1
|
Stannard HL, Mifsud EJ, Wildum S, Brown SK, Koszalka P, Shishido T, Kojima S, Omoto S, Baba K, Kuhlbusch K, Hurt AC, Barr IG. Assessing the fitness of a dual-antiviral drug resistant human influenza virus in the ferret model. Commun Biol 2022; 5:1026. [PMID: 36171475 PMCID: PMC9517990 DOI: 10.1038/s42003-022-04005-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/15/2022] [Indexed: 11/08/2022] Open
Abstract
Influenza antivirals are important tools in our fight against annual influenza epidemics and future influenza pandemics. Combinations of antivirals may reduce the likelihood of drug resistance and improve clinical outcomes. Previously, two hospitalised immunocompromised influenza patients, who received a combination of a neuraminidase inhibitor and baloxavir marboxil, shed influenza viruses resistant to both drugs. Here-in, the replicative fitness of one of these A(H1N1)pdm09 virus isolates with dual resistance mutations (NA-H275Y and PA-I38T) was similar to wild type virus (WT) in vitro, but reduced in the upper respiratory tracts of challenged ferrets. The dual-mutant virus transmitted well between ferrets in an airborne transmission model, but was outcompeted by the WT when the two viruses were co-administered. These results indicate the dual-mutant virus had a moderate loss of viral fitness compared to the WT virus, suggesting that while person-to-person transmission of the dual-resistant virus may be possible, widespread community transmission is unlikely.
Collapse
Affiliation(s)
- Harry L Stannard
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Edin J Mifsud
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | - Sook Kwan Brown
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Paulina Koszalka
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | | | | | | | | | | | | | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
2
|
Predicting Permissive Mutations That Improve the Fitness of A(H1N1)pdm09 Viruses Bearing the H275Y Neuraminidase Substitution. J Virol 2022; 96:e0091822. [PMID: 35867563 PMCID: PMC9364793 DOI: 10.1128/jvi.00918-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Oseltamivir-resistant influenza viruses arise due to amino acid mutations in key residues of the viral neuraminidase (NA). These changes often come at a fitness cost; however, it is known that permissive mutations in the viral NA can overcome this cost. This result was observed in former seasonal A(H1N1) viruses in 2007 which expressed the H275Y substitution (N1 numbering) with no apparent fitness cost and lead to widespread oseltamivir resistance. Therefore, this study aims to predict permissive mutations that may similarly enable fit H275Y variants to arise in currently circulating A(H1N1)pdm09 viruses. The first approach in this study utilized in silico analyses to predict potentially permissive mutations. The second approach involved the generation of a virus library which encompassed all possible NA mutations while keeping H275Y fixed. Fit variants were then selected by serially passaging the virus library either through ferrets by transmission or passaging once in vitro. The fitness impact of selected substitutions was further evaluated experimentally. The computational approach predicted three candidate permissive NA mutations which, in combination with each other, restored the replicative fitness of an H275Y variant. The second approach identified a stringent bottleneck during transmission between ferrets; however, three further substitutions were identified which may improve transmissibility. A comparison of fit H275Y variants in vitro and in experimentally infected animals showed a statistically significant correlation in the variants that were positively selected. Overall, this study provides valuable tools and insights into potential permissive mutations that may facilitate the emergence of a fit H275Y A(H1N1)pdm09 variant. IMPORTANCE Oseltamivir (Tamiflu) is the most widely used antiviral for the treatment of influenza infections. Therefore, resistance to oseltamivir is a public health concern. This study is important as it explores the different evolutionary pathways available to current circulating influenza viruses that may lead to widespread oseltamivir resistance. Specifically, this study develops valuable experimental and computational tools to evaluate the fitness landscape of circulating A(H1N1)pmd09 influenza viruses bearing the H275Y mutation. The H275Y substitution is most commonly reported to confer oseltamivir resistance but also leads to loss of virus replication and transmission fitness, which limits its spread. However, it is known from previous influenza seasons that influenza viruses can evolve to overcome this loss of fitness. Therefore, this study aims to prospectively predict how contemporary A(H1N1)pmd09 influenza viruses may evolve to overcome the fitness cost of bearing the H275Y NA substitution, which could result in widespread oseltamivir resistance.
Collapse
|
3
|
Eurasian Avian-like M1 Plays More Important Role than M2 in Pathogenicity of 2009 Pandemic H1N1 Influenza Virus in Mice. Viruses 2021; 13:v13122335. [PMID: 34960604 PMCID: PMC8707482 DOI: 10.3390/v13122335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/13/2021] [Accepted: 11/19/2021] [Indexed: 12/04/2022] Open
Abstract
Reassortant variant viruses generated between 2009 H1N1 pandemic influenza virus [A(H1N1)pdm09] and endemic swine influenza viruses posed a potential risk to humans. Surprisingly, genetic analysis showed that almost all of these variant viruses contained the M segment from A(H1N1)pdm09, which originated from Eurasian avian-like swine influenza viruses. Studies have shown that the A(H1N1)pdm09 M gene is critical for the transmissibility and pathogenicity of the variant viruses. However, the M gene encodes two proteins, M1 and M2, and which of those plays a more important role in virus pathogenicity remains unknown. In this study, the M1 and M2 genes of A(H1N1)pdm09 were replaced with those of endemic H3N2 swine influenza virus, respectively. The chimeric viruses were rescued and evaluated in vitro and in mice. Both M1 and M2 of H3N2 affected the virus replication in vitro. In mice, the introduction of H3N2 M1 attenuated the chimeric virus, where all the mice survived from the infection, compared with the wild type virus that caused 100 % mortality. However, the chimeric virus containing H3N2 M2 was still virulent to mice, and caused 16.6% mortality, as well as similar body weight loss to the wild type virus infected group. Compared with the wild type virus, the chimeric virus containing H3N2 M1 induced lower levels of inflammatory cytokines and higher levels of anti-inflammatory cytokines, whereas the chimeric virus containing H3N2 M2 induced substantial pro-inflammatory responses, but higher levels of anti-inflammatory cytokines. The study demonstrated that Eurasian avian-like M1 played a more important role than M2 in the pathogenicity of A(H1N1)pdm09 in mice.
Collapse
|
4
|
Saito M, Itoh Y, Yasui F, Munakata T, Yamane D, Ozawa M, Ito R, Katoh T, Ishigaki H, Nakayama M, Shichinohe S, Yamaji K, Yamamoto N, Ikejiri A, Honda T, Sanada T, Sakoda Y, Kida H, Le TQM, Kawaoka Y, Ogasawara K, Tsukiyama-Kohara K, Suga H, Kohara M. Macrocyclic peptides exhibit antiviral effects against influenza virus HA and prevent pneumonia in animal models. Nat Commun 2021; 12:2654. [PMID: 33976181 PMCID: PMC8113231 DOI: 10.1038/s41467-021-22964-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/06/2021] [Indexed: 12/20/2022] Open
Abstract
Most anti-influenza drugs currently used, such as oseltamivir and zanamivir, inhibit the enzymatic activity of neuraminidase. However, neuraminidase inhibitor-resistant viruses have already been identified from various influenza virus isolates. Here, we report the development of a class of macrocyclic peptides that bind the influenza viral envelope protein hemagglutinin, named iHA. Of 28 iHAs examined, iHA-24 and iHA-100 have inhibitory effects on the in vitro replication of a wide range of Group 1 influenza viruses. In particular, iHA-100 bifunctionally inhibits hemagglutinin-mediated adsorption and membrane fusion through binding to the stalk domain of hemagglutinin. Moreover, iHA-100 shows powerful efficacy in inhibiting the growth of highly pathogenic influenza viruses and preventing severe pneumonia at later stages of infection in mouse and non-human primate cynomolgus macaque models. This study shows the potential for developing cyclic peptides that can be produced more efficiently than antibodies and have multiple functions as next-generation, mid-sized biomolecules.
Collapse
Affiliation(s)
- Makoto Saito
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, Japan
| | - Fumihiko Yasui
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Tsubasa Munakata
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Daisuke Yamane
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Makoto Ozawa
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Risa Ito
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takayuki Katoh
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hirohito Ishigaki
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, Japan
| | - Misako Nakayama
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, Japan
| | - Shintaro Shichinohe
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, Japan
| | - Kenzaburo Yamaji
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Naoki Yamamoto
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Ai Ikejiri
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Tomoko Honda
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Takahiro Sanada
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Kida
- Hokkaido University Research Center for Zoonosis Control, Sapporo, Japan
| | | | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kazumasa Ogasawara
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan.
| |
Collapse
|
5
|
Wang HX, Zeng MS, Ye Y, Liu JY, Xu PP. Antiviral activity of puerarin as potent inhibitor of influenza virus neuraminidase. Phytother Res 2020; 35:324-336. [PMID: 32757226 DOI: 10.1002/ptr.6803] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
Puerarin is a major isofiavone compound isolated from the root of Pueraria lobata. It was reported that puerarin had antioxidant, antiinflammatory, antitumor, cholesterol lowering, liver protective, and neuroprotective properties. However, few studies have explored the antiviral effect of puerarin and its target mechanism related to influenza virus. Here, the antiinfluenza activity of puerarin in vitro and in vivo and its mode of action on the potential inhibition of neuraminidase (NA) were investigated. Puerarin displayed an inhibitory effect on A/FM/1/1947(H1N1) (EC50 = 52.06 μM). An indirect immunofluorescence assay indicated that puerarin blocked the nuclear export of viral NP. The inhibition of NA activity confirmed that puerarin can block the release of newly formed virus particles from infected cells. Puerarin (100 and 200 mg/kg/d) exhibited effective antiviral activity in mice, conferring 50% and 70% protection from death against H1N1, reducing virus titers, and effectively alleviating inflammation in the lungs. The molecular docking results showed that puerarin had a strong binding affinity with NA from H1N1. The results of the molecular dynamics simulation revealed that puerarin had higher stable binding at the 150-loop region of the NA protein. These results demonstrated that puerarin acts as a NA blocker to inhibit influenza A virus both in cellular and animal models. Thus, puerarin has potential utility for the treatment of the influenza virus infection.
Collapse
Affiliation(s)
- Hui-Xian Wang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mao-Sen Zeng
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Ye
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin-Yuan Liu
- Basic Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pei-Ping Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Differential Viral-Host Immune Interactions Associated with Oseltamivir-Resistant H275Y and Wild-Type H1N1 A(pdm09) Influenza Virus Pathogenicity. Viruses 2020; 12:v12080794. [PMID: 32721992 PMCID: PMC7472233 DOI: 10.3390/v12080794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 12/26/2022] Open
Abstract
Oseltamivir is a common therapy against influenza A virus (IAV) infections. The acquisition of oseltamivir resistance (OR) mutations, such as H275Y, hampers viral fitness. However, OR H1N1 viruses have demonstrated the ability to spread throughout different populations. The objective of this work was to compare the fitness of two strains of OR (R6 and R7) containing the H275Y mutation, and a wild-type (F) pandemic influenza A (H1N1) 2009 (pdm09) virus both in vitro and in vivo in mice and to select one OR strain for a comparison with F in ferrets. R6 showed faster replication and pathogenicity than R7 in vitro and in mice. Subsequently, R6 was selected for the fitness comparison with the F strain in ferrets. Ferrets infected with the F virus showed more severe clinical signs, histopathological lung lesions, and viral quantification when compared to OR R6-infected animals. More importantly, differential viral kinetics correlated with differential pro-inflammatory host immune responses in the lungs of infected ferrets, where OR-infected animals developed a protective higher expression of type I IFN and Retinoid acid Inducible Gene I (RIG-I) genes early after infection, resulting in the development of milder disease. These results suggest the presence of early specific viral-host immune interactions relevant in the development of influenza-associated lung pathology.
Collapse
|
7
|
Arikata M, Itoh Y, Shichinohe S, Nakayama M, Ishigaki H, Kinoshita T, Le MQ, Kawaoka Y, Ogasawara K, Shimizu T. Efficacy of clarithromycin against H5N1 and H7N9 avian influenza a virus infection in cynomolgus monkeys. Antiviral Res 2019; 171:104591. [DOI: 10.1016/j.antiviral.2019.104591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022]
|
8
|
Polygalasaponin F treats mice with pneumonia induced by influenza virus. Inflammopharmacology 2019; 28:299-310. [PMID: 31446589 PMCID: PMC7102181 DOI: 10.1007/s10787-019-00633-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/13/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Influenza is an acute viral respiratory illness that causes high morbidity and mortality globally. Therapeutic actions are limited to vaccines and a few anti-viral drugs. Polygala (P.) japonica herba is rich in Polygalasaponin F (PSF, C53H86O23), used for acute bronchitis, pharyngitis, pneumonia, amygdalitis, and respiratory tract infections treatment in China. Hypercytokinemia is often correlated with severe pneumonia caused by several influenza viruses. PSF was reported to have anti-inflammatory effects and its mechanism is associated with the nuclear factor (NF)-κB signaling pathway. The action of PSF to alleviate pulmonary inflammation caused by influenza A virus (IAV) infection requires careful assessment. In the present study, we evaluated the effect and mechanism of PSF on mice with pneumonia caused by influenza H1N1 (A/FM/1/47). METHODS Mice were infected intranasally with fifteen 50% mouse lethal challenge doses (MLD50) of influenza virus. BALB/c mice were treated with PSF or oseltamivir (oral administration) for 2 h post-infection and received concomitant treatment for 5 days after infection. On day 6 post-infection, 10 mice per group were killed to collect related samples, measure body weight and lung wet weight, and detect the viral load, cytokine, prostaglandins, pathological changes, and cell pathway protein expression in the lungs. In addition, the survival experiments were carried out to investigate the survival of mice. The expression profile of cell pathway proteins was detected and analyzed using a broad pathway antibody array and confirmed the findings from the array by western blotting. RESULTS Polygalasaponin F and oseltamivir can protect against influenza viral infection in mice. PSF and oseltamivir significantly relieved the signs and symptoms, reduced body weight loss, and improved the survival rate of H1N1-infected mice. Moreover, PSF efficiently decreased the level of interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-4, interferon (IFN)-γ, thromboxane A2 (TXA2), and prostaglandin E2 (PGE2) in lung tissues of mice infected with influenza virus (p < 0.05-0.01). Oseltamivir had a similar effect to lung cytokine of PSF, but did not decrease the levels of TXA2 and PGE2. There was a twofold or greater increase in four cell pathway protein, namely NF-κB p65 (2.68-fold), I-kappa-B-alpha (IκBα) (2.56-fold), and MAPK/ERK kinase 1 (MEK1) (7.15-fold) assessed in the array induced by influenza virus. Western blotting showed that the expression of these proteins was significantly decreased in lung after influenza virus challenge in PSF and oseltamivir-treated mice (p < 0.05-0.01). CONCLUSION Polygalasaponin F appears to be able to augment protection against IAV infection in mice via attenuation of pulmonary inflammatory responses. Its effect on IAV-induced pulmonary inflammation was associated with suppression of Raf/MEK/ERK and NF-κB expressions.
Collapse
|
9
|
In Vitro and In Vivo Characterization of Novel Neuraminidase Substitutions in Influenza A(H1N1)pdm09 Virus Identified Using Laninamivir-Mediated In Vitro Selection. J Virol 2019; 93:JVI.01825-18. [PMID: 30602610 DOI: 10.1128/jvi.01825-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/01/2018] [Indexed: 12/25/2022] Open
Abstract
Neuraminidase (NA) inhibitors (NAIs) are widely used antiviral drugs for the treatment of humans with influenza virus infections. There have been widespread reports of NAI resistance among seasonal A(H1N1) viruses, and most have been identified in oseltamivir-exposed patients or those treated with other NAIs. Thus, monitoring and identifying NA markers conferring resistance to NAIs-particularly newly introduced treatments-are critical to the management of viral infections. Therefore, we screened and identified substitutions conferring resistance to laninamivir by enriching random mutations in the NA gene of the 2009 pandemic influenza [A(H1N1)pdm09] virus followed by deep sequencing of the laninamivir-selected variants. After the generation of single mutants possessing each identified mutation, two A(H1N1)pdm09 recombinants possessing novel NA gene substitutions (i.e., D199E and P458T) were shown to exhibit resistance to more than one NAI. Of note, mutants possessing P458T-which is located outside of the catalytic or framework residue of the NA active site-exhibited highly reduced inhibition by all four approved NAIs. Using MDCK cells, we observed that the in vitro viral replication of the two recombinants was lower than that of the wild type (WT). Additionally, in infected mice, decreased mortality and/or mean lung viral titers were observed in mutants compared with the WT. Reverse mutations to the WT were observed in lung homogenate samples from D199E-infected mice after 3 serial passages. Overall, the novel NA substitutions identified could possibly emerge in influenza A(H1N1)pdm09 viruses during laninamivir therapy and the viruses could have altered NAI susceptibility, but the compromised in vitro/in vivo viral fitness may limit viral spreading.IMPORTANCE With the widespread emergence of NAI-resistant influenza virus strains, continuous monitoring of mutations that confer antiviral resistance is needed. Laninamivir is the most recently approved NAI in several countries; few data exist related to the in vitro selection of viral mutations conferring resistance to laninamivir. Thus, we screened and identified substitutions conferring resistance to laninamivir by random mutagenesis of the NA gene of the 2009 pandemic influenza [A(H1N1)pdm09] virus strain followed by deep sequencing of the laninamivir-selected variants. We found several novel substitutions in NA (D199E and P458T) in an A(H1N1)pdm09 background which conferred resistance to NAIs and which had an impact on viral fitness. Our study highlights the importance of continued surveillance for potential antiviral-resistant variants and the development of alternative therapeutics.
Collapse
|
10
|
Neutralizing Anti-Hemagglutinin Monoclonal Antibodies Induced by Gene-Based Transfer Have Prophylactic and Therapeutic Effects on Influenza Virus Infection. Vaccines (Basel) 2018; 6:vaccines6030035. [PMID: 29949942 PMCID: PMC6161145 DOI: 10.3390/vaccines6030035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/23/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
Hemagglutinin (HA) of influenza virus is a major target for vaccines. HA initiates the internalization of the virus into the host cell by binding to host sialic acid receptors; therefore, inhibition of HA can significantly prevent influenza virus infection. However, the high diversity of HA permits the influenza virus to escape from host immunity. Moreover, the vaccine efficacy is poor in some high-risk populations (e.g., elderly or immunocompromised patients). Passive immunization with anti-HA monoclonal antibodies (mAbs) is an attractive therapy; however, this method has high production costs and requires repeated inoculations. To address these issues, several methods for long-term expression of mAb against influenza virus have been developed. Here, we provide an overview of methods using plasmid and viral adeno-associated virus (AAV) vectors that have been modified for higher expression of neutralizing antibodies in the host. We also examine two methods of injection, electro-transfer and hydrodynamic injection. Our results show that antibody gene transfer is effective against influenza virus infection even in immunocompromised mice, and antibody expression was detected in the serum and upper respiratory tract. We also demonstrate this method to be effective following influenza virus infection. Finally, we discuss the perspective of passive immunization with antibody gene transfer for future clinical trials.
Collapse
|
11
|
Iwatsuki-Horimoto K, Nakajima N, Kiso M, Takahashi K, Ito M, Inoue T, Horiuchi M, Okahara N, Sasaki E, Hasegawa H, Kawaoka Y. The Marmoset as an Animal Model of Influenza: Infection With A(H1N1)pdm09 and Highly Pathogenic A(H5N1) Viruses via the Conventional or Tracheal Spray Route. Front Microbiol 2018; 9:844. [PMID: 29867791 PMCID: PMC5954801 DOI: 10.3389/fmicb.2018.00844] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/12/2018] [Indexed: 12/29/2022] Open
Abstract
To control infectious diseases in humans, it is important to understand the pathogenicity of the infecting organism(s). Although non-human primates, such as cynomolgus and rhesus macaques, have been used for influenza virus infection models, their size can limit their use in confined animal facilities. In this study, we investigated the susceptibility of marmosets to influenza viruses to assess the possibility of using these animals as a non-human primate model for influenza research. We first used an influenza A (H1N1)pdm09 virus to compare two inoculation routes: the conventional route, via a combination of the intratracheal, intranasal, ocular, and oral routes; and the tracheal spray route. In marmosets inoculated via the tracheal spray route, we found inflammation throughout the lungs and trachea. In contrast, in marmosets inoculated via the conventional route, the inflammation was confined to roughly the center of the lung. These data suggest that the tracheal spray route may be more suitable than the conventional route to inoculate marmosets with influenza viruses. We also tested an influenza A(H5N1) highly pathogenic avian influenza (HPAI) virus and found that some marmosets inoculated with this virus via the tracheal spray route showed weight loss, decreased body temperature, and loss of appetite and activity. The replication of this H5N1 virus in respiratory organs was confirmed. These results indicate the potential of marmosets as an animal model for infection with seasonal or HPAI viruses.
Collapse
Affiliation(s)
- Kiyoko Iwatsuki-Horimoto
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Maki Kiso
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Kenta Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Mutsumi Ito
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takashi Inoue
- Marmoset Research Department, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Machiko Horiuchi
- BioSciences Group, Summit Pharmaceuticals International Corporation, Tokyo, Japan
| | - Norio Okahara
- Marmoset Research Department, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Erika Sasaki
- Marmoset Research Department, Central Institute for Experimental Animals, Kawasaki, Japan.,Keio Advanced Research Center, Keio University, Tokyo, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshihiro Kawaoka
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan.,Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Special Pathogens, International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
12
|
Yamazaki T, Nagashima M, Ninomiya D, Ainai A, Fujimoto A, Ichimonji I, Takagi H, Morita N, Murotani K, Hasegawa H, Chiba J, Akashi-Takamura S. Neutralizing Antibodies Induced by Gene-Based Hydrodynamic Injection Have a Therapeutic Effect in Lethal Influenza Infection. Front Immunol 2018; 9:47. [PMID: 29416543 PMCID: PMC5787536 DOI: 10.3389/fimmu.2018.00047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/08/2018] [Indexed: 01/23/2023] Open
Abstract
The influenza virus causes annual epidemics and occasional pandemics and is thus a major public health problem. Development of vaccines and antiviral drugs is essential for controlling influenza virus infection. We previously demonstrated the use of vectored immune-prophylaxis against influenza virus infection. We generated a plasmid encoding neutralizing IgG monoclonal antibodies (mAbs) against A/PR/8/34 influenza virus (IAV) hemagglutinin (HA). We then performed electroporation of the plasmid encoding neutralizing mAbs (EP) in mice muscles and succeeded in inducing the expression of neutralizing antibodies in mouse serum. This therapy has a prophylactic effect against lethal IAV infection in mice. In this study, we established a new method of passive immunotherapy after IAV infection. We performed hydrodynamic injection of the plasmid encoding neutralizing mAbs (HD) involving rapid injection of a large volume of plasmid-DNA solution into mice via the tail vein. HD could induce neutralizing antibodies in the serum and in several mucosal tissues more rapidly than in EP. We also showed that a single HD completely protected the mice even after infection with a lethal dose of IAV. We also established other isotypes of anti-HA antibody (IgA, IgM, IgD, and IgE) and showed that like anti-HA IgG, anti-HA IgA was also effective at combating upper respiratory tract IAV infection. Passive immunotherapy with HD could thus provide a new therapeutic strategy targeting influenza virus infection.
Collapse
Affiliation(s)
- Tatsuya Yamazaki
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Nagakute, Japan.,Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Japan
| | - Maria Nagashima
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Japan
| | - Daisuke Ninomiya
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Japan
| | - Akira Ainai
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Akira Fujimoto
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Japan
| | - Isao Ichimonji
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Nagakute, Japan
| | - Hidekazu Takagi
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Nagakute, Japan
| | - Naoko Morita
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Nagakute, Japan
| | - Kenta Murotani
- Division of Biostatistics, Clinical Research Center, School of Medicine, Aichi Medical University, Nagakute, Japan
| | - Hideki Hasegawa
- Department of Pathology, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Joe Chiba
- Department of Biological Science and Technology, Tokyo University of Science, Katsushika, Japan
| | - Sachiko Akashi-Takamura
- Department of Microbiology and Immunology, School of Medicine, Aichi Medical University, Nagakute, Japan
| |
Collapse
|
13
|
Hu Y, Sneyd H, Dekant R, Wang J. Influenza A Virus Nucleoprotein: A Highly Conserved Multi-Functional Viral Protein as a Hot Antiviral Drug Target. Curr Top Med Chem 2017; 17:2271-2285. [PMID: 28240183 DOI: 10.2174/1568026617666170224122508] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 01/25/2023]
Abstract
Prevention and treatment of influenza virus infection is an ongoing unmet medical need. Each year, thousands of deaths and millions of hospitalizations are attributed to influenza virus infection, which poses a tremendous health and economic burden to the society. Aside from the annual influenza season, influenza viruses also lead to occasional influenza pandemics as a result of emerging or re-emerging influenza strains. Influenza viruses are RNA viruses that exist in quasispecies, meaning that they have a very diverse genetic background. Such a feature creates a grand challenge in devising therapeutic intervention strategies to inhibit influenza virus replication, as a single agent might not be able to inhibit all influenza virus strains. Both classes of currently approved anti-influenza drugs have limitations: the M2 channel blockers amantadine and rimantadine are no longer recommended for use in the U.S. due to predominant drug resistance, and resistance to the neuraminidase inhibitor oseltamivir is continuously on the rise. In pursuing the next generation of antiviral drugs with broad-spectrum activity and higher genetic barrier of drug resistance, the influenza virus nucleoprotein (NP) stands out as a high-profile drug target. This review summarizes recent developments in designing inhibitors targeting influenza NP and their mechanisms of action.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| | - Hannah Sneyd
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| | - Raphael Dekant
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, the University of Arizona, Tucson, AZ, United States
| |
Collapse
|
14
|
Hsieh NH, Lin YJ, Yang YF, Liao CM. Assessing the oseltamivir-induced resistance risk and implications for influenza infection control strategies. Infect Drug Resist 2017; 10:215-226. [PMID: 28790857 PMCID: PMC5529381 DOI: 10.2147/idr.s138317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Oseltamivir-resistant mutants with higher drug resistance rates and low trans-mission fitness costs have not accounted for influenza (sub)type viruses. Predicting the impacts of neuraminidase inhibitor therapy on infection rates and transmission of drug-resistant viral strains requires further investigation. Objectives The purpose of this study was to assess the potential risk of oseltamivir-induced resistance for influenza A (H1N1) and A (H3N2) viruses. Materials and methods An immune-response-based virus dynamic model was used to best fit the oseltamivir-resistant A (H1N1) and A (H3N2) infection data. A probabilistic risk assessment model was developed by incorporating branching process-derived probability distribution of resistance to estimate oseltamivir-induced resistance risk. Results Mutation rate and sensitive strain number were key determinants in assessing resistance risk. By increasing immune response, antiviral efficacy, and fitness cost, the spread of resistant strains for A (H1N1) and A (H3N2) were greatly decreased. Probability of resistance depends most strongly on the sensitive strain number described by a Poisson model. Risk of oseltamivir-induced resistance increased with increasing the mutation rate for A (H1N1) only. The ≥50% of resistance risk induced by A (H1N1) and A (H3N2) sensitive infected cells were 0.4 (95% CI: 0.28–0.43) and 0.95 (95% CI 0.93–0.99) at a mutation rate of 10−6, respectively. Antiviral drugs must be administrated within 1–1.5 days for A (H1N1) and 2–2.5 days for A (H3N2) virus infections to limit viral production. Conclusion Probabilistic risk assessment of antiviral drug-induced resistance is crucial in the decision-making process for preventing influenza virus infections.
Collapse
Affiliation(s)
- Nan-Hung Hsieh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Yi-Jun Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Reduction of Neuraminidase Activity Exacerbates Disease in 2009 Pandemic Influenza Virus-Infected Mice. J Virol 2016; 90:9931-9941. [PMID: 27558428 DOI: 10.1128/jvi.01188-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/18/2016] [Indexed: 11/20/2022] Open
Abstract
During the first wave of the 2009 pandemic, caused by a H1N1 influenza virus (pH1N1) of swine origin, antivirals were the only form of therapeutic available to control the proliferation of disease until the conventional strain-matched vaccine was produced. Oseltamivir is an antiviral that inhibits the sialidase activity of the viral neuraminidase (NA) protein and was shown to be effective against pH1N1 viruses in ferrets. Furthermore, it was used in humans to treat infections during the pandemic and is still used for current infections without reported complication or exacerbation of illness. However, in an evaluation of the effectiveness of oseltamivir against pH1N1 infection, we unexpectedly observed an exacerbation of disease in virus-infected mice treated with oseltamivir, transforming an otherwise mild illness into one with high morbidity and mortality. In contrast, an identical treatment regime alleviated all signs of illness in mice infected with the pathogenic mouse-adapted virus A/WSN/33 (H1N1). The worsened clinical outcome with pH1N1 viruses occurred over a range of oseltamivir doses and treatment schedules and was directly linked to a reduction in NA enzymatic activity. Our results suggest that the suppression of NA activity with antivirals may exacerbate disease in a host-dependent manner by increasing replicative fitness in viruses that are not optimally adapted for replication in that host. IMPORTANCE Here, we report that treatment of pH1N1-infected mice with oseltamivir enhanced disease progression, transforming a mild illness into a lethal infection. This raises a potential pitfall of using the mouse model for evaluation of the therapeutic efficacy of neuraminidase inhibitors. We show that antiviral efficacy determined in a single animal species may not represent treatment in humans and that caution should be used when interpreting the outcome. Furthermore, increased virulence due to oseltamivir treatment was the effect of a shift in the hemagglutinin (HA) and neuraminidase (NA) activity balance. This is the first study that has demonstrated that altering the HA/NA activity balance by reduction in NA activity can result in an increase in virulence in any animal model from nonpathogenic to lethal and the first to demonstrate a situation in which treatment with a NA activity inhibitor has an effect opposite to the intended therapeutic effect of ameliorating the infection.
Collapse
|
16
|
Jones JC, Marathe BM, Lerner C, Kreis L, Gasser R, Pascua PNQ, Najera I, Govorkova EA. A Novel Endonuclease Inhibitor Exhibits Broad-Spectrum Anti-Influenza Virus Activity In Vitro. Antimicrob Agents Chemother 2016; 60:5504-14. [PMID: 27381402 PMCID: PMC4997863 DOI: 10.1128/aac.00888-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/27/2016] [Indexed: 11/20/2022] Open
Abstract
Antiviral drugs are important in preventing and controlling influenza, particularly when vaccines are ineffective or unavailable. A single class of antiviral drugs, the neuraminidase inhibitors (NAIs), is recommended for treating influenza. The limited therapeutic options and the potential risk of antiviral resistance are driving the search for additional small-molecule inhibitors that act on influenza virus proteins. The acid polymerase (PA) of influenza viruses is a promising target for new antivirals because of its essential role in initiating virus transcription. Here, we characterized a novel compound, RO-7, identified as a putative PA endonuclease inhibitor. RO-7 was effective when added before the cessation of genome replication, reduced polymerase activity in cell-free systems, and decreased relative amounts of viral mRNA and genomic RNA during influenza virus infection. RO-7 specifically inhibited the ability of the PA endonuclease domain to cleave a nucleic acid substrate. RO-7 also inhibited influenza A viruses (seasonal and 2009 pandemic H1N1 and seasonal H3N2) and B viruses (Yamagata and Victoria lineages), zoonotic viruses (H5N1, H7N9, and H9N2), and NAI-resistant variants in plaque reduction, yield reduction, and cell viability assays in Madin-Darby canine kidney (MDCK) cells with nanomolar to submicromolar 50% effective concentrations (EC50s), low toxicity, and favorable selective indices. RO-7 also inhibited influenza virus replication in primary normal human bronchial epithelial cells. Overall, RO-7 exhibits broad-spectrum activity against influenza A and B viruses in multiple in vitro assays, supporting its further characterization and development as a potential antiviral agent for treating influenza.
Collapse
Affiliation(s)
- Jeremy C Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Bindumadhav M Marathe
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | - Philippe Noriel Q Pascua
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
17
|
Buhnerkempe MG, Gostic K, Park M, Ahsan P, Belser JA, Lloyd-Smith JO. Mapping influenza transmission in the ferret model to transmission in humans. eLife 2015; 4. [PMID: 26329460 PMCID: PMC4586390 DOI: 10.7554/elife.07969] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/02/2015] [Indexed: 12/27/2022] Open
Abstract
The controversy surrounding 'gain-of-function' experiments on high-consequence avian influenza viruses has highlighted the role of ferret transmission experiments in studying the transmission potential of novel influenza strains. However, the mapping between influenza transmission in ferrets and in humans is unsubstantiated. We address this gap by compiling and analyzing 240 estimates of influenza transmission in ferrets and humans. We demonstrate that estimates of ferret secondary attack rate (SAR) explain 66% of the variation in human SAR estimates at the subtype level. Further analysis shows that ferret transmission experiments have potential to identify influenza viruses of concern for epidemic spread in humans, though small sample sizes and biological uncertainties prevent definitive classification of human transmissibility. Thus, ferret transmission experiments provide valid predictions of pandemic potential of novel influenza strains, though results should continue to be corroborated by targeted virological and epidemiological research. DOI:http://dx.doi.org/10.7554/eLife.07969.001 Every year, thousands of people develop influenza (flu). After being infected by the influenza virus, the immune systems of most people adapt to fight off the virus if it is encountered again. However, there are many different strains of influenza, and new strains constantly evolve. Therefore, although someone may have developed resistance to one previously encountered strain, they can still become ill if another strain infects them. Different strains of the influenza virus have different abilities to spread between people and make them ill. One way that scientists assess whether a particular strain of influenza is a threat to people is by studying ferrets, which develop many of the same flu symptoms as humans. However, questions have been raised over how accurately ferret studies reflect whether a particular virus strain will spread between humans. Controversy has also arisen over experiments in which ferrets are infected with genetically engineered strains of influenza that mimic how a strain that has evolved in birds could adapt to cause a pandemic in humans. In 2014, the United States government suggested that such research should be temporarily stopped until more is known about the risks and usefulness of these studies. Now, Buhnerkempe, Gostic et al. have compared the results of 240 ferret and human studies that aimed to assess how easily strains of influenza spread. Specifically, the studies looked at how often a healthy ferret or human became ill when exposed to an animal or human infected with a particular strain of influenza. The results of the ferret transmission studies matched well with transmission patterns observed in human studies. Ferret studies that assessed how the influenza virus is transmitted through the air via sneezes and coughs were particularly good at predicting how the virus spreads in humans. But Buhnerkempe, Gostic et al. caution that ferret studies are not always accurate, partly because they involve small numbers of animals, which can skew the results. There also needs to be more effort to standardize the procedures and measurements used in ferret studies. Still, the analysis suggests that overall, ferret studies are a useful tool for making an initial prediction of which influenza strains may cause a pandemic in humans, which can then be verified using other methods. DOI:http://dx.doi.org/10.7554/eLife.07969.002
Collapse
Affiliation(s)
- Michael G Buhnerkempe
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
| | - Katelyn Gostic
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
| | - Miran Park
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
| | - Prianna Ahsan
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
| | - Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, United States
| | - James O Lloyd-Smith
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, United States
| |
Collapse
|
18
|
Nguyen HKL, Nguyen PTK, Nguyen TC, Hoang PVM, Le TT, Vuong CD, Nguyen AP, Tran LTT, Nguyen BG, Lê MQ. Virological characterization of influenza H1N1pdm09 in Vietnam, 2010-2013. Influenza Other Respir Viruses 2015; 9:216-24. [PMID: 25966032 PMCID: PMC4474498 DOI: 10.1111/irv.12323] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2015] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVES Influenza A/H1N1pdm09 virus was first detected in Vietnam on May 31, 2009, and continues to circulate in Vietnam as a seasonal influenza virus. This study has monitored genotypic and phenotypic changes in this group of viruses during 2010-2013 period. DESIGN AND SETTING We sequenced hemagglutinin (HA) and neuraminidase (NA) genes from representative influenza A/H1N1pdm09 and compared with vaccine strain A/California/07/09 and other contemporary isolates from neighboring countries. Hemagglutination inhibition (HI) and neuraminidase inhibition (NAI) assays also were performed on these isolates. SAMPLE Representative influenza A/H1N1pdm09 isolates (n = 61) from ILI and SARI surveillances in northern Vietnam between 2010 and 2013. MAIN OUTCOME MEASURES AND RESULTS The HA and NA phylogenies revealed six and seven groups, respectively. Five isolates (8·2%) had substitutions G155E and N156K in the HA, which were associated with reduced HI titers by antiserum raised against the vaccine virus A/California/07/2009. One isolate from 2011 and one isolate from 2013 had a predicted H275Y substitution in the neuraminidase molecule, which was associated with reduced susceptibility to oseltamivir in a NAI assay. We also identified a D222N change in the HA of a virus isolated from a fatal case in 2013. CONCLUSIONS Significant genotypic and phenotypic changes in A/ H1N1pdm09 influenza viruses were detected by the National Influenza Surveillance System (NISS) in Vietnam between 2010 and 2013 highlighting the value of this system to Vietnam and to the region. Sustained NISS and continued virological monitoring of seasonal influenza viruses are required for vaccine policy development in Vietnam. 3.
Collapse
Affiliation(s)
- Hang K L Nguyen
- National Institute of Hygiene and EpidemiologyHanoi, Vietnam
| | | | - Thach C Nguyen
- National Institute of Hygiene and EpidemiologyHanoi, Vietnam
| | | | - Thanh T Le
- National Institute of Hygiene and EpidemiologyHanoi, Vietnam
| | - Cuong D Vuong
- National Institute of Hygiene and EpidemiologyHanoi, Vietnam
| | - Anh P Nguyen
- National Institute of Hygiene and EpidemiologyHanoi, Vietnam
| | - Loan T T Tran
- National Hospital of Traditional MedicineHanoi, Vietnam
| | | | - Mai Q Lê
- National Institute of Hygiene and EpidemiologyHanoi, Vietnam
| |
Collapse
|
19
|
Profiling and characterization of influenza virus N1 strains potentially resistant to multiple neuraminidase inhibitors. J Virol 2014; 89:287-99. [PMID: 25320319 DOI: 10.1128/jvi.02485-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Neuraminidase inhibitors (NAIs) have been widely used to control influenza virus infection, but their increased use could promote the global emergence of resistant variants. Although various mutations associated with NAI resistance have been identified, the amino acid substitutions that confer multidrug resistance with undiminished viral fitness remain poorly understood. We therefore screened a known mutation(s) that could confer multidrug resistance to the currently approved NAIs oseltamivir, zanamivir, and peramivir by assessing recombinant viruses with mutant NA-encoding genes (catalytic residues R152K and R292K, framework residues E119A/D/G, D198N, H274Y, and N294S) in the backbones of the 2009 pandemic H1N1 (pH1N1) and highly pathogenic avian influenza (HPAI) H5N1 viruses. Of the 14 single and double mutant viruses recovered in the backbone of pH1N1, four variants (E119D, E119A/D/G-H274Y) exhibited reduced inhibition by all of the NAIs and two variants (E119D and E119D-H274Y) retained the overall properties of gene stability, replicative efficiency, pathogenicity, and transmissibility in vitro and in vivo. Of the nine recombinant H5N1 viruses, four variants (E119D, E119A/D/G-H274Y) also showed reduced inhibition by all of the NAIs, though their overall viral fitness was impaired in vitro and/or in vivo. Thus, single mutations or certain combination of the established mutations could confer potential multidrug resistance on pH1N1 or HPAI H5N1 viruses. Our findings emphasize the urgency of developing alternative drugs against influenza virus infection. IMPORTANCE There has been a widespread emergence of influenza virus strains with reduced susceptibility to neuraminidase inhibitors (NAIs). We screened multidrug-resistant viruses by studying the viral fitness of neuraminidase mutants in vitro and in vivo. We found that recombinant E119D and E119A/D/G/-H274Y mutant viruses demonstrated reduced inhibition by all of the NAIs tested in both the backbone of the 2009 H1N1 pandemic (pH1N1) and highly pathogenic avian influenza H5N1 viruses. Furthermore, E119D and E119D-H274Y mutants in the pH1N1 background maintained overall fitness properties in vitro and in vivo. Our study highlights the importance of vigilance and continued surveillance of potential NAI multidrug-resistant influenza virus variants, as well as the development of alternative therapeutics.
Collapse
|
20
|
Duan S, Govorkova EA, Bahl J, Zaraket H, Baranovich T, Seiler P, Prevost K, Webster RG, Webby RJ. Epistatic interactions between neuraminidase mutations facilitated the emergence of the oseltamivir-resistant H1N1 influenza viruses. Nat Commun 2014; 5:5029. [PMID: 25297528 PMCID: PMC4197134 DOI: 10.1038/ncomms6029] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 08/19/2014] [Indexed: 01/06/2023] Open
Abstract
Oseltamivir-resistant H1N1 influenza viruses carrying the H275Y neuraminidase mutation predominated worldwide during the 2007–2009 seasons. While several neuraminidase substitutions were found to be necessary to counteract the adverse effects of H275Y, the order and impact of evolutionary events involved remain elusive. Here, we reconstruct H1N1 neuraminidase phylogeny during 1999–2009, estimate the timing and order of crucial amino acid changes, and evaluate their impact on the biological outcome of the H275Y mutation. Of the twelve neuraminidase substitutions that occurred during 1999–2009, five (chronologically, V234M, R222Q, K329E, D344N, H275Y, and D354G) are necessary for maintaining full neuraminidase function in the presence of the H275Y mutation by altering protein accumulation or enzyme affinity/activity. The sequential emergence and cumulative effects of these mutations clearly illustrate a role for epistasis in shaping the emergence and subsequent evolution of a drug-resistant virus population, which can be useful in understanding emergence of novel viral phenotypes of influenza.
Collapse
Affiliation(s)
- Susu Duan
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 330, Memphis, Tennessee 38105, USA
| | - Elena A Govorkova
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 330, Memphis, Tennessee 38105, USA
| | - Justin Bahl
- 1] School of Public Health, The University of Texas Health Science Center at Houston, 1200 Pressler Street, Houston, Texas 77030, USA [2] Program in Emerging Infectious Diseases, Duke-National University of Singapore Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Hassan Zaraket
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 330, Memphis, Tennessee 38105, USA
| | - Tatiana Baranovich
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 330, Memphis, Tennessee 38105, USA
| | - Patrick Seiler
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 330, Memphis, Tennessee 38105, USA
| | - Kristi Prevost
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 330, Memphis, Tennessee 38105, USA
| | - Robert G Webster
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 330, Memphis, Tennessee 38105, USA
| | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, 262 Danny Thomas Place, Mail Stop 330, Memphis, Tennessee 38105, USA
| |
Collapse
|
21
|
Hai R, Schmolke M, Leyva-Grado VH, Thangavel RR, Margine I, Jaffe EL, Krammer F, Solórzano A, García-Sastre A, Palese P, Bouvier NM. Influenza A(H7N9) virus gains neuraminidase inhibitor resistance without loss of in vivo virulence or transmissibility. Nat Commun 2014; 4:2854. [PMID: 24326875 PMCID: PMC3863970 DOI: 10.1038/ncomms3854] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 11/01/2013] [Indexed: 12/17/2022] Open
Abstract
Without baseline human immunity to the emergent avian influenza A(H7N9) virus, neuraminidase inhibitors are vital for controlling viral replication in severe infections. An amino acid change in the viral neuraminidase associated with drug resistance, NA-R292K (N2 numbering), has been found in some H7N9 clinical isolates. Here we assess the impact of the NA-R292K substitution on antiviral sensitivity and viral replication, pathogenicity and transmissibility of H7N9 viruses. Our data indicate that an H7N9 isolate encoding the NA-R292K substitution is highly resistant to oseltamivir and peramivir and partially resistant to zanamivir. Furthermore, H7N9 reassortants with and without the resistance mutation demonstrate comparable viral replication in primary human respiratory cells, virulence in mice and transmissibility in guinea pigs. Thus, in stark contrast to oseltamivir-resistant seasonal influenza A(H3N2) viruses, H7N9 virus replication and pathogenicity in these models are not substantially altered by the acquisition of high-level oseltamivir resistance due to the NA-R292K mutation. Some clinical isolates of influenza A(H7N9) virus encode a mutation within neuraminidase that could confer resistance to the only class of drugs active against H7N9. Here, the authors show that this mutation does not affect viral replication and pathogenicity while mediating resistance to antivirals in vivo.
Collapse
Affiliation(s)
- Rong Hai
- 1] Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, Box 1124, New York, New York 10029, USA [2]
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Linster M, van Boheemen S, de Graaf M, Schrauwen EJA, Lexmond P, Mänz B, Bestebroer TM, Baumann J, van Riel D, Rimmelzwaan GF, Osterhaus ADME, Matrosovich M, Fouchier RAM, Herfst S. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell 2014; 157:329-339. [PMID: 24725402 DOI: 10.1016/j.cell.2014.02.040] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 12/26/2022]
Abstract
Recently, A/H5N1 influenza viruses were shown to acquire airborne transmissibility between ferrets upon targeted mutagenesis and virus passage. The critical genetic changes in airborne A/Indonesia/5/05 were not yet identified. Here, five substitutions proved to be sufficient to determine this airborne transmission phenotype. Substitutions in PB1 and PB2 collectively caused enhanced transcription and virus replication. One substitution increased HA thermostability and lowered the pH of membrane fusion. Two substitutions independently changed HA binding preference from α2,3-linked to α2,6-linked sialic acid receptors. The loss of a glycosylation site in HA enhanced overall binding to receptors. The acquired substitutions emerged early during ferret passage as minor variants and became dominant rapidly. Identification of substitutions that are essential for airborne transmission of avian influenza viruses between ferrets and their associated phenotypes advances our fundamental understanding of virus transmission and will increase the value of future surveillance programs and public health risk assessments.
Collapse
Affiliation(s)
- Martin Linster
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Sander van Boheemen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Eefje J A Schrauwen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Benjamin Mänz
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Theo M Bestebroer
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Jan Baumann
- Institute of Virology, Philipps-University, 35043 Marburg, Germany
| | - Debby van Riel
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Guus F Rimmelzwaan
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Albert D M E Osterhaus
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | | | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands.
| | - Sander Herfst
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| |
Collapse
|
23
|
Park S, Kim JI, Lee I, Lee S, Hwang MW, Bae JY, Heo J, Kim D, Jang SI, Kim H, Cheong HJ, Song JW, Song KJ, Baek LJ, Park MS. Combination effects of peramivir and favipiravir against oseltamivir-resistant 2009 pandemic influenza A(H1N1) infection in mice. PLoS One 2014; 9:e101325. [PMID: 24992479 PMCID: PMC4081560 DOI: 10.1371/journal.pone.0101325] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/04/2014] [Indexed: 12/18/2022] Open
Abstract
Antiviral drugs are being used for therapeutic purposes against influenza illness in humans. However, antiviral-resistant variants often nullify the effectiveness of antivirals. Combined medications, as seen in the treatment of cancers and other infectious diseases, have been suggested as an option for the control of antiviral-resistant influenza viruses. Here, we evaluated the therapeutic value of combination therapy against oseltamivir-resistant 2009 pandemic influenza H1N1 virus infection in DBA/2 mice. Mice were treated for five days with favipiravir and peramivir starting 4 hours after lethal challenge. Compared with either monotherapy, combination therapy saved more mice from viral lethality and resulted in increased antiviral efficacy in the lungs of infected mice. Furthermore, the synergism between the two antivirals, which was consistent with the survival outcomes of combination therapy, indicated that favipiravir could serve as a critical agent of combination therapy for the control of oseltamivir-resistant strains. Our results provide new insight into the feasibility of favipiravir in combination therapy against oseltamivir-resistant influenza virus infection.
Collapse
Affiliation(s)
- Sehee Park
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul, Republic of Korea; Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul, Republic of Korea; Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Ilseob Lee
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul, Republic of Korea; Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Sangmoo Lee
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul, Republic of Korea; Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Min-Woong Hwang
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul, Republic of Korea; Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul, Republic of Korea; Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Jun Heo
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul, Republic of Korea; Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Donghwan Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Seok-Il Jang
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Hyejin Kim
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul, Republic of Korea
| | - Hee Jin Cheong
- Division of Infectious Diseases, Korea University Guro Hospital, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul, Republic of Korea
| | - Ki-Joon Song
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul, Republic of Korea
| | - Luck Ju Baek
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, College of Medicine, and the Institute for Viral Diseases, Korea University, Seoul, Republic of Korea; Department of Microbiology, College of Medicine, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|
24
|
Characterization of drug-resistant influenza virus A(H1N1) and A(H3N2) variants selected in vitro with laninamivir. Antimicrob Agents Chemother 2014; 58:5220-8. [PMID: 24957832 DOI: 10.1128/aac.03313-14] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neuraminidase inhibitors (NAIs) play a major role for managing influenza virus infections. The widespread oseltamivir resistance among 2007-2008 seasonal A(H1N1) viruses and community outbreaks of oseltamivir-resistant A(H1N1)pdm09 strains highlights the need for additional anti-influenza virus agents. Laninamivir is a novel long-lasting NAI that has demonstrated in vitro activity against influenza A and B viruses, and its prodrug (laninamivir octanoate) is in phase II clinical trials in the United States and other countries. Currently, little information is available on the mechanisms of resistance to laninamivir. In this study, we first performed neuraminidase (NA) inhibition assays to determine the activity of laninamivir against a set of influenza A viruses containing NA mutations conferring resistance to one or many other NAIs. We also generated drug-resistant A(H1N1) and A(H3N2) viruses under in vitro laninamivir pressure. Laninamivir demonstrated a profile of susceptibility that was similar to that of zanamivir. More specifically, it retained activity against oseltamivir-resistant H275Y and N295S A(H1N1) variants and the E119V A(H3N2) variant. In vitro, laninamivir pressure selected the E119A NA substitution in the A/Solomon Islands/3/2006 A(H1N1) background, whereas E119K and G147E NA changes along with a K133E hemagglutinin (HA) substitution were selected in the A/Quebec/144147/2009 A(H1N1)pdm09 strain. In the A/Brisbane/10/2007 A(H3N2) background, a large NA deletion accompanied by S138A/P194L HA substitutions was selected. This H3N2 variant had altered receptor-binding properties and was highly resistant to laninamivir in plaque reduction assays. Overall, we confirmed the similarity between zanamivir and laninamivir susceptibility profiles and demonstrated that both NA and HA changes can contribute to laninamivir resistance in vitro.
Collapse
|
25
|
Kwon D, Shin K, Kim SJ, Lee JY, Kang C. Mammalian pathogenesis of oseltamivir-resistant pandemic (H1N1) 2009 influenza virus isolated in South Korea. Virus Res 2014; 185:41-6. [DOI: 10.1016/j.virusres.2014.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/25/2014] [Accepted: 03/11/2014] [Indexed: 11/15/2022]
|
26
|
Boivin G. Detection and management of antiviral resistance for influenza viruses. Influenza Other Respir Viruses 2014; 7 Suppl 3:18-23. [PMID: 24215378 DOI: 10.1111/irv.12176] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2013] [Indexed: 12/25/2022] Open
Abstract
Neuraminidase inhibitors (NAIs) are first-line agents for the treatment and prevention of influenza virus infections. As for other antivirals, the development of resistance to NAIs has become an important concern particularly in the case of A(H1N1) viruses and oseltamivir. The most frequently reported change conferring oseltamivir resistance in that viral context is the H275Y neuraminidase mutation (N1 numbering). Recent studies have shown that, in the presence of the appropriate permissive mutations, the H275Y variant can retain virulence and transmissibility in some viral backgrounds. Most oseltamivir-resistant influenza A virus infections can be managed with the use of inhaled or intravenous zanamivir, another NAI. New NAI compounds and non-neuraminidase agents as well as combination therapies are currently in clinical evaluation for the treatment for severe influenza infections.
Collapse
Affiliation(s)
- Guy Boivin
- CHUQ-CHUL and Laval University, Quebec, QC, Canada
| |
Collapse
|
27
|
Thangavel RR, Bouvier NM. Animal models for influenza virus pathogenesis, transmission, and immunology. J Immunol Methods 2014; 410:60-79. [PMID: 24709389 PMCID: PMC4163064 DOI: 10.1016/j.jim.2014.03.023] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 12/24/2022]
Abstract
In humans, infection with an influenza A or B virus manifests typically as an acute and self-limited upper respiratory tract illness characterized by fever, cough, sore throat, and malaise. However, influenza can present along a broad spectrum of disease, ranging from sub-clinical or even asymptomatic infection to a severe primary viral pneumonia requiring advanced medical supportive care. Disease severity depends upon the virulence of the influenza virus strain and the immune competence and previous influenza exposures of the patient. Animal models are used in influenza research not only to elucidate the viral and host factors that affect influenza disease outcomes in and spread among susceptible hosts, but also to evaluate interventions designed to prevent or reduce influenza morbidity and mortality in man. This review will focus on the three animal models currently used most frequently in influenza virus research - mice, ferrets, and guinea pigs - and discuss the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Rajagowthamee R Thangavel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Nicole M Bouvier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
28
|
Butler J, Hooper KA, Petrie S, Lee R, Maurer-Stroh S, Reh L, Guarnaccia T, Baas C, Xue L, Vitesnik S, Leang SK, McVernon J, Kelso A, Barr IG, McCaw JM, Bloom JD, Hurt AC. Estimating the fitness advantage conferred by permissive neuraminidase mutations in recent oseltamivir-resistant A(H1N1)pdm09 influenza viruses. PLoS Pathog 2014; 10:e1004065. [PMID: 24699865 PMCID: PMC3974874 DOI: 10.1371/journal.ppat.1004065] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 02/27/2014] [Indexed: 01/06/2023] Open
Abstract
Oseltamivir is relied upon worldwide as the drug of choice for the treatment of human influenza infection. Surveillance for oseltamivir resistance is routinely performed to ensure the ongoing efficacy of oseltamivir against circulating viruses. Since the emergence of the pandemic 2009 A(H1N1) influenza virus (A(H1N1)pdm09), the proportion of A(H1N1)pdm09 viruses that are oseltamivir resistant (OR) has generally been low. However, a cluster of OR A(H1N1)pdm09 viruses, encoding the neuraminidase (NA) H275Y oseltamivir resistance mutation, was detected in Australia in 2011 amongst community patients that had not been treated with oseltamivir. Here we combine a competitive mixtures ferret model of influenza infection with a mathematical model to assess the fitness, both within and between hosts, of recent OR A(H1N1)pdm09 viruses. In conjunction with data from in vitro analyses of NA expression and activity we demonstrate that contemporary A(H1N1)pdm09 viruses are now more capable of acquiring H275Y without compromising their fitness, than earlier A(H1N1)pdm09 viruses circulating in 2009. Furthermore, using reverse engineered viruses we demonstrate that a pair of permissive secondary NA mutations, V241I and N369K, confers robust fitness on recent H275Y A(H1N1)pdm09 viruses, which correlated with enhanced surface expression and enzymatic activity of the A(H1N1)pdm09 NA protein. These permissive mutations first emerged in 2010 and are now present in almost all circulating A(H1N1)pdm09 viruses. Our findings suggest that recent A(H1N1)pdm09 viruses are now more permissive to the acquisition of H275Y than earlier A(H1N1)pdm09 viruses, increasing the risk that OR A(H1N1)pdm09 will emerge and spread worldwide.
Collapse
Affiliation(s)
- Jeff Butler
- World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Australia
| | - Kathryn A. Hooper
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, United States of America
| | - Stephen Petrie
- Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
| | - Raphael Lee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore
- National Public Health Laboratory, Communicable Diseases Division Ministry of Health, Singapore
- School of Biological Sciences (SBS), Nanyang Technological University (NTU), Singapore
| | - Lucia Reh
- World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Australia
| | - Teagan Guarnaccia
- World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Australia
| | - Chantal Baas
- World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Australia
- Monash University, School of Applied Sciences, Churchill, Victoria, Australia
| | - Lumin Xue
- World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Australia
| | - Sophie Vitesnik
- World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Australia
| | - Sook-Kwan Leang
- World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Australia
| | - Jodie McVernon
- Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Anne Kelso
- World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Australia
| | - Ian G. Barr
- World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Australia
- Monash University, School of Applied Sciences, Churchill, Victoria, Australia
| | - James M. McCaw
- Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Australia
- Murdoch Childrens Research Institute, The Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Jesse D. Bloom
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Aeron C. Hurt
- World Health Organization Collaborating Centre for Reference and Research on Influenza, North Melbourne, Australia
- Monash University, School of Applied Sciences, Churchill, Victoria, Australia
| |
Collapse
|
29
|
Marx C, Gregianini TS, Lehmann FKM, Lunge VR, Carli SD, Dambrós BP, Tumioto GL, Seadi C, Fonseca ASK, Ikuta N. Oseltamivir-resistant influenza A(H1N1)pdm09 virus in southern Brazil. Mem Inst Oswaldo Cruz 2014; 108:S0074-02762013000300392. [PMID: 23778667 DOI: 10.1590/s0074-02762013000300021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 09/14/2012] [Indexed: 11/21/2022] Open
Abstract
The neuraminidase (NA) genes of A(H1N1)pdm09 influenza virus isolates from 306 infected patients were analysed. The circulation of oseltamivir-resistant viruses in Brazil has not been reported previously. Clinical samples were collected in the state of Rio Grande do Sul (RS) from 2009-2011 and two NA inhibitor-resistant mutants were identified, one in 2009 (H275Y) and the other in 2011 (S247N). This study revealed a low prevalence of resistant viruses (0.8%) with no spread of the resistant mutants throughout RS.
Collapse
Affiliation(s)
- Camila Marx
- Universidade Luterana do Brasil, Canoas, RS, Brasil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Belser JA, Maines TR, Katz JM, Tumpey TM. Considerations regarding appropriate sample size for conducting ferret transmission experiments. Future Microbiol 2014; 8:961-5. [PMID: 23902143 DOI: 10.2217/fmb.13.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Evaluation of: Nishiura H, Yen H-L, Cowling BJ. Sample size considerations for one-to-one animal transmission studies of the influenza A viruses. PLoS ONE 8(1), e55358 (2013). There is an urgent need to model in a laboratory setting the capacity of wild-type influenza viruses to transmit between mammals, to determine the molecular determinants and identify biological properties that confer influenza virus transmissibility, and to explore both pharmaceutical and nonpharmaceutical methods to inhibit virus transmission. Owing to its close physiologic match to humans, researchers typically utilize the ferret to measure influenza virus transmissibility. Nishiura et al. highlight the dilemma facing researchers utilizing the ferret transmission model: how to provide high-quality data to guide public health efforts, while ensuring the ethical use of animals in limited-size, individual, one-to-one transmission experiments. However, the responsible interpretation of data generated using this model can overcome this potential limitation. A closer examination of previously published studies utilizing this model as it is currently employed reveals that the 'sample size' of these studies is not always as small as it may appear.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization & Respiratory Diseases, Centers for Disease Control & Prevention, Atlanta, GA 30333, USA
| | | | | | | |
Collapse
|
31
|
Kobayashi Y, Honda T, Masuda T, Arai M. Discovery of Anti-influenza Drug, Laninamivir Octanoate (Inavir^|^reg;). J SYN ORG CHEM JPN 2014. [DOI: 10.5059/yukigoseikyokaishi.72.1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
32
|
Impact of potential permissive neuraminidase mutations on viral fitness of the H275Y oseltamivir-resistant influenza A(H1N1)pdm09 virus in vitro, in mice and in ferrets. J Virol 2013; 88:1652-8. [PMID: 24257597 DOI: 10.1128/jvi.02681-13] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuraminidase (NA) mutations conferring resistance to NA inhibitors (NAIs) generally compromise the fitness of influenza viruses. The only NAI-resistant virus that widely spread in the population, the A/Brisbane/59/2007 (H1N1) strain, contained permissive mutations that restored the detrimental effect caused by the H275Y change. Computational analysis predicted other permissive NA mutations for A(H1N1)pdm09 viruses. Here, we investigated the effect of T289M and N369K mutations on the viral fitness of the A(H1N1)pdm09 H275Y variant. Recombinant wild-type (WT) A(H1N1)pdm09 and the H275Y, H275Y/T289M, H275Y/N369K, and H275Y/V241I/N369K (a natural variant) NA mutants were generated by reverse genetics. Replication kinetics were performed by using ST6GalI-MDCK cells. Virulence was assessed in C57BL/6 mice, and contact transmission was evaluated in ferrets. The H275Y mutation significantly reduced viral titers during the first 12 to 36 h postinfection (p.i.) in vitro. Nevertheless, the WT and H275Y viruses induced comparable mortality rates, weight loss, and lung titers in mice. The T289M mutation eliminated the detrimental effect caused by the H275Y change in vitro while causing greater weight loss and mortality in mice, with significantly higher lung viral titers on days 3 and 6 p.i. than with the H275Y mutant. In index ferrets, the WT, H275Y, H275Y/T289M, and H275Y/V241I/N369K recombinants induced comparable fever, weight loss, and nasal wash viral titers. All tested viruses were transmitted at comparable rates in contact ferrets, with the H275Y/V241I/N369K recombinant demonstrating higher nasal wash viral titers than the H275Y mutant. Permissive mutations may enhance the fitness of A(H1N1)pdm09 H275Y viruses in vitro and in vivo. The emergence of such variants should be carefully monitored.
Collapse
|
33
|
Iwami S, Koizumi Y, Ikeda H, Kakizoe Y. Quantification of viral infection dynamics in animal experiments. Front Microbiol 2013; 4:264. [PMID: 24058361 PMCID: PMC3767920 DOI: 10.3389/fmicb.2013.00264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 08/16/2013] [Indexed: 12/18/2022] Open
Abstract
Analyzing the time-course of several viral infections using mathematical models based on experimental data can provide important quantitative insights regarding infection dynamics. Over the past decade, the importance and significance of mathematical modeling has been gaining recognition among virologists. In the near future, many animal models of human-specific infections and experimental data from high-throughput techniques will become available. This will provide us with the opportunity to develop new quantitative approaches, combining experimental and mathematical analyses. In this paper, we review the various quantitative analyses of viral infections and discuss their possible applications.
Collapse
Affiliation(s)
- Shingo Iwami
- Department of Biology, Faculty of Sciences, Kyushu University Fukuoka, Japan
| | | | | | | |
Collapse
|
34
|
Park S, Kim JI, Lee I, Lee S, Hwang MW, Bae JY, Heo J, Kim D, Han SZ, Park MS. Aronia melanocarpa and its components demonstrate antiviral activity against influenza viruses. Biochem Biophys Res Commun 2013; 440:14-9. [PMID: 24012672 DOI: 10.1016/j.bbrc.2013.08.090] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 08/28/2013] [Indexed: 01/13/2023]
Abstract
The influenza virus is highly contagious in human populations around the world and results in approximately 250,000-500,000 deaths annually. Vaccines and antiviral drugs are commonly used to protect susceptible individuals. However, the antigenic mismatch of vaccines and the emergence of resistant strains against the currently available antiviral drugs have generated an urgent necessity to develop a novel broad-spectrum anti-influenza agent. Here we report that Aronia melanocarpa (black chokeberry, Aronia), the fruit of a perennial shrub species that contains several polyphenolic constituents, possesses in vitro and in vivo efficacy against different subtypes of influenza viruses including an oseltamivir-resistant strain. These anti-influenza properties of Aronia were attributed to two constituents, ellagic acid and myricetin. In an in vivo therapeutic mouse model, Aronia, ellagic acid, and myricetin protected mice against lethal challenge. Based on these results, we suggest that Aronia is a valuable source for antiviral agents and that ellagic acid and myricetin have potential as influenza therapeutics.
Collapse
Affiliation(s)
- Sehee Park
- Department of Microbiology, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 200-702, Republic of Korea; Center for Medical Science Research, College of Medicine, Hallym University, 1 Hallymdaehak-gil, Chuncheon, Gangwon-do 200-702, Republic of Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Song MS, Hee Baek Y, Kim EH, Park SJ, Kim S, Lim GJ, Kwon HI, Pascua PNQ, Decano AG, Lee BJ, Kim YI, Webby RJ, Choi YK. Increased virulence of neuraminidase inhibitor-resistant pandemic H1N1 virus in mice: potential emergence of drug-resistant and virulent variants. Virulence 2013; 4:489-93. [PMID: 23924955 DOI: 10.4161/viru.25952] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Pandemic H1N1 2009 (A[H1N1]pdm09) variants associated with oseltamivir resistance have emerged with a histidine-to-tyrosine substitution in the neuraminidase(NA) at position 274 (H274Y). To determine whether the H274Y variant has increased virulence potential, A(H1N1)pdm09 virus, with or without the H274Y mutation, was adapted by serial lung-to-lung passages in mice. The mouse-adapted H274Y (maCA04H274Y) variants showed increased growth properties and virulence in vitro and in vivo while maintaining high NA inhibitor resistance. Interestingly, most maCA04H274Y and maCA04 viruses acquired common mutations in HA (S183P and D222G) and NP (D101G), while only maCA04H274Y viruses had consensus additional K153E mutation in the HA gene, suggesting a potential association with the H274Y substitution. Collectively, our findings highlight the potential emergence of A(H1N1)pdm09 drug-resistant variants with increased virulence and the need for rapid development of novel antiviral drugs.
Collapse
Affiliation(s)
- Min-Suk Song
- Chungbuk National University, Cheongju, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Govorkova EA. Consequences of resistance: in vitro fitness, in vivo infectivity, and transmissibility of oseltamivir-resistant influenza A viruses. Influenza Other Respir Viruses 2013; 7 Suppl 1:50-7. [PMID: 23279897 DOI: 10.1111/irv.12044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The development of drug resistance is a major drawback to any antiviral therapy, and the specific anti-influenza drugs, the neuraminidase (NA) inhibitors (NAIs), are not excluded from this rule. The impact of drug resistance depends on the degree of reduction in fitness of the particular drug-resistant virus. If the resistance mutations lead to only a modest biological fitness cost and the virus remains highly transmissible, the effectiveness of antiviral use is likely to be reduced. This review focuses on the fitness of oseltamivir-resistant seasonal H1N1 and H3N2, 2009 pandemic H1N1 (H1N1pdm09), and highly pathogenic H5N1 influenza A viruses carrying clinically derived NAI resistance-associated NA mutations.
Collapse
Affiliation(s)
- Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA.
| |
Collapse
|
37
|
Lackenby A, Elliot AJ, Powers C, Andrews N, Ellis J, Bermingham A, Thompson C, Galiano M, Large S, Durnall H, Fleming D, Smith G, Zambon M. Virological self-sampling to monitor influenza antiviral susceptibility in a community cohort. J Antimicrob Chemother 2013; 68:2324-31. [PMID: 23759670 PMCID: PMC7313964 DOI: 10.1093/jac/dkt203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective To perform antiviral susceptibility monitoring of treated individuals in the community during the 2009 influenza A(H1N1) pandemic in England. Patients and methods Between 200 and 400 patients were enrolled daily through the National Pandemic Flu Service (NPFS) and issued with a self-sampling kit. Initially, only persons aged 16 and over were eligible, but from 12 November (week 45), self-sampling was extended to include school-age children (5 years and older). All samples received were screened for influenza A(H1N1)pdm09 as well as seasonal influenza [A(H1N1), A(H3N2) and influenza B] by a combination of RT–PCR and virus isolation methods. Influenza A(H1N1)pdm09 RT–PCR-positive samples were screened for the oseltamivir resistance-inducing H275Y substitution, and a subset of samples also underwent phenotypic antiviral susceptibility testing by enzyme inhibition assay. Results We were able to detect virus by RT–PCR in self-taken samples and recovered infectious virus enabling further virological characterization. The majority of influenza A(H1N1)pdm09 RT–PCR-positive NPFS samples (n = 1273) were taken after oseltamivir treatment had begun. No reduction in phenotypic susceptibility to neuraminidase inhibitors was detected, but five cases with minority quasi-species of oseltamivir-resistant virus (an H275Y amino acid substitution in neuraminidase) were detected. Conclusions Self-sampling is a useful tool for community surveillance, particularly for the follow-up of drug-treated patients. The virological study of self-taken samples from the NPFS provided a unique opportunity to evaluate the emergence of oseltamivir resistance in treated individuals with mild illness in the community, a target population that may not be captured by traditional sentinel surveillance schemes.
Collapse
Affiliation(s)
- Angie Lackenby
- Microbiology Services Colindale, Public Health England, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
De Clercq E. A cutting-edge view on the current state of antiviral drug development. Med Res Rev 2013; 33:1249-77. [PMID: 23495004 DOI: 10.1002/med.21281] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prominent in the current stage of antiviral drug development are: (i) for human immunodeficiency virus (HIV), the use of fixed-dose combinations (FDCs), the most recent example being Stribild(TM); (ii) for hepatitis C virus (HCV), the pleiade of direct-acting antivirals (DAAs) that should be formulated in the most appropriate combinations so as to obtain a cure of the infection; (iii)-(v) new strategies (i.e., AIC316, AIC246, and FV-100) for the treatment of herpesvirus infections: herpes simplex virus (HSV), cytomegalovirus (CMV), and varicella-zoster virus (VZV), respectively; (vi) the role of a new tenofovir prodrug, tenofovir alafenamide (TAF) (GS-7340) for the treatment of HIV infections; (vii) the potential use of poxvirus inhibitors (CMX001 and ST-246); (viii) the usefulness of new influenza virus inhibitors (peramivir and laninamivir octanoate); (ix) the position of the hepatitis B virus (HBV) inhibitors [lamivudine, adefovir dipivoxil, entecavir, telbivudine, and tenofovir disoproxil fumarate (TDF)]; and (x) the potential of new compounds such as FGI-103, FGI-104, FGI-106, dUY11, and LJ-001 for the treatment of filoviruses (i.e., Ebola). Whereas for HIV and HCV therapy is aimed at multiple-drug combinations, for all other viruses, HSV, CMV, VZV, pox, influenza, HBV, and filoviruses, current strategies are based on the use of single compounds.
Collapse
Affiliation(s)
- Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, B-3000, Leuven, Belgium.
| |
Collapse
|
39
|
Efficacy of repeated intravenous injection of peramivir against influenza A (H1N1) 2009 virus infection in immunosuppressed mice. Antimicrob Agents Chemother 2013; 57:2286-94. [PMID: 23478960 DOI: 10.1128/aac.02324-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The efficacy of intravenous peramivir against influenza A (H1N1) 2009 virus infection was evaluated in mice in which the immune system was suppressed by cyclophosphamide (CP) treatment. The mortality rate of the vehicle control group was 100%, and the mice lost 20% of their body weight on average by day 13 postinfection (p.i.). Repeated administration of peramivir (40 mg/kg of body weight once a day, given intravenously for 20 days), starting at 1 h p.i., significantly reduced mortality, body weight loss, viral titers, and cytokine production in infected mice compared with results for administration of vehicle (P < 0.01). In addition, repeated administration of peramivir, starting at 24 h, 48 h, or 72 h p.i., also resulted in increases in survival rates and reduction of viral titers in the lungs (P < 0.01). The mean days to death (MDD) of the vehicle group was 14.5 days, while in the groups treated with peramivir starting at 24 h, 48 h, and 72 h p.i., the MDDs were >23.0, 20.9, and 21.8 days, respectively. In comparison, repeated administration of oseltamivir phosphate (5 mg/kg twice a day, given orally for 20 days), starting at 24 h, 48 h, and 72 h p.i., also significantly prevented body weight loss, whereas no significant differences in mortality rates and viral titers in the lungs were observed compared with results for the vehicle group. These data indicated that repeated administration of peramivir was effective in promoting the survival and reducing virus replication in immunosuppressed mice infected with influenza A (H1N1) 2009 virus.
Collapse
|
40
|
Antivirals: Past, present and future. Biochem Pharmacol 2013; 85:727-44. [DOI: 10.1016/j.bcp.2012.12.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 11/23/2022]
|
41
|
Nishiura H, Yen HL, Cowling BJ. Sample size considerations for one-to-one animal transmission studies of the influenza A viruses. PLoS One 2013; 8:e55358. [PMID: 23383167 PMCID: PMC3561278 DOI: 10.1371/journal.pone.0055358] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/27/2012] [Indexed: 11/19/2022] Open
Abstract
Background Animal transmission studies can provide important insights into host, viral and environmental factors affecting transmission of viruses including influenza A. The basic unit of analysis in typical animal transmission experiments is the presence or absence of transmission from an infectious animal to a susceptible animal. In studies comparing two groups (e.g. two host genetic variants, two virus strains, or two arrangements of animal cages), differences between groups are evaluated by comparing the proportion of pairs with successful transmission in each group. The present study aimed to discuss the significance and power to estimate transmissibility and identify differences in the transmissibility based on one-to-one trials. The analyses are illustrated on transmission studies of influenza A viruses in the ferret model. Methodology/Principal Findings Employing the stochastic general epidemic model, the basic reproduction number, R0, is derived from the final state of an epidemic and is related to the probability of successful transmission during each one-to-one trial. In studies to estimate transmissibility, we show that 3 pairs of infectious/susceptible animals cannot demonstrate a significantly higher transmissibility than R0 = 1, even if infection occurs in all three pairs. In comparisons between two groups, at least 4 pairs of infectious/susceptible animals are required in each group to ensure high power to identify significant differences in transmissibility between the groups. Conclusions These results inform the appropriate sample sizes for animal transmission experiments, while relating the observed proportion of infected pairs to R0, an interpretable epidemiological measure of transmissibility. In addition to the hypothesis testing results, the wide confidence intervals of R0 with small sample sizes also imply that the objective demonstration of difference or similarity should rest on firmly calculated sample size.
Collapse
Affiliation(s)
- Hiroshi Nishiura
- School of Public Health, The University of Hong Kong, Hong Kong SAR, China.
| | | | | |
Collapse
|
42
|
Pérez LJ, Perera CL, Vega A, Frías MT, Rouseaux D, Ganges L, Nuñez JI, Díaz de Arce H. Isolation and complete genomic characterization of pandemic H1N1/2009 influenza viruses from Cuban swine herds. Res Vet Sci 2013; 94:781-8. [PMID: 23318219 DOI: 10.1016/j.rvsc.2012.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 11/23/2012] [Accepted: 11/26/2012] [Indexed: 11/19/2022]
Abstract
The emergence of the pandemic H1N1/2009 influenza virus poses a potential global threat for human and animal health. In this study, we carried out pandemic H1N1/2009 influenza virus surveillance in swine herds in Cuba intending to determine whether the virus was circulating among pig populations. As a result we describe, for the first time, the detection of pandemic H1N1/2009 influenza virus in swine herds in Cuba. In addition, phylogenetic analysis and molecular characterization of three viral isolates were performed. Phylogenetic relationships confirmed that all of the eight genes of the three isolates were derived from the pandemic H1N1/2009 virus. The Cuban isolates, formed an independent cluster within the pandemic H1N1/2009 influenza strains. Different molecular markers, previously described in pandemic H1N1/2009 influenza viruses, related with adaptive evolution, viral evasion from the host-immune response, virulence and dissemination were also present in Cuban pandemic H1N1/2009 isolates.
Collapse
|
43
|
Abstract
In the 10 years since licensure of neuraminidase inhibitor drugs, their use has steadily increased, especially during the pandemic of 2009. Experience now indicates that factors which influence the emergence of high level resistance include the nature of drug binding to target, viral subtype, the use of post exposure prophylaxis and a lack of immunity in the host as seen in children and immunocompromised individuals. These factors point towards targetted surveillance programmes for the early identification of transmissible drug resistance.
Collapse
Affiliation(s)
- Maria C Zambon
- Microbiology Services Division: Colindale, Health Protection Agency, London, UK.
| |
Collapse
|
44
|
Yang JR, Huang YP, Chang FY, Hsu LC, Huang HY, Pan YT, Lin YC, Wu HS, Liu MT. Characterization of oseltamivir-resistant influenza A(H1N1)pdm09 viruses in Taiwan in 2009-2011. J Med Virol 2012; 85:379-87. [PMID: 23280715 DOI: 10.1002/jmv.23482] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2012] [Indexed: 01/20/2023]
Abstract
The early isolated swine-origin influenza A(H1N1)pdm09 viruses were susceptible to oseltamivir; however, there is a concern about whether oseltamivir-resistant influenza A(H1N1)pdm09 viruses will spread worldwide as did the oseltamivir-resistant seasonal influenza A(H1N1) viruses in 2007-2008. In this study, the frequency of oseltamivir resistance in influenza A(H1N1)pdm09 viruses was determined in Taiwan. From May 2009 to April 2011, 1,335 A(H1N1)pdm09-positive cases in Taiwan were tested for the H275Y mutation in the neuraminidase (NA) gene that confers resistance to oseltamivir. Among these, 15 patients (1.1%) were found to be infected with H275Y virus. All the resistant viruses were detected after the patients have received the oseltamivir. The overall monthly ratio of H275Y-harboring viruses ranged between 0% and 2.88%, and the peak was correlated with influenza epidemics. The genetic analysis revealed that the oseltamivir-resistant A(H1N1)pdm09 viruses can emerged from different variants with a great diversity under drug pressure. The ratio of NA/HA activities in different clades of oseltamivir-resistant viruses was reduced compared to those in the wild-type viruses, indicating that the balance of NA/HA in the current oseltamivir-resistant influenza A(H1N1)pdm09 viruses was interfered. It is possible that H275Y-bearing A(H1N1)pdm09 virus has not yet spread globally because it lacks the essential permissive mutations that can compensate for the negative impact on fitness by the H275Y amino acid substitution in NA. Continuous monitoring the evolution patterns of sensitive and resistant viruses is required to respond to possible emergence of resistant viruses with permissive genetic background which enable the wide spread of resistance.
Collapse
|
45
|
Sasaki T, Kubota-Koketsu R, Takei M, Hagihara T, Iwamoto S, Murao T, Sawami K, Fukae D, Nakamura M, Nagata E, Kawakami A, Mitsubayashi Y, Ohno M, Uehara Y, Fukukawa T, Kanai Y, Kosaka M, Ikuta K. Reliability of a newly-developed immunochromatography diagnostic kit for pandemic influenza A/H1N1pdm virus: implications for drug administration. PLoS One 2012; 7:e50670. [PMID: 23226350 PMCID: PMC3511324 DOI: 10.1371/journal.pone.0050670] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 10/23/2012] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND For the diagnosis of seasonal influenza, clinicians rely on point-of-care testing (POCT) using commercially available kits developed against seasonal influenza viruses. However, POCT has not yet been established for the diagnosis of pandemic influenza A virus (H1N1pdm) infection due to the low sensitivity of the existing kits for H1N1pdm. METHODOLOGY/PRINCIPAL FINDINGS An immunochromatography (IC) test kit was developed based on a monoclonal antibody against H1N1pdm, which does not cross-react with seasonal influenza A or B viruses. The efficacy of this kit (PDM-IC kit) for the diagnosis of H1N1pdm infection was compared with that of an existing kit for the detection of seasonal influenza viruses (SEA-IC kit). Nasal swabs (n = 542) were obtained from patients with flu-like syndrome at 13 clinics in Osaka, Japan during the winter of 2010/2011. Among the 542 samples, randomly selected 332 were further evaluated for viral presence by reverse transcriptase polymerase chain reaction (RT-PCR). The PDM-IC kit versus the SEA-IC kit showed higher sensitivity to and specificity for H1N1pdm, despite several inconsistencies between the two kits or between the kits and RT-PCR. Consequently, greater numbers of false-negative and false-positive cases were documented when the SEA-IC kit was employed. Significant correlation coefficients for sensitivity, specificity, and negative prediction values between the two kits were observed at individual clinics, indicating that the results could be affected by clinic-related techniques for sampling and kit handling. Importantly, many patients (especially influenza-negative cases) were prescribed anti-influenza drugs that were incongruous with their condition, largely due to physician preference for patient responses to questionnaires and patient symptomology, as opposed to actual viral presence. CONCLUSIONS/SIGNIFICANCE Concomitant use of SEA-IC and PDM-IC kits increased the likelihood of correct influenza diagnosis. Increasing the credibility of POCT is anticipated to decrease the inappropriate dispensing of anti-influenza drugs, thereby minimizing the emergence of drug-resistant H1N1pdm strains.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Animals
- Antiviral Agents/administration & dosage
- Antiviral Agents/pharmacology
- Antiviral Agents/therapeutic use
- Child
- Child, Preschool
- Chromatography, Affinity/methods
- Dogs
- Drug Prescriptions/statistics & numerical data
- Female
- Humans
- Infant
- Infant, Newborn
- Influenza A Virus, H1N1 Subtype/drug effects
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H1N1 Subtype/physiology
- Influenza, Human/diagnosis
- Influenza, Human/drug therapy
- Influenza, Human/epidemiology
- Madin Darby Canine Kidney Cells
- Male
- Middle Aged
- Pandemics
- Point-of-Care Systems
- Predictive Value of Tests
- Reproducibility of Results
- Time Factors
- Young Adult
Collapse
Affiliation(s)
- Tadahiro Sasaki
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Pandemic 2009 H1N1 influenza A virus carrying a Q136K mutation in the neuraminidase gene is resistant to zanamivir but exhibits reduced fitness in the guinea pig transmission model. J Virol 2012. [PMID: 23192869 DOI: 10.1128/jvi.02507-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Resistance of influenza A viruses to neuraminidase inhibitors can arise through mutations in the neuraminidase (NA) gene. We show here that a Q136K mutation in the NA of the 2009 pandemic H1N1 virus confers a high degree of resistance to zanamivir. Resistance is accompanied by reduced numbers of NA molecules in viral particles and reduced intrinsic enzymatic activity of mutant NA. Interestingly, the Q136K mutation strongly impairs viral fitness in the guinea pig transmission model.
Collapse
|
47
|
Systematic identification of H274Y compensatory mutations in influenza A virus neuraminidase by high-throughput screening. J Virol 2012; 87:1193-9. [PMID: 23152521 DOI: 10.1128/jvi.01658-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Compensatory mutations contribute to the appearance of the oseltamivir resistance substitution H274Y in the neuraminidase (NA) gene of H1N1 influenza viruses. Here, we describe a high-throughput screening method utilizing error-prone PCR and next-generation sequencing to comprehensively screen NA genes for H274Y compensatory mutations. We found four mutations that can either fully (R194G, E214D) or partially (L250P, F239Y) compensate for the fitness deficiency of the H274Y mutant. The compensatory effect of E214D is applicable in both seasonal influenza virus strain A/New Caledonia/20/1999 and 2009 pandemic swine influenza virus strain A/California/04/2009. The technique described here has the potential to profile a gene at the single-nucleotide level to comprehend the dynamics of mutation space and fitness and thus offers prediction power for emerging mutant species.
Collapse
|
48
|
Lee SMY, Yen HL. Targeting the host or the virus: current and novel concepts for antiviral approaches against influenza virus infection. Antiviral Res 2012; 96:391-404. [PMID: 23022351 PMCID: PMC7132421 DOI: 10.1016/j.antiviral.2012.09.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 09/11/2012] [Accepted: 09/17/2012] [Indexed: 12/22/2022]
Abstract
Influenza epidemics and pandemics are constant threats to human health. The application of antiviral drugs provides an immediate and direct control of influenza virus infection. At present, the major strategy for managing patients with influenza is through targeting conserved viral proteins critical for viral replication. Two classes of conventional antiviral drugs, the M2 ion channel blockers and the neuraminidase inhibitors, are frequently used. In recent years, increasing levels of resistance to both drug classes has become a major public health concern, highlighting the urgent need for the development of alternative treatments. Novel classes of antiviral compounds or biomolecules targeting viral replication mechanism are under development, using approaches including high-throughput small-molecule screening platforms and structure-based designs. In response to influenza virus infection, host cellular mechanisms are triggered to defend against the invaders. At the same time, viruses as obligate intracellular pathogens have evolved to exploit cellular responses in support of their efficient replication, including antagonizing the host type I interferon response as well as activation of specific cellular pathways at different stages of the replication cycle. Numerous studies have highlighted the possibility of targeting virus-host interactions and host cellular mechanisms to develop new treatment regimens. This review aims to give an overview of current and novel concepts targeting the virus and the host for managing influenza.
Collapse
Affiliation(s)
- Suki Man-Yan Lee
- Centre of Influenza Research, School of Public Health, The University of Hong Kong, Hong Kong
| | | |
Collapse
|
49
|
The H275Y neuraminidase mutation of the pandemic A/H1N1 influenza virus lengthens the eclipse phase and reduces viral output of infected cells, potentially compromising fitness in ferrets. J Virol 2012; 86:10651-60. [PMID: 22837199 DOI: 10.1128/jvi.07244-11] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The H275Y amino acid substitution of the neuraminidase gene is the most common mutation conferring oseltamivir resistance in the N1 subtype of the influenza virus. Using a mathematical model to analyze a set of in vitro experiments that allow for the full characterization of the viral replication cycle, we show that the primary effects of the H275Y substitution on the pandemic H1N1 (H1N1pdm09) strain are to lengthen the mean eclipse phase of infected cells (from 6.6 to 9.1 h) and decrease (by 7-fold) the viral burst size, i.e., the total number of virions produced per cell. We also find, however, that the infectious-unit-to-particle ratio of the H275Y mutant strain is 12-fold higher than that of the oseltamivir-susceptible strain (0.19 versus 0.016 per RNA copy). A parallel analysis of the H275Y mutation in the prior seasonal A/Brisbane/59/2007 background shows similar changes in the infection kinetic parameters, but in this background, the H275Y mutation also allows the mutant to infect cells five times more rapidly. Competitive mixed-strain infections in vitro, where the susceptible and resistant H1N1pdm09 strains must compete for cells, are characterized by higher viral production by the susceptible strain but suggest equivalent fractions of infected cells in the culture. In ferrets, however, the mutant strain appears to suffer a delay in its infection of the respiratory tract that allows the susceptible strain to dominate mixed-strain infections.
Collapse
|
50
|
Comparable fitness and transmissibility between oseltamivir-resistant pandemic 2009 and seasonal H1N1 influenza viruses with the H275Y neuraminidase mutation. J Virol 2012; 86:10558-70. [PMID: 22811535 DOI: 10.1128/jvi.00985-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Limited antiviral compounds are available for the control of influenza, and the emergence of resistant variants would further narrow the options for defense. The H275Y neuraminidase (NA) mutation, which confers resistance to oseltamivir carboxylate, has been identified among the seasonal H1N1 and 2009 pandemic influenza viruses; however, those H275Y resistant variants demonstrated distinct epidemiological outcomes in humans. Specifically, dominance of the H275Y variant over the oseltamivir-sensitive viruses was only reported for a seasonal H1N1 variant during 2008-2009. Here, we systematically analyze the effect of the H275Y NA mutation on viral fitness and transmissibility of A(H1N1)pdm09 and seasonal H1N1 influenza viruses. The NA genes from A(H1N1)pdm09 A/California/04/09 (CA04), seasonal H1N1 A/New Caledonia/20/1999 (NewCal), and A/Brisbane/59/2007 (Brisbane) were individually introduced into the genetic background of CA04. The H275Y mutation led to reduced NA enzyme activity, an increased K(m) for 3'-sialylactose or 6'-sialylactose, and decreased infectivity in mucin-secreting human airway epithelial cells compared to the oseltamivir-sensitive wild-type counterparts. Attenuated pathogenicity in both RG-CA04(NA-H275Y) and RG-CA04 × Brisbane(NA-H275Y) viruses was observed in ferrets compared to RG-CA04 virus, although the transmissibility was minimally affected. In parallel experiments using recombinant Brisbane viruses differing by hemagglutinin and NA, comparable direct contact and respiratory droplet transmissibilities were observed among RG-NewCal(HA,NA), RG-NewCal(HA,NA-H275Y), RG-Brisbane(HA,NA-H275Y), and RG-NewCal(HA) × Brisbane(NA-H275Y) viruses. Our results demonstrate that, despite the H275Y mutation leading to a minor reduction in viral fitness, the transmission potentials of three different antigenic strains carrying this mutation were comparable in the naïve ferret model.
Collapse
|