1
|
M'rabet Samaali B, Loulou A, MougouHamdane A, Kallel S. Acquisition and transmission of Grapevine fanleaf virus (GFLV) by Xiphinema index and Xiphinema italiae (Longidoridae). J Helminthol 2024; 98:e26. [PMID: 38509862 DOI: 10.1017/s0022149x24000154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Grapevine fanleaf virus (GFLV) is one of the most severe virus diseases of grapevines, causing fanleaf degeneration that is transmitted by Xiphinema index. This paper aims to isolate Xiphinema species from Tunisian vineyard soil samples and assess their ability to acquire and transmit GFLV under natural and controlled conditions. Based on morphological and morphometric analyses, Tunisian dagger nematodes were identified as X. index and Xiphinema italiae. These results were confirmed with molecular identification tools using species-specific polymerase chain reaction primers. The total RNA of GFLV was extracted from specimens of Xiphinema and amplified based on real-time polymerase chain reaction using virus-specific primers. Our results showed that X. index could acquire and transmit the viral particles of GFLV. This nepovirus was not detected in X. italiae, under natural conditions; however, under controlled conditions, this nematode was able to successfully acquire and transmit the viral particles of GFLV.
Collapse
Affiliation(s)
- B M'rabet Samaali
- Université de Carthage, National Agronomic Institute of Tunisia, LR14AGR02, Laboratoire de Recherche Bioagresseur et Protection Intégrée en Agriculture, 1082Tunis mahrajène, Tunisia
| | - A Loulou
- Université de Carthage, National Agronomic Institute of Tunisia, LR14AGR02, Laboratoire de Recherche Bioagresseur et Protection Intégrée en Agriculture, 1082Tunis mahrajène, Tunisia
| | - A MougouHamdane
- Université de Carthage, National Agronomic Institute of Tunisia, LR14AGR02, Laboratoire de Recherche Bioagresseur et Protection Intégrée en Agriculture, 1082Tunis mahrajène, Tunisia
| | - S Kallel
- Université de Carthage, National Agronomic Institute of Tunisia, LR14AGR02, Laboratoire de Recherche Bioagresseur et Protection Intégrée en Agriculture, 1082Tunis mahrajène, Tunisia
| |
Collapse
|
2
|
Kassem R, Cousin A, Clesse D, Poignavent V, Trolet A, Ritzenthaler C, Michon T, Chovin A, Demaille C. Nanobody-guided redox and enzymatic functionalization of icosahedral virus particles for enhanced bioelectrocatalysis. Bioelectrochemistry 2024; 155:108570. [PMID: 37769510 DOI: 10.1016/j.bioelechem.2023.108570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023]
Abstract
Icosahedral, 30 nm diameter, grapevine fanleaf virus (GFLV) virus particles are adsorbed onto electrodes and used as nanoscaffolds for the assembly of an integrated glucose oxidizing system, comprising the enzyme pyrroloquinoline quinone-glucose dehydrogenase (PQQ-GDH) and ferrocenylated polyethylene glycol chains (Fc-PEG) as a redox co-substrate. Two different GFLV-specific nanobodies, either fused to the enzyme, or chemically conjugated to Fc-PEG, are used for the regio-selective immunodecoration of the viral particles. A comprehensive kinetic characterization of the enzymatic function of the particles, initially decorated with the enzyme alone shows that simple immobilization on the GFLV capsid has no effect on the kinetic scheme of the enzyme, nor on its catalytic activity. However, we find that co-immobilization of the enzyme and the Fc-PEG co-substrate on GFLV does induce enzymatic enhancement, by promoting cooperativity between the two subunits of the homodimeric enzyme, via "synchronization" of their redox state. A decrease in inhibition of the enzyme by its substrate (glucose) is also observed.
Collapse
Affiliation(s)
- Racha Kassem
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire, F-75013 Paris, France
| | - Anne Cousin
- Institut de Biologie Moléculaire des Plantes, UPR2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Daniel Clesse
- Institut de Biologie Moléculaire des Plantes, UPR2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Vianney Poignavent
- Institut de Biologie Moléculaire des Plantes, UPR2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Adrien Trolet
- Institut de Biologie Moléculaire des Plantes, UPR2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France
| | - Christophe Ritzenthaler
- Institut de Biologie Moléculaire des Plantes, UPR2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, F-67084 Strasbourg, France.
| | - Thierry Michon
- Université de Bordeaux, Biologie du Fruit et Pathologie, INRA UMR 1332, F-33140 Villenave d'Ornon, France.
| | - Arnaud Chovin
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire, F-75013 Paris, France.
| | - Christophe Demaille
- Université Paris Cité, CNRS, Laboratoire d'Electrochimie Moléculaire, F-75013 Paris, France.
| |
Collapse
|
3
|
Roy BG, Choi J, Fuchs MF. Predictive Modeling of Proteins Encoded by a Plant Virus Sheds a New Light on Their Structure and Inherent Multifunctionality. Biomolecules 2024; 14:62. [PMID: 38254661 PMCID: PMC10813169 DOI: 10.3390/biom14010062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Plant virus genomes encode proteins that are involved in replication, encapsidation, cell-to-cell, and long-distance movement, avoidance of host detection, counter-defense, and transmission from host to host, among other functions. Even though the multifunctionality of plant viral proteins is well documented, contemporary functional repertoires of individual proteins are incomplete. However, these can be enhanced by modeling tools. Here, predictive modeling of proteins encoded by the two genomic RNAs, i.e., RNA1 and RNA2, of grapevine fanleaf virus (GFLV) and their satellite RNAs by a suite of protein prediction software confirmed not only previously validated functions (suppressor of RNA silencing [VSR], viral genome-linked protein [VPg], protease [Pro], symptom determinant [Sd], homing protein [HP], movement protein [MP], coat protein [CP], and transmission determinant [Td]) and previously identified putative functions (helicase [Hel] and RNA-dependent RNA polymerase [Pol]), but also predicted novel functions with varying levels of confidence. These include a T3/T7-like RNA polymerase domain for protein 1AVSR, a short-chain reductase for protein 1BHel/VSR, a parathyroid hormone family domain for protein 1EPol/Sd, overlapping domains of unknown function and an ABC transporter domain for protein 2BMP, and DNA topoisomerase domains, transcription factor FBXO25 domain, or DNA Pol subunit cdc27 domain for the satellite RNA protein. Structural predictions for proteins 2AHP/Sd, 2BMP, and 3A? had low confidence, while predictions for proteins 1AVSR, 1BHel*/VSR, 1CVPg, 1DPro, 1EPol*/Sd, and 2CCP/Td retained higher confidence in at least one prediction. This research provided new insights into the structure and functions of GFLV proteins and their satellite protein. Future work is needed to validate these findings.
Collapse
Affiliation(s)
- Brandon G. Roy
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 15 Castle Creek Drive, Geneva, NY 14456, USA; (J.C.); (M.F.F.)
| | | | | |
Collapse
|
4
|
Efficiency and Persistence of Movento® Treatment against Myzus persicae and the Transmission of Aphid-Borne Viruses. PLANTS 2021; 10:plants10122747. [PMID: 34961217 PMCID: PMC8708080 DOI: 10.3390/plants10122747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022]
Abstract
Neonicotinoids are widely used to protect fields against aphid-borne viral diseases. The recent ban of these chemical compounds in the European Union has strongly impacted rapeseed and sugar beet growing practices. The poor sustainability of other insecticide families and the low efficiency of prophylactic methods to control aphid populations and pathogen introduction strengthen the need to characterize the efficiency of new plant protection products targeting aphids. In this study, the impact of Movento® (Bayer S.A.S., Leverkusen, Germany), a tetrameric acid derivative of spirotetramat, on Myzus persicae and on viral transmission was analyzed under different growing temperatures. The results show (i) the high efficiency of Movento® to protect rapeseed and sugar beet plants against the establishment of aphid colonies, (ii) the impact of temperature on the persistence of the Movento® aphicid properties and (iii) a decrease of approximately 10% of the viral transmission on treated plants. These observations suggest a beneficial effect of Movento® on the sanitary quality of treated crops by directly reducing primary infections and indirectly altering, through aphid mortality, secondary infections on which the spread of disease within field depends. These data constitute important elements for the future development of management strategies to protect crops against aphid-transmitted viruses.
Collapse
|
5
|
Bakayoko Y, Kouakou AM, Kouassi AB, Gomez R, Dibi KEB, Essis BS, N’Zué B, Adebola P, N’Guetta AS, Umber M. Detection and diversity of viruses infecting African yam ( Dioscorea rotundata) in a collection and F 1 progenies in Côte d'Ivoire shed light to plant-to-plant viral transmission. PLANT PATHOLOGY 2021; 70:1486-1495. [PMID: 34413548 PMCID: PMC8360134 DOI: 10.1111/ppa.13393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 04/02/2021] [Accepted: 04/15/2021] [Indexed: 05/03/2023]
Abstract
Yam (Dioscorea spp.) is a major staple food whose production is hampered by viral diseases. However, the prevalence, diversity, transmission, and impact of yam-infecting viruses remain poorly documented. This study reports on the symptomatology, prevalence, and molecular diversity of eight viruses in 38 D. rotundata accessions from a germplasm collection and 206 F1 hybrid progenies maintained in Côte d'Ivoire. Mean severity scores as assessed from leaf symptoms ranged from 2 to 4 in the germplasm collection and from 1 to 3 in F1 hybrids, respectively. Dioscorea mosaic-associated virus (DMaV), potexviruses, and yam mosaic virus (YMV) were detected by PCR-based diagnosis tools in single and mixed infections in both the D. rotundata collection and F1 progenies, whereas badnaviruses were detected only in the germplasm collection. In contrast, cucumber mosaic virus (CMV), yam macluraviruses, yam asymptomatic virus 1 (YaV1), and yam mild mosaic virus (YMMV) could not be detected. No correlation could be established between severity scores and indexing results. Phylogenetic analysis performed on partial viral sequences amplified from infected samples unveiled the presence of two putative novel viral species belonging to genera Badnavirus and Potexvirus and provided evidence for plant-to-plant transmission of YMV, DMaV, and yam potexviruses.
Collapse
Affiliation(s)
- Yacouba Bakayoko
- Laboratoire de BiotechnologieAgriculture et Valorisation des Ressources BiologiquesUFR BiosciencesUniversité Félix Houphouët BoignyAbidjanCôte d'Ivoire
- Station de Recherche sur les Cultures Vivrières (SRCVCentre National de Recherche AgronomiqueBouakéCôte d'Ivoire
| | - Amani M. Kouakou
- Station de Recherche sur les Cultures Vivrières (SRCVCentre National de Recherche AgronomiqueBouakéCôte d'Ivoire
| | - Abou B. Kouassi
- Laboratoire de BiotechnologieAgriculture et Valorisation des Ressources BiologiquesUFR BiosciencesUniversité Félix Houphouët BoignyAbidjanCôte d'Ivoire
| | - Rose‐Marie Gomez
- Unité de Recherche Agrosystèmes TropicauxInstitut National de Recherche pour l’Agriculture, l’Alimentation et l’EnvironnementPetit‐BourgGuadeloupeFrance
| | - Konan E. B. Dibi
- Station de Recherche sur les Cultures Vivrières (SRCVCentre National de Recherche AgronomiqueBouakéCôte d'Ivoire
| | - Brice S. Essis
- Station de Recherche sur les Cultures Vivrières (SRCVCentre National de Recherche AgronomiqueBouakéCôte d'Ivoire
| | - Boni N’Zué
- Station de Recherche sur les Cultures Vivrières (SRCVCentre National de Recherche AgronomiqueBouakéCôte d'Ivoire
| | - Patrick Adebola
- International Institut of Tropical AgricultureIITA‐Abuja StationAbujaNigeria
| | - Assanvon S.‐P. N’Guetta
- Laboratoire de BiotechnologieAgriculture et Valorisation des Ressources BiologiquesUFR BiosciencesUniversité Félix Houphouët BoignyAbidjanCôte d'Ivoire
| | - Marie Umber
- Unité de Recherche Agrosystèmes TropicauxInstitut National de Recherche pour l’Agriculture, l’Alimentation et l’EnvironnementPetit‐BourgGuadeloupeFrance
| |
Collapse
|
6
|
Naitow H, Hamaguchi T, Maki-Yonekura S, Isogai M, Yoshikawa N, Yonekura K. Apple latent spherical virus structure with stable capsid frame supports quasi-stable protrusions expediting genome release. Commun Biol 2020; 3:488. [PMID: 32887929 PMCID: PMC7474077 DOI: 10.1038/s42003-020-01217-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 08/11/2020] [Indexed: 01/30/2023] Open
Abstract
Picorna-like plant viruses are non-enveloped RNA spherical viruses of ~30 nm. Part of the survival of these viruses depends on their capsid being stable enough to harbour the viral genome and yet malleable enough to allow its release. However, molecular mechanisms remain obscure. Here, we report a structure of a picorna-like plant virus, apple latent spherical virus, at 2.87 Å resolution by single-particle cryo-electron microscopy (cryo-EM) with a cold-field emission beam. The cryo-EM map reveals a unique structure composed of three capsid proteins Vp25, Vp20, and Vp24. Strikingly Vp25 has a long N-terminal extension, which substantially stabilises the capsid frame of Vp25 and Vp20 subunits. Cryo-EM images also resolve RNA genome leaking from a pentameric protrusion of Vp24 subunits. The structures and observations suggest that genome release occurs through occasional opening of the Vp24 subunits, possibly suppressed to a low frequency by the rigid frame of the other subunits.
Collapse
Affiliation(s)
- Hisashi Naitow
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Tasuku Hamaguchi
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Saori Maki-Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Masamichi Isogai
- Plant Pathology Laboratory, Faculty of Agriculture, Iwate University, Ueda 3-chome 18-8, Morioka, Iwate, 020-8550, Japan
| | - Nobuyuki Yoshikawa
- Agri-Innovation Center, Iwate University, Ueda 3-chome 18-8, Morioka, Iwate, 020-8550, Japan
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan. .,Advanced Electron Microscope Development Unit, RIKEN-JEOL Collaboration Center, RIKEN Baton Zone Program, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.
| |
Collapse
|
7
|
Structural basis of nanobody recognition of grapevine fanleaf virus and of virus resistance loss. Proc Natl Acad Sci U S A 2020; 117:10848-10855. [PMID: 32371486 DOI: 10.1073/pnas.1913681117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Grapevine fanleaf virus (GFLV) is a picorna-like plant virus transmitted by nematodes that affects vineyards worldwide. Nanobody (Nb)-mediated resistance against GFLV has been created recently, and shown to be highly effective in plants, including grapevine, but the underlying mechanism is unknown. Here we present the high-resolution cryo electron microscopy structure of the GFLV-Nb23 complex, which provides the basis for molecular recognition by the Nb. The structure reveals a composite binding site bridging over three domains of one capsid protein (CP) monomer. The structure provides a precise mapping of the Nb23 epitope on the GFLV capsid in which the antigen loop is accommodated through an induced-fit mechanism. Moreover, we uncover and characterize several resistance-breaking GFLV isolates with amino acids mapping within this epitope, including C-terminal extensions of the CP, which would sterically interfere with Nb binding. Escape variants with such extended CP fail to be transmitted by nematodes linking Nb-mediated resistance to vector transmission. Together, these data provide insights into the molecular mechanism of Nb23-mediated recognition of GFLV and of virus resistance loss.
Collapse
|
8
|
Belval L, Marmonier A, Schmitt-Keichinger C, Gersch S, Andret-Link P, Komar V, Vigne E, Lemaire O, Ritzenthaler C, Demangeat G. From a Movement-Deficient Grapevine Fanleaf Virus to the Identification of a New Viral Determinant of Nematode Transmission. Viruses 2019; 11:v11121146. [PMID: 31835698 PMCID: PMC6950213 DOI: 10.3390/v11121146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 12/06/2019] [Indexed: 11/16/2022] Open
Abstract
Grapevine fanleaf virus (GFLV) and arabis mosaic virus (ArMV) are nepoviruses responsible for grapevine degeneration. They are specifically transmitted from grapevine to grapevine by two distinct ectoparasitic dagger nematodes of the genus Xiphinema. GFLV and ArMV move from cell to cell as virions through tubules formed into plasmodesmata by the self-assembly of the viral movement protein. Five surface-exposed regions in the coat protein called R1 to R5, which differ between the two viruses, were previously defined and exchanged to test their involvement in virus transmission, leading to the identification of region R2 as a transmission determinant. Region R4 (amino acids 258 to 264) could not be tested in transmission due to its requirement for plant systemic infection. Here, we present a fine-tuning mutagenesis of the GFLV coat protein in and around region R4 that restored the virus movement and allowed its evaluation in transmission. We show that residues T258, M260, D261, and R301 play a crucial role in virus transmission, thus representing a new viral determinant of nematode transmission.
Collapse
Affiliation(s)
- Lorène Belval
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, 68000 Colmar, France; (L.B.); (A.M.); (C.S.-K.); (S.G.); (V.K.); (E.V.); (O.L.)
| | - Aurélie Marmonier
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, 68000 Colmar, France; (L.B.); (A.M.); (C.S.-K.); (S.G.); (V.K.); (E.V.); (O.L.)
| | - Corinne Schmitt-Keichinger
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, 68000 Colmar, France; (L.B.); (A.M.); (C.S.-K.); (S.G.); (V.K.); (E.V.); (O.L.)
- Université de Strasbourg, CNRS, IBMP UPR 2357, 67000 Strasbourg, France
| | - Sophie Gersch
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, 68000 Colmar, France; (L.B.); (A.M.); (C.S.-K.); (S.G.); (V.K.); (E.V.); (O.L.)
| | - Peggy Andret-Link
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, 68000 Colmar, France; (L.B.); (A.M.); (C.S.-K.); (S.G.); (V.K.); (E.V.); (O.L.)
| | - Véronique Komar
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, 68000 Colmar, France; (L.B.); (A.M.); (C.S.-K.); (S.G.); (V.K.); (E.V.); (O.L.)
| | - Emmanuelle Vigne
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, 68000 Colmar, France; (L.B.); (A.M.); (C.S.-K.); (S.G.); (V.K.); (E.V.); (O.L.)
| | - Olivier Lemaire
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, 68000 Colmar, France; (L.B.); (A.M.); (C.S.-K.); (S.G.); (V.K.); (E.V.); (O.L.)
| | - Christophe Ritzenthaler
- Université de Strasbourg, CNRS, IBMP UPR 2357, 67000 Strasbourg, France
- Correspondence: (C.R.); (G.D.)
| | - Gérard Demangeat
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, 68000 Colmar, France; (L.B.); (A.M.); (C.S.-K.); (S.G.); (V.K.); (E.V.); (O.L.)
- Correspondence: (C.R.); (G.D.)
| |
Collapse
|
9
|
Garcia S, Hily JM, Komar V, Gertz C, Demangeat G, Lemaire O, Vigne E. Detection of Multiple Variants of Grapevine Fanleaf Virus in Single Xiphinema index Nematodes. Viruses 2019; 11:v11121139. [PMID: 31835488 PMCID: PMC6950412 DOI: 10.3390/v11121139] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/08/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022] Open
Abstract
Grapevine fanleaf virus (GFLV) is responsible for a widespread disease in vineyards worldwide. Its genome is composed of two single-stranded positive-sense RNAs, which both show a high genetic diversity. The virus is transmitted from grapevine to grapevine by the ectoparasitic nematode Xiphinema index. Grapevines in diseased vineyards are often infected by multiple genetic variants of GFLV but no information is available on the molecular composition of virus variants retained in X. index following nematodes feeding on roots. In this work, aviruliferous X. index were fed on three naturally GFLV-infected grapevines for which the virome was characterized by RNAseq. Six RNA-1 and four RNA-2 molecules were assembled segregating into four and three distinct phylogenetic clades of RNA-1 and RNA-2, respectively. After 19 months of rearing, single and pools of 30 X. index tested positive for GFLV. Additionally, either pooled or single X. index carried multiple variants of the two GFLV genomic RNAs. However, the full viral genetic diversity found in the leaves of infected grapevines was not detected in viruliferous nematodes, indicating a genetic bottleneck. Our results provide new insights into the complexity of GFLV populations and the putative role of X. index as reservoirs of virus diversity.
Collapse
Affiliation(s)
- Shahinez Garcia
- Unité Mixte de Recherche (UMR) Santé de la Vigne et Qualité du Vin, Institut National de la Recherche Agronomique (INRA)-Université de Strasbourg, BP 20507, 68021 Colmar Cedex, France; (S.G.); (V.K.); (C.G.); (G.D.); (O.L.)
| | - Jean-Michel Hily
- Unité Mixte de Recherche (UMR) Santé de la Vigne et Qualité du Vin, Institut National de la Recherche Agronomique (INRA)-Université de Strasbourg, BP 20507, 68021 Colmar Cedex, France; (S.G.); (V.K.); (C.G.); (G.D.); (O.L.)
- Institut Français de la Vigne et du Vin (IFV), 30240 Le Grau-Du-Roi, France
| | - Véronique Komar
- Unité Mixte de Recherche (UMR) Santé de la Vigne et Qualité du Vin, Institut National de la Recherche Agronomique (INRA)-Université de Strasbourg, BP 20507, 68021 Colmar Cedex, France; (S.G.); (V.K.); (C.G.); (G.D.); (O.L.)
| | - Claude Gertz
- Unité Mixte de Recherche (UMR) Santé de la Vigne et Qualité du Vin, Institut National de la Recherche Agronomique (INRA)-Université de Strasbourg, BP 20507, 68021 Colmar Cedex, France; (S.G.); (V.K.); (C.G.); (G.D.); (O.L.)
| | - Gérard Demangeat
- Unité Mixte de Recherche (UMR) Santé de la Vigne et Qualité du Vin, Institut National de la Recherche Agronomique (INRA)-Université de Strasbourg, BP 20507, 68021 Colmar Cedex, France; (S.G.); (V.K.); (C.G.); (G.D.); (O.L.)
| | - Olivier Lemaire
- Unité Mixte de Recherche (UMR) Santé de la Vigne et Qualité du Vin, Institut National de la Recherche Agronomique (INRA)-Université de Strasbourg, BP 20507, 68021 Colmar Cedex, France; (S.G.); (V.K.); (C.G.); (G.D.); (O.L.)
| | - Emmanuelle Vigne
- Unité Mixte de Recherche (UMR) Santé de la Vigne et Qualité du Vin, Institut National de la Recherche Agronomique (INRA)-Université de Strasbourg, BP 20507, 68021 Colmar Cedex, France; (S.G.); (V.K.); (C.G.); (G.D.); (O.L.)
- Correspondence: ; Tel.: +33-389-224-955
| |
Collapse
|
10
|
Yazdani R, Shams-Bakhsh M, Hassani-Mehraban A, Arab SS, Thelen N, Thiry M, Crommen J, Fillet M, Jacobs N, Brans A, Servais AC. Production and characterization of virus-like particles of grapevine fanleaf virus presenting L2 epitope of human papillomavirus minor capsid protein. BMC Biotechnol 2019; 19:81. [PMID: 31752839 PMCID: PMC6868843 DOI: 10.1186/s12896-019-0566-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/09/2019] [Indexed: 11/17/2022] Open
Abstract
Background Virus-like particle (VLP) platform represents a promising approach for the generation of efficient and immunogenic subunit vaccines. Here, the feasibility of using grapevine fanleaf virus (GFLV) VLPs as a new carrier for the presentation of human papillomavirus (HPV) L2 epitope was studied. To achieve this goal, a model of the HPV L2 epitope secondary structure was predicted and its insertion within 5 external loops in the GFLV capsid protein (CP) was evaluated. Results The epitope sequence was genetically inserted in the αB-αB” domain C of the GFLV CP, which was then over-expressed in Pichia pastoris and Escherichia coli. The highest expression yield was obtained in E. coli. Using this system, VLP formation requires a denaturation-refolding step, whereas VLPs with lower production yield were directly formed using P. pastoris, as confirmed by electron microscopy and immunostaining electron microscopy. Since the GFLV L2 VLPs were found to interact with the HPV L2 antibody under native conditions in capillary electrophoresis and in ELISA, it can be assumed that the inserted epitope is located at the VLP surface with its proper ternary structure. Conclusions The results demonstrate that GFLV VLPs constitute a potential scaffold for surface display of the epitope of interest.
Collapse
Affiliation(s)
- Razieh Yazdani
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Pajouhesh Blvd., Tehran to Karaj highway, Tehran, Iran.,Laboratory for the Analysis of Medicines (LAM), Department of Pharmaceutical Sciences, CIRM, University of Liège, Quartier Hôpital, B36, Tower 4, Avenue Hippocrate, 15, 4000, Liège, Belgium
| | - Masoud Shams-Bakhsh
- Plant Pathology Department, Faculty of Agriculture, Tarbiat Modares University, Pajouhesh Blvd., Tehran to Karaj highway, Tehran, Iran.
| | | | - Seyed Shahriar Arab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Nicolas Thelen
- Cellular and Tissular Biology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Marc Thiry
- Cellular and Tissular Biology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Jacques Crommen
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmaceutical Sciences, CIRM, University of Liège, Quartier Hôpital, B36, Tower 4, Avenue Hippocrate, 15, 4000, Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmaceutical Sciences, CIRM, University of Liège, Quartier Hôpital, B36, Tower 4, Avenue Hippocrate, 15, 4000, Liège, Belgium
| | - Nathalie Jacobs
- Cellular and Molecular Immunology, GIGA-Research, University of Liège, Liège, Belgium
| | - Alain Brans
- Center for Protein Engineering, University of Liège, Chemistry Institute B6, 4000, Liège (Sart Tilman), Belgium
| | - Anne-Catherine Servais
- Laboratory for the Analysis of Medicines (LAM), Department of Pharmaceutical Sciences, CIRM, University of Liège, Quartier Hôpital, B36, Tower 4, Avenue Hippocrate, 15, 4000, Liège, Belgium.
| |
Collapse
|
11
|
Shibaei N, Majidi J, Bashir NS, Karkhaneh A, Razavi K. Production and Partial Purification of the Grapevine Fanleaf Virus Coat Protein 42 Polyclonal Antibody Against Inclusion Body Expressed in Escherichia coli. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 16:e1525. [PMID: 31457029 PMCID: PMC6697837 DOI: 10.21859/ijb.1525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 05/05/2018] [Accepted: 06/12/2018] [Indexed: 11/27/2022]
Abstract
Background Expression of virus coat protein (CP) in Escherichia coli often leads to production of partially folded aggregated proteins which are called inclusion bodies. Grapevine fanleaf virus (GFLV) is one of the most serious and widespread grapevine virus diseases around the world and in Iran. Objective The main objective of this study was to find a simple and brief method for producing polyclonal antibodies (PAbs) to be used for immunodiagnosis of GFLV. Material and Methods An antigenic determinant in GFLV CP gene was inserted into pET-28a bacterial expression vector and the construct (pET-28a CP42) was cloned into E. coli strain BL21 (DE3). The recombinant coat protein of GFLV (CP42) was expressed and characterized by SDS-PAGE and western blot analysis using commercial anti-GFLV antibody. Expression of the CP was detected in the form of inclusion bodies in insoluble cytoplasmic fraction. Then, the inclusion bodies were isolated from the bacterial cells and injected into rabbits for PAbs production. The reaction of the antiserum was checked by ELISA assay. In order to analyze efficiency of the produced PAbs, first the infected and uninfected grapevine samples were confirmed based on morphological symptoms then the indirect plate- trapped antigen Enzyme-linked Immunosorbent Assay (IPTA-ELISA) was applied using the commercial anti GFLV antibody. In the next ELISA assay, efficiency of the raised polyclonal antibody was compared with commercial one. Results The expression of recombinant CP42 induced by IPTG was confirmed by the band of 42 kDa in SDS-PAGE and western blot. The antiserum of purified inclusion body immunized rabbit was reacted with CP42 and GFLV infected Grapevine samples. The results revealed an acceptable efficacy for prepared antibodies compared to that of commercial antibody. Conclusions It was evident that the recombinant coat protein in the form of inclusion bodies can be prepared and used as the antigen for immunizing animals in order to produce PAbs.
Collapse
Affiliation(s)
- Naeimeh Shibaei
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Jafar Majidi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Aliasghar Karkhaneh
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Khadijeh Razavi
- Department of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
12
|
Marmonier A, Perfus-Barbeoch L, Rancurel C, Boissinot S, Favery B, Demangeat G, Brault V. In Vitro Acquisition of Specific Small Interfering RNAs Inhibits the Expression of Some Target Genes in the Plant Ectoparasite Xiphinema index. Int J Mol Sci 2019; 20:E3266. [PMID: 31277202 PMCID: PMC6651894 DOI: 10.3390/ijms20133266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022] Open
Abstract
Xiphinema index is an important plant parasitic nematode that induces direct damages and specifically transmits the Grapevine fanleaf virus, which is particularly harmful for grapevines. Genomic resources of this nematode species are still limited and no functional gene validation technology is available. RNA interference (RNAi) is a powerful technology to study gene function and here we describe the application of RNAi on several genes in X. index. Soaking the nematodes for 48 h in a suspension containing specific small interfering RNAs resulted in a partial inhibition of the accumulation of some targeted mRNA. However, low reproducible silencing efficiency was observed which could arise from X. index silencing pathway deficiencies. Indeed, essential accustomed proteins for these pathways were not found in the X. index proteome predicted from transcriptomic data. The most reproducible silencing effect was obtained when targeting the piccolo gene potentially involved in endo-exocytosis of synaptic molecules. This represents the first report of gene silencing in a nematode belonging to the Longidoridae family.
Collapse
Affiliation(s)
| | | | - Corinne Rancurel
- ISA, INRA, Université Côte d'Azur, CNRS, 06900 Sophia-Antipolis, France
| | | | - Bruno Favery
- ISA, INRA, Université Côte d'Azur, CNRS, 06900 Sophia-Antipolis, France
| | | | | |
Collapse
|
13
|
Osterbaan LJ, Schmitt-Keichinger C, Vigne E, Fuchs M. Optimal systemic grapevine fanleaf virus infection in Nicotiana benthamiana following agroinoculation. J Virol Methods 2018; 257:16-21. [PMID: 29630941 DOI: 10.1016/j.jviromet.2018.04.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 03/22/2018] [Accepted: 04/05/2018] [Indexed: 10/17/2022]
Abstract
One of the greatest hindrances to the study of grapevine fanleaf virus (GFLV) is the dearth of robust protocols for reliable, scalable, and cost-effective inoculation of host plants, especially methods which allow for rapid and targeted manipulation of the virus genome. Agroinoculation fulfills these requirements: it is a relatively rapid, inexpensive, and reliable method for establishing infections, and enables genetic manipulation of viral sequences by modifying plasmids. We designed a system of binary plasmids based on the two genomic RNAs [RNA1 (1) and RNA2 (2)] of GFLV strains F13 (F) and GHu (G) and optimized parameters to maximize systemic infection frequency in Nicotiana benthamiana via agroinoculation. The genomic make-up of the inoculum (G1-G2 and reassortant F1-G2), the identity of the co-infiltrated silencing suppressor (grapevine leafroll associated virus 2 p24), and temperature at which plants were maintained (25 °C) significantly increased systemic infection, while high optical densities of infiltration cultures (OD600nm of 1.0 or 2.0) increased the consistency of systemic infection frequency in N. benthamiana. In contrast, acetosyringone in the bacterial culture media, regardless of concentration, had no effect. Plasmids in this system are amenable to rapid and reliable manipulation by one-step site-directed mutagenesis, as shown by the creation of infectious RNA1 chimeras of the GFLV-F13 and GHu strains. The GFLV agroinoculation plasmids described here, together with the optimized protocol for bacterial culturing and plant maintenance, provide a robust system for the establishment of systemic GFLV infection in N. benthamiana and the rapid generation of GFLV mutants, granting a much-needed tool for investigations into GFLV-host interactions.
Collapse
Affiliation(s)
- Larissa J Osterbaan
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA.
| | - Corinne Schmitt-Keichinger
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, 12 Rue de Général Zimmer, 67084 Strasbourg, France
| | | | - Marc Fuchs
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY 14456, USA
| |
Collapse
|
14
|
Hemmer C, Djennane S, Ackerer L, Hleibieh K, Marmonier A, Gersch S, Garcia S, Vigne E, Komar V, Perrin M, Gertz C, Belval L, Berthold F, Monsion B, Schmitt‐Keichinger C, Lemaire O, Lorber B, Gutiérrez C, Muyldermans S, Demangeat G, Ritzenthaler C. Nanobody-mediated resistance to Grapevine fanleaf virus in plants. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:660-671. [PMID: 28796912 PMCID: PMC5787842 DOI: 10.1111/pbi.12819] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/16/2017] [Accepted: 08/04/2017] [Indexed: 05/03/2023]
Abstract
Since their discovery, single-domain antigen-binding fragments of camelid-derived heavy-chain-only antibodies, also known as nanobodies (Nbs), have proven to be of outstanding interest as therapeutics against human diseases and pathogens including viruses, but their use against phytopathogens remains limited. Many plant viruses including Grapevine fanleaf virus (GFLV), a nematode-transmitted icosahedral virus and causal agent of fanleaf degenerative disease, have worldwide distribution and huge burden on crop yields representing billions of US dollars of losses annually, yet solutions to combat these viruses are often limited or inefficient. Here, we identified a Nb specific to GFLV that confers strong resistance to GFLV upon stable expression in the model plant Nicotiana benthamiana and also in grapevine rootstock, the natural host of the virus. We showed that resistance was effective against a broad range of GFLV isolates independently of the inoculation method including upon nematode transmission but not against its close relative, Arabis mosaic virus. We also demonstrated that virus neutralization occurs at an early step of the virus life cycle, prior to cell-to-cell movement. Our findings will not only be instrumental to confer resistance to GFLV in grapevine, but more generally they pave the way for the generation of novel antiviral strategies in plants based on Nbs.
Collapse
Affiliation(s)
- Caroline Hemmer
- Institut de biologie moléculaire des plantes du CNRSUniversité de StrasbourgStrasbourgFrance
- SVQVINRAUniversité de StrasbourgColmarFrance
| | | | - Léa Ackerer
- Institut de biologie moléculaire des plantes du CNRSUniversité de StrasbourgStrasbourgFrance
- SVQVINRAUniversité de StrasbourgColmarFrance
- Institut français de la vigne et du vinDomaine de l'EspiguetteLe Grau du RoiFrance
| | - Kamal Hleibieh
- Institut de biologie moléculaire des plantes du CNRSUniversité de StrasbourgStrasbourgFrance
| | | | | | | | | | | | | | | | | | - François Berthold
- Institut de biologie moléculaire des plantes du CNRSUniversité de StrasbourgStrasbourgFrance
| | - Baptiste Monsion
- Institut de biologie moléculaire des plantes du CNRSUniversité de StrasbourgStrasbourgFrance
| | | | | | - Bernard Lorber
- Institut de biologie moléculaire et cellulaire du CNRSStrasbourg CedexFrance
| | - Carlos Gutiérrez
- Research Institute of Biomedical and Health SciencesUniversity of Las Palmas de Gran CanariaArucasLas PalmasSpain
| | - Serge Muyldermans
- Cellular and Molecular ImmunologyVrije Universiteit BrusselBrusselsBelgium
| | | | - Christophe Ritzenthaler
- Institut de biologie moléculaire des plantes du CNRSUniversité de StrasbourgStrasbourgFrance
| |
Collapse
|
15
|
Monsion B, Incarbone M, Hleibieh K, Poignavent V, Ghannam A, Dunoyer P, Daeffler L, Tilsner J, Ritzenthaler C. Efficient Detection of Long dsRNA in Vitro and in Vivo Using the dsRNA Binding Domain from FHV B2 Protein. FRONTIERS IN PLANT SCIENCE 2018; 9:70. [PMID: 29449856 PMCID: PMC5799278 DOI: 10.3389/fpls.2018.00070] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/12/2018] [Indexed: 05/17/2023]
Abstract
Double-stranded RNA (dsRNA) plays essential functions in many biological processes, including the activation of innate immune responses and RNA interference. dsRNA also represents the genetic entity of some viruses and is a hallmark of infections by positive-sense single-stranded RNA viruses. Methods for detecting dsRNA rely essentially on immunological approaches and their use is often limited to in vitro applications, although recent developments have allowed the visualization of dsRNA in vivo. Here, we report the sensitive and rapid detection of long dsRNA both in vitro and in vivo using the dsRNA binding domain of the B2 protein from Flock house virus. In vitro, we adapted the system for the detection of dsRNA either enzymatically by northwestern blotting or by direct fluorescence labeling on fixed samples. In vivo, we produced stable transgenic Nicotiana benthamiana lines allowing the visualization of dsRNA by fluorescence microscopy. Using these techniques, we were able to discriminate healthy and positive-sense single-stranded RNA virus-infected material in plants and insect cells. In N. benthamiana, our system proved to be very potent for the spatio-temporal visualization of replicative RNA intermediates of a broad range of positive-sense RNA viruses, including high- vs. low-copy number viruses.
Collapse
Affiliation(s)
- Baptiste Monsion
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Marco Incarbone
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Kamal Hleibieh
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Vianney Poignavent
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Ahmed Ghannam
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Patrice Dunoyer
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
| | - Laurent Daeffler
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Strasbourg, France
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, St Andrews, United Kingdom
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Christophe Ritzenthaler
- Centre National de la Recherche Scientifique, Institut de Biologie Moléculaire des Plantes, Université de Strasbourg, Strasbourg, France
- *Correspondence: Christophe Ritzenthaler
| |
Collapse
|
16
|
Disparate gain and loss of parasitic abilities among nematode lineages. PLoS One 2017; 12:e0185445. [PMID: 28934343 PMCID: PMC5608397 DOI: 10.1371/journal.pone.0185445] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/12/2017] [Indexed: 11/20/2022] Open
Abstract
Plant parasitism has arisen time and again in multiple phyla, including bacteria, fungi, insects and nematodes. In most of these organismal groups, the overwhelming diversity hampers a robust reconstruction of the origins and diversification patterns of this trophic lifestyle. Being a moderately diversified phylum with ≈ 4,100 plant parasites (15% of total biodiversity) subdivided over four independent lineages, nematodes constitute a major organismal group for which the genesis of plant parasitism could be mapped. Since substantial crop losses worldwide have been attributed to less than 1% of these plant parasites, research efforts are severely biased towards this minority. With the first molecular characterisation of numerous basal and supposedly harmless plant parasites as well as their non-parasitic relatives, we were able to generate a comprehensive molecular framework that allows for the reconstruction of trophic diversification for a complete phylum. In each lineage plant parasites reside in a single taxonomic grouping (family or order), and by taking the coverage of the next lower taxonomic level as a measure for representation, 50, 67, 100 and 85% of the known diversity was included. We revealed distinct gain and loss patterns with regard to plant parasitism per se as well as host exploitation strategies between these lineages. Our map of parasitic nematode biodiversity also revealed an unanticipated time reversal in which the two most ancient lineages showed the lowest level of ecological diversification and vice versa.
Collapse
|
17
|
Schellenberger P, Sauter C, Lorber B, Bron P, Trapani S, Bergdoll M, Marmonier A, Schmitt-Keichinger C, Lemaire O, Demangeat G, Ritzenthaler C. Correction: Structural Insights into Viral Determinants of Nematode Mediated Grapevine fanleaf virus Transmission. PLoS Pathog 2017; 13:e1006268. [PMID: 28296962 PMCID: PMC5352166 DOI: 10.1371/journal.ppat.1006268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Belval L, Hemmer C, Sauter C, Reinbold C, Fauny J, Berthold F, Ackerer L, Schmitt‐Keichinger C, Lemaire O, Demangeat G, Ritzenthaler C. Display of whole proteins on inner and outer surfaces of grapevine fanleaf virus-like particles. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2288-2299. [PMID: 27178344 PMCID: PMC5103221 DOI: 10.1111/pbi.12582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/02/2016] [Accepted: 05/10/2016] [Indexed: 06/05/2023]
Abstract
Virus-like particles (VLPs) derived from nonenveloped viruses result from the self-assembly of capsid proteins (CPs). They generally show similar structural features to viral particles but are noninfectious and their inner cavity and outer surface can potentially be adapted to serve as nanocarriers of great biotechnological interest. While a VLP outer surface is generally amenable to chemical or genetic modifications, encaging a cargo within particles can be more complex and is often limited to small molecules or peptides. Examples where both inner cavity and outer surface have been used to simultaneously encapsulate and expose entire proteins remain scarce. Here, we describe the production of spherical VLPs exposing fluorescent proteins at either their outer surface or inner cavity as a result of the self-assembly of a single genetically modified viral structural protein, the CP of grapevine fanleaf virus (GFLV). We found that the N- and C-terminal ends of the GFLV CP allow the genetic fusion of proteins as large as 27 kDa and the plant-based production of nucleic acid-free VLPs. Remarkably, expression of N- or C-terminal CP fusions resulted in the production of VLPs with recombinant proteins exposed to either the inner cavity or the outer surface, respectively, while coexpression of both fusion proteins led to the formation hybrid VLP, although rather inefficiently. Such properties are rather unique for a single viral structural protein and open new potential avenues for the design of safe and versatile nanocarriers, particularly for the targeted delivery of bioactive molecules.
Collapse
Affiliation(s)
- Lorène Belval
- SVQVINRAUniversité de StrasbourgColmarFrance
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
| | - Caroline Hemmer
- SVQVINRAUniversité de StrasbourgColmarFrance
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
| | - Claude Sauter
- Institut de Biologie Moléculaire et Cellulaire du CNRSUPR 9002Architecture et Réactivité de l'ARNUniversité de StrasbourgStrasbourgFrance
| | | | - Jean‐Daniel Fauny
- Institut de Biologie Moléculaire et Cellulaire du CNRSUPR 9002Architecture et Réactivité de l'ARNUniversité de StrasbourgStrasbourgFrance
| | - François Berthold
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
| | - Léa Ackerer
- SVQVINRAUniversité de StrasbourgColmarFrance
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
- Institut Français de la Vigne et du VinDomaine de l'EspiguetteLe Grau‐du‐RoiFrance
| | - Corinne Schmitt‐Keichinger
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
| | | | | | - Christophe Ritzenthaler
- Institut de Biologie Moléculaire des Plantes CNRS‐UPR 2357associée à l'Université de StrasbourgCNRSStrasbourgFrance
| |
Collapse
|
19
|
Fuchs M, Schmitt-Keichinger C, Sanfaçon H. A Renaissance in Nepovirus Research Provides New Insights Into Their Molecular Interface With Hosts and Vectors. Adv Virus Res 2016; 97:61-105. [PMID: 28057260 DOI: 10.1016/bs.aivir.2016.08.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nepoviruses supplied seminal landmarks to the historical trail of plant virology. Among the first agriculturally relevant viruses recognized in the late 1920s and among the first plant viruses officially classified in the early 1970s, nepoviruses also comprise the first species for which a soil-borne ectoparasitic nematode vector was identified. Early research on nepoviruses shed light on the genome structure and expression, biological properties of the two genomic RNAs, and mode of transmission. In recent years, research on nepoviruses enjoyed an extraordinary renaissance. This resurgence provided new insights into the molecular interface between viruses and their plant hosts, and between viruses and dagger nematode vectors to advance our understanding of some of the major steps of the infectious cycle. Here we examine these recent findings, highlight ongoing work, and offer some perspectives for future research.
Collapse
Affiliation(s)
- M Fuchs
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrative Plant Science, Cornell University, New York State Agricultural Experiment Station, Geneva, NY, United States.
| | - C Schmitt-Keichinger
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - H Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| |
Collapse
|
20
|
Wang CY, Zhang QF, Gao YZ, Zhou XP, Ji G, Huang XJ, Hong J, Zhang CX. Insight into the three-dimensional structure of maize chlorotic mottle virus revealed by Cryo-EM single particle analysis. Virology 2015; 485:171-8. [PMID: 26275511 DOI: 10.1016/j.virol.2015.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/05/2015] [Accepted: 07/25/2015] [Indexed: 11/15/2022]
Abstract
Maize chlorotic mottle virus (MCMV) is the only member of the Machlomovirus genus in the family Tombusviridae. Here, we obtained the Cryo-EM structure of MCMV by single particle analysis with most local resolution at approximately 4 Å. The Cα backbone was built based on residues with bulky side chains. The resolved C-terminus of the capsid protein subunit and obvious openings at the 2-fold axis demonstrated the compactness of the asymmetric unit, which indicates an important role in the stability of MCMV. The Asp116 residue from each subunit around the 5-fold and 3-fold axes contributed to the negative charges in the centers of the pentamers and hexamers, which might serve as a solid barrier against the leakage of genomic RNA. Finally, the loops most exposed on the surface were analyzed and are proposed to be potential functional sites related to MCMV transmission.
Collapse
Affiliation(s)
- Chun-Yan Wang
- Institute of Insect Science, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qin-Fen Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuan-Zhu Gao
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xue-Ping Zhou
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Gang Ji
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao-Jun Huang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Hong
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China.
| | - Chuan-Xi Zhang
- Institute of Insect Science, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
21
|
Multiple functions of capsid proteins in (+) stranded RNA viruses during plant–virus interactions. Virus Res 2015; 196:140-9. [DOI: 10.1016/j.virusres.2014.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/18/2022]
|
22
|
Abstract
Fanleaf degeneration is considered the most damaging viral disease of grapevine. The two major nepoviruses involved are Grapevine fanleaf virus (GFLV) and Arabis mosaic virus (ArMV) which are respectively and specifically transmitted by the dagger nematodes Xiphinema index and X. diversicaudatum. The methods described below are aimed at detecting four prevalent grapevine Xiphinema species: the vector species previously mentioned and two nonvector species X. vuittenezi and X. italiae.
Collapse
|
23
|
Karran RA, Sanfaçon H. Tomato ringspot virus coat protein binds to ARGONAUTE 1 and suppresses the translation repression of a reporter gene. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:933-43. [PMID: 24804809 DOI: 10.1094/mpmi-04-14-0099-r] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
RNA silencing regulates plant gene expression and antiviral defenses and functions by cleaving target RNAs or repressing translation. As a counter defense, many plant viruses encode suppressor proteins that sequester small RNAs or inactivate Argonaute (AGO) proteins. All known plant virus silencing suppressor activities eventually inhibit the degradation of target mRNAs. Using a transiently expressed green fluorescent protein (GFP) reporter gene, we show that Tomato ringspot virus (ToRSV) coat protein (CP) is a suppressor of RNA silencing that enhances GFP expression but does not prevent the degradation of the GFP mRNA or the accumulation of GFP small interfering RNAs (siRNAs). Coexpression of the CP with GFP resulted in increased association of residual GFP mRNAs with polysome fractions and reduced association of GFP siRNAs with monosome fractions. AGO1 was co-immunoprecipitated with the CP and CP expression destabilized AGO1. A WG motif within the CP was critical for the enhanced GFP expression, AGO1 interaction, and AGO1 destabilization, suggesting that the ToRSV CP acts as an AGO-hook protein and competes for AGO binding with a plant cellular GW/WG protein involved in translation repression.
Collapse
|
24
|
Syller J. Biological and molecular events associated with simultaneous transmission of plant viruses by invertebrate and fungal vectors. MOLECULAR PLANT PATHOLOGY 2014; 15:417-26. [PMID: 24341556 PMCID: PMC6638794 DOI: 10.1111/mpp.12101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Viruses are likely to be the most dangerous parasites of living organisms because of their widespread occurrence, possible deleterious effects on their hosts and high rates of evolution. Virus host-to-host transmission is a critical step in the virus life cycle, because it enables survival in a given environment and efficient dissemination. As hosts of plant viruses are not mobile, these pathogens have adopted diverse transmission strategies involving various vector organisms, mainly arthropods, nematodes, fungi and protists. In nature, plants are often infected with more than one virus at a time, thereby creating potential sources for vectors to acquire and transmit simultaneously two or more viruses. Simultaneous transmission can result in multiple infections of new host plants, which become subsequent potential sources of the viruses, thus enhancing the spread of the diseases caused by these pathogens. Moreover, it can contribute to the maintenance of viral genetic diversity in the host communities. However, despite its possible significance, the problem of the simultaneous transmission of plant viruses by vectors has not been investigated in detail. In this review, the current knowledge on multiple viral transmissions by aphids, whiteflies, leafhoppers, planthoppers, nematodes and fungi is outlined.
Collapse
Affiliation(s)
- Jerzy Syller
- Plant Breeding and Acclimatization Institute-National Research Institute, Centre Młochów, 05-831, Młochów, Poland
| |
Collapse
|
25
|
Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK, Kikuchi T, Manzanilla-López R, Palomares-Rius JE, Wesemael WML, Perry RN. Top 10 plant-parasitic nematodes in molecular plant pathology. MOLECULAR PLANT PATHOLOGY 2013. [PMID: 23809086 DOI: 10.1111/mpp.1205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The aim of this review was to undertake a survey of researchers working with plant-parasitic nematodes in order to determine a 'top 10' list of these pathogens based on scientific and economic importance. Any such list will not be definitive as economic importance will vary depending on the region of the world in which a researcher is based. However, care was taken to include researchers from as many parts of the world as possible when carrying out the survey. The top 10 list emerging from the survey is composed of: (1) root-knot nematodes (Meloidogyne spp.); (2) cyst nematodes (Heterodera and Globodera spp.); (3) root lesion nematodes (Pratylenchus spp.); (4) the burrowing nematode Radopholus similis; (5) Ditylenchus dipsaci; (6) the pine wilt nematode Bursaphelenchus xylophilus; (7) the reniform nematode Rotylenchulus reniformis; (8) Xiphinema index (the only virus vector nematode to make the list); (9) Nacobbus aberrans; and (10) Aphelenchoides besseyi. The biology of each nematode (or nematode group) is reviewed briefly.
Collapse
Affiliation(s)
- John T Jones
- James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jones JT, Haegeman A, Danchin EGJ, Gaur HS, Helder J, Jones MGK, Kikuchi T, Manzanilla-López R, Palomares-Rius JE, Wesemael WML, Perry RN. Top 10 plant-parasitic nematodes in molecular plant pathology. MOLECULAR PLANT PATHOLOGY 2013; 14:946-61. [PMID: 23809086 PMCID: PMC6638764 DOI: 10.1111/mpp.12057] [Citation(s) in RCA: 883] [Impact Index Per Article: 73.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The aim of this review was to undertake a survey of researchers working with plant-parasitic nematodes in order to determine a 'top 10' list of these pathogens based on scientific and economic importance. Any such list will not be definitive as economic importance will vary depending on the region of the world in which a researcher is based. However, care was taken to include researchers from as many parts of the world as possible when carrying out the survey. The top 10 list emerging from the survey is composed of: (1) root-knot nematodes (Meloidogyne spp.); (2) cyst nematodes (Heterodera and Globodera spp.); (3) root lesion nematodes (Pratylenchus spp.); (4) the burrowing nematode Radopholus similis; (5) Ditylenchus dipsaci; (6) the pine wilt nematode Bursaphelenchus xylophilus; (7) the reniform nematode Rotylenchulus reniformis; (8) Xiphinema index (the only virus vector nematode to make the list); (9) Nacobbus aberrans; and (10) Aphelenchoides besseyi. The biology of each nematode (or nematode group) is reviewed briefly.
Collapse
Affiliation(s)
- John T Jones
- James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Alteration of intersubunit acid–base pair interactions at the quasi-threefold axis of symmetry of Cucumber mosaic virus disrupts aphid vector transmission. Virology 2013; 440:160-70. [DOI: 10.1016/j.virol.2013.02.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/16/2013] [Accepted: 02/23/2013] [Indexed: 11/20/2022]
|
28
|
Lai-Kee-Him J, Schellenberger P, Dumas C, Richard E, Trapani S, Komar V, Demangeat G, Ritzenthaler C, Bron P. The backbone model of the Arabis mosaic virus reveals new insights into functional domains of Nepovirus capsid. J Struct Biol 2013; 182:1-9. [DOI: 10.1016/j.jsb.2013.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 01/22/2013] [Accepted: 01/22/2013] [Indexed: 01/22/2023]
|
29
|
Bragard C, Caciagli P, Lemaire O, Lopez-Moya JJ, MacFarlane S, Peters D, Susi P, Torrance L. Status and prospects of plant virus control through interference with vector transmission. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:177-201. [PMID: 23663003 DOI: 10.1146/annurev-phyto-082712-102346] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Most plant viruses rely on vector organisms for their plant-to-plant spread. Although there are many different natural vectors, few plant virus-vector systems have been well studied. This review describes our current understanding of virus transmission by aphids, thrips, whiteflies, leafhoppers, planthoppers, treehoppers, mites, nematodes, and zoosporic endoparasites. Strategies for control of vectors by host resistance, chemicals, and integrated pest management are reviewed. Many gaps in the knowledge of the transmission mechanisms and a lack of available host resistance to vectors are evident. Advances in genome sequencing and molecular technologies will help to address these problems and will allow innovative control methods through interference with vector transmission. Improved knowledge of factors affecting pest and disease spread in different ecosystems for predictive modeling is also needed. Innovative control measures are urgently required because of the increased risks from vector-borne infections that arise from environmental change.
Collapse
Affiliation(s)
- C Bragard
- Earth & Life Institute, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Eastwell KC, Mekuria TA, Druffel KL. Complete nucleotide sequences and genome organization of a cherry isolate of cherry leaf roll virus. Arch Virol 2012; 157:761-4. [PMID: 22218961 PMCID: PMC3314827 DOI: 10.1007/s00705-011-1208-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 11/23/2011] [Indexed: 10/25/2022]
Abstract
The complete nucleotide sequence of cherry leaf roll virus (CLRV, genus Nepovirus) from a naturally infected cherry tree (Prunus avium cv. Bing) in North America was determined. RNA1 and RNA2 consist of 7,893 and 6,492 nucleotides, respectively, plus a poly-(A) tail. Each RNA encodes a single potential open reading frame. The first 657 nucleotides of RNA1 and RNA2 are 99% identical and include the 5'-UTR and the first 214 deduced amino acids of the polyproteins following the first of two in-frame start codons. Phylogenetic analysis reveals close relationships between CLRV and members of subgroup C of the genus Nepovirus.
Collapse
Affiliation(s)
- Kenneth C Eastwell
- Department of Plant Pathology, Washington State University-I.A.R.E.C., 24106 North Bunn Road, Prosser, WA 99350, USA.
| | | | | |
Collapse
|
31
|
Blanc S, Uzest M, Drucker M. New research horizons in vector-transmission of plant viruses. Curr Opin Microbiol 2011; 14:483-91. [DOI: 10.1016/j.mib.2011.07.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/28/2011] [Accepted: 07/05/2011] [Indexed: 12/24/2022]
|