1
|
Gao Y, Barton JP. A binary trait model reveals the fitness effects of HIV-1 escape from T cell responses. Proc Natl Acad Sci U S A 2025; 122:e2405379122. [PMID: 39970000 PMCID: PMC11873823 DOI: 10.1073/pnas.2405379122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025] Open
Abstract
Natural selection often acts on multiple traits simultaneously. For example, the virus HIV-1 faces pressure to evade host immunity while also preserving replicative fitness. While past work has studied selection during HIV-1 evolution, as in other examples where selection acts on multiple traits, it is challenging to quantitatively separate different contributions to fitness. This task is made more difficult because a single mutation can affect both immune escape and replication. Here, we develop an evolutionary model that disentangles the effects of escaping CD8+ T cell-mediated immunity, which we model as a binary trait, from other contributions to fitness. After validation in simulations, we applied this model to study within-host HIV-1 evolution in a clinical dataset. We observed strong selection for immune escape, sometimes greatly exceeding past estimates, especially early in infection. Conservative estimates suggest that roughly half of HIV-1 fitness gains during the first months to years of infection can be attributed to T cell escape. Our approach is not limited to HIV-1 or viruses and could be adapted to study the evolution of quantitative traits in other contexts.
Collapse
Affiliation(s)
- Yirui Gao
- Department of Physics and Astronomy, University of California, Riverside, CA92521
| | - John P. Barton
- Department of Physics and Astronomy, University of California, Riverside, CA92521
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA15213
| |
Collapse
|
2
|
Chung WJ, Wodarz D. Compartmental structure in the secondary lymphoid tissue can slow down in vivo HIV-1 evolution in the presence of strong CTL responses. J R Soc Interface 2025; 22:20240468. [PMID: 39999881 PMCID: PMC11858754 DOI: 10.1098/rsif.2024.0468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/16/2024] [Accepted: 12/06/2024] [Indexed: 02/27/2025] Open
Abstract
Human immunodeficiency virus (HIV-1) replicates in the secondary lymphoid tissues, which are characterized by complex compartmental structures. While cytotoxic T lymphocytes (CTL) readily access infected cells in the extrafollicular compartments, they do not home to follicular compartments, which thus represent an immune-privileged site. Using mathematical models, previous work has shown that this compartmental tissue structure can delay the emergence of CTL escape mutants. Here, we show computationally that the compartmental structure can have an impact on the evolution of advantageous mutants that are not related to CTL recognition: (i) compartmental structure can influence the fixation probability of an advantageous mutant, with weakened selection occurring if CTL responses are of intermediate strength; (ii) compartmental structure is predicted to reduce the rate of mutant generation, which becomes more pronounced for stronger CTL responses; and (iii) compartmental structure is predicted to slow down the overall rate of mutant invasion, with the effect becoming more pronounced for stronger CTL responses. Altogether, this work shows that in vivo virus evolution proceeds slower in models with compartmental structure compared with models that assume equivalent virus load in the absence of compartmental structure, especially for strong CTL-mediated virus control. This has implications for understanding the rate of disease progression.
Collapse
Affiliation(s)
- Wen-Jian Chung
- Department of Population Health and Disease Prevention, University of California, Irvine, CA92697, USA
| | - Dominik Wodarz
- Department of Ecology, Behavior, and Evolution, University of California San Diego, 9500 Gilman Drive, La Jolla, CA92093, USA
| |
Collapse
|
3
|
Xu ZM, Gnouamozi GE, Rüeger S, Shea PR, Buti M, Chan HL, Marcellin P, Lawless D, Naret O, Zeller M, Schneuing A, Scheck A, Junier T, Moradpour D, Podlaha O, Suri V, Gaggar A, Subramanian M, Correia B, Gfeller D, Urban S, Fellay J. Joint host-pathogen genomic analysis identifies hepatitis B virus mutations associated with human NTCP and HLA class I variation. Am J Hum Genet 2024; 111:1018-1034. [PMID: 38749427 PMCID: PMC11179264 DOI: 10.1016/j.ajhg.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024] Open
Abstract
Evolutionary changes in the hepatitis B virus (HBV) genome could reflect its adaptation to host-induced selective pressure. Leveraging paired human exome and ultra-deep HBV genome-sequencing data from 567 affected individuals with chronic hepatitis B, we comprehensively searched for the signatures of this evolutionary process by conducting "genome-to-genome" association tests between all human genetic variants and viral mutations. We identified significant associations between an East Asian-specific missense variant in the gene encoding the HBV entry receptor NTCP (rs2296651, NTCP S267F) and mutations within the receptor-binding region of HBV preS1. Through in silico modeling and in vitro preS1-NTCP binding assays, we observed that the associated HBV mutations are in proximity to the NTCP variant when bound and together partially increase binding affinity to NTCP S267F. Furthermore, we identified significant associations between HLA-A variation and viral mutations in HLA-A-restricted T cell epitopes. We used in silico binding prediction tools to evaluate the impact of the associated HBV mutations on HLA presentation and observed that mutations that result in weaker binding affinities to their cognate HLA alleles were enriched. Overall, our results suggest the emergence of HBV escape mutations that might alter the interaction between HBV PreS1 and its cellular receptor NTCP during viral entry into hepatocytes and confirm the role of HLA class I restriction in inducing HBV epitope variations.
Collapse
Affiliation(s)
- Zhi Ming Xu
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Gnimah Eva Gnouamozi
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sina Rüeger
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Patrick R Shea
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Maria Buti
- Liver Unit, Hospital Universitario Vall d'Hebron and CIBEREHD del Instituto Carlos III, Barcelona, Spain
| | - Henry Ly Chan
- The Chinese University of Hong Kong, Hong Kong, China
| | | | - Dylan Lawless
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Olivier Naret
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Matthias Zeller
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Arne Schneuing
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Andreas Scheck
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Thomas Junier
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Darius Moradpour
- Division of Gastroenterology and Hepatology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | - Bruno Correia
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - David Gfeller
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, University Hospital Heidelberg, Heidelberg, Germany; German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Jacques Fellay
- School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Swiss Institute of Bioinformatics, Lausanne, Switzerland; Precision Medicine Unit, Biomedical Data Science Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Chung WJ, Connick E, Wodarz D. Human immunodeficiency virus dynamics in secondary lymphoid tissues and the evolution of cytotoxic T lymphocyte escape mutants. Virus Evol 2024; 10:vead084. [PMID: 38516655 PMCID: PMC10956502 DOI: 10.1093/ve/vead084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 03/23/2024] Open
Abstract
In secondary lymphoid tissues, human immunodeficiency virus (HIV) can replicate in both the follicular and extrafollicular compartments. Yet, virus is concentrated in the follicular compartment in the absence of antiretroviral therapy, in part due to the lack of cytotoxic T lymphocyte (CTL)-mediated activity there. CTLs home to the extrafollicular compartment, where they can suppress virus load to relatively low levels. We use mathematical models to show that this compartmentalization can explain seemingly counter-intuitive observations. First, it can explain the observed constancy of the viral decline slope during antiviral therapy in the peripheral blood, irrespective of the presence of CTL in Simian Immunodeficiency Virus (SIV)-infected macaques, under the assumption that CTL-mediated lysis significantly contributes to virus suppression. Second, it can account for the relatively long times it takes for CTL escape mutants to emerge during chronic infection even if CTL-mediated lysis is responsible for virus suppression. The reason is the heterogeneity in CTL activity and the consequent heterogeneity in selection pressure between the follicular and extrafollicular compartments. Hence, to understand HIV dynamics more thoroughly, this analysis highlights the importance of measuring virus populations separately in the extrafollicular and follicular compartments rather than using virus load in peripheral blood as an observable; this hides the heterogeneity between compartments that might be responsible for the particular patterns seen in the dynamics and evolution of the HIV in vivo.
Collapse
Affiliation(s)
- Wen-Jian Chung
- Department of Population Health and Disease Prevention, University of California, 856 Health Sciences Quad, Irvine, CA 92697, USA
| | - Elizabeth Connick
- Division of Infectious Diseases, Department of Medicine, University of Arizona, 1501 N. Campbell Ave, P.O. Box 245039, Tucson, AZ 85724, USA
| | - Dominik Wodarz
- Department of Ecology, Behavior, and Evolution, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Zhang X, Ruan Z, Zheng M, Zhou J, Boccaletti S, Barzel B. Epidemic spreading under mutually independent intra- and inter-host pathogen evolution. Nat Commun 2022; 13:6218. [PMID: 36266285 PMCID: PMC9584276 DOI: 10.1038/s41467-022-34027-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
The dynamics of epidemic spreading is often reduced to the single control parameter R0 (reproduction-rate), whose value, above or below unity, determines the state of the contagion. If, however, the pathogen evolves as it spreads, R0 may change over time, potentially leading to a mutation-driven spread, in which an initially sub-pandemic pathogen undergoes a breakthrough mutation. To predict the boundaries of this pandemic phase, we introduce here a modeling framework to couple the inter-host network spreading patterns with the intra-host evolutionary dynamics. We find that even in the extreme case when these two process are driven by mutually independent selection forces, mutations can still fundamentally alter the pandemic phase-diagram. The pandemic transitions, we show, are now shaped, not just by R0, but also by the balance between the epidemic and the evolutionary timescales. If mutations are too slow, the pathogen prevalence decays prior to the appearance of a critical mutation. On the other hand, if mutations are too rapid, the pathogen evolution becomes volatile and, once again, it fails to spread. Between these two extremes, however, we identify a broad range of conditions in which an initially sub-pandemic pathogen can breakthrough to gain widespread prevalence.
Collapse
Affiliation(s)
- Xiyun Zhang
- Department of Physics, Jinan University, Guangzhou, Guangdong, 510632, China.
| | - Zhongyuan Ruan
- Institute of Cyberspace Security, Zhejiang University of Technology, Hangzhou, Zhejiang, 310023, China
| | - Muhua Zheng
- School of Physics and Electronic Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jie Zhou
- School of Physics and Electronic Science, East China Normal University, Shanghai, 200241, China
| | - Stefano Boccaletti
- CNR - Institute of Complex Systems, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
- Moscow Institute of Physics and Technology (National Research University), 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russian Federation
- Universidad Rey Juan Carlos, Calle Tulipán s/n, 28933 Móstoles, Madrid, Spain
| | - Baruch Barzel
- Department of Mathematics, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, 5290002, Israel
- Network Science Institute, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
6
|
Evolution during primary HIV infection does not require adaptive immune selection. Proc Natl Acad Sci U S A 2022; 119:2109172119. [PMID: 35145025 PMCID: PMC8851487 DOI: 10.1073/pnas.2109172119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 01/20/2023] Open
Abstract
Modern HIV research depends crucially on both viral sequencing and population measurements. To directly link mechanistic biological processes and evolutionary dynamics during HIV infection, we developed multiple within-host phylodynamic models of HIV primary infection for comparative validation against viral load and evolutionary dynamics data. The optimal model of primary infection required no positive selection, suggesting that the host adaptive immune system reduces viral load but surprisingly does not drive observed viral evolution. Rather, the fitness (infectivity) of mutant variants is drawn from an exponential distribution in which most variants are slightly less infectious than their parents (nearly neutral evolution). This distribution was not largely different from either in vivo fitness distributions recorded beyond primary infection or in vitro distributions that are observed without adaptive immunity, suggesting the intrinsic viral fitness distribution may drive evolution. Simulated phylogenetic trees also agree with independent data and illuminate how phylogenetic inference must consider viral and immune-cell population dynamics to gain accurate mechanistic insights.
Collapse
|
7
|
Akahoshi T, Gatanaga H, Kuse N, Chikata T, Koyanagi M, Ishizuka N, Brumme CJ, Murakoshi H, Brumme ZL, Oka S, Takiguchi M. T-cell responses to sequentially emerging viral escape mutants shape long-term HIV-1 population dynamics. PLoS Pathog 2020; 16:e1009177. [PMID: 33370400 PMCID: PMC7833229 DOI: 10.1371/journal.ppat.1009177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/25/2021] [Accepted: 11/18/2020] [Indexed: 11/18/2022] Open
Abstract
HIV-1 strains harboring immune escape mutations can persist in circulation, but the impact of selection by multiple HLA alleles on population HIV-1 dynamics remains unclear. In Japan, HIV-1 Reverse Transcriptase codon 135 (RT135) is under strong immune pressure by HLA-B*51:01-restricted and HLA-B*52:01-restricted T cells that target a key epitope in this region (TI8; spanning RT codons 128-135). Major population-level shifts have occurred at HIV-1 RT135 during the Japanese epidemic, which first affected hemophiliacs (via imported contaminated blood products) and subsequently non-hemophiliacs (via domestic transmission). Specifically, threonine accumulated at RT135 (RT135T) in hemophiliac and non-hemophiliac HLA-B*51:01+ individuals diagnosed before 1997, but since then RT135T has markedly declined while RT135L has increased among non-hemophiliac individuals. We demonstrated that RT135V selection by HLA-B*52:01-restricted TI8-specific T-cells led to the creation of a new HLA-C*12:02-restricted epitope TN9-8V. We further showed that TN9-8V-specific HLA-C*12:02-restricted T cells selected RT135L while TN9-8T-specific HLA-C*12:02-restricted T cells suppressed replication of the RT135T variant. Thus, population-level accumulation of the RT135L mutation over time in Japan can be explained by initial targeting of the TI8 epitope by HLA-B*52:01-restricted T-cells, followed by targeting of the resulting escape mutant by HLA-C*12:02-restricted T-cells. We further demonstrate that this phenomenon is particular to Japan, where the HLA-B*52:01-C*12:02 haplotype is common: RT135L did not accumulate over a 15-year longitudinal analysis of HIV sequences in British Columbia, Canada, where this haplotype is rare. Together, our observations reveal that T-cell responses to sequentially emerging viral escape mutants can shape long-term HIV-1 population dynamics in a host population-specific manner.
Collapse
Affiliation(s)
| | - Hiroyuki Gatanaga
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
| | - Takayuki Chikata
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
| | - Madoka Koyanagi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
| | | | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Hayato Murakoshi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
| | - Zabrina L. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
| | - Shinichi Oka
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
- AIDS Clinical Center, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, Kumamoto, Japan
- Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
8
|
Impact of the distribution of recovery rates on disease spreading in complex networks. PHYSICAL REVIEW RESEARCH 2020; 2:013046. [PMCID: PMC7217552 DOI: 10.1103/physrevresearch.2.013046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We study a general epidemic model with arbitrary recovery rate distributions. This simple deviation from the standard setup is sufficient to prove that heterogeneity in the dynamical parameters can be as important as the more studied structural heterogeneity. Our analytical solution is able to predict the shift in the critical properties induced by heterogeneous recovery rates. We find that the critical value of infectivity tends to be smaller than the one predicted by quenched mean-field approaches in the homogeneous case and that it can be linked to the variance of the recovery rates. Our findings also illustrate the role of dynamical-structural correlations, where we allow a power-law network to dynamically behave as a homogeneous structure by an appropriate tuning of its recovery rates. Overall, our results demonstrate that heterogeneity in the recovery rates, eventually in all dynamical parameters, is as important as the structural heterogeneity.
Collapse
|
9
|
Palmer DS, Turner I, Fidler S, Frater J, Goedhals D, Goulder P, Huang KHG, Oxenius A, Phillips R, Shapiro R, Vuuren CV, McLean AR, McVean G. Mapping the drivers of within-host pathogen evolution using massive data sets. Nat Commun 2019; 10:3017. [PMID: 31289267 PMCID: PMC6616926 DOI: 10.1038/s41467-019-10724-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 05/20/2019] [Indexed: 11/09/2022] Open
Abstract
Differences among hosts, resulting from genetic variation in the immune system or heterogeneity in drug treatment, can impact within-host pathogen evolution. Genetic association studies can potentially identify such interactions. However, extensive and correlated genetic population structure in hosts and pathogens presents a substantial risk of confounding analyses. Moreover, the multiple testing burden of interaction scanning can potentially limit power. We present a Bayesian approach for detecting host influences on pathogen evolution that exploits vast existing data sets of pathogen diversity to improve power and control for stratification. The approach models key processes, including recombination and selection, and identifies regions of the pathogen genome affected by host factors. Our simulations and empirical analysis of drug-induced selection on the HIV-1 genome show that the method recovers known associations and has superior precision-recall characteristics compared to other approaches. We build a high-resolution map of HLA-induced selection in the HIV-1 genome, identifying novel epitope-allele combinations.
Collapse
Affiliation(s)
- Duncan S Palmer
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK.
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK.
- Institute for Emerging Infections, The Oxford Martin School, Oxford, OX1 3BD, UK.
| | - Isaac Turner
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Sarah Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London, W2 1PG, UK
| | - John Frater
- Institute for Emerging Infections, The Oxford Martin School, Oxford, OX1 3BD, UK
- Nuffield Department of Clinical Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, OX1 3SY, UK
- Oxford NIHR Biomedical Research Centre, Oxford, OX3 7LE, UK
| | - Dominique Goedhals
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, 4013, South Africa
| | - Philip Goulder
- Division of Infectious Diseases, University of the Free State, and 3 Military Hospital, Bloemfontein, 9300, South Africa
- Department of Paediatrics, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, OX1 3SY, UK
| | - Kuan-Hsiang Gary Huang
- Nuffield Department of Clinical Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, OX1 3SY, UK
- Einstein Medical Center Philadelphia, 5501 Old York Road, PA, 19141, USA
| | - Annette Oxenius
- Institute of Microbiology, Swiss Federal Institute of Technology Zurich, 8093, Zurich, Switzerland
| | - Rodney Phillips
- Institute for Emerging Infections, The Oxford Martin School, Oxford, OX1 3BD, UK
- Nuffield Department of Clinical Medicine, University of Oxford, Peter Medawar Building for Pathogen Research, Oxford, OX1 3SY, UK
- Oxford NIHR Biomedical Research Centre, Oxford, OX3 7LE, UK
- Faculty of Medicine, UNSW Sydney, NSW, 2052, Australia
| | - Roger Shapiro
- Botswana Harvard AIDS Institute Partnership, Gaborone, BO 320, Botswana
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, 02215, USA
| | - Cloete van Vuuren
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, 4013, South Africa
| | - Angela R McLean
- Institute for Emerging Infections, The Oxford Martin School, Oxford, OX1 3BD, UK
- Zoology Department, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Gil McVean
- Department of Statistics, University of Oxford, 24-29 St Giles', Oxford, OX1 3LB, UK
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Old Road Campus, Oxford, OX3 7LF, UK
| |
Collapse
|
10
|
Tough RH, McLaren PJ. Interaction of the Host and Viral Genome and Their Influence on HIV Disease. Front Genet 2019; 9:720. [PMID: 30728828 PMCID: PMC6351501 DOI: 10.3389/fgene.2018.00720] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 12/21/2018] [Indexed: 01/23/2023] Open
Abstract
The course of Human Immunodeficiency Virus type 1 (HIV) infection is a dynamic interplay in which both host and viral genetic variation, among other factors, influence disease susceptibility and rate of progression. HIV set-point viral load (spVL), a key indicator of HIV disease progression, has an estimated 30% of variance attributable to common heritable effects and roughly 70% attributable to environmental factors and/or additional non-genetic factors. Genome-wide genotyping and sequencing studies have allowed for large-scale association testing studying host and viral genetic variants associated with infection and disease progression. Host genomics of HIV infection has been studied predominantly in Caucasian populations consistently identifying human leukocyte antigen (HLA) genes and C-C motif chemokine receptor 5 as key factors of HIV susceptibility and progression. However, these studies don’t fully assess all classes of genetic variation (e.g., very rare polymorphisms, copy number variants etc.) and do not inform on non-European ancestry groups. Additionally, viral sequence variability has been demonstrated to influence disease progression independently of host genetic variation. Viral sequence variation can be attributed to the rapid evolution of the virus within the host due to the selective pressure of the host immune response. As the host immune system responds to the virus, e.g., through recognition of HIV antigens, the virus is able to mitigate this response by evolving HLA-specific escape mutations. Diversity of viral genotypes has also been correlated with moderate to strong effects on CD4+ T cell decline and some studies showing weak to no correlation with spVL. There is evidence to support these viral genetic factors being heritable between individuals and the evolution of these factors having important consequences in the genetic epidemiology of HIV infection on a population level. This review will discuss the host-pathogen interaction of HIV infection, explore the importance of host and viral genetics for a better understanding of pathogenesis and identify opportunities for additional genetic studies.
Collapse
Affiliation(s)
- Riley H Tough
- JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Paul J McLaren
- JC Wilt Infectious Diseases Research Centre, Public Health Agency of Canada, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
11
|
Borzooee F, Joris KD, Grant MD, Larijani M. APOBEC3G Regulation of the Evolutionary Race Between Adaptive Immunity and Viral Immune Escape Is Deeply Imprinted in the HIV Genome. Front Immunol 2019; 9:3032. [PMID: 30687306 PMCID: PMC6338068 DOI: 10.3389/fimmu.2018.03032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 12/07/2018] [Indexed: 12/16/2022] Open
Abstract
APOBEC3G (A3G) is a host enzyme that mutates the genomes of retroviruses like HIV. Since A3G is expressed pre-infection, it has classically been considered an agent of innate immunity. We and others previously showed that the impact of A3G-induced mutations on the HIV genome extends to adaptive immunity also, by generating cytotoxic T cell (CTL) escape mutations. Accordingly, HIV genomic sequences encoding CTL epitopes often contain A3G-mutable “hotspot” sequence motifs, presumably to channel A3G action toward CTL escape. Here, we studied the depths and consequences of this apparent viral genome co-evolution with A3G. We identified all potential CTL epitopes in Gag, Pol, Env, and Nef restricted to several HLA class I alleles. We simulated A3G-induced mutations within CTL epitope-encoding sequences, and flanking regions. From the immune recognition perspective, we analyzed how A3G-driven mutations are predicted to impact CTL-epitope generation through modulating proteasomal processing and HLA class I binding. We found that A3G mutations were most often predicted to result in diminishing/abolishing HLA-binding affinity of peptide epitopes. From the viral genome evolution perspective, we evaluated enrichment of A3G hotspots at sequences encoding CTL epitopes and included control sequences in which the HIV genome was randomly shuffled. We found that sequences encoding immunogenic epitopes exhibited a selective enrichment of A3G hotspots, which were strongly biased to translate to non-synonymous amino acid substitutions. When superimposed on the known mutational gradient across the entire length of the HIV genome, we observed a gradient of A3G hotspot enrichment, and an HLA-specific pattern of the potential of A3G hotspots to lead to CTL escape mutations. These data illuminate the depths and extent of the co-evolution of the viral genome to subvert the host mutator A3G.
Collapse
Affiliation(s)
- Faezeh Borzooee
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Krista D Joris
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michael D Grant
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mani Larijani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
12
|
Darbon A, Colombi D, Valdano E, Savini L, Giovannini A, Colizza V. Disease persistence on temporal contact networks accounting for heterogeneous infectious periods. ROYAL SOCIETY OPEN SCIENCE 2019; 6:181404. [PMID: 30800384 PMCID: PMC6366198 DOI: 10.1098/rsos.181404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 12/13/2018] [Indexed: 05/09/2023]
Abstract
The infectious period of a transmissible disease is a key factor for disease spread and persistence. Epidemic models on networks typically assume an identical average infectious period for all individuals, thus allowing an analytical treatment. This simplifying assumption is, however, often unrealistic, as hosts may have different infectious periods, due, for instance, to individual host-pathogen interactions or inhomogeneous access to treatment. While previous work accounted for this heterogeneity in static networks, a full theoretical understanding of the interplay of varying infectious periods and time-evolving contacts is still missing. Here, we consider a susceptible-infectious-susceptible epidemic on a temporal network with host-specific average infectious periods, and develop an analytical framework to estimate the epidemic threshold, i.e. the critical transmissibility for disease spread in the host population. Integrating contact data for transmission with outbreak data and epidemiological estimates, we apply our framework to three real-world case studies exploring different epidemic contexts-the persistence of bovine tuberculosis in southern Italy, the spread of nosocomial infections in a hospital, and the diffusion of pandemic influenza in a school. We find that the homogeneous parametrization may cause important biases in the assessment of the epidemic risk of the host population. Our approach is also able to identify groups of hosts mostly responsible for disease diffusion who may be targeted for prevention and control, aiding public health interventions.
Collapse
Affiliation(s)
- Alexandre Darbon
- INSERM, Sorbonne Université, Institut Pierre Louis d’Épidémiologie et de Santé Publique (IPLESP), 75012 Paris, France
| | - Davide Colombi
- INSERM, Sorbonne Université, Institut Pierre Louis d’Épidémiologie et de Santé Publique (IPLESP), 75012 Paris, France
| | - Eugenio Valdano
- Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Tarragona 43007, Spain
| | - Lara Savini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Teramo 64100, Italy
| | - Armando Giovannini
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise ‘G. Caporale’, Teramo 64100, Italy
| | - Vittoria Colizza
- INSERM, Sorbonne Université, Institut Pierre Louis d’Épidémiologie et de Santé Publique (IPLESP), 75012 Paris, France
| |
Collapse
|
13
|
Alteri C, Fabeni L, Scutari R, Berno G, Di Carlo D, Gori C, Bertoli A, Vergori A, Mastrorosa I, Bellagamba R, Mussini C, Colafigli M, Montella F, Pennica A, Mastroianni CM, Girardi E, Andreoni M, Antinori A, Svicher V, Ceccherini-Silberstein F, Perno CF, Santoro MM. Genetic divergence of HIV-1 B subtype in Italy over the years 2003-2016 and impact on CTL escape prevalence. Sci Rep 2018; 8:15739. [PMID: 30356083 PMCID: PMC6200748 DOI: 10.1038/s41598-018-34058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/04/2018] [Indexed: 12/05/2022] Open
Abstract
HIV-1 is characterized by high genetic variability, with implications for spread, and immune-escape selection. Here, the genetic modification of HIV-1 B subtype over time was evaluated on 3,328 pol and 1,152 V3 sequences belonging to B subtype and collected from individuals diagnosed in Italy between 2003 and 2016. Sequences were analyzed for genetic-distance from consensus-B (Tajima-Nei), non-synonymous and synonymous rates (dN and dS), CTL escapes, and intra-host evolution over four time-spans (2003–2006, 2007–2009, 2010–2012, 2013–2016). Genetic-distance increased over time for both pol and V3 sequences (P < 0.0001 and 0.0003). Similar results were obtained for dN and dS. Entropy-value significantly increased at 16 pol and two V3 amino acid positions. Seven of them were CTL escape positions (protease: 71; reverse-transcriptase: 35, 162, 177, 202, 207, 211). Sequences with ≥3 CTL escapes increased from 36.1% in 2003–2006 to 54.0% in 2013–2016 (P < 0.0001), and showed better intra-host adaptation than those containing ≤2 CTL escapes (intra-host evolution: 3.0 × 10−3 [2.9 × 10−3–3.1 × 10−3] vs. 4.3 × 10−3 [4.0 × 10−3–5.0 × 10−3], P[LRT] < 0.0001[21.09]). These data provide evidence of still ongoing modifications, involving CTL escape mutations, in circulating HIV-1 B subtype in Italy. These modifications might affect the process of HIV-1 adaptation to the host, as suggested by the slow intra-host evolution characterizing viruses with a high number of CTL escapes.
Collapse
Affiliation(s)
- Claudia Alteri
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, 00133, Italy.
| | - Lavinia Fabeni
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Rossana Scutari
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Giulia Berno
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, 00161, Italy
| | - Domenico Di Carlo
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Milan, 20133, Italy
| | - Caterina Gori
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, 00161, Italy
| | - Ada Bertoli
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - Alessandra Vergori
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, 00161, Italy
| | - Ilaria Mastrorosa
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, 00161, Italy
| | - Rita Bellagamba
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, 00161, Italy
| | | | | | | | | | | | - Enrico Girardi
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, 00161, Italy
| | | | - Andrea Antinori
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, 00161, Italy
| | - Valentina Svicher
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, 00133, Italy
| | | | - Carlo Federico Perno
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Rome, 00161, Italy.,Department of Oncology, University of Milan, Milan, 20122, Italy
| | - Maria Mercedes Santoro
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, 00133, Italy
| |
Collapse
|
14
|
Recombinant GII.P16/GII.4 Sydney 2012 Was the Dominant Norovirus Identified in Australia and New Zealand in 2017. Viruses 2018; 10:v10100548. [PMID: 30304780 PMCID: PMC6213408 DOI: 10.3390/v10100548] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/05/2018] [Accepted: 10/06/2018] [Indexed: 01/16/2023] Open
Abstract
For the past two decades, norovirus pandemic variants have emerged every 3–5 years, and dominate until they are replaced by alternate strains. However, this scenario changed in 2016 with the co-circulation of six prevalent viruses, three of which possessed the pandemic GII.4 Sydney 2012 capsid. An increased number of institutional gastroenteritis outbreaks were reported within the Oceania region in mid-2017. This study identified emerging noroviruses circulating in Australia and New Zealand in 2017 to assess the changing dynamics of the virus infection. RT-PCR-based methods, next generation sequencing, and phylogenetic analyses were used to genotype noroviruses from both clinical and wastewater samples. Antigenic changes were observed between the capsid of pandemic Sydney 2012 variant and the two new Sydney recombinant viruses. The combination of these antigenic changes and the acquisition of a new ORF1 through recombination could both facilitate their ongoing persistence in the population. Overall, an increased prevalence of GII.P16/GII.4 Sydney 2012 viruses was observed in 2017, replacing the GII.P16/GII.2 recombinant that dominated in the region at the end of 2016. This shift in strain dominance was also observed in wastewater samples, demonstrating the reliability of wastewater as a molecular surveillance tool.
Collapse
|
15
|
Bons E, Bertels F, Regoes RR. Estimating the mutational fitness effects distribution during early HIV infection. Virus Evol 2018; 4:vey029. [PMID: 30310682 PMCID: PMC6172364 DOI: 10.1093/ve/vey029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The evolution of HIV during acute infection is often considered a neutral process. Recent analysis of sequencing data from this stage of infection, however, showed high levels of shared mutations between independent viral populations. This suggests that selection might play a role in the early stages of HIV infection. We adapted an existing model for random evolution during acute HIV-infection to include selection. Simulations of this model were used to fit a global mutational fitness effects distribution to previously published sequencing data of the env gene of individuals with acute HIV infection. Measures of sharing between viral populations were used as summary statistics to compare the data to the simulations. We confirm that evolution during acute infection is significantly different from neutral. The distribution of mutational fitness effects is best fit by a distribution with a low, but significant fraction of beneficial mutations and a high fraction of deleterious mutations. While most mutations are neutral or deleterious in this model, about 5% of mutations are beneficial. These beneficial mutations will, on average, result in a small but significant increase in fitness. When assuming no epistasis, this indicates that, at the moment of transmission, HIV is near, but not on the fitness peak for early infection.
Collapse
Affiliation(s)
- Eva Bons
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, Zurich, Switzerland
| | - Frederic Bertels
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, Zurich, Switzerland.,Department for Evolutionary Theory, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, Plön, Germany
| | - Roland R Regoes
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, Universitätstrasse 16, Zurich, Switzerland
| |
Collapse
|
16
|
Abstract
The evolution of viral pathogens is shaped by strong selective forces that are exerted during jumps to new hosts, confrontations with host immune responses and antiviral drugs, and numerous other processes. However, while undeniably strong and frequent, adaptive evolution is largely confined to small parts of information-packed viral genomes, and the majority of observed variation is effectively neutral. The predictions and implications of the neutral theory have proven immensely useful in this context, with applications spanning understanding within-host population structure, tracing the origins and spread of viral pathogens, predicting evolutionary dynamics, and modeling the emergence of drug resistance. We highlight the multiple ways in which the neutral theory has had an impact, which has been accelerated in the age of high-throughput, high-resolution genomics.
Collapse
Affiliation(s)
- Simon D W Frost
- Department of Veterinary Medicine, University of Cambridge, Cambridge,
United Kingdom
- The Alan Turing Institute, London, United Kingdom
| | - Brittany Rife Magalis
- Institute for Genomics and Evolutionary Medicine, Temple University,
Philadelphia, PA
| | | |
Collapse
|
17
|
Johnson LF, May MT, Dorrington RE, Cornell M, Boulle A, Egger M, Davies MA. Estimating the impact of antiretroviral treatment on adult mortality trends in South Africa: A mathematical modelling study. PLoS Med 2017; 14:e1002468. [PMID: 29232366 PMCID: PMC5726614 DOI: 10.1371/journal.pmed.1002468] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 11/07/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Substantial reductions in adult mortality have been observed in South Africa since the mid-2000s, but there has been no formal evaluation of how much of this decline is attributable to the scale-up of antiretroviral treatment (ART), as previous models have not been calibrated to vital registration data. We developed a deterministic mathematical model to simulate the mortality trends that would have been expected in the absence of ART, and with earlier introduction of ART. METHODS AND FINDINGS Model estimates of mortality rates in ART patients were obtained from the International Epidemiology Databases to Evaluate AIDS-Southern Africa (IeDEA-SA) collaboration. The model was calibrated to HIV prevalence data (1997-2013) and mortality data from the South African vital registration system (1997-2014), using a Bayesian approach. In the 1985-2014 period, 2.70 million adult HIV-related deaths occurred in South Africa. Adult HIV deaths peaked at 231,000 per annum in 2006 and declined to 95,000 in 2014, a reduction of 74.7% (95% CI: 73.3%-76.1%) compared to the scenario without ART. However, HIV mortality in 2014 was estimated to be 69% (95% CI: 46%-97%) higher in 2014 (161,000) if the model was calibrated only to HIV prevalence data. In the 2000-2014 period, the South African ART programme is estimated to have reduced the cumulative number of HIV deaths in adults by 1.72 million (95% CI: 1.58 million-1.84 million) and to have saved 6.15 million life years in adults (95% CI: 5.52 million-6.69 million). This compares with a potential saving of 8.80 million (95% CI: 7.90 million-9.59 million) life years that might have been achieved if South Africa had moved swiftly to implement WHO guidelines (2004-2013) and had achieved high levels of ART uptake in HIV-diagnosed individuals from 2004 onwards. The model is limited by its reliance on all-cause mortality data, given the lack of reliable cause-of-death reporting, and also does not allow for changes over time in tuberculosis control programmes and ART effectiveness. CONCLUSIONS ART has had a dramatic impact on adult mortality in South Africa, but delays in the rollout of ART, especially in the early stages of the ART programme, have contributed to substantial loss of life. This is the first study to our knowledge to calibrate a model of ART impact to population-level recorded death data in Africa; models that are not calibrated to population-level death data may overestimate HIV-related mortality.
Collapse
Affiliation(s)
- Leigh F. Johnson
- Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - Margaret T. May
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Rob E. Dorrington
- Centre for Actuarial Research, University of Cape Town, Cape Town, South Africa
| | - Morna Cornell
- Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, South Africa
| | - Andrew Boulle
- Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, South Africa
| | - Matthias Egger
- Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, South Africa
- Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
| | - Mary-Ann Davies
- Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
18
|
Gou W, Jin Z. How heterogeneous susceptibility and recovery rates affect the spread of epidemics on networks. Infect Dis Model 2017; 2:353-367. [PMID: 29928747 PMCID: PMC6002084 DOI: 10.1016/j.idm.2017.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 11/16/2022] Open
Abstract
In this paper, an extended heterogeneous SIR model is proposed, which generalizes the heterogeneous mean-field theory. Different from the traditional heterogeneous mean-field model only taking into account the heterogeneity of degree, our model considers not only the heterogeneity of degree but also the heterogeneity of susceptibility and recovery rates. Then, we analytically study the basic reproductive number and the final epidemic size. Combining with numerical simulations, it is found that the basic reproductive number depends on the mean of distributions of susceptibility and disease course when both of them are independent. If the mean of these two distributions is identical, increasing the variance of susceptibility may block the spread of epidemics, while the corresponding increase in the variance of disease course has little effect on the final epidemic size. It is also shown that positive correlations between individual susceptibility, course of disease and the square of degree make the population more vulnerable to epidemic and avail to the epidemic prevalence, whereas the negative correlations make the population less vulnerable and impede the epidemic prevalence.
Collapse
Affiliation(s)
- Wei Gou
- School of Computer Science and Control Engineering, North University of China, Shanxi, Taiyuan, 030012, People's Republic of China
| | - Zhen Jin
- School of Computer Science and Control Engineering, North University of China, Shanxi, Taiyuan, 030012, People's Republic of China
- Complex Systems Research Center, Shanxi University, Shanxi, Taiyuan, 030006, People's Republic of China
- Shanxi Key Laboratory of Mathematical Techniques and Big Data Analysis on Disease Control and Prevention, Shanxi University, Shanxi, Taiyuan, 030006, People’s Republic of China
| |
Collapse
|
19
|
HIV-1 adaptation to NK cell-mediated immune pressure. PLoS Pathog 2017; 13:e1006361. [PMID: 28582449 PMCID: PMC5472325 DOI: 10.1371/journal.ppat.1006361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 06/15/2017] [Accepted: 04/18/2017] [Indexed: 12/12/2022] Open
Abstract
The observation, by Alter et al., of the enrichment of NK cell "escape" variants in individuals carrying certain Killer-cell Immunoglobulin-like Receptor (KIR) genes is compelling evidence that natural killer (NK) cells exert selection pressure on HIV-1. Alter et al hypothesise that variant peptide, in complex with HLA class I molecules binds KIR receptors and either increases NK cell inhibition or decreases NK cell activation compared to wild type peptide thus leading to virus escape from the NK cell response. According to this hypothesis, in order for NK cells to select for an escape variant, an individual must carry both the KIR and an HLA ligand that binds the variant peptide. In this study we estimate the proportion of the population that is capable of selecting for escape variants and use both epidemiological modelling and a model-free approach to investigate whether this proportion explains the observed variant enrichment. We found that the fraction of individuals within whom the variant would have a selective advantage was low and was unable to explain the high degree of enrichment observed. We conclude that whilst Alter et al's data is consistent with selection pressure, the mechanism that they postulate is unlikely. The importance of this work is two-fold. Firstly, it forces a re-evaluation of some of the clearest evidence that NK cells exert a protective effect in HIV-1 infection. Secondly, it implies that there is a significant aspect of immunology that is not understood: it is possible that KIRs bind much more widely than was previously appreciated; that a gene in linkage with the KIR genes is responsible for considerable peptide-dependent selection or that variant peptides are indirectly impacting KIR ligation.
Collapse
|
20
|
Kinloch NN, MacMillan DR, Le AQ, Cotton LA, Bangsberg DR, Buchbinder S, Carrington M, Fuchs J, Harrigan PR, Koblin B, Kushel M, Markowitz M, Mayer K, Milloy MJ, Schechter MT, Wagner T, Walker BD, Carlson JM, Poon AFY, Brumme ZL. Population-Level Immune-Mediated Adaptation in HIV-1 Polymerase during the North American Epidemic. J Virol 2016; 90:1244-58. [PMID: 26559841 PMCID: PMC4719594 DOI: 10.1128/jvi.02353-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 11/06/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Human leukocyte antigen (HLA) class I-associated polymorphisms in HIV-1 that persist upon transmission to HLA-mismatched hosts may spread in the population as the epidemic progresses. Transmission of HIV-1 sequences containing such adaptations may undermine cellular immune responses to the incoming virus in future hosts. Building upon previous work, we investigated the extent of HLA-associated polymorphism accumulation in HIV-1 polymerase (Pol) through comparative analysis of linked HIV-1/HLA class I genotypes sampled during historic (1979 to 1989; n = 338) and modern (2001 to 2011; n = 278) eras from across North America (Vancouver, BC, Canada; Boston, MA; New York, NY; and San Francisco, CA). Phylogenies inferred from historic and modern HIV-1 Pol sequences were star-like in shape, with an inferred most recent common ancestor (epidemic founder virus) sequence nearly identical to the modern North American subtype B consensus sequence. Nevertheless, modern HIV-1 Pol sequences exhibited roughly 2-fold-higher patristic (tip-to-tip) genetic distances than historic sequences, with HLA pressures likely driving ongoing diversification. Moreover, the frequencies of published HLA-associated polymorphisms in individuals lacking the selecting HLA class I allele was on average ∼2.5-fold higher in the modern than in the historic era, supporting their spread in circulation, though some remained stable in frequency during this time. Notably, polymorphisms restricted by protective HLA alleles appear to be spreading to a greater relative extent than others, though these increases are generally of modest absolute magnitude. However, despite evidence of polymorphism spread, North American hosts generally remain at relatively low risk of acquiring an HIV-1 polymerase sequence substantially preadapted to their HLA profiles, even in the present era. IMPORTANCE HLA class I-restricted cytotoxic T-lymphocyte (CTL) escape mutations in HIV-1 that persist upon transmission may accumulate in circulation over time, potentially undermining host antiviral immunity to the transmitted viral strain. We studied >600 experimentally collected HIV-1 polymerase sequences linked to host HLA information dating back to 1979, along with phylogenetically reconstructed HIV-1 sequences dating back to the virus' introduction into North America. Overall, our results support the gradual spread of many-though not all-HIV-1 polymerase immune escape mutations in circulation over time. This is consistent with recent observations from other global regions, though the extent of polymorphism accumulation in North America appears to be lower than in populations with high seroprevalence, older epidemics, and/or limited HLA diversity. Importantly, the risk of acquiring an HIV-1 polymerase sequence at transmission that is substantially preadapted to one's HLA profile remains relatively low in North America, even in the present era.
Collapse
Affiliation(s)
- Natalie N Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Daniel R MacMillan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Anh Q Le
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Laura A Cotton
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - David R Bangsberg
- Massachusetts General Hospital, Boston, Massachusetts, USA Harvard Medical School, Cambridge, Massachusetts, USA
| | - Susan Buchbinder
- San Francisco Department of Public Health, San Francisco, California, USA University of California, San Francisco, San Francisco, California, USA
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA Ragon Institute of Massachusetts General Hospital, MIT, and Harvard University, Cambridge, Massachusetts, USA
| | - Jonathan Fuchs
- San Francisco Department of Public Health, San Francisco, California, USA University of California, San Francisco, San Francisco, California, USA
| | - P Richard Harrigan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Margot Kushel
- University of California, San Francisco, San Francisco, California, USA
| | | | - Kenneth Mayer
- Harvard Medical School, Cambridge, Massachusetts, USA Fenway Community Health, Boston, Massachusetts, USA
| | - M J Milloy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Martin T Schechter
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Theresa Wagner
- San Francisco Department of Public Health, San Francisco, California, USA
| | - Bruce D Walker
- Ragon Institute of Massachusetts General Hospital, MIT, and Harvard University, Cambridge, Massachusetts, USA
| | | | - Art F Y Poon
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| |
Collapse
|
21
|
Kløverpris HN, Leslie A, Goulder P. Role of HLA Adaptation in HIV Evolution. Front Immunol 2016; 6:665. [PMID: 26834742 PMCID: PMC4716577 DOI: 10.3389/fimmu.2015.00665] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 12/27/2015] [Indexed: 01/22/2023] Open
Abstract
Killing of HIV-infected cells by CD8+ T-cells imposes strong selection pressure on the virus toward escape. The HLA class I molecules that are successful in mediating some degree of control over the virus are those that tend to present epitopes in conserved regions of the proteome, such as in p24 Gag, in which escape also comes at a significant cost to viral replicative capacity (VRC). In some instances, compensatory mutations can fully correct for the fitness cost of such an escape variant; in others, correction is only partial. The consequences of these events within the HIV-infected host, and at the population level following transmission of escape variants, are discussed. The accumulation of escape mutants in populations over the course of the epidemic already shows instances of protective HLA molecules losing their impact, and in certain cases, a modest decline in HIV virulence in association with population-level increase in mutants that reduce VRC.
Collapse
Affiliation(s)
- Henrik N Kløverpris
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa; Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Alasdair Leslie
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R Mandela School of Medicine, University of KwaZulu-Natal , Durban , South Africa
| | - Philip Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa; Department of Paediatrics, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Chan CHS, Sanders LP, Tanaka MM. Modelling the role of immunity in reversion of viral antigenic sites. J Theor Biol 2015; 392:23-34. [PMID: 26723535 DOI: 10.1016/j.jtbi.2015.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/22/2022]
Abstract
Antigenic sites in viral pathogens exhibit distinctive evolutionary dynamics due to their role in evading recognition by host immunity. Antigenic selection is known to drive higher rates of non-synonymous substitution; less well understood is why differences are observed between viruses in their propensity to mutate to a novel or previously encountered amino acid. Here, we present a model to explain patterns of antigenic reversion and forward substitution in terms of the epidemiological and molecular processes of the viral population. We develop an analytical three-strain model and extend the analysis to a multi-site model to predict characteristics of observed sequence samples. Our model provides insight into how the balance between selection to escape immunity and to maintain viability is affected by the rate of mutational input. We also show that while low probabilities of reversion may be due to either a low cost of immune escape or slowly decaying host immunity, these two scenarios can be differentiated by the frequency patterns at antigenic sites. Comparison between frequency patterns of human influenza A (H3N2) and human RSV-A suggests that the increased rates of antigenic reversion in RSV-A is due to faster decaying immunity and not higher costs of escape.
Collapse
Affiliation(s)
- Carmen H S Chan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia; Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia.
| | - Lloyd P Sanders
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia; Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia; Computational Social Science, ETH, Zürich, Switzerland
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia; Evolution & Ecology Research Centre, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
23
|
Zhang C, Zhou S, Groppelli E, Pellegrino P, Williams I, Borrow P, Chain BM, Jolly C. Hybrid spreading mechanisms and T cell activation shape the dynamics of HIV-1 infection. PLoS Comput Biol 2015; 11:e1004179. [PMID: 25837979 PMCID: PMC4383537 DOI: 10.1371/journal.pcbi.1004179] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/04/2015] [Indexed: 02/07/2023] Open
Abstract
HIV-1 can disseminate between susceptible cells by two mechanisms: cell-free infection following fluid-phase diffusion of virions and by highly-efficient direct cell-to-cell transmission at immune cell contacts. The contribution of this hybrid spreading mechanism, which is also a characteristic of some important computer worm outbreaks, to HIV-1 progression in vivo remains unknown. Here we present a new mathematical model that explicitly incorporates the ability of HIV-1 to use hybrid spreading mechanisms and evaluate the consequences for HIV-1 pathogenenesis. The model captures the major phases of the HIV-1 infection course of a cohort of treatment naive patients and also accurately predicts the results of the Short Pulse Anti-Retroviral Therapy at Seroconversion (SPARTAC) trial. Using this model we find that hybrid spreading is critical to seed and establish infection, and that cell-to-cell spread and increased CD4+ T cell activation are important for HIV-1 progression. Notably, the model predicts that cell-to-cell spread becomes increasingly effective as infection progresses and thus may present a considerable treatment barrier. Deriving predictions of various treatments' influence on HIV-1 progression highlights the importance of earlier intervention and suggests that treatments effectively targeting cell-to-cell HIV-1 spread can delay progression to AIDS. This study suggests that hybrid spreading is a fundamental feature of HIV infection, and provides the mathematical framework incorporating this feature with which to evaluate future therapeutic strategies.
Collapse
Affiliation(s)
- Changwang Zhang
- Department of Computer Science, University College London, London, United Kingdom
- Security Science Doctoral Research Training Centre, University College London, London, United Kingdom
- School of Computer Science, National University of Defense Technology, Changsha, China
| | - Shi Zhou
- Department of Computer Science, University College London, London, United Kingdom
| | - Elisabetta Groppelli
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Pierre Pellegrino
- Centre for Sexual Health & HIV Research, Mortimer Market Centre, London, United Kingdom
| | - Ian Williams
- Centre for Sexual Health & HIV Research, Mortimer Market Centre, London, United Kingdom
| | - Persephone Borrow
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Benjamin M. Chain
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Clare Jolly
- Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
24
|
Roberts HE, Hurst J, Robinson N, Brown H, Flanagan P, Vass L, Fidler S, Weber J, Babiker A, Phillips RE, McLean AR, Frater J, SPARTAC trial investigators. Structured observations reveal slow HIV-1 CTL escape. PLoS Genet 2015; 11:e1004914. [PMID: 25642847 PMCID: PMC4333731 DOI: 10.1371/journal.pgen.1004914] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/23/2014] [Indexed: 01/11/2023] Open
Abstract
The existence of viral variants that escape from the selection pressures imposed by cytotoxic T-lymphocytes (CTLs) in HIV-1 infection is well documented, but it is unclear when they arise, with reported measures of the time to escape in individuals ranging from days to years. A study of participants enrolled in the SPARTAC (Short Pulse Anti-Retroviral Therapy at HIV Seroconversion) clinical trial allowed direct observation of the evolution of CTL escape variants in 125 adults with primary HIV-1 infection observed for up to three years. Patient HLA-type, longitudinal CD8+ T-cell responses measured by IFN-γ ELISpot and longitudinal HIV-1 gag, pol, and nef sequence data were used to study the timing and prevalence of CTL escape in the participants whilst untreated. Results showed that sequence variation within CTL epitopes at the first time point (within six months of the estimated date of seroconversion) was consistent with most mutations being transmitted in the infecting viral strain rather than with escape arising within the first few weeks of infection. Escape arose throughout the first three years of infection, but slowly and steadily. Approximately one third of patients did not drive any new escape in an HLA-restricted epitope in just under two years. Patients driving several escape mutations during these two years were rare and the median and modal numbers of new escape events in each patient were one and zero respectively. Survival analysis of time to escape found that possession of a protective HLA type significantly reduced time to first escape in a patient (p = 0.01), and epitopes escaped faster in the face of a measurable CD8+ ELISpot response (p = 0.001). However, even in an HLA matched host who mounted a measurable, specific, CD8+ response the average time before the targeted epitope evolved an escape mutation was longer than two years.
Collapse
Affiliation(s)
- Hannah E. Roberts
- The Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Jacob Hurst
- The Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
- The Institute for Emerging Infections, The Oxford Martin School, Oxford, Oxford United Kingdom
| | - Nicola Robinson
- The Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
- Oxford NIHR Comprehensive Biomedical Research Centre, Oxford, United Kingdom
| | - Helen Brown
- The Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
- Oxford NIHR Comprehensive Biomedical Research Centre, Oxford, United Kingdom
| | - Peter Flanagan
- The Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Laura Vass
- The Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Sarah Fidler
- Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom
| | - Jonathan Weber
- Division of Medicine, Wright Fleming Institute, Imperial College, London, United Kingdom
| | - Abdel Babiker
- Medical Research Council Clinical Trials Unit, London, United Kingdom
| | - Rodney E. Phillips
- The Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
- The Institute for Emerging Infections, The Oxford Martin School, Oxford, Oxford United Kingdom
- Oxford NIHR Comprehensive Biomedical Research Centre, Oxford, United Kingdom
- * E-mail:
| | - Angela R. McLean
- The Institute for Emerging Infections, The Oxford Martin School, Oxford, Oxford United Kingdom
- Department of Zoology, Oxford University, Oxford, United Kingdom
| | - John Frater
- The Peter Medawar Building for Pathogen Research, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
- The Institute for Emerging Infections, The Oxford Martin School, Oxford, Oxford United Kingdom
- Oxford NIHR Comprehensive Biomedical Research Centre, Oxford, United Kingdom
| | | |
Collapse
|
25
|
Carlson JM, Le AQ, Shahid A, Brumme ZL. HIV-1 adaptation to HLA: a window into virus-host immune interactions. Trends Microbiol 2015; 23:212-24. [PMID: 25613992 DOI: 10.1016/j.tim.2014.12.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/04/2014] [Accepted: 12/16/2014] [Indexed: 11/26/2022]
Abstract
HIV-1 develops specific mutations within its genome that allow it to escape detection by human leukocyte antigen (HLA) class I-restricted immune responses, notably those of CD8(+) cytotoxic T lymphocytes (CTL). HLA thus represents a major force driving the evolution and diversification of HIV-1 within individuals and at the population level. Importantly, the study of HIV-1 adaptation to HLA also represents an opportunity to identify what qualities constitute an effective immune response, how the virus in turn adapts to these pressures, and how we may harness this information to design HIV-1 vaccines that stimulate effective cellular immunity.
Collapse
Affiliation(s)
| | - Anh Q Le
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.
| |
Collapse
|
26
|
Garcia V, Regoes RR. The Effect of Interference on the CD8(+) T Cell Escape Rates in HIV. Front Immunol 2015; 5:661. [PMID: 25628620 PMCID: PMC4292734 DOI: 10.3389/fimmu.2014.00661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 12/09/2014] [Indexed: 12/15/2022] Open
Abstract
In early human immunodeficiency virus (HIV) infection, the virus population escapes from multiple CD8+ cell responses. The later an escape mutation emerges, the slower it outgrows its competition, i.e., the escape rate is lower. This pattern could indicate that the strength of the CD8+ cell responses is waning, or that later viral escape mutants carry a larger fitness cost. In this paper, we investigate whether the pattern of decreasing escape rates could also be caused by genetic interference among different escape strains. To this end, we developed a mathematical multi-epitope model of HIV dynamics, which incorporates stochastic effects, recombination, and mutation. We used cumulative linkage disequilibrium measures to quantify the amount of interference. We found that nearly synchronous, similarly strong immune responses in two-locus systems enhance the generation of genetic interference. This effect, combined with a scheme of densely spaced sampling times at the beginning of infection and sparse sampling times later, leads to decreasing successive escape rate estimates, even when there were no selection differences among alleles. These predictions are supported by empirical data from one HIV-infected patient. Thus, interference could explain why later escapes are slower. Considering escape mutations in isolation, neglecting their genetic linkage, conceals the underlying haplotype dynamics and can affect the estimation of the selective pressure exerted by CD8+ cells. In systems in which multiple escape mutations appear, the occurrence of interference dynamics should be assessed by measuring the linkage between different escape mutations.
Collapse
Affiliation(s)
- Victor Garcia
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich , Zurich , Switzerland
| | - Roland Robert Regoes
- Institute of Integrative Biology, Department of Environmental Systems Science, ETH Zürich , Zurich , Switzerland
| |
Collapse
|
27
|
van Dorp CH, van Boven M, de Boer RJ. Immuno-epidemiological modeling of HIV-1 predicts high heritability of the set-point virus load, while selection for CTL escape dominates virulence evolution. PLoS Comput Biol 2014; 10:e1003899. [PMID: 25522184 PMCID: PMC4270429 DOI: 10.1371/journal.pcbi.1003899] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 09/07/2014] [Indexed: 02/07/2023] Open
Abstract
It has been suggested that HIV-1 has evolved its set-point virus load to be optimized for transmission. Previous epidemiological models and studies into the heritability of set-point virus load confirm that this mode of adaptation within the human population is feasible. However, during the many cycles of replication between infection of a host and transmission to the next host, HIV-1 is under selection for escape from immune responses, and not transmission. Here we investigate with computational and mathematical models how these two levels of selection, within-host and between-host, are intertwined. We find that when the rate of immune escape is comparable to what has been observed in patients, immune selection within hosts is dominant over selection for transmission. Surprisingly, we do find high values for set-point virus load heritability, and argue that high heritability estimates can be caused by the 'footprints' left by differing hosts' immune systems on the virus.
Collapse
Affiliation(s)
- Christiaan H. van Dorp
- Theoretical Biology and Bioinformatics, Universiteit Utrecht, Utrecht, The Netherlands
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- * E-mail:
| | - Michiel van Boven
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Rob J. de Boer
- Theoretical Biology and Bioinformatics, Universiteit Utrecht, Utrecht, The Netherlands
| |
Collapse
|
28
|
Payne R, Muenchhoff M, Mann J, Roberts HE, Matthews P, Adland E, Hempenstall A, Huang KH, Brockman M, Brumme Z, Sinclair M, Miura T, Frater J, Essex M, Shapiro R, Walker BD, Ndung'u T, McLean AR, Carlson JM, Goulder PJR. Impact of HLA-driven HIV adaptation on virulence in populations of high HIV seroprevalence. Proc Natl Acad Sci U S A 2014; 111:E5393-400. [PMID: 25453107 PMCID: PMC4273423 DOI: 10.1073/pnas.1413339111] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
It is widely believed that epidemics in new hosts diminish in virulence over time, with natural selection favoring pathogens that cause minimal disease. However, a tradeoff frequently exists between high virulence shortening host survival on the one hand but allowing faster transmission on the other. This is the case in HIV infection, where high viral loads increase transmission risk per coital act but reduce host longevity. We here investigate the impact on HIV virulence of HIV adaptation to HLA molecules that protect against disease progression, such as HLA-B*57 and HLA-B*58:01. We analyzed cohorts in Botswana and South Africa, two countries severely affected by the HIV epidemic. In Botswana, where the epidemic started earlier and adult seroprevalence has been higher, HIV adaptation to HLA including HLA-B*57/58:01 is greater compared with South Africa (P = 7 × 10(-82)), the protective effect of HLA-B*57/58:01 is absent (P = 0.0002), and population viral replicative capacity is lower (P = 0.03). These data suggest that viral evolution is occurring relatively rapidly, and that adaptation of HIV to the most protective HLA alleles may contribute to a lowering of viral replication capacity at the population level, and a consequent reduction in HIV virulence over time. The potential role in this process played by increasing antiretroviral therapy (ART) access is also explored. Models developed here suggest distinct benefits of ART, in addition to reducing HIV disease and transmission, in driving declines in HIV virulence over the course of the epidemic, thereby accelerating the effects of HLA-mediated viral adaptation.
Collapse
Affiliation(s)
- Rebecca Payne
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom
| | | | - Jaclyn Mann
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4013, South Africa
| | - Hannah E Roberts
- The Institute for Emerging Infections, The Oxford Martin School, University of Oxford, Oxford OX1 3BD, United Kingdom; Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Philippa Matthews
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Allison Hempenstall
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Kuan-Hsiang Huang
- The Institute for Emerging Infections, The Oxford Martin School, University of Oxford, Oxford OX1 3BD, United Kingdom; Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom
| | - Mark Brockman
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC V5A 1S6, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada
| | - Zabrina Brumme
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC V5A 1S6, Canada; British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC V6Z 1Y6, Canada
| | - Marc Sinclair
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom
| | | | - John Frater
- The Institute for Emerging Infections, The Oxford Martin School, University of Oxford, Oxford OX1 3BD, United Kingdom; Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, United Kingdom; Oxford National Institute of Health Research, Biomedical Research Centre, Oxford OX1 3SY, United Kingdom
| | - Myron Essex
- Botswana Harvard AIDS Institute Partnership, Gaborone BO 320, Botswana; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02215
| | - Roger Shapiro
- Botswana Harvard AIDS Institute Partnership, Gaborone BO 320, Botswana; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02215
| | - Bruce D Walker
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4013, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA 02139
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4013, South Africa; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Boston, MA 02139
| | - Angela R McLean
- The Institute for Emerging Infections, The Oxford Martin School, University of Oxford, Oxford OX1 3BD, United Kingdom; Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom; and
| | | | - Philip J R Goulder
- Department of Paediatrics, University of Oxford, Oxford OX1 3SY, United Kingdom; HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban 4013, South Africa;
| |
Collapse
|
29
|
Liu D, Zuo T, Hora B, Song H, Kong W, Yu X, Goonetilleke N, Bhattacharya T, Perelson AS, Haynes BF, McMichael AJ, Gao F. Preexisting compensatory amino acids compromise fitness costs of a HIV-1 T cell escape mutation. Retrovirology 2014; 11:101. [PMID: 25407514 PMCID: PMC4264250 DOI: 10.1186/s12977-014-0101-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/28/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fitness costs and slower disease progression are associated with a cytolytic T lymphocyte (CTL) escape mutation T242N in Gag in HIV-1-infected individuals carrying HLA-B*57/5801 alleles. However, the impact of different context in diverse HIV-1 strains on the fitness costs due to the T242N mutation has not been well characterized. To better understand the extent of fitness costs of the T242N mutation and the repair of fitness loss through compensatory amino acids, we investigated its fitness impact in different transmitted/founder (T/F) viruses. RESULTS The T242N mutation resulted in various levels of fitness loss in four different T/F viruses. However, the fitness costs were significantly compromised by preexisting compensatory amino acids in (Isoleucine at position 247) or outside (glutamine at position 219) the CTL epitope. Moreover, the transmitted T242N escape mutant in subject CH131 was as fit as the revertant N242T mutant and the elimination of the compensatory amino acid I247 in the T/F viral genome resulted in significant fitness cost, suggesting the fitness loss caused by the T242N mutation had been fully repaired in the donor at transmission. Analysis of the global circulating HIV-1 sequences in the Los Alamos HIV Sequence Database showed a high prevalence of compensatory amino acids for the T242N mutation and other T cell escape mutations. CONCLUSIONS Our results show that the preexisting compensatory amino acids in the majority of circulating HIV-1 strains could significantly compromise the fitness loss due to CTL escape mutations and thus increase challenges for T cell based vaccines.
Collapse
Affiliation(s)
- Donglai Liu
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA. .,National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, 130012, Jilin, China.
| | - Tao Zuo
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA. .,National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, 130012, Jilin, China.
| | - Bhavna Hora
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Hongshuo Song
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Wei Kong
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, 130012, Jilin, China.
| | - Xianghui Yu
- National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, 130012, Jilin, China.
| | - Nilu Goonetilleke
- Department of Microbiology, Immunology and Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Tanmoy Bhattacharya
- Theoretical Division, Los Alamos National laboratory, Los Alamos, NM, 87545, USA.
| | - Alan S Perelson
- Theoretical Division, Los Alamos National laboratory, Los Alamos, NM, 87545, USA.
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Andrew J McMichael
- Weatherall Institute of molecular Medicine, University of Oxford, Oxford, OX3 9DS, England, UK.
| | - Feng Gao
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, 27710, USA. .,National Engineering Laboratory For AIDS Vaccine, College of Life Science, Jilin University, Changchun, 130012, Jilin, China.
| |
Collapse
|
30
|
The route of HIV escape from immune response targeting multiple sites is determined by the cost-benefit tradeoff of escape mutations. PLoS Comput Biol 2014; 10:e1003878. [PMID: 25356981 PMCID: PMC4214571 DOI: 10.1371/journal.pcbi.1003878] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 08/21/2014] [Indexed: 12/20/2022] Open
Abstract
Cytotoxic T lymphocytes (CTL) are a major factor in the control of HIV replication. CTL arise in acute infection, causing escape mutations to spread rapidly through the population of infected cells. As a result, the virus develops partial resistance to the immune response. The factors controlling the order of mutating epitope sites are currently unknown and would provide a valuable tool for predicting conserved epitopes. In this work, we adapt a well-established mathematical model of HIV evolution under dynamical selection pressure from multiple CTL clones to include partial impairment of CTL recognition, , as well as cost to viral replication, . The process of escape is described in terms of the cost-benefit tradeoff of escape mutations and predicts a trajectory in the cost-benefit plane connecting sequentially escaped sites, which moves from high recognition loss/low fitness cost to low recognition loss/high fitness cost and has a larger slope for early escapes than for late escapes. The slope of the trajectory offers an interpretation of positive correlation between fitness costs and HLA binding impairment to HLA-A molecules and a protective subset of HLA-B molecules that was observed for clinically relevant escape mutations in the Pol gene. We estimate the value of from published experimental studies to be in the range (0.01–0.86) and show that the assumption of complete recognition loss () leads to an overestimate of mutation cost. Our analysis offers a consistent interpretation of the commonly observed pattern of escape, in which several escape mutations are observed transiently in an epitope. This non-nested pattern is a combined effect of temporal changes in selection pressure and partial recognition loss. We conclude that partial recognition loss is as important as fitness loss for predicting the order of escapes and, ultimately, for predicting conserved epitopes that can be targeted by vaccines. Like many viruses, HIV has evolved mechanisms to evade the host immune response. As early as a few weeks after infection is initiated, mutations appear in the viral genome that reduce the ability of cytotoxic T lymphocytes (CTL) to control virus replication. However, of the many mutations in the viral genome that could potentially mediate viral escape from the CTL response, a specific subset are typically observed. This suggests that some mutations either entail too high a fitness cost for the virus, or are relatively inefficient escape mutations. A successful vaccine would target the CTL response to these regions in such a way that escape would not be possible. We use a computational model of HIV infection in order to study the factors that determine whether a given escape mutation will occur, how long it will be maintained in the population, and how these changes in the viral genome will affect the CTL response. Our analysis highlights the important role of partial recognition loss conferred by a mutation in producing the complex dynamics of escape that are observed during the course of infection.
Collapse
|
31
|
Five challenges in modelling interacting strain dynamics. Epidemics 2014; 10:31-4. [PMID: 25843379 DOI: 10.1016/j.epidem.2014.07.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/26/2014] [Accepted: 07/28/2014] [Indexed: 11/24/2022] Open
Abstract
Population epidemiological models where hosts can be infected sequentially by different strains have the potential to help us understand many important diseases. Researchers have in recent years started to develop and use such models, but the extra layer of complexity from multiple strains brings with it many technical challenges. It is therefore hard to build models which have realistic assumptions yet are tractable. Here we outline some of the main challenges in this area. First we begin with the fundamental question of how to translate from complex small-scale dynamics within a host to useful population models. Next we consider the nature of so-called "strain space". We describe two key types of host heterogeneities, and explain how models could help generate a better understanding of their effects. Finally, for diseases with many strains, we consider the challenge of modelling how immunity accumulates over multiple exposures.
Collapse
|
32
|
Martin E, Carlson JM, Le AQ, Chopera DR, McGovern R, Rahman MA, Ng C, Jessen H, Kelleher AD, Markowitz M, Allen TM, Milloy MJ, Carrington M, Wainberg MA, Brumme ZL. Early immune adaptation in HIV-1 revealed by population-level approaches. Retrovirology 2014; 11:64. [PMID: 25212686 PMCID: PMC4190299 DOI: 10.1186/s12977-014-0064-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/24/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The reproducible nature of HIV-1 escape from HLA-restricted CD8+ T-cell responses allows the identification of HLA-associated viral polymorphisms "at the population level" - that is, via analysis of cross-sectional, linked HLA/HIV-1 genotypes by statistical association. However, elucidating their timing of selection traditionally requires detailed longitudinal studies, which are challenging to undertake on a large scale. We investigate whether the extent and relative timecourse of immune-driven HIV adaptation can be inferred via comparative cross-sectional analysis of independent early and chronic infection cohorts. RESULTS Similarly-powered datasets of linked HLA/HIV-1 genotypes from individuals with early (median < 3 months) and chronic untreated HIV-1 subtype B infection, matched for size (N > 200/dataset), HLA class I and HIV-1 Gag/Pol/Nef diversity, were established. These datasets were first used to define a list of 162 known HLA-associated polymorphisms detectable at the population level in cohorts of the present size and host/viral genetic composition. Of these 162 known HLA-associated polymorphisms, 15% (occurring at 14 Gag, Pol and Nef codons) were already detectable via statistical association in the early infection dataset at p ≤ 0.01 (q < 0.2) - identifying them as the most consistently rapidly escaping sites in HIV-1. Among these were known rapidly-escaping sites (e.g. B*57-Gag-T242N) and others not previously appreciated to be reproducibly rapidly selected (e.g. A*31:01-associated adaptations at Gag codons 397, 401 and 403). Escape prevalence in early infection correlated strongly with first-year escape rates (Pearson's R = 0.68, p = 0.0001), supporting cross-sectional parameters as reliable indicators of longitudinally-derived measures. Comparative analysis of early and chronic datasets revealed that, on average, the prevalence of HLA-associated polymorphisms more than doubles between these two infection stages in persons harboring the relevant HLA (p < 0.0001, consistent with frequent and reproducible escape), but remains relatively stable in persons lacking the HLA (p = 0.15, consistent with slow reversion). Published HLA-specific Hazard Ratios for progression to AIDS correlated positively with average escape prevalence in early infection (Pearson's R = 0.53, p = 0.028), consistent with high early within-host HIV-1 adaptation (via rapid escape and/or frequent polymorphism transmission) as a correlate of progression. CONCLUSION Cross-sectional host/viral genotype datasets represent an underutilized resource to identify reproducible early pathways of HIV-1 adaptation and identify correlates of protective immunity.
Collapse
Affiliation(s)
- Eric Martin
- />Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada
- />British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC Canada
| | | | - Anh Q Le
- />Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada
| | - Denis R Chopera
- />Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada
- />KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Rachel McGovern
- />British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC Canada
| | - Manal A Rahman
- />Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada
| | - Carmond Ng
- />British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC Canada
| | | | | | - Martin Markowitz
- />Aaron Diamond AIDS Research Center, The Rockefeller University, New York, NY USA
| | - Todd M Allen
- />Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA USA
| | - M-J Milloy
- />British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC Canada
- />Faculty of Medicine, University of British Columbia, Vancouver, BC Canada
| | - Mary Carrington
- />Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA USA
- />Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, MD USA
| | | | - Zabrina L Brumme
- />Faculty of Health Sciences, Simon Fraser University, Burnaby, BC Canada
- />British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC Canada
| |
Collapse
|
33
|
Cotton LA, Kuang XT, Le AQ, Carlson JM, Chan B, Chopera DR, Brumme CJ, Markle TJ, Martin E, Shahid A, Anmole G, Mwimanzi P, Nassab P, Penney KA, Rahman MA, Milloy MJ, Schechter MT, Markowitz M, Carrington M, Walker BD, Wagner T, Buchbinder S, Fuchs J, Koblin B, Mayer KH, Harrigan PR, Brockman MA, Poon AFY, Brumme ZL. Genotypic and functional impact of HIV-1 adaptation to its host population during the North American epidemic. PLoS Genet 2014; 10:e1004295. [PMID: 24762668 PMCID: PMC3998893 DOI: 10.1371/journal.pgen.1004295] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 02/21/2014] [Indexed: 11/20/2022] Open
Abstract
HLA-restricted immune escape mutations that persist following HIV transmission could gradually spread through the viral population, thereby compromising host antiviral immunity as the epidemic progresses. To assess the extent and phenotypic impact of this phenomenon in an immunogenetically diverse population, we genotypically and functionally compared linked HLA and HIV (Gag/Nef) sequences from 358 historic (1979-1989) and 382 modern (2000-2011) specimens from four key cities in the North American epidemic (New York, Boston, San Francisco, Vancouver). Inferred HIV phylogenies were star-like, with approximately two-fold greater mean pairwise distances in modern versus historic sequences. The reconstructed epidemic ancestral (founder) HIV sequence was essentially identical to the North American subtype B consensus. Consistent with gradual diversification of a "consensus-like" founder virus, the median "background" frequencies of individual HLA-associated polymorphisms in HIV (in individuals lacking the restricting HLA[s]) were ∼ 2-fold higher in modern versus historic HIV sequences, though these remained notably low overall (e.g. in Gag, medians were 3.7% in the 2000s versus 2.0% in the 1980s). HIV polymorphisms exhibiting the greatest relative spread were those restricted by protective HLAs. Despite these increases, when HIV sequences were analyzed as a whole, their total average burden of polymorphisms that were "pre-adapted" to the average host HLA profile was only ∼ 2% greater in modern versus historic eras. Furthermore, HLA-associated polymorphisms identified in historic HIV sequences were consistent with those detectable today, with none identified that could explain the few HIV codons where the inferred epidemic ancestor differed from the modern consensus. Results are therefore consistent with slow HIV adaptation to HLA, but at a rate unlikely to yield imminent negative implications for cellular immunity, at least in North America. Intriguingly, temporal changes in protein activity of patient-derived Nef (though not Gag) sequences were observed, suggesting functional implications of population-level HIV evolution on certain viral proteins.
Collapse
Affiliation(s)
- Laura A. Cotton
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Xiaomei T. Kuang
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Anh Q. Le
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Benjamin Chan
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Denis R. Chopera
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, KwaZulu-Natal, South Africa
| | - Chanson J. Brumme
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Tristan J. Markle
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Eric Martin
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Aniqa Shahid
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Gursev Anmole
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Philip Mwimanzi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Pauline Nassab
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kali A. Penney
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Manal A. Rahman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - M.-J. Milloy
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin T. Schechter
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Markowitz
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York, United States of America
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
- Ragon Institute of MGH, MIT and Harvard University, Cambridge, Massachusetts, United States of America
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard University, Cambridge, Massachusetts, United States of America
| | - Theresa Wagner
- San Francisco Department of Public Health, San Francisco, California, United States of America
| | - Susan Buchbinder
- San Francisco Department of Public Health, San Francisco, California, United States of America
| | - Jonathan Fuchs
- San Francisco Department of Public Health, San Francisco, California, United States of America
| | - Beryl Koblin
- New York Blood Center, New York, New York, United States of America
| | - Kenneth H. Mayer
- Fenway Community Health, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - P. Richard Harrigan
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| | - Art F. Y. Poon
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
| |
Collapse
|
34
|
LORD CC, ALTO BW, ANDERSON SL, CONNELLY CR, DAY JF, RICHARDS SL, SMARTT CT, TABACHNICK WJ. Can Horton hear the whos? The importance of scale in mosquito-borne disease. JOURNAL OF MEDICAL ENTOMOLOGY 2014; 51:297-313. [PMID: 24724278 PMCID: PMC5027650 DOI: 10.1603/me11168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The epidemiology of vector-borne pathogens is determined by mechanisms and interactions at different scales of biological organization, from individual-level cellular processes to community interactions between species and with the environment. Most research, however, focuses on one scale or level with little integration between scales or levels within scales. Understanding the interactions between levels and how they influence our perception of vector-borne pathogens is critical. Here two examples of biological scales (pathogen transmission and mosquito mortality) are presented to illustrate some of the issues of scale and to explore how processes on different levels may interact to influence mosquito-borne pathogen transmission cycles. Individual variation in survival, vector competence, and other traits affect population abundance, transmission potential, and community structure. Community structure affects interactions between individuals such as competition and predation, and thus influences the individual-level dynamics and transmission potential. Modeling is a valuable tool to assess interactions between scales and how processes at different levels can affect transmission dynamics. We expand an existing model to illustrate the types of studies needed, showing that individual-level variation in viral dose acquired or needed for infection can influence the number of infectious vectors. It is critical that interactions within and among biological scales and levels of biological organization are understood for greater understanding of pathogen transmission with the ultimate goal of improving control of vector-borne pathogens.
Collapse
Affiliation(s)
- C. C. LORD
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| | - B. W. ALTO
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| | - S. L. ANDERSON
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| | - C. R. CONNELLY
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| | - J. F. DAY
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| | - S. L. RICHARDS
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| | - C. T. SMARTT
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| | - W. J. TABACHNICK
- Florida Medical Entomology Laboratory, Department of Entomology and
Nematology, University of Florida – IFAS, 200 9th St. SE, Vero Beach, FL
32962
| |
Collapse
|
35
|
Abstract
This review outlines how mathematical models have been helpful, and continue to be so, for obtaining insights into the in vivo dynamics of HIV infection. The review starts with a discussion of a basic mathematical model that has been frequently used to study HIV dynamics. Some crucial results are described, including the estimation of key parameters that characterize the infection, and the generation of influential theories which argued that in vivo virus evolution is a key player in HIV pathogenesis. Subsequently, more recent concepts are reviewed that have relevance for disease progression, including the multiple infection of cells and the direct cell-to-cell transmission of the virus through the formation of virological synapses. These are important mechanisms that can influence the rate at which HIV spreads through its target cell population, which is tightly linked to the rate at which the disease progresses towards AIDS.
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Ecology and Evolutionary Biology, University of California, 321 Steinhaus Hall, Irvine, CA, 926967, USA,
| |
Collapse
|
36
|
van Deutekom HWM, Wijnker G, de Boer RJ. The rate of immune escape vanishes when multiple immune responses control an HIV infection. THE JOURNAL OF IMMUNOLOGY 2013; 191:3277-86. [PMID: 23940274 DOI: 10.4049/jimmunol.1300962] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During the first months of HIV infection, the virus typically evolves several immune escape mutations. These mutations are found in epitopes in viral proteins and reduce the impact of the CD8⁺ T cells specific for these epitopes. Recent data show that only a subset of the epitopes escapes, that most of these escapes evolve early, and that the rate of immune escape slows down considerably. To investigate why the evolution of immune escape slows down over the time of infection, we have extended a consensus mathematical model to allow several immune responses to control the virus together. In the extended model, most escapes also occur early, and the immune escape rate becomes small later, and typically only a minority of the epitopes escape. We show that escaping one of the many immune responses provides little advantage after viral setpoint has been approached because the total killing rate hardly depends on the breadth of the immune response. If the breadth of the immune response slowly wanes during disease progression, the model predicts an increase in the rate of immune escape at late stages of infection. Overall, the most striking prediction of the model is that HIV evolves a small number of immune escapes, in both relative and absolute terms, when the CTL immune response is broad.
Collapse
|
37
|
Palmer D, Frater J, Phillips R, McLean AR, McVean G. Integrating genealogical and dynamical modelling to infer escape and reversion rates in HIV epitopes. Proc Biol Sci 2013; 280:20130696. [PMID: 23677344 PMCID: PMC3673055 DOI: 10.1098/rspb.2013.0696] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The rates of escape and reversion in response to selection pressure arising from the host immune system, notably the cytotoxic T-lymphocyte (CTL) response, are key factors determining the evolution of HIV. Existing methods for estimating these parameters from cross-sectional population data using ordinary differential equations (ODEs) ignore information about the genealogy of sampled HIV sequences, which has the potential to cause systematic bias and overestimate certainty. Here, we describe an integrated approach, validated through extensive simulations, which combines genealogical inference and epidemiological modelling, to estimate rates of CTL escape and reversion in HIV epitopes. We show that there is substantial uncertainty about rates of viral escape and reversion from cross-sectional data, which arises from the inherent stochasticity in the evolutionary process. By application to empirical data, we find that point estimates of rates from a previously published ODE model and the integrated approach presented here are often similar, but can also differ several-fold depending on the structure of the genealogy. The model-based approach we apply provides a framework for the statistical analysis and hypothesis testing of escape and reversion in population data and highlights the need for longitudinal and denser cross-sectional sampling to enable accurate estimate of these key parameters.
Collapse
Affiliation(s)
- Duncan Palmer
- Department of Statistics, 1 South Parks Road, University of Oxford, Oxford OX1 3TG, UK.
| | | | | | | | | |
Collapse
|
38
|
Smith SA, Wood C, West JT. HIV-1 Env C2-V4 diversification in a slow-progressor infant reveals a flat but rugged fitness landscape. PLoS One 2013; 8:e63094. [PMID: 23638182 PMCID: PMC3639246 DOI: 10.1371/journal.pone.0063094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/28/2013] [Indexed: 11/19/2022] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) fitness has been associated with virus entry, a process mediated by the envelope glycoprotein (Env). We previously described Env genetic diversification in a Zambian, subtype C infected, slow-progressor child (1157i) in parallel with an evolving neutralizing antibody response. Because of the role the Variable-3 loop (V3) plays in transmission, cell tropism, neutralization sensitivity, and fitness, longitudinally isolated 1157i C2-V4 alleles were cloned into HIV-1NL4-3-eGFP and -DsRed2 infectious molecular clones. The fluorescent reporters allowed for dual-infection competitions between all patient-derived C2-V4 chimeras to quantify the effect of V3 diversification and selection on fitness. 'Winners' and 'losers' were readily discriminated among the C2-V4 alleles. Exceptional sensitivity for detection of subtle fitness differences was revealed through analysis of two alleles differing in a single synonymous amino acid. However, when the outcomes of N = 33 competitions were averaged for each chimera, the aggregate analysis showed that despite increasing diversification and divergence with time, natural selection of C2-V4 sequences in this individual did not appear to be producing a 'survival of the fittest' evolutionary pattern. Rather, we detected a relatively flat fitness landscape consistent with mutational robustness. Fitness outcomes were then correlated with individual components of the entry process. Env incorporation into particles correlated best with fitness, suggesting a role for Env avidity, as opposed to receptor/coreceptor affinity, in defining fitness. Nevertheless, biochemical analyses did not identify any step in HIV-1 entry as a dominant determinant of fitness. Our results lead us to conclude that multiple aspects of entry contribute to maintaining adequate HIV-1 fitness, and there is no surrogate analysis for determining fitness. The capacity for subtle polymorphisms in Env to nevertheless significantly impact viral fitness suggests fitness is best defined by head-to-head competition.
Collapse
Affiliation(s)
- S. Abigail Smith
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Charles Wood
- Nebraska Center for Virology, University of Nebraska, Lincoln, Nebraska, United States of America
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, United States of America
| | - John T. West
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
39
|
Sundaramurthi JC, Ramanathan V, Hanna LE. HLA-B*27:05-specific cytotoxic T lymphocyte epitopes in Indian HIV type 1C. AIDS Res Hum Retroviruses 2013; 29:47-53. [PMID: 22924625 DOI: 10.1089/aid.2011.0374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
HLA-B*27:05 is one of the widely reported alleles associated with resistance to HIV, while HLA-A24, HLA-B7, HLA-B*07:02, HLA-B*35:01, HLA-B*53:01, and HLA-B40 are reported to be associated with susceptibility to HIV. Using a bioinformatics approach we attempted to predict potential HLA-B*27:05-specific HIV-1C epitopes that do not bind to susceptibility-associated HLA alleles based on our hypothesis that such epitopes have a greater probability of eliciting a protective immune response in the host. A consensus sequence was built for all proteins of Indian clade C virus. Epitopes specific to HLA-B*27:05 were predicted from the consensus sequence using two different bioinformatics methods to enhance the accuracy of the prediction. Epitopes that were also predicted to bind to any of the susceptibility-associated HLA alleles were excluded from the list. The short-listed epitopes were modeled using MODPROPEP to refine the prediction. Fourteen peptides were identified as epitopes by both sequence-based methods and were found to interact strongly with HLA-B*27:05 by molecular modeling studies. Five of the 14 epitopes were previously reported as immunogenic by other researchers, while the remaining nine are novel. The 14 epitopes have been repeatedly identified by three different methods indicating their potential as useful candidates for an effective HIV vaccine.
Collapse
Affiliation(s)
- Jagadish Chandrabose Sundaramurthi
- Division of Biomedical Informatics, Department of Clinical Research, National Institute for Research in Tuberculosis (Formerly Tuberculosis Research Centre) (ICMR), Chennai, Tamil Nadu, India
| | - V.D. Ramanathan
- Department of Pathology, National Institute for Research in Tuberculosis (Formerly Tuberculosis Research Centre) (ICMR), Chennai, Tamil Nadu, India
| | - Luke Elizabeth Hanna
- Division of HIV/AIDS, Department of Clinical Research, National Institute for Research in Tuberculosis (Formerly Tuberculosis Research Centre) (ICMR), Chennai, Tamil Nadu, India
| |
Collapse
|
40
|
Parczewski M. Genomics and transcriptomics in HIV and HIV/HCV coinfection—Review of basic concepts and genome-wide association studies. HIV & AIDS REVIEW 2013. [DOI: 10.1016/j.hivar.2013.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
41
|
Infectious Disease Modeling. Infect Dis (Lond) 2013. [PMCID: PMC7121366 DOI: 10.1007/978-1-4614-5719-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Infectious disease models are mathematical descriptions of the spread of infection. The majority of infectious disease models consider the spread of infection from one host to another and are sometimes grouped together as “mathematical epidemiology.” A growing body of work considers the spread of infection within an individual, often with a particular focus on interactions between the infectious agent and the host’s immune responses. Such models are sometimes grouped together as “within-host models.” Most recently, new models have been developed that consider host–pathogen interactions at two levels simultaneously: both within-host dynamics and between-host transmissions. Infectious disease models vary widely in their complexity, in their attempts to refer to data from real-life infections and in their focus on problems of an applied or more fundamental nature. This entry will focus on simpler models tightly tied to data and aimed at addressing well-defined practical problems.
Collapse
|
42
|
Miller MM, Thompson EM, Suter SE, Fogle JE. CD8+ clonality is associated with prolonged acute plasma viremia and altered mRNA cytokine profiles during the course of feline immunodeficiency virus infection. Vet Immunol Immunopathol 2012; 152:200-8. [PMID: 23332729 DOI: 10.1016/j.vetimm.2012.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/27/2012] [Accepted: 12/10/2012] [Indexed: 10/27/2022]
Abstract
Acute lentiviral infection is characterized by early CD8(+) cytotoxic T cell (CTL) activity and a subsequent decline in plasma viremia. However, CD8(+) lymphocytes fail to eliminate the virus and a progressive T cell immune dysfunction develops during the course of chronic lentiviral infection. To further define this CD8(+) immune dysfunction we utilized PARR (PCR for antigen receptor rearrangements), a technique which measures clonally expanded lymphocyte populations by comparison of highly conserved T cell receptor (TCR) regions to identify the prevalence of clonal CD8(+) T cells following FIV infection. We then compared phenotype, mRNA profiles, CD8(+) proliferation and plasma viremia during acute and chronic infection for PARR positive (PARR(+)) and PARR negative (PARR(-)) Feline Immunodeficiency Virus (FIV) infected cats. We demonstrated that approximately forty percent of the FIV(+) cats examined exhibit CD8(+) clonality compared to none of the FIV(-) control cats. There were no phenotypic differences between PARR(+) and PARR(-) CD8(+) lymphocytes from FIV(+) cats but retrospective analysis of plasma viremia over the course of infection revealed a delayed peak in plasma viremia and a decline in lymphocyte counts were observed in the PARR(+) group during acute infection. CD8(+) lymphocytes isolated from chronically infected PARR(-) cats exhibited significantly higher mRNA expression of IFN-γ and IL-2 following mitogenic stimulation when compared to PARR(+) CD8(+) lymphocytes. These data suggest that clonal CD8(+) expansion may be related to impaired control of acute viremia and less effective CD8(+) anti-viral function. Using PARR to assess changes in CD8(+) clonality during the progression from acute to chronic FIV infection may help to better characterize the factors which contribute to CD8(+) anergy and lentiviral persistence.
Collapse
Affiliation(s)
- Michelle M Miller
- Department of Population Health and Pathobiology, North Carolina State University College of Veterinary Medicine, Raleigh, NC 27607, United States
| | | | | | | |
Collapse
|
43
|
Lythgoe KA, Fraser C. New insights into the evolutionary rate of HIV-1 at the within-host and epidemiological levels. Proc Biol Sci 2012; 279:3367-75. [PMID: 22593106 PMCID: PMC3385732 DOI: 10.1098/rspb.2012.0595] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 04/23/2012] [Indexed: 01/15/2023] Open
Abstract
Over calendar time, HIV-1 evolves considerably faster within individuals than it does at the epidemic level. This is a surprising observation since, from basic population genetic theory, we would expect the genetic substitution rate to be similar across different levels of biological organization. Three different mechanisms could potentially cause the observed mismatch in phylogenetic rates of divergence: temporal changes in selection pressure during the course of infection; frequent reversion of adaptive mutations after transmission; and the storage of the virus in the body followed by the preferential transmission of stored ancestral virus. We evaluate each of these mechanisms to determine whether they are likely to make a major contribution to the mismatch in phylogenetic rates. We conclude that the cycling of the virus through very long-lived memory CD4(+) T cells, a process that we call 'store and retrieve', is probably the major contributing factor to the rate mismatch. The preferential transmission of ancestral virus needs to be integrated into evolutionary models if we are to accurately predict the evolution of immune escape, drug resistance and virulence in HIV-1 at the population level. Moreover, early infection viruses should be the major target for vaccine design, because these are the viral strains primarily involved in transmission.
Collapse
Affiliation(s)
- Katrina A Lythgoe
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, St Mary's Campus, London W2 1PG, UK.
| | | |
Collapse
|
44
|
Cytotoxic T-lymphocyte escape mutations identified by HLA association favor those which escape and revert rapidly. J Virol 2012; 86:8568-80. [PMID: 22674992 DOI: 10.1128/jvi.07020-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Identifying human immunodeficiency virus (HIV) immune escape mutations has implications for understanding the impact of host immunity on pathogen evolution and guiding the choice of vaccine antigens. One means of identifying cytotoxic-T-lymphocyte (CTL) escape mutations is to search for statistical associations between mutations and host human leukocyte antigen (HLA) class I alleles at the population level. The impact of evolutionary rates on the strength of such associations is not well defined. Here, we address this topic using a mathematical model of within-host evolution and between-host transmission of CTL escape mutants that predicts the prevalence of escape mutants at the population level. We ask how the rates at which an escape mutation emerges in a host who bears the restricting HLA and reverts when transmitted to a host who does not bear the HLA affect the strength of an association. We consider the impact of these factors when using a standard statistical method to test for an association and when using an adaptation of that method that corrects for phylogenetic relationships. We show that with both methods, the average sample size required to identify an escape mutation is smaller if the mutation escapes and reverts quickly. Thus, escape mutations identified as HLA associated systematically favor those that escape and revert rapidly. We also present expressions that can be used to infer escape and reversion rates from cross-sectional escape prevalence data.
Collapse
|
45
|
Abstract
Evolution of RNA viruses occurs through disequilibria of collections of closely related mutant spectra or mutant clouds termed viral quasispecies. Here we review the origin of the quasispecies concept and some biological implications of quasispecies dynamics. Two main aspects are addressed: (i) mutant clouds as reservoirs of phenotypic variants for virus adaptability and (ii) the internal interactions that are established within mutant spectra that render a virus ensemble the unit of selection. The understanding of viruses as quasispecies has led to new antiviral designs, such as lethal mutagenesis, whose aim is to drive viruses toward low fitness values with limited chances of fitness recovery. The impact of quasispecies for three salient human pathogens, human immunodeficiency virus and the hepatitis B and C viruses, is reviewed, with emphasis on antiviral treatment strategies. Finally, extensions of quasispecies to nonviral systems are briefly mentioned to emphasize the broad applicability of quasispecies theory.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), C/ Nicolás Cabrera, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
| | | | | |
Collapse
|
46
|
Mostowy R, Kouyos RD, Hoof I, Hinkley T, Haddad M, Whitcomb JM, Petropoulos CJ, Keşmir C, Bonhoeffer S. Estimating the fitness cost of escape from HLA presentation in HIV-1 protease and reverse transcriptase. PLoS Comput Biol 2012; 8:e1002525. [PMID: 22654656 PMCID: PMC3359966 DOI: 10.1371/journal.pcbi.1002525] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 04/03/2012] [Indexed: 12/11/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) is, like most pathogens, under selective pressure to escape the immune system of its host. In particular, HIV-1 can avoid recognition by cytotoxic T lymphocytes (CTLs) by altering the binding affinity of viral peptides to human leukocyte antigen (HLA) molecules, the role of which is to present those peptides to the immune system. It is generally assumed that HLA escape mutations carry a replicative fitness cost, but these costs have not been quantified. In this study, we assess the replicative cost of mutations which are likely to escape presentation by HLA molecules in the region of HIV-1 protease and reverse transcriptase. Specifically, we combine computational approaches for prediction of in vitro replicative fitness and peptide binding affinity to HLA molecules. We find that mutations which impair binding to HLA-A molecules tend to have lower in vitro replicative fitness than mutations which do not impair binding to HLA-A molecules, suggesting that HLA-A escape mutations carry higher fitness costs than non-escape mutations. We argue that the association between fitness and HLA-A binding impairment is probably due to an intrinsic cost of escape from HLA-A molecules, and these costs are particularly strong for HLA-A alleles associated with efficient virus control. Counter-intuitively, we do not observe a significant effect in the case of HLA-B, but, as discussed, this does not argue against the relevance of HLA-B in virus control. Overall, this article points to the intriguing possibility that HLA-A molecules preferentially target more conserved regions of HIV-1, emphasizing the importance of HLA-A genes in the evolution of HIV-1 and RNA viruses in general. Our immune system can recognize and kill virus-infected cells by distinguishing between self and virus-derived protein fragments, called peptides, displayed on the surface of each cell. One requirement for a successful recognition is that those peptides bind to the human leukocyte antigen (HLA) class I molecules, which present them to the immune system. As a counter-strategy, human immunodeficiency virus type 1 (HIV-1) can acquire mutations that prevent this binding, thereby helping the virus to escape the surveillance of T-lymphocytes. It is likely that the virus pays a replicative cost for such escape mutations, but the magnitude of this cost has remained elusive. Here, we quantified this fitness cost in HIV-1 protease and reverse transcriptase by combining two computational systems biology approaches: one for prediction of in vitro replicative fitness, and one for the prediction of the efficiency of peptide binding to HLA. We found that in viral proteins targeted by HLA-A molecules, mutations which disrupt binding to those molecules carry a lower replicative fitness than mutations which do not have such an effect. We argue that these results are consistent with the hypothesis that our immune systems might have evolved to target genetic regions of RNA viruses which are costly for the pathogen to alter.
Collapse
Affiliation(s)
- Rafal Mostowy
- Institute for Integrative Biology, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
McLean AR. Infectious Disease Modeling. Infect Dis (Lond) 2012. [DOI: 10.1007/978-1-0716-2463-0_539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
48
|
Fryer HR, McLean AR. Modelling the spread of HIV immune escape mutants in a vaccinated population. PLoS Comput Biol 2011; 7:e1002289. [PMID: 22144883 PMCID: PMC3228780 DOI: 10.1371/journal.pcbi.1002289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/13/2011] [Indexed: 12/02/2022] Open
Abstract
Because cytotoxic T-lymphocytes (CTLs) have been shown to play a role in controlling human immunodeficiency virus (HIV) infection and because CTL-based simian immunodeficiency virus (SIV) vaccines have proved effective in non-human primates, one goal of HIV vaccine design is to elicit effective CTL responses in humans. Such a vaccine could improve viral control in patients who later become infected, thereby reducing onwards transmission and enhancing life expectancy in the absence of treatment. The ability of HIV to evolve mutations that evade CTLs and the ability of these ‘escape mutants’ to spread amongst the population poses a challenge to the development of an effective and robust vaccine. We present a mathematical model of within-host evolution and between-host transmission of CTL escape mutants amongst a population receiving a vaccine that elicits CTL responses to multiple epitopes. Within-host evolution at each epitope is represented by the outgrowth of escape mutants in hosts who restrict the epitope and their reversion in hosts who do not restrict the epitope. We use this model to investigate how the evolution and spread of escape mutants could affect the impact of a vaccine. We show that in the absence of escape, such a vaccine could markedly reduce the prevalence of both infection and disease in the population. However the impact of such a vaccine could be significantly abated by CTL escape mutants, especially if their selection in hosts who restrict the epitope is rapid and their reversion in hosts who do not restrict the epitope is slow. We also use the model to address whether a vaccine should span a broad or narrow range of CTL epitopes and target epitopes restricted by rare or common HLA types. We discuss the implications and limitations of our findings. The evolution and spread of HIV strains that evade the immune response poses a major challenge to the development of an effective and robust HIV vaccine. We present a new mathematical tool that we use to dissect the drivers of the spread of these ‘immune escape mutants’ in a vaccinated population. Our study focuses on a vaccine that can reduce infectiousness and enhance longevity but does not provide sterilizing immunity. We show that in the absence of escape such a vaccine could reduce the prevalence of both infection and disease in the population. However, vaccine impact could be significantly abated by immune escape mutants, especially if they emerge rapidly and revert very slowly after transmission to hosts in whom the original selection pressure is absent. We also discuss the effect that vaccine breadth and the frequency with which different epitopes are targeted have upon vaccine impact.
Collapse
Affiliation(s)
- Helen R Fryer
- The Institute for Emerging Infections, The Oxford Martin School, Department of Zoology, Oxford University, Oxford, United Kingdom.
| | | |
Collapse
|
49
|
Agranovich A, Vider-Shalit T, Louzoun Y. Optimal viral immune surveillance evasion strategies. Theor Popul Biol 2011; 80:233-43. [PMID: 21925527 DOI: 10.1016/j.tpb.2011.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 12/12/2022]
Abstract
Following cell entry, viruses can be detected by cytotoxic T lymphocytes. These cytotoxic T lymphocytes can induce host cell apoptosis and prevent the propagation of the virus. Viruses with fewer epitopes have a higher survival probability, and are selected through evolution. However, mutations have a fitness cost and on evolutionary periods viruses maintain some epitopes. The number of epitopes in each viral protein is a balance between the selective advantage of having fewer epitopes and the reduced fitness following the epitope removing mutations. We discuss a bioinformatic analysis of the number of epitopes in various viral proteins and propose an optimization framework to explain these numbers. We show, using a genomic analysis and a theoretical optimization framework, that a critical factor affecting the number of presented epitopes is the expression stage in the viral life cycle of the gene coding for the protein. The early expression of epitopes can lead to the destruction of the host cell before budding can take place. We show that a lower number of epitopes is expected in early proteins even if late proteins have a much higher copy number.
Collapse
Affiliation(s)
- Alexandra Agranovich
- Department of Mathematics and Gonda Brain Research Center, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | |
Collapse
|
50
|
Neri FM, Bates A, Füchtbauer WS, Pérez-Reche FJ, Taraskin SN, Otten W, Bailey DJ, Gilligan CA. The effect of heterogeneity on invasion in spatial epidemics: from theory to experimental evidence in a model system. PLoS Comput Biol 2011; 7:e1002174. [PMID: 21980273 PMCID: PMC3182855 DOI: 10.1371/journal.pcbi.1002174] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 07/13/2011] [Indexed: 11/27/2022] Open
Abstract
Heterogeneity in host populations is an important factor affecting the ability of a pathogen to invade, yet the quantitative investigation of its effects on epidemic spread is still an open problem. In this paper, we test recent theoretical results, which extend the established "percolation paradigm" to the spread of a pathogen in discrete heterogeneous host populations. In particular, we test the hypothesis that the probability of epidemic invasion decreases when host heterogeneity is increased. We use replicated experimental microcosms, in which the ubiquitous pathogenic fungus Rhizoctonia solani grows through a population of discrete nutrient sites on a lattice, with nutrient sites representing hosts. The degree of host heterogeneity within different populations is adjusted by changing the proportion and the nutrient concentration of nutrient sites. The experimental data are analysed via Bayesian inference methods, estimating pathogen transmission parameters for each individual population. We find a significant, negative correlation between heterogeneity and the probability of pathogen invasion, thereby validating the theory. The value of the correlation is also in remarkably good agreement with the theoretical predictions. We briefly discuss how our results can be exploited in the design and implementation of disease control strategies.
Collapse
Affiliation(s)
- Franco M Neri
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|