromones provide opportunities for interspecies communication. Here we review pheromone signaling identified in the genera Enterococcus and Streptococcus, providing examples of all four types of pathways.
Collapse
Affiliation(s)
- Laura C Cook
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
29
|
Characterization of sil in invasive group A and G streptococci: antibodies against bacterial pheromone peptide SilCR result in severe infection. Infect Immun 2013; 81:4121-7. [PMID: 23980111 DOI: 10.1128/iai.00359-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Group G beta-hemolytic streptococcus (GGS) strains cause severe invasive infections, mostly in patients with comorbidities. GGS is known to possess virulence factors similar to those of its more virulent counterpart group A streptococcus (GAS). A streptococcal invasion locus, sil, was identified in GAS. sil encodes a competence-stimulating peptide named SilCR that activates bacterial quorum sensing and has the ability to attenuate virulence in GAS infections. We found that sil is present in most GGS strains (82%) but in only 25% of GAS strains, with a similar gene arrangement. GGS strains that contained sil expressed the SilCR peptide and secreted it into the growth medium. In a modified murine model of GGS soft tissue infection, GGS grown in the presence of SilCR caused a milder disease than GGS grown in the absence of SilCR. To further study the role of the peptide in bacterial virulence attenuation, we vaccinated mice with SilCR to produce specific anti-SilCR antibodies. Vaccinated mice developed a significantly more severe illness than nonvaccinated mice. Our results indicate that the sil locus is much more prevalent among the less virulent GGS strains than among GAS strains. GGS strains express and secrete SilCR, which has a role in attenuation of virulence in a murine model. We show that the SilCR peptide can protect mice from infection caused by GGS. Furthermore, vaccinated mice that produce specific anti-SilCR antibodies develop a significantly more severe infection. To our knowledge, this is a novel report demonstrating that specific antibodies against a bacterial component cause more severe infection by those bacteria.
Collapse
|
30
|
Gray B, Hall P, Gresham H. Targeting agr- and agr-Like quorum sensing systems for development of common therapeutics to treat multiple gram-positive bacterial infections. SENSORS 2013; 13:5130-66. [PMID: 23598501 PMCID: PMC3673130 DOI: 10.3390/s130405130] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/06/2013] [Accepted: 04/12/2013] [Indexed: 12/13/2022]
Abstract
Invasive infection by the Gram-positive pathogen Staphylococcus aureus is controlled by a four gene operon, agr that encodes a quorum sensing system for the regulation of virulence. While agr has been well studied in S. aureus, the contribution of agr homologues and analogues in other Gram-positive pathogens is just beginning to be understood. Intriguingly, other significant human pathogens, including Clostridium perfringens, Listeria monocytogenes, and Enterococcus faecalis contain agr or analogues linked to virulence. Moreover, other significant human Gram-positive pathogens use peptide based quorum sensing systems to establish or maintain infection. The potential for commonality in aspects of these signaling systems across different species raises the prospect of identifying therapeutics that could target multiple pathogens. Here, we review the status of research into these agr homologues, analogues, and other peptide based quorum sensing systems in Gram-positive pathogens as well as the potential for identifying common pathways and signaling mechanisms for therapeutic discovery.
Collapse
Affiliation(s)
- Brian Gray
- Department of Pharmaceutical Sciences, College of Pharmacy/MRF 208, MSC09 5360, University of New Mexico, Albuquerque, NM 87131-0001, USA; E-Mail:
- Research Service, New Mexico Veterans Affairs Medical Center, Albuquerque, NM 87108, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-505-265-1711 (ext. 2841)
| | - Pamela Hall
- Department of Pharmaceutical Sciences, College of Pharmacy/MRF 208, MSC09 5360, University of New Mexico, Albuquerque, NM 87131-0001, USA; E-Mail:
- Research Service, New Mexico Veterans Affairs Medical Center, Albuquerque, NM 87108, USA
| | - Hattie Gresham
- Research Service, New Mexico Veterans Affairs Medical Center, Albuquerque, NM 87108, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of New Mexico, Albuquerque, NM 87131, USA; E-Mail:
| |
Collapse
|
31
|
Gebhard S. ABC transporters of antimicrobial peptides in Firmicutes bacteria - phylogeny, function and regulation. Mol Microbiol 2012; 86:1295-317. [PMID: 23106164 DOI: 10.1111/mmi.12078] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2012] [Indexed: 11/29/2022]
Abstract
Antimicrobial peptides (AMPs) are a group of antibiotics that mainly target the cell wall of Gram-positive bacteria. Resistance is achieved by a variety of mechanisms including target alterations, changes in the cell's surface charge, expression of immunity peptides or by dedicated ABC transporters. The latter often provide the greatest level of protection. Apart from resistance, ABC transporters are also required for the export of peptides during biosynthesis. In this review the different AMP transporters identified to date in Firmicutes bacteria were classified into five distinct groups based on their domain architecture, two groups with a role in biosynthesis, and three involved in resistance. Comparison of the available information for each group regarding function, transport mechanism and gene regulation revealed distinguishing characteristics as well as common traits. For example, a strong correlation between transporter group and mode of gene regulation was observed, with three different types of two-component systems as well as XRE family transcriptional regulators commonly associated with individual transporter groups. Furthermore, the presented summary of the state-of-the-art on AMP transport in Firmicutes bacteria, discussed in the context of transporter phylogeny, provides insights into the mechanisms of substrate translocation and how this may result in resistance against compounds that bind extracellular targets.
Collapse
Affiliation(s)
- Susanne Gebhard
- Ludwig-Maximilians-Universität München, Department Biology I, Microbiology, Grosshaderner Str. 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
32
|
Burkholderia xenovorans RcoM(Bx)-1, a transcriptional regulator system for sensing low and persistent levels of carbon monoxide. J Bacteriol 2012; 194:5803-16. [PMID: 22923594 DOI: 10.1128/jb.01024-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The single-component RcoM transcription factor couples an N-terminally bound heme cofactor with a C-terminal "LytTR" DNA-binding domain. Here the RcoM(Bx)-1 protein from Burkholderia xenovorans LB400 was heterologously expressed and then purified in a form with minimal bound CO (~10%) and was found to stably bind this effector with a nanomolar affinity. DNase I protection assays demonstrated that the CO-associated form binds with a micromolar affinity to two ~60-bp DNA regions, each comprised of a novel set of three direct-repeat binding sites spaced 21 bp apart on center. Binding to each region was independent, while binding to the triplet binding sites within a region was cooperative, depended upon spacing and sequence, and was marked by phased DNase I hyperactivity and protection patterns consistent with considerable changes in the DNA conformation of the nucleoprotein complex. Each protected binding site spanned a conserved motif (5'-TTnnnG-3') that was present, in triplicate, in putative RcoM-binding regions of more than a dozen organisms. In vivo screens confirmed the functional importance of the conserved "TTnnnG" motif residues and their triplet arrangement and were also used to determine an improved binding motif [5'-CnnC(C/A)(G/A)TTCAnG-3'] that more closely corresponds to canonical LytTR domain/DNA-binding sites. A low-affinity but CO-dependent binding of RcoM(Bx)-1 to a variety of DNA probes was demonstrated in vitro. We posit that for the RcoM(Bx)-1 protein, the high CO affinity combined with multiple low-affinity DNA-binding events constitutes a transcriptional "accumulating switch" that senses low but persistent CO levels.
Collapse
|
33
|
The cryptic competence pathway in Streptococcus pyogenes is controlled by a peptide pheromone. J Bacteriol 2012; 194:4589-600. [PMID: 22730123 DOI: 10.1128/jb.00830-12] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Horizontal gene transfer is an important means of bacterial evolution that is facilitated by transduction, conjugation, and natural genetic transformation. Transformation occurs after bacterial cells enter a state of competence, where naked DNA is acquired from the extracellular environment. Induction of the competent state relies on signals that activate master regulators, causing the expression of genes involved in DNA uptake, processing, and recombination. All streptococcal species contain the master regulator SigX and SigX-dependent effector genes required for natural genetic transformation; however, not all streptococcal species have been shown to be naturally competent. We recently demonstrated that competence development in Streptococcus mutans requires the type II ComRS quorum-sensing circuit, comprising an Rgg transcriptional activator and a novel peptide pheromone (L. Mashburn-Warren, D. A. Morrison, and M. J. Federle, Mol. Microbiol. 78:589-606, 2010). The type II ComRS system is shared by the pyogenic, mutans, and bovis streptococci, including the clinically relevant pathogen Streptococcus pyogenes. Here, we describe the activation of sigX by a small-peptide pheromone and an Rgg regulator of the type II ComRS class. We confirm previous reports that SigX is functional and able to activate sigX-dependent gene expression within the competence regulon, and that SigX stability is influenced by the cytoplasmic protease ClpP. Genomic analyses of available S. pyogenes genomes revealed the presence of intact genes within the competence regulon. While this is the first report to show natural induction of sigX, S. pyogenes remained nontransformable under laboratory conditions. Using radiolabeled DNA, we demonstrate that transformation is blocked at the stage of DNA uptake.
Collapse
|
34
|
Two group A streptococcal peptide pheromones act through opposing Rgg regulators to control biofilm development. PLoS Pathog 2011; 7:e1002190. [PMID: 21829369 PMCID: PMC3150281 DOI: 10.1371/journal.ppat.1002190] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 06/21/2011] [Indexed: 11/19/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) is an important human commensal that occasionally causes localized infections and less frequently causes severe invasive disease with high mortality rates. How GAS regulates expression of factors used to colonize the host and avoid immune responses remains poorly understood. Intercellular communication is an important means by which bacteria coordinate gene expression to defend against host assaults and competing bacteria, yet no conserved cell-to-cell signaling system has been elucidated in GAS. Encoded within the GAS genome are four rgg-like genes, two of which (rgg2 and rgg3) have no previously described function. We tested the hypothesis that rgg2 or rgg3 rely on extracellular peptides to control target-gene regulation. We found that Rgg2 and Rgg3 together tightly regulate two linked genes encoding new peptide pheromones. Rgg2 activates transcription of and is required for full induction of the pheromone genes, while Rgg3 plays an antagonistic role and represses pheromone expression. The active pheromone signals, termed SHP2 and SHP3, are short and hydrophobic (DI[I/L]IIVGG), and, though highly similar in sequence, their ability to disrupt Rgg3-DNA complexes were observed to be different, indicating that specificity and differential activation of promoters are characteristics of the Rgg2/3 regulatory circuit. SHP-pheromone signaling requires an intact oligopeptide permease (opp) and a metalloprotease (eep), supporting the model that pro-peptides are secreted, processed to the mature form, and subsequently imported to the cytoplasm to interact directly with the Rgg receptors. At least one consequence of pheromone stimulation of the Rgg2/3 pathway is increased biogenesis of biofilms, which counteracts negative regulation of biofilms by RopB (Rgg1). These data provide the first demonstration that Rgg-dependent quorum sensing functions in GAS and substantiate the role that Rggs play as peptide receptors across the Firmicute phylum.
Collapse
|
35
|
Chawla A, Hirano T, Bainbridge BW, Demuth DR, Xie H, Lamont RJ. Community signalling between Streptococcus gordonii and Porphyromonas gingivalis is controlled by the transcriptional regulator CdhR. Mol Microbiol 2010; 78:1510-22. [PMID: 21143321 DOI: 10.1111/j.1365-2958.2010.07420.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interspecies signalling between Porphyromonas gingivalis and Streptococcus gordonii serves to constrain development of dual species communities. Contact with S. gordonii propagates a tyrosine phosphorylation-dependent signal within P. gingivalis that culminates in reduced transcription of adhesin and signalling genes. Here we demonstrate the involvement of the P. gingivalis orphan LuxR family transcription factor PGN_1373, which we designate CdhR, in this control pathway. Expression of cdhR is elevated following contact with S. gordonii; however, regulation of cdhR did not occur in a mutant lacking the tyrosine phosphatase Ltp1, indicating that CdhR and Ltp1 are components of the same regulon. Contact between S. gordonii and a CdhR mutant resulted in increased transcription of mfa, encoding the subunit of the short fimbriae, along with higher levels of Mfa protein. Expression of luxS, encoding AI-2 synthase, was also increased in the cdhR mutant after contact with S. gordonii. The Mfa adhesive function and AI-2-dependent signalling participate in the formation and development of dual species communities, and consistent with this the cdhR mutant displayed elevated accumulation on a substratum of S. gordonii. Recombinant CdhR protein bound to upstream regulatory regions of both mfa and luxS, indicating that CdhR has a direct effect on gene expression. LuxS was also found to participate in a positive feedback loop that suppresses CdhR expression. Interaction of Mfa fimbriae with S. gordonii is necessary to initiate signalling through CdhR. These results reveal CdhR to be an effector molecule in a negative regulatory network that controls P. gingivalis-S. gordonii heterotypic communities.
Collapse
Affiliation(s)
- Aarti Chawla
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | | | | | | | | |
Collapse
|