1
|
Zaccaron AZ, Stergiopoulos I. The dynamics of fungal genome organization and its impact on host adaptation and antifungal resistance. J Genet Genomics 2025; 52:628-640. [PMID: 39522682 DOI: 10.1016/j.jgg.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Fungi are a diverse kingdom characterized by remarkable genomic plasticity that facilitates pathogenicity and adaptation to adverse environmental conditions. In this review, we delve into the dynamic organization of fungal genomes and its implications for host adaptation and antifungal resistance. We examine key features and the heterogeneity of genomes across different fungal species, including but not limited to their chromosome content, DNA composition, distribution and arrangement of their content across chromosomes, and other major traits. We further highlight how this variability in genomic traits influences their virulence and adaptation to adverse conditions. Fungal genomes exhibit large variations in size, gene content, and structural features, such as the abundance of transposable elements (TEs), compartmentalization into gene-rich and TE-rich regions, and the presence or absence of dispensable chromosomes. Genomic structural variations are equally diverse in fungi, ranging from whole-chromosome duplications that may enhance tolerance to antifungal compounds, to targeted deletion of effector encoding genes that may promote virulence. Finally, the often-overlooked fungal mitochondrial genomes can also affect virulence and resistance to fungicides. Such and other features of fungal genome organization are reviewed and discussed in the context of host-microbe interactions and antifungal resistance.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis (UCD), Davis, CA, USA; Integrative Genetics and Genomics Graduate Group, University of California, Davis, CA 95616, USA
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis (UCD), Davis, CA, USA.
| |
Collapse
|
2
|
Shi H, Qiu J, Hu P, Naqvi NI. Decoding rice blast: a deep dive into the broad-spectrum Pi-ta resistance gene through functional analysis of Ptr alleles. Sci Bull (Beijing) 2025; 70:1200-1202. [PMID: 39643485 DOI: 10.1016/j.scib.2024.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Affiliation(s)
- Huanbin Shi
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China.
| | - Jiehua Qiu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 311400, China.
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory and the Department of Biological Sciences, National University of Singapore, Singapore 117604, Singapore.
| |
Collapse
|
3
|
Oberti H, Sessa L, Oliveira-Rizzo C, Di Paolo A, Sanchez-Vallet A, Seidl MF, Abreo E. Novel genomic features in entomopathogenic fungus Beauveria bassiana ILB308: accessory genomic regions and putative virulence genes involved in the infection process of soybean pest Piezodorus guildinii. PEST MANAGEMENT SCIENCE 2025; 81:2323-2336. [PMID: 39797536 DOI: 10.1002/ps.8631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Biological control methods involving entomopathogenic fungi like Beauveria bassiana have been shown to be a valuable approach in integrated pest management as an environmentally friendly alternative to control pests and pathogens. Identifying genetic determinants of pathogenicity in B. bassiana is instrumental for enhancing its virulence against insects like the resistant soybean pest Piezodorus guildinii. This study focused on comparative genomics of different B. bassiana strains and gene expression analyses to identify virulence genes in the hypervirulent strain ILB308, especially in response to infection of P. guildinii and growth on hydrocarbon HC15, a known virulence enhancer. RESULTS Strain ILB308 showed the highest number of virulence-related features, such as candidate virulence proteins, effectors, small secreted proteins and biosynthetic gene clusters. ILB308 also had a high percentage of unique DNA sequences, including six accessory scaffolds. Gene expression analysis at 4 days post inoculation revealed upregulation of known virulence factors, including Tudor domain proteins, LysM motif-containing proteins, subtilisin-like proteases and novel genes encoding secreted effectors and heat-labile enterotoxins. Growth on HC15 led to the upregulation of genes associated with oxidoreductase activity related to cuticular alkane degradation and fermentation metabolism/antioxidant responses in the hemolymph. The low number of known B. bassiana virulence genes points to novel or unknown mechanisms acting on the interaction between P. guildinii and strain ILB308. CONCLUSION The presence of accessory genomic regions and unique virulence genes in ILB308 may contribute to its higher virulence. These genes could be considered as potential targets for enhancing fungal virulence through genetic manipulation. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Héctor Oberti
- Laboratorio de Bioproducción, Bioinsumos, INIA Las Brujas, Canelones, Uruguay
| | - Lucia Sessa
- Laboratorio de Bioproducción, Bioinsumos, INIA Las Brujas, Canelones, Uruguay
| | - Carolina Oliveira-Rizzo
- Plataforma de Microscopía Confocal y Epifluorescencia, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Andrés Di Paolo
- Plataforma de Microscopía Confocal y Epifluorescencia, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Andrea Sanchez-Vallet
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Michael F Seidl
- Theoretical Biology & Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Eduardo Abreo
- Laboratorio de Bioproducción, Bioinsumos, INIA Las Brujas, Canelones, Uruguay
| |
Collapse
|
4
|
Valent B. Dynamic Gene-for-Gene Interactions Undermine Durable Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:104-117. [PMID: 40272515 DOI: 10.1094/mpmi-02-25-0022-hh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Harold Flor's gene-for-gene model explained boom-bust cycles in which resistance (R) genes are deployed in farmers' fields, only to have pathogens overcome resistance by modifying or losing corresponding active avirulence (AVR) genes. Flor understood that host R genes with corresponding low rates of virulence mutation in the pathogen should maintain resistance for longer periods of time. This review focuses on AVR gene dynamics of the haploid Ascomycete fungus Pyricularia oryzae, which causes rice blast disease, a gene-for-gene system with a complex race structure and a very rapid boom-bust cycle due to high rates of AVR gene mutation. Highly mutable blast AVR genes are often characterized by deletion and by movement to new chromosomal locations, implying a loss/regain mechanism in response to R gene deployment. Beyond rice blast, the recent emergence of two serious new blast diseases on wheat and Lolium ryegrasses highlighted the role of AVR genes that act at the host genus level and serve as infection barriers that separate host genus-specialized P. oryzae subpopulations. Wheat and ryegrass blast diseases apparently evolved through sexual crosses involving fungal individuals from five host-adapted subpopulations, with the host jump enabled by the introduction of virulence alleles of key host-specificity AVR genes. Despite identification of wheat AVR/R gene interactions operating at the host genus specificity level, the paucity of effective R genes identified thus far limits control of wheat blast disease. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506-5502, U.S.A
| |
Collapse
|
5
|
Fagundes WC, Huang YS, Häußler S, Langner T. From Lesions to Lessons: Two Decades of Filamentous Plant Pathogen Genomics. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:187-205. [PMID: 39813026 DOI: 10.1094/mpmi-09-24-0115-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Many filamentous microorganisms, such as fungi and oomycetes, have evolved the ability to colonize plants and cause devastating crop diseases. Coevolutionary conflicts with their hosts have shaped the genomes of these plant pathogens. Over the past 20 years, genomics and genomics-enabled technologies have revealed remarkable diversity in genome size, architecture, and gene regulatory mechanisms. Technical and conceptual advances continue to provide novel insights into evolutionary dynamics, diversification of distinct genomic compartments, and facilitated molecular disease diagnostics. In this review, we discuss how genomics has advanced our understanding of genome organization and plant-pathogen coevolution and provide a perspective on future developments in the field. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | - Yu-Seng Huang
- Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | - Sophia Häußler
- Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
6
|
Sampaio AM, Tralamazza SM, Mohamadi F, De Oliveira Y, Enjalbert J, Saintenac C, Croll D. Diversification, loss, and virulence gains of the major effector AvrStb6 during continental spread of the wheat pathogen Zymoseptoria tritici. PLoS Pathog 2025; 21:e1012983. [PMID: 40163548 PMCID: PMC11984979 DOI: 10.1371/journal.ppat.1012983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 04/10/2025] [Accepted: 02/14/2025] [Indexed: 04/02/2025] Open
Abstract
Interactions between plant pathogens and their hosts are highly dynamic and mainly driven by pathogen effectors and plant receptors. Host-pathogen co-evolution can cause rapid diversification or loss of pathogen genes encoding host-exposed proteins. The molecular mechanisms that underpin such sequence dynamics remains poorly investigated at the scale of entire pathogen species. Here, we focus on AvrStb6, a major effector of the global wheat pathogen Zymoseptoria tritici, evolving in response to the cognate receptor Stb6, a resistance widely deployed in wheat. We comprehensively captured effector gene evolution by analyzing a global thousand-genome panel using reference-free sequence analyses. We found that AvrStb6 has diversified into 59 protein isoforms with a strong association to the pathogen spreading to new continents. Across Europe, we found the strongest differentiation of the effector consistent with high rates of Stb6 deployment. The AvrStb6 locus showed also a remarkable diversification in transposable element content with specific expansion patterns across the globe. We detected AvrStb6 gene losses and evidence for transposable element-mediated disruptions. We used virulence datasets of genome-wide association mapping studies to predict virulence changes across the global panel. Genomic predictions suggested marked increases in virulence on Stb6 cultivars concomitant with the spread of the pathogen to Europe and the subsequent spread to further continents. Finally, we genotyped French bread wheat cultivars for Stb6 and monitored resistant cultivar deployment concomitant with AvrStb6 evolution. Taken together, our data provides a comprehensive view of how a rapidly diversifying effector locus can undergo large-scale sequence changes concomitant with gains in virulence on resistant cultivars. The analyses highlight also the need for large-scale pathogen sequencing panels to assess the durability of resistance genes and improve the sustainability of deployment strategies.
Collapse
Affiliation(s)
- Ana Margarida Sampaio
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sabina Moser Tralamazza
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | | | - Yannick De Oliveira
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette, France
| | - Jérôme Enjalbert
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Gif-sur-Yvette, France
| | | | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
7
|
Madhushan A, Weerasingha DB, Ilyukhin E, Taylor PWJ, Ratnayake AS, Liu JK, Maharachchikumbura SSN. From Natural Hosts to Agricultural Threats: The Evolutionary Journey of Phytopathogenic Fungi. J Fungi (Basel) 2025; 11:25. [PMID: 39852444 PMCID: PMC11766330 DOI: 10.3390/jof11010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 12/28/2024] [Indexed: 01/26/2025] Open
Abstract
Since the domestication of plants, pathogenic fungi have consistently threatened crop production, evolving genetically to develop increased virulence under various selection pressures. Understanding their evolutionary trends is crucial for predicting and designing control measures against future disease outbreaks. This paper reviews the evolution of fungal pathogens from natural habitats to agricultural settings, focusing on eight significant phytopathogens: Pyricularia oryzae, Botrytis cinerea, Puccinia spp., Fusarium graminearum, F. oxysporum, Blumeria graminis, Zymoseptoria tritici, and Colletotrichum spp. Also, we explore the mechanism used to understand evolutionary trends in these fungi. The studied pathogens have evolved in agroecosystems through either (1) introduction from elsewhere; or (2) local origins involving co-evolution with host plants, host shifts, or genetic variations within existing strains. Genetic variation, generated via sexual recombination and various asexual mechanisms, often drives pathogen evolution. While sexual recombination is rare and mainly occurs at the center of origin of the pathogen, asexual mechanisms such as mutations, parasexual recombination, horizontal gene or chromosome transfer, and chromosomal structural variations are predominant. Farming practices like mono-cropping resistant cultivars and prolonged use of fungicides with the same mode of action can drive the emergence of new pathotypes. Furthermore, host range does not necessarily impact pathogen adaptation and evolution. Although halting pathogen evolution is impractical, its pace can be slowed by managing selective pressures, optimizing farming practices, and enforcing quarantine regulations. The study of pathogen evolution has been transformed by advancements in molecular biology, genomics, and bioinformatics, utilizing methods like next-generation sequencing, comparative genomics, transcriptomics and population genomics. However, continuous research remains essential to monitor how pathogens evolve over time and to develop proactive strategies that mitigate their impact on agriculture.
Collapse
Affiliation(s)
- Asanka Madhushan
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| | - Dulan Bhanuka Weerasingha
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| | - Evgeny Ilyukhin
- Laboratory of Plant Pathology, Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK S9H 3X2, Canada;
| | - Paul W. J. Taylor
- Faculty of Science, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Amila Sandaruwan Ratnayake
- Department of Applied Earth Sciences, Faculty of Applied Sciences, Uva Wellassa University, Passara Road, Badulla 90000, Sri Lanka;
| | - Jian-Kui Liu
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| | - Sajeewa S. N. Maharachchikumbura
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu 611731, China; (A.M.); (D.B.W.)
| |
Collapse
|
8
|
Aslam HMU, Chikh-Ali M, Zhou XG, Zhang S, Harris S, Chanda AK, Riaz H, Hameed A, Aslam S, Killiny N. Epigenetic modulation of fungal pathogens: a focus on Magnaporthe oryzae. Front Microbiol 2024; 15:1463987. [PMID: 39529673 PMCID: PMC11550944 DOI: 10.3389/fmicb.2024.1463987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/10/2024] [Indexed: 11/16/2024] Open
Abstract
Epigenetics has emerged as a potent field of study for understanding the factors influencing the effectiveness of human disease treatments and for identifying alternations induced by pathogens in host plants. However, there has been a paucity of research on the epigenetic control of the proliferation and pathogenicity of fungal plant pathogens. Fungal plant pathogens such as Magnaporthe oryzae, a significant threat to global rice production, provide an important model for exploring how epigenetic mechanisms govern fungal proliferation and virulence. In M. oryzae, epigenetic alterations, such as DNA methylation, histone modification, and non-coding RNAs, regulate gene expression patterns that influence the pathogen's ability to infect its host. These modifications can enhance fungal adaptability, allowing the pathogen to survive in diverse environments and evade host immune responses. Our primary objective is to provide a comprehensive review of the existing epigenetic research on M. oryzae and shed light on how these changes influence the pathogen's lifecycle, its ability to invade host tissues, and the overall severity of the disease. We begin by examining the epigenetic alterations occurring in M. oryzae and their contributions to the virulence and proliferation of the fungus. To advance our understanding of epigenetic mechanisms in M. oryzae and similar plant diseases, we emphasize the need to address unanswered questions and explore future research directions. This information is crucial for developing new antifungal treatments that target epigenetic pathways, which could lead to improved disease management.
Collapse
Affiliation(s)
- Hafiz Muhammad Usman Aslam
- Department of Plant Pathology, San Luis Valley Research Center, Colorado State University, Fort Collins, CO, United States
- Department of Plant Pathology, Institute of Plant Protection, MNS-University of Agriculture, Multan, Pakistan
| | - Mohamad Chikh-Ali
- Department of Plant Pathology, San Luis Valley Research Center, Colorado State University, Fort Collins, CO, United States
| | - Xin-Gen Zhou
- Texas A&M AgriLife Research Center, Beaumont, TX, United States
| | - Shouan Zhang
- Department of Plant Pathology, Tropical Research and Education Center, University of Florida, IFAS, Homestead, FL, United States
| | - Steven Harris
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, United States
| | - Ashok K. Chanda
- Department of Plant Pathology and Northwest Research and Outreach Center, University of Minnesota, St. Paul, Crookston, MN, United States
| | - Hasan Riaz
- Department of Plant Pathology, Institute of Plant Protection, MNS-University of Agriculture, Multan, Pakistan
| | - Akhtar Hameed
- Department of Plant Pathology, Institute of Plant Protection, MNS-University of Agriculture, Multan, Pakistan
| | - Saba Aslam
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, University of Florida, IFAS, Lake Alfred, FL, United States
| |
Collapse
|
9
|
Gyawali N, Hao Y, Lin G, Huang J, Bika R, Daza L, Zheng H, Cruppe G, Caragea D, Cook D, Valent B, Liu S. Using recurrent neural networks to detect supernumerary chromosomes in fungal strains causing blast diseases. NAR Genom Bioinform 2024; 6:lqae108. [PMID: 39165675 PMCID: PMC11333962 DOI: 10.1093/nargab/lqae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024] Open
Abstract
The genomes of the fungus Magnaporthe oryzae that causes blast diseases on diverse grass species, including major crops, have indispensable core-chromosomes and may contain supernumerary chromosomes, also known as mini-chromosomes. These mini-chromosomes are speculated to provide effector gene mobility, and may transfer between strains. To understand the biology of mini-chromosomes, it is valuable to be able to detect whether a M. oryzae strain possesses a mini-chromosome. Here, we applied recurrent neural network models for classifying DNA sequences as arising from core- or mini-chromosomes. The models were trained with sequences from available core- and mini-chromosome assemblies, and then used to predict the presence of mini-chromosomes in a global collection of M. oryzae isolates using short-read DNA sequences. The model predicted that mini-chromosomes were prevalent in M. oryzae isolates. Interestingly, at least one mini-chromosome was present in all recent wheat isolates, but no mini-chromosomes were found in early isolates collected before 1991, indicating a preferential selection for strains carrying mini-chromosomes in recent years. The model was also used to identify assembled contigs derived from mini-chromosomes. In summary, our study has developed a reliable method for categorizing DNA sequences and showcases an application of recurrent neural networks in predictive genomics.
Collapse
Affiliation(s)
- Nikesh Gyawali
- Department of Computer Science, Kansas State University, Manhattan, KS 66506, USA
| | - Yangfan Hao
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Guifang Lin
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Jun Huang
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Ravi Bika
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Lidia Calderon Daza
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Huakun Zheng
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Giovana Cruppe
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Doina Caragea
- Department of Computer Science, Kansas State University, Manhattan, KS 66506, USA
| | - David Cook
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
10
|
Barragan AC, Latorre SM, Malmgren A, Harant A, Win J, Sugihara Y, Burbano HA, Kamoun S, Langner T. Multiple Horizontal Mini-chromosome Transfers Drive Genome Evolution of Clonal Blast Fungus Lineages. Mol Biol Evol 2024; 41:msae164. [PMID: 39107250 PMCID: PMC11346369 DOI: 10.1093/molbev/msae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/02/2024] [Accepted: 07/31/2024] [Indexed: 08/09/2024] Open
Abstract
Crop disease pandemics are often driven by asexually reproducing clonal lineages of plant pathogens that reproduce asexually. How these clonal pathogens continuously adapt to their hosts despite harboring limited genetic variation, and in absence of sexual recombination remains elusive. Here, we reveal multiple instances of horizontal chromosome transfer within pandemic clonal lineages of the blast fungus Magnaporthe (Syn. Pyricularia) oryzae. We identified a horizontally transferred 1.2Mb accessory mini-chromosome which is remarkably conserved between M. oryzae isolates from both the rice blast fungus lineage and the lineage infecting Indian goosegrass (Eleusine indica), a wild grass that often grows in the proximity of cultivated cereal crops. Furthermore, we show that this mini-chromosome was horizontally acquired by clonal rice blast isolates through at least nine distinct transfer events over the past three centuries. These findings establish horizontal mini-chromosome transfer as a mechanism facilitating genetic exchange among different host-associated blast fungus lineages. We propose that blast fungus populations infecting wild grasses act as genetic reservoirs that drive genome evolution of pandemic clonal lineages that afflict cereal crops.
Collapse
Affiliation(s)
- Ana Cristina Barragan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Sergio M Latorre
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
| | - Angus Malmgren
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Adeline Harant
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yu Sugihara
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Hernán A Burbano
- Department of Genetics, Evolution and Environment, Centre for Life's Origins and Evolution, University College London, London, UK
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| |
Collapse
|
11
|
Vy TTP, Inoue Y, Asuke S, Chuma I, Nakayashiki H, Tosa Y. The ACE1 secondary metabolite gene cluster is a pathogenicity factor of wheat blast fungus. Commun Biol 2024; 7:812. [PMID: 38965407 PMCID: PMC11224330 DOI: 10.1038/s42003-024-06517-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
Wheat blast caused by Pyricularia oryzae pathotype Triticum is now becoming a very serious threat to global food security. Here, we report an essential pathogenicity factor of the wheat blast fungus that is recognized and may be targeted by a rice resistance gene. Map-based cloning of Pwt2 showed that its functional allele is the ACE1 secondary metabolite gene cluster of the wheat blast fungus required for its efficient penetration of wheat cell walls. ACE1 is required for the strong aggressiveness of Triticum, Eleusine, and Lolium pathotypes on their respective hosts, but not for that of Oryza and Setaria pathotypes on rice and foxtail millet, respectively. All ACE1 alleles found in wheat blast population are recognized by a rice resistance gene, Pi33, when introduced into rice blast isolates. ACE1 mutations for evading the recognition by Pi33 do not affect the aggressiveness of the rice blast fungus on rice but inevitably impair the aggressiveness of the wheat blast fungus on wheat. These results suggest that a blast resistance gene already defeated in rice may be revived as a durable resistance gene in wheat by targeting an Achilles heel of the wheat blast fungus.
Collapse
Affiliation(s)
- Trinh T P Vy
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Yoshihiro Inoue
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Soichiro Asuke
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Izumi Chuma
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, 080-8555, Japan
| | - Hitoshi Nakayashiki
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
12
|
Xiao G, Laksanavilat N, Cesari S, Lambou K, Baudin M, Jalilian A, Telebanco-Yanoria MJ, Chalvon V, Meusnier I, Fournier E, Tharreau D, Zhou B, Wu J, Kroj T. The unconventional resistance protein PTR recognizes the Magnaporthe oryzae effector AVR-Pita in an allele-specific manner. NATURE PLANTS 2024; 10:994-1004. [PMID: 38834685 DOI: 10.1038/s41477-024-01694-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/08/2024] [Indexed: 06/06/2024]
Abstract
Blast disease caused by the fungus Magnaporthe oryzae is one of the most devastating rice diseases. Disease resistance genes such as Pi-ta or Pi-ta2 are critical in protecting rice production from blast. Published work reports that Pi-ta codes for a nucleotide-binding and leucine-rich repeat domain protein (NLR) that recognizes the fungal protease-like effector AVR-Pita by direct binding. However, this model was challenged by the recent discovery that Pi-ta2 resistance, which also relies on AVR-Pita detection, is conferred by the unconventional resistance gene Ptr, which codes for a membrane protein with a cytoplasmic armadillo repeat domain. Here, using NLR Pi-ta and Ptr RNAi knockdown and CRISPR/Cas9 knockout mutant rice lines, we found that AVR-Pita recognition relies solely on Ptr and that the NLR Pi-ta has no role in it, indicating that it is not the Pi-ta resistance gene. Different alleles of Ptr confer different recognition specificities. The A allele of Ptr (PtrA) detects all natural sequence variants of the effector and confers Pi-ta2 resistance, while the B allele of Ptr (PtrB) recognizes a restricted set of AVR-Pita alleles and, thereby, confers Pi-ta resistance. Analysis of the natural diversity in AVR-Pita and of mutant and transgenic strains identified one specific polymorphism in the effector sequence that controls escape from PtrB-mediated resistance. Taken together, our work establishes that the M. oryzae effector AVR-Pita is detected in an allele-specific manner by the unconventional rice resistance protein Ptr and that the NLR Pi-ta has no function in Pi-ta resistance and the recognition of AVR-Pita.
Collapse
Affiliation(s)
- Gui Xiao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
- International Rice Research Institute, Metro Manila, Philippines
| | - Nutthalak Laksanavilat
- PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Stella Cesari
- PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Karine Lambou
- PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Maël Baudin
- PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, Angers, France
| | - Ahmad Jalilian
- PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Veronique Chalvon
- PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Isabelle Meusnier
- PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Elisabeth Fournier
- PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Didier Tharreau
- PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- CIRAD, PHIM, Montpellier, France
| | - Bo Zhou
- International Rice Research Institute, Metro Manila, Philippines.
| | - Jun Wu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China.
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ. Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France.
| |
Collapse
|
13
|
Baudin M, Le Naour‐Vernet M, Gladieux P, Tharreau D, Lebrun M, Lambou K, Leys M, Fournier E, Césari S, Kroj T. Pyricularia oryzae: Lab star and field scourge. MOLECULAR PLANT PATHOLOGY 2024; 25:e13449. [PMID: 38619508 PMCID: PMC11018116 DOI: 10.1111/mpp.13449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/16/2024]
Abstract
Pyricularia oryzae (syn. Magnaporthe oryzae), is a filamentous ascomycete that causes a major disease called blast on cereal crops, as well as on a wide variety of wild and cultivated grasses. Blast diseases have a tremendous impact worldwide particularly on rice and on wheat, where the disease emerged in South America in the 1980s, before spreading to Asia and Africa. Its economic importance, coupled with its amenability to molecular and genetic manipulation, have inspired extensive research efforts aiming at understanding its biology and evolution. In the past 40 years, this plant-pathogenic fungus has emerged as a major model in molecular plant-microbe interactions. In this review, we focus on the clarification of the taxonomy and genetic structure of the species and its host range determinants. We also discuss recent molecular studies deciphering its lifecycle. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, sub-phylum: Pezizomycotina, class: Sordariomycetes, order: Magnaporthales, family: Pyriculariaceae, genus: Pyricularia. HOST RANGE P. oryzae has the ability to infect a wide range of Poaceae. It is structured into different host-specialized lineages that are each associated with a few host plant genera. The fungus is best known to cause tremendous damage to rice crops, but it can also attack other economically important crops such as wheat, maize, barley, and finger millet. DISEASE SYMPTOMS P. oryzae can cause necrotic lesions or bleaching on all aerial parts of its host plants, including leaf blades, sheaths, and inflorescences (panicles, spikes, and seeds). Characteristic symptoms on leaves are diamond-shaped silver lesions that often have a brown margin and whose appearance is influenced by numerous factors such as the plant genotype and environmental conditions. USEFUL WEBSITES Resources URL Genomic data repositories http://genome.jouy.inra.fr/gemo/ Genomic data repositories http://openriceblast.org/ Genomic data repositories http://openwheatblast.net/ Genome browser for fungi (including P. oryzae) http://fungi.ensembl.org/index.html Comparative genomics database https://mycocosm.jgi.doe.gov/mycocosm/home T-DNA mutant database http://atmt.snu.kr/ T-DNA mutant database http://www.phi-base.org/ SNP and expression data https://fungidb.org/fungidb/app/.
Collapse
Affiliation(s)
- Maël Baudin
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- Present address:
Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Marie Le Naour‐Vernet
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Didier Tharreau
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- CIRAD, UMR PHIMMontpellierFrance
| | - Marc‐Henri Lebrun
- UMR 1290 BIOGER – Campus Agro Paris‐Saclay – INRAE‐AgroParisTechPalaiseauFrance
| | - Karine Lambou
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Marie Leys
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Elisabeth Fournier
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Stella Césari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| |
Collapse
|
14
|
Zaccaron AZ, Stergiopoulos I. Analysis of five near-complete genome assemblies of the tomato pathogen Cladosporium fulvum uncovers additional accessory chromosomes and structural variations induced by transposable elements effecting the loss of avirulence genes. BMC Biol 2024; 22:25. [PMID: 38281938 PMCID: PMC10823647 DOI: 10.1186/s12915-024-01818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Fungal plant pathogens have dynamic genomes that allow them to rapidly adapt to adverse conditions and overcome host resistance. One way by which this dynamic genome plasticity is expressed is through effector gene loss, which enables plant pathogens to overcome recognition by cognate resistance genes in the host. However, the exact nature of these loses remains elusive in many fungi. This includes the tomato pathogen Cladosporium fulvum, which is the first fungal plant pathogen from which avirulence (Avr) genes were ever cloned and in which loss of Avr genes is often reported as a means of overcoming recognition by cognate tomato Cf resistance genes. A recent near-complete reference genome assembly of C. fulvum isolate Race 5 revealed a compartmentalized genome architecture and the presence of an accessory chromosome, thereby creating a basis for studying genome plasticity in fungal plant pathogens and its impact on avirulence genes. RESULTS Here, we obtained near-complete genome assemblies of four additional C. fulvum isolates. The genome assemblies had similar sizes (66.96 to 67.78 Mb), number of predicted genes (14,895 to 14,981), and estimated completeness (98.8 to 98.9%). Comparative analysis that included the genome of isolate Race 5 revealed high levels of synteny and colinearity, which extended to the density and distribution of repetitive elements and of repeat-induced point (RIP) mutations across homologous chromosomes. Nonetheless, structural variations, likely mediated by transposable elements and effecting the deletion of the avirulence genes Avr4E, Avr5, and Avr9, were also identified. The isolates further shared a core set of 13 chromosomes, but two accessory chromosomes were identified as well. Accessory chromosomes were significantly smaller in size, and one carried pseudogenized copies of two effector genes. Whole-genome alignments further revealed genomic islands of near-zero nucleotide diversity interspersed with islands of high nucleotide diversity that co-localized with repeat-rich regions. These regions were likely generated by RIP, which generally asymmetrically affected the genome of C. fulvum. CONCLUSIONS Our results reveal new evolutionary aspects of the C. fulvum genome and provide new insights on the importance of genomic structural variations in overcoming host resistance in fungal plant pathogens.
Collapse
Affiliation(s)
- Alex Z Zaccaron
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616-8751, USA
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis, Davis, CA, 95616-8751, USA.
| |
Collapse
|
15
|
Li J, Lu L, Li C, Wang Q, Shi Z. Insertion of Transposable Elements in AVR-Pib of Magnaporthe oryzae Leading to LOSS of the Avirulent Function. Int J Mol Sci 2023; 24:15542. [PMID: 37958524 PMCID: PMC10650890 DOI: 10.3390/ijms242115542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/24/2023] [Accepted: 09/28/2023] [Indexed: 11/15/2023] Open
Abstract
Rice blast is a very serious disease caused by Magnaporthe oryzae, which threatens rice production and food supply throughout the world. The avirulence (AVR) genes of rice blast are perceived by the corresponding rice blast resistance (R) genes and prompt specific resistance. A mutation in AVR is a major force for new virulence. Exploring mutations in AVR among M. oryzae isolates from rice production fields could aid assessment of the efficacy and durability of R genes. We studied the probable molecular-evolutionary patterns of AVR-Pib alleles by assaying their DNA-sequence diversification and examining their avirulence to the corresponding Pib resistance gene under natural conditions in the extremely genetically diverse of rice resources of Yunnan, China. PCRs detected results from M. oryzae genomic DNA and revealed that 162 out of 366 isolates collected from Yunnan Province contained AVR-Pib alleles. Among them, 36.1-73.3% isolates from six different rice production areas of Yunnan contained AVR-Pib alleles. Furthermore, 36 (28.6%) out of 126 isolates had a transposable element (TE) insertion in AVR-Pib, which resulted in altered virulence. The TE insertion was identified in isolates from rice rather than from Musa nana Lour. Twelve AVR-Pib haplotypes encoding three novel AVR-Pib variants were identified among the remaining 90 isolates. AVR-Pib alleles evolved to virulent forms from avirulent forms by base substitution and TE insertion of Pot2 and Pot3 in the 5' untranslated region of AVR-Pib. These findings support the hypothesis that functional AVR-Pib possesses varied sequence structures and can escape surveillance by hosts via multiple variation manners.
Collapse
Affiliation(s)
- Jinbin Li
- The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, The Ministry of Agriculture and Rural Affairs Key Laboratory for Prevention and Control of Biological Invasions, Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (Q.W.)
| | - Lin Lu
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China;
| | - Chengyun Li
- The Ministry of Education Key Laboratory for Agricultural Biodiversity and Pest Management, Yunnan Agricultural University, Kunming 650200, China;
| | - Qun Wang
- The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, The Ministry of Agriculture and Rural Affairs Key Laboratory for Prevention and Control of Biological Invasions, Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (Q.W.)
| | - Zhufeng Shi
- The Ministry of Agriculture and Rural Affairs International Joint Research Center for Agriculture, The Ministry of Agriculture and Rural Affairs Key Laboratory for Prevention and Control of Biological Invasions, Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China; (Q.W.)
| |
Collapse
|
16
|
Zhao E, Dong L, Zhao H, Zhang H, Zhang T, Yuan S, Jiao J, Chen K, Sheng J, Yang H, Wang P, Li G, Qin Q. A Relationship Prediction Method for Magnaporthe oryzae-Rice Multi-Omics Data Based on WGCNA and Graph Autoencoder. J Fungi (Basel) 2023; 9:1007. [PMID: 37888263 PMCID: PMC10607591 DOI: 10.3390/jof9101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
Magnaporthe oryzae Oryzae (MoO) pathotype is a devastating fungal pathogen of rice; however, its pathogenic mechanism remains poorly understood. The current research is primarily focused on single-omics data, which is insufficient to capture the complex cross-kingdom regulatory interactions between MoO and rice. To address this limitation, we proposed a novel method called Weighted Gene Autoencoder Multi-Omics Relationship Prediction (WGAEMRP), which combines weighted gene co-expression network analysis (WGCNA) and graph autoencoder to predict the relationship between MoO-rice multi-omics data. We applied WGAEMRP to construct a MoO-rice multi-omics heterogeneous interaction network, which identified 18 MoO small RNAs (sRNAs), 17 rice genes, 26 rice mRNAs, and 28 rice proteins among the key biomolecules. Most of the mined functional modules and enriched pathways were related to gene expression, protein composition, transportation, and metabolic processes, reflecting the infection mechanism of MoO. Compared to previous studies, WGAEMRP significantly improves the efficiency and accuracy of multi-omics data integration and analysis. This approach lays out a solid data foundation for studying the biological process of MoO infecting rice, refining the regulatory network of pathogenic markers, and providing new insights for developing disease-resistant rice varieties.
Collapse
Affiliation(s)
- Enshuang Zhao
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
| | - Liyan Dong
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China
| | - Hengyi Zhao
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
| | - Hao Zhang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
- College of Software, Jilin University, Changchun 130012, China; (S.Y.); (H.Y.); (P.W.)
| | - Tianyue Zhang
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
| | - Shuai Yuan
- College of Software, Jilin University, Changchun 130012, China; (S.Y.); (H.Y.); (P.W.)
| | - Jiao Jiao
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
| | - Kang Chen
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
| | - Jianhua Sheng
- College of Computer Science and Technology, Jilin University, Changchun 130012, China; (E.Z.); (L.D.); (H.Z.); (T.Z.); (J.J.); (K.C.); (J.S.)
| | - Hongbo Yang
- College of Software, Jilin University, Changchun 130012, China; (S.Y.); (H.Y.); (P.W.)
| | - Pengyu Wang
- College of Software, Jilin University, Changchun 130012, China; (S.Y.); (H.Y.); (P.W.)
| | - Guihua Li
- College of Plant Science, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun 130012, China;
| | - Qingming Qin
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MI 65211-7310, USA;
| |
Collapse
|
17
|
Kobayashi N, Dang TA, Pham KTM, Gómez Luciano LB, Van Vu B, Izumitsu K, Shimizu M, Ikeda KI, Li WH, Nakayashiki H. Horizontally Transferred DNA in the Genome of the Fungus Pyricularia oryzae is Associated With Repressive Histone Modifications. Mol Biol Evol 2023; 40:msad186. [PMID: 37595132 PMCID: PMC10473863 DOI: 10.1093/molbev/msad186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023] Open
Abstract
Horizontal gene transfer (HGT) is a means of exchanging genetic material asexually. The process by which horizontally transferred genes are domesticated by the host genome is of great interest but is not well understood. In this study, we determined the telomere-to-telomere genome sequence of the wheat-infecting Pyricularia oryzae strain Br48. SNP analysis indicated that the Br48 strain is a hybrid of wheat- and Brachiaria-infecting strains by a sexual or parasexual cross. Comparative genomic analysis identified several megabase-scale "insertions" in the Br48 genome, some of which were possibly gained by HGT-related events from related species, such as P. pennisetigena or P. grisea. Notably, the mega-insertions often contained genes whose phylogeny is not congruent with the species phylogeny. Moreover, some of the genes have a close homolog even in distantly related organisms, such as basidiomycetes or prokaryotes, implying the involvement of multiple HGT events. Interestingly, the levels of the silent epigenetic marks H3K9me3 and H3K27me3 in a genomic region tended to be negatively correlated with the phylogenetic concordance of genes in the same region, suggesting that horizontally transferred DNA is preferentially targeted for epigenetic silencing. Indeed, the putative HGT-derived genes were activated when MoKmt6, the gene responsible for H3K27me3 modification, was deleted. Notably, these genes also tended to be up-regulated during infection, suggesting that they are now under host control and have contributed to establishing a fungal niche. In conclusion, this study suggests that epigenetic modifications have played an important role in the domestication of HGT-derived genes in the P. oryzae genome.
Collapse
Affiliation(s)
- Natsuki Kobayashi
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Thach An Dang
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kieu Thi Minh Pham
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Luis B Gómez Luciano
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Donald Danforth Plant Science Center, St. Louis, MO, USA
| | - Ba Van Vu
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kosuke Izumitsu
- Graduate School of Environmental Science, The University of Shiga Prefecture, Hikone, Japan
| | - Motoki Shimizu
- Department of Genomics and Breeding, Iwate Biotechnology Research Center, Kitakami, Japan
| | - Ken-ichi Ikeda
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Wen-Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
18
|
Masaki HI, de Villiers S, Qi P, Prado KA, Kaimenyi DK, Tesfaye K, Alemu T, Takan J, Dida M, Ringo J, Mbinda W, Khang CH, Devos KM. Host Specificity Controlled by PWL1 and PWL2 Effector Genes in the Finger Millet Blast Pathogen Magnaporthe oryzae in Eastern Africa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:584-591. [PMID: 37245238 DOI: 10.1094/mpmi-01-23-0012-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Magnaporthe oryzae, a devastating pathogen of finger millet (Eleusine coracana), secretes effector molecules during infection to manipulate host immunity. This study determined the presence of avirulence effector genes PWL1 and PWL2 in 221 Eleusine blast isolates from eastern Africa. Most Ethiopian isolates carried both PWL1 and PWL2. Kenyan and Ugandan isolates largely lacked both genes, and Tanzanian isolates carried either PWL1 or lacked both. The roles of PWL1 and PWL2 towards pathogenicity on alternative chloridoid hosts, including weeping lovegrass (Eragrostis curvula), were also investigated. PWL1 and PWL2 were cloned from Ethiopian isolate E22 and were transformed separately into Ugandan isolate U34, which lacked both genes. Resulting transformants harboring either gene gained varying degrees of avirulence on Eragrostis curvula but remained virulent on finger millet. Strains carrying one or both PWL1 and PWL2 infected the chloridoid species Sporobolus phyllotrichus and Eleusine tristachya, indicating the absence of cognate resistance (R) genes for PWL1 and PWL2 in these species. Other chloridoid grasses, however, were fully resistant, regardless of the presence of one or both PWL1 and PWL2, suggesting the presence of effective R genes against PWL and other effectors. Partial resistance in some Eragrostis curvula accessions to some blast isolates lacking PWL1 and PWL2 also indicated the presence of other interactions between fungal avirulence (AVR) genes and host resistance (R) genes. Related chloridoid species thus harbor resistance genes that could be useful to improve finger millet for blast resistance. Conversely, loss of AVR genes in the fungus could expand its host range, as demonstrated by the susceptibility of Eragrostis curvula to finger millet blast isolates that had lost PWL1 and PWL2. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Hosea Isanda Masaki
- Pwani University, Department of Biochemistry and Biotechnology, Kilifi, Kenya
| | - Santie de Villiers
- Pwani University, Department of Biochemistry and Biotechnology, Kilifi, Kenya
- Pwani University Biosciences Research Centre (PUBReC), Kilifi, Kenya
| | - Peng Qi
- University of Georgia, Department of Plant Biology, Athens, GA 30602, U.S.A
- Institute of Plant Breeding, Genetics and Genomics Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, U.S.A
| | - Kathryn A Prado
- University of Georgia, Department of Plant Biology, Athens, GA 30602, U.S.A
| | - Davies Kiambi Kaimenyi
- Pwani University, Department of Biochemistry and Biotechnology, Kilifi, Kenya
- Pwani University Biosciences Research Centre (PUBReC), Kilifi, Kenya
| | - Kassahun Tesfaye
- Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Biotechnology Institute, Addis Ababa, Ethiopia
| | | | - John Takan
- National Semi-Arid Resources Research Institute Serere, Soroti, Uganda
| | | | - Justin Ringo
- Tanzania Agricultural Research Institute, Illonga, Tanzania
| | - Wilton Mbinda
- Pwani University, Department of Biochemistry and Biotechnology, Kilifi, Kenya
| | - Chang Hyun Khang
- University of Georgia, Department of Plant Biology, Athens, GA 30602, U.S.A
| | - Katrien M Devos
- University of Georgia, Department of Plant Biology, Athens, GA 30602, U.S.A
- Institute of Plant Breeding, Genetics and Genomics Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
19
|
Talbi N, Fokkens L, Audran C, Petit‐Houdenot Y, Pouzet C, Blaise F, Gay EJ, Rouxel T, Balesdent M, Rep M, Fudal I. The neighbouring genes AvrLm10A and AvrLm10B are part of a large multigene family of cooperating effector genes conserved in Dothideomycetes and Sordariomycetes. MOLECULAR PLANT PATHOLOGY 2023; 24:914-931. [PMID: 37128172 PMCID: PMC10346447 DOI: 10.1111/mpp.13338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 05/03/2023]
Abstract
Fungal effectors (small-secreted proteins) have long been considered as species or even subpopulation-specific. The increasing availability of high-quality fungal genomes and annotations has allowed the identification of trans-species or trans-genera families of effectors. Two avirulence effectors, AvrLm10A and AvrLm10B, of Leptosphaeria maculans, the fungus causing stem canker of oilseed rape, are members of such a large family of effectors. AvrLm10A and AvrLm10B are neighbouring genes, organized in divergent transcriptional orientation. Sequence searches within the L. maculans genome showed that AvrLm10A/AvrLm10B belong to a multigene family comprising five pairs of genes with a similar tail-to-tail organization. The two genes, in a pair, always had the same expression pattern and two expression profiles were distinguished, associated with the biotrophic colonization of cotyledons and/or petioles and stems. Of the two protein pairs further investigated, AvrLm10A_like1/AvrLm10B_like1 and AvrLm10A_like2/AvrLm10B_like2, the second one had the ability to physically interact, similarly to what was previously described for the AvrLm10A/AvrLm10B pair, and cross-interactions were also detected for two pairs. AvrLm10A homologues were identified in more than 30 Dothideomycete and Sordariomycete plant-pathogenic fungi. One of them, SIX5, is an effector from Fusarium oxysporum f. sp. lycopersici physically interacting with the avirulence effector Avr2. We found that AvrLm10A/SIX5 homologues were associated with at least eight distinct putative effector families, suggesting that AvrLm10A/SIX5 is able to cooperate with different effectors. These results point to a general role of the AvrLm10A/SIX5 proteins as "cooperating proteins", able to interact with diverse families of effectors whose encoding gene is co-regulated with the neighbouring AvrLm10A homologue.
Collapse
Affiliation(s)
- Nacera Talbi
- BIOGER, INRAEUniversité Paris‐SaclayPalaiseauFrance
| | - Like Fokkens
- Molecular Plant PathologyUniversity of AmsterdamAmsterdamNetherlands
- Present address:
Laboratory of PhytopathologyWageningen University and ResearchWageningenNetherlands
| | - Corinne Audran
- UMR LIPMEUniversité de Toulouse, INRAE, CNRSCastanet‐TolosanFrance
| | | | - Cécile Pouzet
- FRAIB‐TRI Imaging Platform Facilities, FR AIBUniversité de Toulouse, CNRSCastanet‐TolosanFrance
| | | | - Elise J. Gay
- BIOGER, INRAEUniversité Paris‐SaclayPalaiseauFrance
| | | | | | - Martijn Rep
- Molecular Plant PathologyUniversity of AmsterdamAmsterdamNetherlands
| | | |
Collapse
|
20
|
Lu L, Wang Q, Shi Z, Li C, Guo Z, Li J. Emergence of Rice Blast AVR-Pi9 Resistance Breaking Haplotypes in Yunnan Province, China. Life (Basel) 2023; 13:1320. [PMID: 37374103 DOI: 10.3390/life13061320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/24/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
The rice blast disease (caused by Magnaporthe oryzae) is a devastating disease in China. Understanding the molecular mechanisms of interaction for the cognate avirulence (AVR) gene with host resistance (R) genes, as well as their genetic evolution is essential for sustainable rice production. In the present study, we conducted a high-throughput nucleotide sequence polymorphism analysis of the AVR-Pi9 gene that was amplified from the rice-growing regions of the Yunnan Province in China. We detected the presence of seven novel haplotypes from 326 rice samples. In addition, the sequences of AVR-Pi9 were also obtained from two non-rice hosts, Eleusine coracana and Eleusine indica. The sequence analysis revealed the insertions and deletions in the coding and non-coding regions of the gene. The pathogenicity experiments of these haplotypes on previously characterized monogenic lines showed that the newly identified haplotypes are virulent in nature. The breakdown of resistance was attributed to the development of new haplotypes. Our results suggest that the mutation in the AVR-Pi9 gene is an alarming situation in the Yunnan province and thus needs attention.
Collapse
Affiliation(s)
- Lin Lu
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Qun Wang
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Zhufeng Shi
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Chengyun Li
- The Ministry of Education Key Laboratory for Agricultural Biodiversity and Pest Management, Yunnan Agricultural University, Kunming 650200, China
| | - Zhixiang Guo
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Jinbin Li
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| |
Collapse
|
21
|
Wang X, Wu W, Zhang Y, Li C, Wang J, Wen J, Zhang S, Yao Y, Lu W, Zhao Z, Zhan J, Pan Q. The Lesson Learned from the Unique Evolutionary Story of Avirulence Gene AvrPii of Magnaporthe oryzae. Genes (Basel) 2023; 14:genes14051065. [PMID: 37239425 DOI: 10.3390/genes14051065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Blast, caused by Magnaporthe oryzae, is one of the most destructive diseases affecting rice production. Understanding population dynamics of the pathogen's avirulence genes is pre-required for breeding and then deploying new cultivars carrying promising resistance genes. The divergence and population structure of AvrPii was dissected in the populations of southern (Guangdong, Hunan, and Guizhou) and northern (Jilin, Liaoning, and Heilongjiang) China, via population genetic and evolutionary approaches. The evolutionary divergence between a known haplotype AvrPii-J and a novel one AvrPii-C was demonstrated by haplotype-specific amplicon-based sequencing and genetic transformation. The different avirulent performances of a set of seven haplotype-chimeric mutants suggested that the integrity of the full-length gene structures is crucial to express functionality of individual haplotypes. All the four combinations of phenotypes/genotypes were detected in the three southern populations, and only two in the northern three, suggesting that genic diversity in the southern region was higher than those in the northern one. The population structure of the AvrPii family was shaped by balancing, purifying, and positive selection pressures in the Chinese populations. The AvrPii-J was recognized as the wild type that emerged before rice domestication. Considering higher frequencies of avirulent isolates were detected in Hunan, Guizhou, and Liaoning, the cognate resistance gene Pii could be continuously used as a basic and critical resistance resource in such regions. The unique population structures of the AvrPii family found in China have significant implications for understanding how the AvrPii family has kept an artful balance and purity among its members (haplotypes) those keenly interact with Pii under gene-for-gene relationships. The lesson learned from case studies on the AvrPii family is that much attention should be paid to haplotype divergence of target gene.
Collapse
Affiliation(s)
- Xing Wang
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Weihuai Wu
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yaling Zhang
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Cheng Li
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jinyan Wang
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jianqiang Wen
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Shulin Zhang
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yongxiang Yao
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
- Corn Research Institute, Dandong Academy of Agricultural Sciences, Dandong 118109, China
| | - Weisheng Lu
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zhenghong Zhao
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Qinghua Pan
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
22
|
Sugihara Y, Abe Y, Takagi H, Abe A, Shimizu M, Ito K, Kanzaki E, Oikawa K, Kourelis J, Langner T, Win J, Białas A, Lüdke D, Contreras MP, Chuma I, Saitoh H, Kobayashi M, Zheng S, Tosa Y, Banfield MJ, Kamoun S, Terauchi R, Fujisaki K. Disentangling the complex gene interaction networks between rice and the blast fungus identifies a new pathogen effector. PLoS Biol 2023; 21:e3001945. [PMID: 36656825 PMCID: PMC9851567 DOI: 10.1371/journal.pbio.3001945] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023] Open
Abstract
Studies focused solely on single organisms can fail to identify the networks underlying host-pathogen gene-for-gene interactions. Here, we integrate genetic analyses of rice (Oryza sativa, host) and rice blast fungus (Magnaporthe oryzae, pathogen) and uncover a new pathogen recognition specificity of the rice nucleotide-binding domain and leucine-rich repeat protein (NLR) immune receptor Pik, which mediates resistance to M. oryzae expressing the avirulence effector gene AVR-Pik. Rice Piks-1, encoded by an allele of Pik-1, recognizes a previously unidentified effector encoded by the M. oryzae avirulence gene AVR-Mgk1, which is found on a mini-chromosome. AVR-Mgk1 has no sequence similarity to known AVR-Pik effectors and is prone to deletion from the mini-chromosome mediated by repeated Inago2 retrotransposon sequences. AVR-Mgk1 is detected by Piks-1 and by other Pik-1 alleles known to recognize AVR-Pik effectors; recognition is mediated by AVR-Mgk1 binding to the integrated heavy metal-associated (HMA) domain of Piks-1 and other Pik-1 alleles. Our findings highlight how complex gene-for-gene interaction networks can be disentangled by applying forward genetics approaches simultaneously to the host and pathogen. We demonstrate dynamic coevolution between an NLR integrated domain and multiple families of effector proteins.
Collapse
Affiliation(s)
- Yu Sugihara
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Crop Evolution Laboratory, Kyoto University, Mozume, Muko, Kyoto, Japan
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Yoshiko Abe
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Hiroki Takagi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Akira Abe
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Kazue Ito
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Eiko Kanzaki
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Kaori Oikawa
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| | - Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Aleksandra Białas
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Daniel Lüdke
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | | | - Izumi Chuma
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | | | | | - Shuan Zheng
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Crop Evolution Laboratory, Kyoto University, Mozume, Muko, Kyoto, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Mark J. Banfield
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich, United Kingdom
| | - Ryohei Terauchi
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- Crop Evolution Laboratory, Kyoto University, Mozume, Muko, Kyoto, Japan
| | - Koki Fujisaki
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
| |
Collapse
|
23
|
Syauqi J, Chen RK, Cheng AH, Wu YF, Chung CL, Lin CC, Chou HP, Wu HY, Jian JY, Liao CT, Kuo CC, Chu SC, Tsai YC, Liao DJ, Wu YP, Abadi AL, Sulistyowati L, Shen WC. Surveillance of Rice Blast Resistance Effectiveness and Emerging Virulent Isolates in Taiwan. PLANT DISEASE 2022; 106:3187-3197. [PMID: 35581907 DOI: 10.1094/pdis-12-21-2806-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rice blast caused by Magnaporthe oryzae is a dangerous threat to rice production and food security worldwide. Breeding and proper deployment of resistant varieties are effective and environmentally friendly strategies to manage this notorious disease. However, a highly dynamic and quickly evolved rice blast pathogen population in the field has made disease control with resistance germplasms more challenging. Therefore, continued monitoring of pathogen dynamics and application of effective resistance varieties are critical tasks to prolong or sustain field resistance. Here, we report a team project that involved evaluation of rice blast resistance genes and surveillance of M. oryzae field populations in Taiwan. A set of International Rice Research Institute-bred blast-resistant lines (IRBLs) carrying single blast resistance genes was utilized to monitor the field effectiveness of rice blast resistance. Resistance genes such as Ptr (formerly Pita2) and Pi9 exhibited the best and most durable resistance against the rice blast fungus population in Taiwan. Interestingly, line IRBLb-B harboring the Pib gene with good field protection has recently shown susceptible lesions in some locations. To dissect the genotypic features of virulent isolates against the Pib resistance gene, M. oryzae isolates were collected and analyzed. Screening of the AvrPib locus revealed that the majority of field isolates still maintained the wild-type AvrPib status but eight virulent genotypes were found. Pot3 insertion appeared to be a major way to disrupt the AvrPib avirulence function. Interestingly, a novel AvrPib double-allele genotype among virulent isolates was first identified. Pot2 repetitive element-based polymerase chain reaction (rep-PCR) fingerprinting analysis indicated that mutation events may occur independently among different lineages in different geographic locations of Taiwan. This study provides our surveillance experience of rice blast disease and serves as the foundation to sustain rice production.
Collapse
Affiliation(s)
- Jauhar Syauqi
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106216, Taiwan
- Department of Plant Pathology, University of Brawijaya, Lowokwaru, Malang City, Jawa Timur 65145, Indonesia
| | - Rong-Kuen Chen
- Tainan District Agricultural Research and Extension Station, Hsinhua District, Tainan 712009, Taiwan
| | - An-Hsiu Cheng
- Tainan District Agricultural Research and Extension Station, Hsinhua District, Tainan 712009, Taiwan
| | - Yea-Fang Wu
- Tainan District Agricultural Research and Extension Station, Hsinhua District, Tainan 712009, Taiwan
| | - Chia-Lin Chung
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106216, Taiwan
| | - Chun-Chi Lin
- Taidung District Agricultural Research and Extension Station, Taidung City 950244, Taiwan
| | - Hau-Ping Chou
- Kaohsiung District Agricultural Research and Extension Station, Pingtung County 908126, Taiwan
| | - Hsin-Yuh Wu
- Taoyuan District Agricultural Research and Extension Station, Xinwu District, Taoyuan City 327005, Taiwan
| | - Jen-You Jian
- Taoyuan District Agricultural Research and Extension Station, Xinwu District, Taoyuan City 327005, Taiwan
| | - Chung-Ta Liao
- Taichung District Agricultural Research and Extension Station, Changhua County 515008, Taiwan
| | - Chien-Chih Kuo
- Taichung District Agricultural Research and Extension Station, Changhua County 515008, Taiwan
| | - Sheng-Chi Chu
- Miaoli District Agricultural Research and Extension Station, Gongguan Township, Miaoli County 363201, Taiwan
| | - Yi-Chen Tsai
- Hualien District Agricultural Research and Extension Station, Hualien County 973044, Taiwan
| | - Dah-Jing Liao
- Department of Agronomy, Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute, Chiayi City 600015, Taiwan
| | - Yong-Pei Wu
- Department of Agronomy, Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute, Chiayi City 600015, Taiwan
| | - Abdul Latief Abadi
- Department of Plant Pathology, University of Brawijaya, Lowokwaru, Malang City, Jawa Timur 65145, Indonesia
| | - Liliek Sulistyowati
- Department of Plant Pathology, University of Brawijaya, Lowokwaru, Malang City, Jawa Timur 65145, Indonesia
| | - Wei-Chiang Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei 106216, Taiwan
| |
Collapse
|
24
|
Dong L, Liu S, Li J, Tharreau D, Liu P, Tao D, Yang Q. A Rapid and Simple Method for DNA Preparation of Magnaporthe oryzae from Single Rice Blast Lesions for PCR-Based Molecular Analysis. THE PLANT PATHOLOGY JOURNAL 2022; 38:679-684. [PMID: 36503197 PMCID: PMC9742792 DOI: 10.5423/ppj.nt.02.2022.0017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/11/2022] [Accepted: 10/09/2022] [Indexed: 06/17/2023]
Abstract
Rice blast is one of the most destructive diseases of rice worldwide, and the causative agent is the filamentous ascomycete Magnaporthe oryzae. With the successful cloning of more and more avirulence genes from M. oryzae, the direct extraction of M. oryzae genomic DNA from infected rice tissue would be useful alternative for rapid monitoring of changes of avirulence genes without isolation and cultivation of the pathogen. In this study, a fast, low-cost and reliable method for DNA preparation of M. oryzae from a small piece of infected single rice leaf or neck lesion was established. This single step method only required 10 min for DNA preparation and conventional chemical reagents commonly found in the laboratory. The AvrPik and AvrPi9 genes were successfully amplified with the prepared DNA. The expected DNA fragments from 570 bp to 1,139 bp could be amplified even three months after DNA preparation. This method was also suitable for DNA preparation from M. oryzae strains stored on the filter paper. All together these results indicate that the DNA preparation method established in this study is reliable, and could meet the basic needs for polymerase chain reaction-based analysis of M. oryzae.
Collapse
Affiliation(s)
- Liying Dong
- Agricultural Environment and Resources Institute/Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Yunnan Academy of Agricultural Sciences, Kunming 650205,
China
| | - Shufang Liu
- Agricultural Environment and Resources Institute/Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Yunnan Academy of Agricultural Sciences, Kunming 650205,
China
| | - Jing Li
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205,
China
| | - Didier Tharreau
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR BGPI, TA A 54K, 34398 Montpellier,
France
| | - Pei Liu
- Agricultural Environment and Resources Institute/Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Yunnan Academy of Agricultural Sciences, Kunming 650205,
China
| | - Dayun Tao
- Food Crops Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205,
China
| | - Qinzhong Yang
- Agricultural Environment and Resources Institute/Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests of Yunnan Province, Yunnan Academy of Agricultural Sciences, Kunming 650205,
China
| |
Collapse
|
25
|
Pan-Genomics Reveals a New Variation Pattern of Secreted Proteins in Pyricularia oryzae. J Fungi (Basel) 2022; 8:jof8121238. [PMID: 36547571 PMCID: PMC9785059 DOI: 10.3390/jof8121238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 11/24/2022] Open
Abstract
(1) Background: Pyricularia oryzae, the causal agent of rice blast disease, is one of the major rice pathogens. The complex population structure of P. oryzae facilitates the rapid virulence variations, which make the blast disease a serious challenge for global food security. There is a large body of existing genomics research on P. oryzae, however the population structure at the pan-genome level is not clear, and the mechanism of genetic divergence and virulence variations of different sub-populations is also unknown. (2) Methods: Based on the genome data published in the NCBI, we constructed a pan-genome database of P. oryzae, which consisted of 156 strains (117 isolated from rice and 39 isolated from other hosts). (3) Results: The pan-genome contained a total of 24,100 genes (12,005 novel genes absent in the reference genome 70-15), including 16,911 (~70%) core genes (population frequency ≥95%) and 1378 (~5%) strain-specific genes (population frequency ≤5%). Gene presence-absence variation (PAV) based clustering analysis of the population structure of P. oryzae revealed four subgroups (three from rice and one from other hosts). Interestingly, the cloned avirulence genes and conventional secreted proteins (SPs, with signal peptides) were enriched in the high-frequency regions and significantly associated with transposable elements (TEs), while the unconventional SPs (without signal peptides) were enriched in the low-frequency regions and not associated significantly with TEs. This pan-genome will expand the breadth and depth of the rice blast fungus reference genome, and also serve as a new blueprint for scientists to further study the pathogenic mechanism and virulence variation of the rice blast fungus.
Collapse
|
26
|
CRISPR-Cas12a induced DNA double-strand breaks are repaired by multiple pathways with different mutation profiles in Magnaporthe oryzae. Nat Commun 2022; 13:7168. [PMID: 36418866 PMCID: PMC9684475 DOI: 10.1038/s41467-022-34736-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
CRISPR-Cas mediated genome engineering has revolutionized functional genomics. However, understanding of DNA repair following Cas-mediated DNA cleavage remains incomplete. Using Cas12a ribonucleoprotein genome editing in the fungal pathogen, Magnaporthe oryzae, we detail non-canonical DNA repair outcomes from hundreds of transformants. Sanger and nanopore sequencing analysis reveals significant variation in DNA repair profiles, ranging from small INDELs to kilobase size deletions and insertions. Furthermore, we find the frequency of DNA repair outcomes varies between loci. The results are not specific to the Cas-nuclease or selection procedure. Through Ku80 deletion analysis, a key protein required for canonical non-homologous end joining, we demonstrate activity of an alternative end joining mechanism that creates larger DNA deletions, and uses longer microhomology compared to C-NHEJ. Together, our results suggest preferential DNA repair pathway activity in the genome that can create different mutation profiles following repair, which could create biased genome variation and impact genome engineering and genome evolution.
Collapse
|
27
|
Tian D, Deng Y, Yang X, Li G, Li Q, Zhou H, Chen Z, Guo X, Su Y, Luo Y, Yang L. Association analysis of rice resistance genes and blast fungal avirulence genes for effective breeding resistance cultivars. Front Microbiol 2022; 13:1007492. [DOI: 10.3389/fmicb.2022.1007492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
Utilization of rice blast-resistance (R) genes is the most economical and environmentally friendly method to control blast disease. However, rice varieties with R genes influence the outcome of genetic architectures of Magnaporthe oryzae (M. oryzae), and mutations in avirulence (AVR) genes of M. oryzae may cause dysfunction of the corresponding R genes in rice varieties. Although monitoring and characterizing rice R genes and pathogen AVR genes in field populations may facilitate the implementation of effective R genes, little is known about the changes of R genes over time and their ultimate impact on pathogen AVR genes. In this study, 117 main cultivated rice varieties over the past five decades and 35 M. oryzae isolates collected from those diseased plants were analyzed by PCR using gene-specific markers of the nine R genes and six primer pairs targeting the coding sequence or promoter of AVR genes, respectively. The R genes Pigm, Pi9, Pi2, Piz-t, Pi-ta, Pik, Pi1, Pikp, and Pikm were identified in 5, 0, 1, 4, 18, 0, 2, 1, and 0 cultivars, respectively. Significantly, none of these R genes had significant changes that correlated to their application periods of time. Among the four identified AVR genes, AVR-Pik had the highest amplification frequency (97.14%) followed by AVR-Pita (51.43%) and AVR-Pi9 (48.57%); AVR-Piz-t had the lowest frequency (28.57%). All these AVR genes except AVR-Pi9 had 1–2 variants. Inoculation mono-genic lines contained functional genes of Pi2/9 and Pik loci with 14 representative isolates from those 35 ones revealed that the presence of certain AVR-Piz-t, AVR-Pita variants, and AVR-Pik-E + AVR-Pik-D in M. oryzae populations, and these variants negated the ability of the corresponding R genes to confer resistance. Importantly, Pi2, Pi9, and Pigm conferred broad-spectrum resistance to these local isolates. These findings reveal that the complex genetic basis of M. oryzae and some effective blast R genes should be considered in future rice blast-resistance breeding programs.
Collapse
|
28
|
Huang J, Cook DE. The contribution of DNA repair pathways to genome editing and evolution in filamentous pathogens. FEMS Microbiol Rev 2022; 46:fuac035. [PMID: 35810003 PMCID: PMC9779921 DOI: 10.1093/femsre/fuac035] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 01/09/2023] Open
Abstract
DNA double-strand breaks require repair or risk corrupting the language of life. To ensure genome integrity and viability, multiple DNA double-strand break repair pathways function in eukaryotes. Two such repair pathways, canonical non-homologous end joining and homologous recombination, have been extensively studied, while other pathways such as microhomology-mediated end joint and single-strand annealing, once thought to serve as back-ups, now appear to play a fundamental role in DNA repair. Here, we review the molecular details and hierarchy of these four DNA repair pathways, and where possible, a comparison for what is known between animal and fungal models. We address the factors contributing to break repair pathway choice, and aim to explore our understanding and knowledge gaps regarding mechanisms and regulation in filamentous pathogens. We additionally discuss how DNA double-strand break repair pathways influence genome engineering results, including unexpected mutation outcomes. Finally, we review the concept of biased genome evolution in filamentous pathogens, and provide a model, termed Biased Variation, that links DNA double-strand break repair pathways with properties of genome evolution. Despite our extensive knowledge for this universal process, there remain many unanswered questions, for which the answers may improve genome engineering and our understanding of genome evolution.
Collapse
Affiliation(s)
- Jun Huang
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Throckmorton Hall, Manhattan, KS 66506, United States
| | - David E Cook
- Department of Plant Pathology, Kansas State University, 1712 Claflin Road, Throckmorton Hall, Manhattan, KS 66506, United States
| |
Collapse
|
29
|
Chen M, Farmer N, Zhong Z, Zheng W, Tang W, Han Y, Lu G, Wang Z, Ebbole DJ. HAG Effector Evolution in Pyricularia Species and Plant Cell Death Suppression by HAG4. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:694-705. [PMID: 35345886 DOI: 10.1094/mpmi-01-22-0010-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Seventy host-adapted gene (HAG) effector family members from Pyricularia species are found in P. oryzae and three closely related species (isolates LS and 18-2 from an unknown Pyricularia sp., P. grisea, and P. pennisetigena) that share at least eight orthologous HAG family members with P. oryzae. The genome sequence of a more distantly related species, P. penniseti, lacks HAG genes, suggesting a time frame for the origin of the gene family in the genus. In P. oryzae, HAG4 is uniquely found in the genetic lineage that contains populations adapted to Setaria and Oryza hosts. We find a nearly identical HAG4 allele in a P. grisea isolate, suggesting transfer of HAG4 from P. grisea to P. oryzae. HAG4 encodes a suppressor of plant cell death. Yeast two-hybrid screens with several HAG genes independently identify common interacting clones from a rice complementary DNA library, suggesting conservation of protein surface motifs between HAG homologs with as little as 40% protein sequence identity. HAG family orthologs have diverged rapidly and HAG15 orthologs display unusually high rates of sequence divergence compared with adjacent genes suggesting gene-specific accelerated divergence. The sequence diversity of the HAG homologs in Pyricularia species provides a resource for examining mechanisms of gene family evolution and the relationship to structural and functional evolution of HAG effector family activity. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Meilian Chen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- Key Laboratory of Bio-Pesticide and Chemistry-Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nick Farmer
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, U.S.A
| | - Zhenhui Zhong
- Key Laboratory of Bio-Pesticide and Chemistry-Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhui Zheng
- Key Laboratory of Bio-Pesticide and Chemistry-Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Tang
- Key Laboratory of Bio-Pesticide and Chemistry-Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yijuan Han
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Guodong Lu
- Key Laboratory of Bio-Pesticide and Chemistry-Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
- Key Laboratory of Bio-Pesticide and Chemistry-Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Daniel J Ebbole
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, U.S.A
| |
Collapse
|
30
|
Komluski J, Stukenbrock EH, Habig M. Non-Mendelian transmission of accessory chromosomes in fungi. Chromosome Res 2022; 30:241-253. [PMID: 35881207 PMCID: PMC9508043 DOI: 10.1007/s10577-022-09691-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
Abstract
Non-Mendelian transmission has been reported for various genetic elements, ranging from small transposons to entire chromosomes. One prime example of such a transmission pattern are B chromosomes in plants and animals. Accessory chromosomes in fungi are similar to B chromosomes in showing presence/absence polymorphism and being non-essential. How these chromosomes are transmitted during meiosis is however poorly understood—despite their often high impact on the fitness of the host. For several fungal organisms, a non-Mendelian transmission or a mechanistically unique meiotic drive of accessory chromosomes have been reported. In this review, we provide an overview of the possible mechanisms that can cause the non-Mendelian transmission or meiotic drives of fungal accessory chromosomes. We compare processes responsible for the non-Mendelian transmission of accessory chromosomes for different fungal eukaryotes and discuss the structural traits of fungal accessory chromosomes affecting their meiotic transmission. We conclude that research on fungal accessory chromosomes, due to their small size, ease of sequencing, and epigenetic profiling, can complement the study of B chromosomes in deciphering factors that influence and regulate the non-Mendelian transmission of entire chromosomes.
Collapse
Affiliation(s)
- Jovan Komluski
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Eva H Stukenbrock
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany.
- Max Planck Institute for Evolutionary Biology, Plön, Germany.
| | - Michael Habig
- Environmental Genomics, Christian-Albrechts University of Kiel, Kiel, Germany.
- Max Planck Institute for Evolutionary Biology, Plön, Germany.
| |
Collapse
|
31
|
Maphosa MN, Steenkamp ET, Kanzi AM, van Wyk S, De Vos L, Santana QC, Duong TA, Wingfield BD. Intra-Species Genomic Variation in the Pine Pathogen Fusarium circinatum. J Fungi (Basel) 2022; 8:jof8070657. [PMID: 35887414 PMCID: PMC9316270 DOI: 10.3390/jof8070657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 12/10/2022] Open
Abstract
Fusarium circinatum is an important global pathogen of pine trees. Genome plasticity has been observed in different isolates of the fungus, but no genome comparisons are available. To address this gap, we sequenced and assembled to chromosome level five isolates of F. circinatum. These genomes were analysed together with previously published genomes of F. circinatum isolates, FSP34 and KS17. Multi-sample variant calling identified a total of 461,683 micro variants (SNPs and small indels) and a total of 1828 macro structural variants of which 1717 were copy number variants and 111 were inversions. The variant density was higher on the sub-telomeric regions of chromosomes. Variant annotation revealed that genes involved in transcription, transport, metabolism and transmembrane proteins were overrepresented in gene sets that were affected by high impact variants. A core genome representing genomic elements that were conserved in all the isolates and a non-redundant pangenome representing all genomic elements is presented. Whole genome alignments showed that an average of 93% of the genomic elements were present in all isolates. The results of this study reveal that some genomic elements are not conserved within the isolates and some variants are high impact. The described genome-scale variations will help to inform novel disease management strategies against the pathogen.
Collapse
|
32
|
Navia-Urrutia M, Mosquera G, Ellsworth R, Farman M, Trick HN, Valent B. Effector Genes in Magnaporthe oryzae Triticum as Potential Targets for Incorporating Blast Resistance in Wheat. PLANT DISEASE 2022; 106:1700-1712. [PMID: 34931892 DOI: 10.1094/pdis-10-21-2209-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Wheat blast (WB), caused by Magnaporthe oryzae Triticum pathotype, recently emerged as a destructive disease that threatens global wheat production. Because few sources of genetic resistance have been identified in wheat, genetic transformation of wheat with rice blast resistance genes could expand resistance to WB. We evaluated the presence/absence of homologs of rice blast effector genes in Triticum isolates with the aim of identifying avirulence genes in field populations whose cognate rice resistance genes could potentially confer resistance to WB. We also assessed presence of the wheat pathogen AVR-Rmg8 gene and identified new alleles. A total of 102 isolates collected in Brazil, Bolivia, and Paraguay from 1986 to 2018 were evaluated by PCR using 21 pairs of gene-specific primers. Effector gene composition was highly variable, with homologs to AvrPiz-t, AVR-Pi9, AVR-Pi54, and ACE1 showing the highest amplification frequencies (>94%). We identified Triticum isolates with a functional AvrPiz-t homolog that triggers Piz-t-mediated resistance in the rice pathosystem and produced transgenic wheat plants expressing the rice Piz-t gene. Seedlings and heads of the transgenic lines were challenged with isolate T25 carrying functional AvrPiz-t. Although slight decreases in the percentage of diseased spikelets and leaf area infected were observed in two transgenic lines, our results indicated that Piz-t did not confer useful WB resistance. Monitoring of avirulence genes in populations is fundamental to identifying effective resistance genes for incorporation into wheat by conventional breeding or transgenesis. Based on avirulence gene distributions, rice resistance genes Pi9 and Pi54 might be candidates for future studies.
Collapse
Affiliation(s)
- Monica Navia-Urrutia
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Gloria Mosquera
- Rice Pathology, International Center for Tropical Agriculture, Palmira, 763537, Colombia
| | - Rebekah Ellsworth
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Mark Farman
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546, U.S.A
| | - Harold N Trick
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, U.S.A
| |
Collapse
|
33
|
Li J, Lu L, Wang Q, Shi Z, Li C, Guo Z. Genome Re-Sequencing Reveals the Host-Specific Origin of Genetic Variation in Magnaporthe Species. Front Genet 2022; 13:861727. [PMID: 35651945 PMCID: PMC9149001 DOI: 10.3389/fgene.2022.861727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Rice blast is caused by Magnaporthe oryzae (M. oryzae), which is considered one of the most serious pathogens of rice around the globe. It causes severe losses owing to its proven capability to disrupt the host resistance. Recently, its invasion of new hosts like the Musa species or banana plants has been noticed. To understand the possible level of genetic variation, we sequenced the genomes of eight different isolates of the Magnaporthe species infecting rice, Digitaria (a weed), finger millet, Elusine indica, and banana plants. Comparative genomic analysis of these eight isolates with the previously well-characterized laboratory strain M. oryzae 70-15 was made. The infectivity of the newly isolated strain from Musa species suggested that there is no resistance level in the host plants. The sequence analysis revealed that despite genome similarities, both the banana and Digitaria isolates have relatively larger genome sizes (∼38.2 and 51.1 Mb, respectively) compared to those of the laboratory reference strain M. oryzae 70-15 (∼37 Mb). The gene contraction, expansion, and InDel analysis revealed that during evolution, a higher number of gene insertions and deletions occurred in the blast fungus infecting Digitaria and banana. Furthermore, each genome shared thousands of genes, which suggest their common evolution. Overall, our analysis indicates that higher levels of genes insertion or deletions and gain in the total genome size are important factors in disrupting the host immunity and change in host selection.
Collapse
Affiliation(s)
- Jinbin Li
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
- *Correspondence: Jinbin Li,
| | - Lin Lu
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Qun Wang
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Zhufeng Shi
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Chengyun Li
- The Ministry of Education Key Laboratory for Agricultural Biodiversity and Pest Management, Yunnan Agricultural University, Kunming, China
| | - Zhixiang Guo
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resource Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
34
|
Dolatabadian A, Fernando WGD. Genomic Variations and Mutational Events Associated with Plant-Pathogen Interactions. BIOLOGY 2022; 11:421. [PMID: 35336795 PMCID: PMC8945218 DOI: 10.3390/biology11030421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022]
Abstract
Phytopathologists are actively researching the molecular basis of plant-pathogen interactions. The mechanisms of responses to pathogens have been studied extensively in model crop plant species and natural populations. Today, with the rapid expansion of genomic technologies such as DNA sequencing, transcriptomics, proteomics, and metabolomics, as well as the development of new methods and protocols, data analysis, and bioinformatics, it is now possible to assess the role of genetic variation in plant-microbe interactions and to understand the underlying molecular mechanisms of plant defense and microbe pathogenicity with ever-greater resolution and accuracy. Genetic variation is an important force in evolution that enables organisms to survive in stressful environments. Moreover, understanding the role of genetic variation and mutational events is essential for crop breeders to produce improved cultivars. This review focuses on genetic variations and mutational events associated with plant-pathogen interactions and discusses how these genome compartments enhance plants' and pathogens' evolutionary processes.
Collapse
Affiliation(s)
- Aria Dolatabadian
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | | |
Collapse
|
35
|
Hu ZJ, Huang YY, Lin XY, Feng H, Zhou SX, Xie Y, Liu XX, Liu C, Zhao RM, Zhao WS, Feng CH, Pu M, Ji YP, Hu XH, Li GB, Zhao JH, Zhao ZX, Wang H, Zhang JW, Fan J, Li Y, Peng YL, He M, Li DQ, Huang F, Peng YL, Wang WM. Loss and Natural Variations of Blast Fungal Avirulence Genes Breakdown Rice Resistance Genes in the Sichuan Basin of China. FRONTIERS IN PLANT SCIENCE 2022; 13:788876. [PMID: 35498644 PMCID: PMC9040519 DOI: 10.3389/fpls.2022.788876] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/10/2022] [Indexed: 05/11/2023]
Abstract
Magnaporthe oryzae is the causative agent of rice blast, a devastating disease in rice worldwide. Based on the gene-for-gene paradigm, resistance (R) proteins can recognize their cognate avirulence (AVR) effectors to activate effector-triggered immunity. AVR genes have been demonstrated to evolve rapidly, leading to breakdown of the cognate resistance genes. Therefore, understanding the variation of AVR genes is essential to the deployment of resistant cultivars harboring the cognate R genes. In this study, we analyzed the nucleotide sequence polymorphisms of eight known AVR genes, namely, AVR-Pita1, AVR-Pii, AVR-Pia, AVR-Pik, AVR-Pizt, AVR-Pi9, AVR-Pib, and AVR-Pi54 in a total of 383 isolates from 13 prefectures in the Sichuan Basin. We detected the presence of AVR-Pik, AVR-Pi54, AVR-Pizt, AVR-Pi9, and AVR-Pib in the isolates of all the prefectures, but not AVR-Pita1, AVR-Pii, and AVR-Pia in at least seven prefectures, indicating loss of the three AVRs. We also detected insertions of Pot3, Mg-SINE, and indels in AVR-Pib, solo-LTR of Inago2 in AVR-Pizt, and gene duplications in AVR-Pik. Consistently, the isolates that did not harboring AVR-Pia were virulent to IRBLa-A, the monogenic line containing Pia, and the isolates with variants of AVR-Pib and AVR-Pizt were virulent to IRBLb-B and IRBLzt-t, the monogenic lines harboring Pib and Piz-t, respectively, indicating breakdown of resistance by the loss and variations of the avirulence genes. Therefore, the use of blast resistance genes should be alarmed by the loss and nature variations of avirulence genes in the blast fungal population in the Sichuan Basin.
Collapse
Affiliation(s)
- Zi-Jin Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yan-Yan Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Yan-Yan Huang
| | - Xiao-Yu Lin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Hui Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Shi-Xin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Ying Xie
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xin-Xian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Chen Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Ru-Meng Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Wen-Sheng Zhao
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Chuan-Hong Feng
- Plant Protection Station, Department of Agriculture Sichuan Province, Chengdu, China
| | - Mei Pu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yun-Peng Ji
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Xiao-Hong Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Guo-Bang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jing-Hao Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Xue Zhao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - He Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Ji-Wei Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Yun-Liang Peng
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - De-Qiang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Fu Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - You-Liang Peng
- State Key Laboratory of Agrobiotechnology and Ministry of Agriculture Key Laboratory of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Wen-Ming Wang
| |
Collapse
|
36
|
Combination of Strobilurin and Triazole Chemicals for the Management of Blast Disease in Mushk Budji -Aromatic Rice. J Fungi (Basel) 2021; 7:jof7121060. [PMID: 34947042 PMCID: PMC8707660 DOI: 10.3390/jof7121060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/28/2022] Open
Abstract
Rice blast is considered one of the most important fungal diseases of rice. Although diseases can be managed by using resistant cultivars, the blast pathogen has successfully overcome the single gene resistance in a short period and rendered several varieties susceptible to blast which were otherwise intended to be resistant. As such, chemical control is still the most efficient method of disease control for reducing the losses caused due to diseases. Field experiments were conducted over two successive years, 2018 and 2019, in temperate rice growing areas in northern India. All the fungicides effectively reduced leaf blast incidence and intensity, and neck blast incidence under field conditions. Tricyclazole proved most effective against rice blast and recorded a leaf blast incidence of only 8.41%. Among the combinations of fungicides, azoxystrobin + difenoconazole and azoxystrobin + tebuconazole were highly effective, recording a leaf blast incidence of 9.19 and 10.40%, respectively. The chemical combination mancozeb + carbendazim proved less effective in controlling the blast and it recorded a disease incidence of 27.61%. A similar trend was followed in neck blast incidence with tricyclazole, azoxystrobin + difenoconazole, and azoxystrobin + tebuconazole showing the highest levels of blast reductions. It is evident from the current study that the tested fungicide combinations can be used as alternatives to tricyclazole which is facing the challenges of fungicide resistance development and other environmental concerns and has been banned from use in India and other countries. The manuscript may provide a guideline of fungicide application to farmers cultivating susceptible varieties of rice.
Collapse
|
37
|
Reddy B, Kumar A, Mehta S, Sheoran N, Chinnusamy V, Prakash G. Hybrid de novo genome-reassembly reveals new insights on pathways and pathogenicity determinants in rice blast pathogen Magnaporthe oryzae RMg_Dl. Sci Rep 2021; 11:22922. [PMID: 34824307 PMCID: PMC8616942 DOI: 10.1038/s41598-021-01980-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/01/2021] [Indexed: 01/20/2023] Open
Abstract
Blast disease incited by Magnaporthe oryzae is a major threat to sustain rice production in all rice growing nations. The pathogen is widely distributed in all rice paddies and displays rapid aerial transmissions, and seed-borne latent infection. In order to understand the genetic variability, host specificity, and molecular basis of the pathogenicity-associated traits, the whole genome of rice infecting Magnaporthe oryzae (Strain RMg_Dl) was sequenced using the Illumina and PacBio (RSII compatible) platforms. The high-throughput hybrid assembly of short and long reads resulted in a total of 375 scaffolds with a genome size of 42.43 Mb. Furthermore, comparative genome analysis revealed 99% average nucleotide identity (ANI) with other oryzae genomes and 83% against M. grisea, and 73% against M. poe genomes. The gene calling identified 10,553 genes with 10,539 protein-coding sequences. Among the detected transposable elements, the LTR/Gypsy and Type LINE showed high occurrence. The InterProScan of predicted protein sequences revealed that 97% protein family (PFAM), 98% superfamily, and 95% CDD were shared among RMg_Dl and reference 70-15 genome, respectively. Additionally, 550 CAZymes with high GH family content/distribution and cell wall degrading enzymes (CWDE) such endoglucanase, beta-glucosidase, and pectate lyase were also deciphered in RMg_Dl. The prevalence of virulence factors determination revealed that 51 different VFs were found in the genome. The biochemical pathway such as starch and sucrose metabolism, mTOR signaling, cAMP signaling, MAPK signaling pathways related genes were identified in the genome. The 49,065 SNPs, 3267 insertions and 3611 deletions were detected, and majority of these varinats were located on downstream and upstream region. Taken together, the generated information will be useful to develop a specific marker for diagnosis, pathogen surveillance and tracking, molecular taxonomy, and species delineation which ultimately leads to device improved management strategies for blast disease.
Collapse
Affiliation(s)
- Bhaskar Reddy
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Aundy Kumar
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Sahil Mehta
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Neelam Sheoran
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ganesan Prakash
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| |
Collapse
|
38
|
Bentham AR, Petit-Houdenot Y, Win J, Chuma I, Terauchi R, Banfield MJ, Kamoun S, Langner T. A single amino acid polymorphism in a conserved effector of the multihost blast fungus pathogen expands host-target binding spectrum. PLoS Pathog 2021; 17:e1009957. [PMID: 34758051 PMCID: PMC8608293 DOI: 10.1371/journal.ppat.1009957] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 11/22/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Accelerated gene evolution is a hallmark of pathogen adaptation and specialization following host-jumps. However, the molecular processes associated with adaptive evolution between host-specific lineages of a multihost plant pathogen remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia oryzae), host specialization on different grass hosts is generally associated with dynamic patterns of gain and loss of virulence effector genes that tend to define the distinct genetic lineages of this pathogen. Here, we unravelled the biochemical and structural basis of adaptive evolution of APikL2, an exceptionally conserved paralog of the well-studied rice-lineage specific effector AVR-Pik. Whereas AVR-Pik and other members of the six-gene AVR-Pik family show specific patterns of presence/absence polymorphisms between grass-specific lineages of M. oryzae, APikL2 stands out by being ubiquitously present in all blast fungus lineages from 13 different host species. Using biochemical, biophysical and structural biology methods, we show that a single aspartate to asparagine polymorphism expands the binding spectrum of APikL2 to host proteins of the heavy-metal associated (HMA) domain family. This mutation maps to one of the APikL2-HMA binding interfaces and contributes to an altered hydrogen-bonding network. By combining phylogenetic ancestral reconstruction with an analysis of the structural consequences of allelic diversification, we revealed a common mechanism of effector specialization in the AVR-Pik/APikL2 family that involves two major HMA-binding interfaces. Together, our findings provide a detailed molecular evolution and structural biology framework for diversification and adaptation of a fungal pathogen effector family following host-jumps.
Collapse
Affiliation(s)
- Adam R. Bentham
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Yohann Petit-Houdenot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, Thiverval-Grignon, France
| | - Joe Win
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Izumi Chuma
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ryohei Terauchi
- Kyoto University, Kyoto, Japan
- Iwate Biotechnology Research Center, Kitakami, Japan
| | - Mark J. Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
39
|
Mutiga SK, Rotich F, Were VM, Kimani JM, Mwongera DT, Mgonja E, Onaga G, Konaté K, Razanaboahirana C, Bigirimana J, Ndayiragije A, Gichuhi E, Yanoria MJ, Otipa M, Wasilwa L, Ouedraogo I, Mitchell T, Wang GL, Correll JC, Talbot NJ. Integrated Strategies for Durable Rice Blast Resistance in Sub-Saharan Africa. PLANT DISEASE 2021; 105:2749-2770. [PMID: 34253045 DOI: 10.1094/pdis-03-21-0593-fe] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Rice is a key food security crop in Africa. The importance of rice has led to increasing country-specific, regional, and multinational efforts to develop germplasm and policy initiatives to boost production for a more food-secure continent. Currently, this critically important cereal crop is predominantly cultivated by small-scale farmers under suboptimal conditions in most parts of sub-Saharan Africa (SSA). Rice blast disease, caused by the fungus Magnaporthe oryzae, represents one of the major biotic constraints to rice production under small-scale farming systems of Africa, and developing durable disease resistance is therefore of critical importance. In this review, we provide an overview of the major advances by a multinational collaborative research effort to enhance sustainable rice production across SSA and how it is affected by advances in regional policy. As part of the multinational effort, we highlight the importance of joint international partnerships in tackling multiple crop production constraints through integrated research and outreach programs. More specifically, we highlight recent progress in establishing international networks for rice blast disease surveillance, farmer engagement, monitoring pathogen virulence spectra, and the establishment of regionally based blast resistance breeding programs. To develop blast-resistant, high yielding rice varieties for Africa, we have established a breeding pipeline that utilizes real-time data of pathogen diversity and virulence spectra, to identify major and minor blast resistance genes for introgression into locally adapted rice cultivars. In addition, the project has developed a package to support sustainable rice production through regular stakeholder engagement, training of agricultural extension officers, and establishment of plant clinics.
Collapse
Affiliation(s)
- Samuel K Mutiga
- Biosciences eastern and central Africa - International Livestock Research Institute (BecA-ILRI), Nairobi, Kenya
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Felix Rotich
- Department of Agricultural Resource Management, University of Embu, Embu, Kenya
| | - Vincent M Were
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, U.K
| | - John M Kimani
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - David T Mwongera
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | | | - Geoffrey Onaga
- National Agricultural Research Organization, Kampala, Uganda
| | - Kadougoudiou Konaté
- Institute of Environment and Agricultural Research, Bobo-Dioulasso, Burkina Faso
| | | | | | | | - Emily Gichuhi
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | | | - Miriam Otipa
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - Lusike Wasilwa
- Kenya Agricultural and Livestock Research Organization (KALRO), Nairobi, Kenya
| | - Ibrahima Ouedraogo
- Institute of Environment and Agricultural Research, Bobo-Dioulasso, Burkina Faso
| | - Thomas Mitchell
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Guo-Liang Wang
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, U.S.A
| | - James C Correll
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, U.S.A
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, U.K
| |
Collapse
|
40
|
Thwin PH, Funabiki M, Tomita Y, Yamazaki T, Abe A, Sone T. Characterization and proposed spontaneous deletion mechanism of AVR-Pik locus in Pyricularia oryzae. Biosci Biotechnol Biochem 2021; 85:2217-2220. [PMID: 34387309 DOI: 10.1093/bbb/zbab145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/21/2021] [Indexed: 11/13/2022]
Abstract
In phytopathogenic fungi, a mutation in the avirulence gene can lead to the breakdown of resistance in the host plant. The nucleotide sequences of the AVR-Pik locus in the strain Ina168 and its spontaneous mutant Ina168m95-5 of Pyricularia oryzae were determined. An AVR-Pik spontaneous deletion mechanism of Ina168m95-5, including multiple homologous recombination events involving repetitive transposable elements, is proposed.
Collapse
Affiliation(s)
- Phyo Han Thwin
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Mai Funabiki
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Yuki Tomita
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Takehiko Yamazaki
- Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Ayumi Abe
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Teruo Sone
- Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
41
|
Jones DAB, Moolhuijzen PM, Hane JK. Remote homology clustering identifies lowly conserved families of effector proteins in plant-pathogenic fungi. Microb Genom 2021; 7. [PMID: 34468307 PMCID: PMC8715435 DOI: 10.1099/mgen.0.000637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Plant diseases caused by fungal pathogens are typically initiated by molecular interactions between 'effector' molecules released by a pathogen and receptor molecules on or within the plant host cell. In many cases these effector-receptor interactions directly determine host resistance or susceptibility. The search for fungal effector proteins is a developing area in fungal-plant pathology, with more than 165 distinct confirmed fungal effector proteins in the public domain. For a small number of these, novel effectors can be rapidly discovered across multiple fungal species through the identification of known effector homologues. However, many have no detectable homology by standard sequence-based search methods. This study employs a novel comparison method (RemEff) that is capable of identifying protein families with greater sensitivity than traditional homology-inference methods, leveraging a growing pool of confirmed fungal effector data to enable the prediction of novel fungal effector candidates by protein family association. Resources relating to the RemEff method and data used in this study are available from https://figshare.com/projects/Effector_protein_remote_homology/87965.
Collapse
Affiliation(s)
- Darcy A B Jones
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia
| | - Paula M Moolhuijzen
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia
| | - James K Hane
- Centre for Crop & Disease Management, School of Molecular & Life Sciences, Curtin University, Perth, Australia.,Curtin Institute for Computation, Curtin University, Perth, Australia
| |
Collapse
|
42
|
Amoghavarsha C, Pramesh D, Naik GR, Naik MK, Yadav MK, Ngangkham U, Chidanandappa E, Raghunandana A, Sharanabasav H, E Manjunatha S. Morpho-molecular diversity and avirulence genes distribution among the diverse isolates of Magnaporthe oryzae from Southern India. J Appl Microbiol 2021; 132:1275-1290. [PMID: 34327783 DOI: 10.1111/jam.15243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/23/2021] [Accepted: 07/26/2021] [Indexed: 11/26/2022]
Abstract
AIMS To investigate the diversity of eco-distinct isolates of Magnaporthe oryzae for their morphological, virulence and molecular diversity and relative distribution of five Avr genes. METHODS AND RESULTS Fifty-two M. oryzae isolates were collected from different rice ecosystems of southern India. A majority of them (n = 28) formed a circular colony on culture media. Based on the disease reaction on susceptible cultivar (cv. HR-12), all 52 isolates were classified in to highly virulent (n = 28), moderately virulent (n = 11) and less-virulent (13) types. Among the 52 isolates, 38 were selected for deducing internal transcribed spacer (ITS) sequence diversity. For deducing phylogeny, another set of 36 isolates from other parts of the world was included, which yielded two distinct phylogenetic clusters. We identified eight haplotype groups and 91 variable sites within the ITS sequences, and haplotype-group-2 (Hap_2) was predominant (n = 24). The Tajima's and Fu's Fs neutrality tests exhibited many rare alleles. Furthermore, PCR analysis for detecting the presence of five Avr genes in the different M. oryzae isolates using Avr gene-specific primers in PCR revealed that Avr-Piz-t, Avr-Pik, Avr-Pia and Avr-Pita were present in 73.68%, 73.68%, 63.16% and 47.37% of the isolates studied, respectively; whereas, Avr-Pii was identified only in 13.16% of the isolates. CONCLUSIONS Morpho-molecular and virulence studies revealed the significant diversity among eco-distinct isolates. PCR detection of Avr genes among the M. oryzae population revealed the presence of five Avr genes. Among them, Avr-Piz-t, Avr-Pik and Avr-Pia were more predominant. SIGNIFICANCE AND IMPACT OF THE STUDY The study documented the morphological and genetic variability of eco-distinct M. oryzae isolates. This is the first study demonstrating the distribution of the Avr genes among the eco-distinct population of M. oryzae from southern India. The information generated will help plant breeders to select appropriate resistant gene/s combinations to develop blast disease-resistant rice cultivars.
Collapse
Affiliation(s)
- Chittaragi Amoghavarsha
- Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga, Karnataka, India.,Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Devanna Pramesh
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Ganesh R Naik
- Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga, Karnataka, India
| | - Manjunath K Naik
- Department of Plant Pathology, University of Agricultural and Horticultural Sciences, Shivamogga, Karnataka, India
| | - Manoj K Yadav
- ICAR-National Rice Research Institute, Cuttack, India
| | - Umakanta Ngangkham
- ICAR-Research Complex for North-Eastern Hill Region, Manipur center, Imphal, Manipur, India
| | - Eranna Chidanandappa
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Adke Raghunandana
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Huded Sharanabasav
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Raichur, Karnataka, India
| | - Siddepalli E Manjunatha
- Rice Pathology Laboratory, All India Coordinated Rice Improvement Programme, University of Agricultural Sciences, Raichur, Karnataka, India
| |
Collapse
|
43
|
Peck LD, Nowell RW, Flood J, Ryan MJ, Barraclough TG. Historical genomics reveals the evolutionary mechanisms behind multiple outbreaks of the host-specific coffee wilt pathogen Fusarium xylarioides. BMC Genomics 2021; 22:404. [PMID: 34082717 PMCID: PMC8176585 DOI: 10.1186/s12864-021-07700-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Nearly 50% of crop yields are lost to pests and disease, with plants and pathogens locked in an amplified co-evolutionary process of disease outbreaks. Coffee wilt disease, caused by Fusarium xylarioides, decimated coffee production in west and central Africa following its initial outbreak in the 1920s. After successful management, it later re-emerged and by the 2000s comprised two separate epidemics on arabica coffee in Ethiopia and robusta coffee in east and central Africa. RESULTS Here, we use genome sequencing of six historical culture collection strains spanning 52 years to identify the evolutionary processes behind these repeated outbreaks. Phylogenomic reconstruction using 13,782 single copy orthologs shows that the robusta population arose from the initial outbreak, whilst the arabica population is a divergent sister clade to the other strains. A screen for putative effector genes involved in pathogenesis shows that the populations have diverged in gene content and sequence mainly by vertical processes within lineages. However, 15 putative effector genes show evidence of horizontal acquisition, with close homology to genes from F. oxysporum. Most occupy small regions of homology within wider scaffolds, whereas a cluster of four genes occupy a 20Kb scaffold with strong homology to a region on a mobile pathogenicity chromosome in F. oxysporum that houses known effector genes. Lacking a match to the whole mobile chromosome, we nonetheless found close associations with DNA transposons, especially the miniature impala type previously proposed to facilitate horizontal transfer of pathogenicity genes in F. oxysporum. These findings support a working hypothesis that the arabica and robusta populations partly acquired distinct effector genes via transposition-mediated horizontal transfer from F. oxysporum, which shares coffee as a host and lives on other plants intercropped with coffee. CONCLUSION Our results show how historical genomics can help reveal mechanisms that allow fungal pathogens to keep pace with our efforts to resist them. Our list of putative effector genes identifies possible future targets for fungal control. In turn, knowledge of horizontal transfer mechanisms and putative donor taxa might help to design future intercropping strategies that minimize the risk of transfer of effector genes between closely-related Fusarium taxa.
Collapse
Affiliation(s)
- Lily D Peck
- Science and Solutions for a Changing Planet Doctoral Training Partnership, Grantham Institute, Imperial College London, South Kensington, London, SW7 2AZ, UK. .,Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK.
| | - Reuben W Nowell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK.,Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Julie Flood
- CABI, Bakeham Lane, Egham, Surrey, TW20 9TY, UK
| | | | - Timothy G Barraclough
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK.,Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| |
Collapse
|
44
|
Soyer JL, Clairet C, Gay EJ, Lapalu N, Rouxel T, Stukenbrock EH, Fudal I. Genome-wide mapping of histone modifications during axenic growth in two species of Leptosphaeria maculans showing contrasting genomic organization. Chromosome Res 2021; 29:219-236. [PMID: 34018080 PMCID: PMC8159818 DOI: 10.1007/s10577-021-09658-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/16/2021] [Accepted: 03/03/2021] [Indexed: 12/25/2022]
Abstract
Leptosphaeria maculans 'brassicae' (Lmb) and Leptosphaeria maculans 'lepidii' (Lml) are closely related phytopathogenic species that exhibit a large macrosynteny but contrasting genome structure. Lmb has more than 30% of repeats clustered in large repeat-rich regions, while the Lml genome has only a small amount of evenly distributed repeats. Repeat-rich regions of Lmb are enriched in effector genes, expressed during plant infection. The distinct genome structures of Lmb and Lml provide an excellent model for comparing the organization of pathogenicity genes in relation to the chromatin landscape in two closely related phytopathogenic fungi. Here, we performed chromatin immunoprecipitation (ChIP) during axenic culture, targeting histone modifications typical for heterochromatin or euchromatin, combined with transcriptomic analysis to analyze the influence of chromatin organization on gene expression. In both species, we found that facultative heterochromatin is enriched with genes lacking functional annotation, including numerous effector and species-specific genes. Notably, orthologous genes located in H3K27me3 domains are enriched with effector genes. Compared to other fungal species, including Lml, Lmb is distinct in having large H3K9me3 domains associated with repeat-rich regions that contain numerous species-specific effector genes. Discovery of these two distinctive heterochromatin landscapes now raises questions about their involvement in the regulation of pathogenicity, the dynamics of these domains during plant infection and the selective advantage to the fungus to host effector genes in H3K9me3 or H3K27me3 domains.
Collapse
Affiliation(s)
- Jessica L Soyer
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France.
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
- Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany.
| | - Colin Clairet
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Elise J Gay
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Nicolas Lapalu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Thierry Rouxel
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Eva H Stukenbrock
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
- Christian-Albrechts University of Kiel, Am Botanischen Garten 1-9, 24118, Kiel, Germany
| | - Isabelle Fudal
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| |
Collapse
|
45
|
Singh NK, Badet T, Abraham L, Croll D. Rapid sequence evolution driven by transposable elements at a virulence locus in a fungal wheat pathogen. BMC Genomics 2021; 22:393. [PMID: 34044766 PMCID: PMC8157644 DOI: 10.1186/s12864-021-07691-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Plant pathogens cause substantial crop losses in agriculture production and threaten food security. Plants evolved the ability to recognize virulence factors and pathogens have repeatedly escaped recognition due rapid evolutionary change at pathogen virulence loci (i.e. effector genes). The presence of transposable elements (TEs) in close physical proximity of effector genes can have important consequences for gene regulation and sequence evolution. Species-wide investigations of effector gene loci remain rare hindering our ability to predict pathogen evolvability. RESULTS Here, we performed genome-wide association studies (GWAS) on a highly polymorphic mapping population of 120 isolates of Zymoseptoria tritici, the most damaging pathogen of wheat in Europe. We identified a major locus underlying significant variation in reproductive success of the pathogen and damage caused on the wheat cultivar Claro. The most strongly associated locus is intergenic and flanked by genes encoding a predicted effector and a serine-type endopeptidase. The center of the locus contained a highly dynamic region consisting of multiple families of TEs. Based on a large global collection of assembled genomes, we show that the virulence locus has undergone substantial recent sequence evolution. Large insertion and deletion events generated length variation between the flanking genes by a factor of seven (5-35 kb). The locus showed also strong signatures of genomic defenses against TEs (i.e. RIP) contributing to the rapid diversification of the locus. CONCLUSIONS In conjunction, our work highlights the power of combining GWAS and population-scale genome analyses to investigate major effect loci in pathogens.
Collapse
Affiliation(s)
- Nikhil Kumar Singh
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Leen Abraham
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, 2000, Neuchâtel, Switzerland.
| |
Collapse
|
46
|
Gorkovskiy A, Verstrepen KJ. The Role of Structural Variation in Adaptation and Evolution of Yeast and Other Fungi. Genes (Basel) 2021; 12:699. [PMID: 34066718 PMCID: PMC8150848 DOI: 10.3390/genes12050699] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/12/2023] Open
Abstract
Mutations in DNA can be limited to one or a few nucleotides, or encompass larger deletions, insertions, duplications, inversions and translocations that span long stretches of DNA or even full chromosomes. These so-called structural variations (SVs) can alter the gene copy number, modify open reading frames, change regulatory sequences or chromatin structure and thus result in major phenotypic changes. As some of the best-known examples of SV are linked to severe genetic disorders, this type of mutation has traditionally been regarded as negative and of little importance for adaptive evolution. However, the advent of genomic technologies uncovered the ubiquity of SVs even in healthy organisms. Moreover, experimental evolution studies suggest that SV is an important driver of evolution and adaptation to new environments. Here, we provide an overview of the causes and consequences of SV and their role in adaptation, with specific emphasis on fungi since these have proven to be excellent models to study SV.
Collapse
Affiliation(s)
- Anton Gorkovskiy
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium;
- Laboratory for Systems Biology, VIB—KU Leuven Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Kevin J. Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium;
- Laboratory for Systems Biology, VIB—KU Leuven Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
47
|
Jangir P, Mehra N, Sharma K, Singh N, Rani M, Kapoor R. Secreted in Xylem Genes: Drivers of Host Adaptation in Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2021; 12:628611. [PMID: 33968096 PMCID: PMC8101498 DOI: 10.3389/fpls.2021.628611] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/01/2021] [Indexed: 05/17/2023]
Abstract
Fusarium oxysporum (Fo) is a notorious pathogen that significantly contributes to yield losses in crops of high economic status. It is responsible for vascular wilt characterized by the browning of conductive tissue, wilting, and plant death. Individual strains of Fo are host specific (formae speciales), and approximately, 150 forms have been documented so far. The pathogen secretes small effector proteins in the xylem, termed as Secreted in Xylem (Six), that contribute to its virulence. Most of these proteins contain cysteine residues in even numbers. These proteins are encoded by SIX genes that reside on mobile pathogenicity chromosomes. So far, 14 proteins have been reported. However, formae speciales vary in SIX protein profile and their respective gene sequence. Thus, SIX genes have been employed as ideal markers for pathogen identification. Acquisition of SIX-encoding mobile pathogenicity chromosomes by non-pathogenic lines, through horizontal transfer, results in the evolution of new virulent lines. Recently, some SIX genes present on these pathogenicity chromosomes have been shown to be involved in defining variation in host specificity among formae speciales. Along these lines, the review entails the variability (formae speciales, races, and vegetative compatibility groups) and evolutionary relationships among members of F. oxysporum species complex (FOSC). It provides updated information on the diversity, structure, regulation, and (a)virulence functions of SIX genes. The improved understanding of roles of SIX in variability and virulence of Fo has significant implication in establishment of molecular framework and techniques for disease management. Finally, the review identifies the gaps in current knowledge and provides insights into potential research landscapes that can be explored to strengthen the understanding of functions of SIX genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Rupam Kapoor
- Department of Botany, University of Delhi, New Delhi, India
| |
Collapse
|
48
|
Wang W, Su J, Chen K, Yang J, Chen S, Wang C, Feng A, Wang Z, Wei X, Zhu X, Lu GD, Zhou B. Dynamics of the Rice Blast Fungal Population in the Field After Deployment of an Improved Rice Variety Containing Known Resistance Genes. PLANT DISEASE 2021; 105:919-928. [PMID: 32967563 DOI: 10.1094/pdis-06-20-1348-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rice blast, caused by the fungus Magnaporthe oryzae, is one of the most destructive diseases of rice worldwide. Management through the deployment of host resistance genes would be facilitated by understanding the dynamics of the pathogen's population in the field. Here, to investigate the mechanism underlying the breakdown of disease resistance, we conducted a six-year field experiment to monitor the evolution of M. oryzae populations in Qujiang from Guangdong. The new variety of Xin-Yin-Zhan (XYZ) carrying R genes Pi50 and Pib was developed using the susceptible elite variety, Ma-Ba-Yin-Zhan (MBYZ), as the recurrent line. Field trials of disease resistance assessment revealed that the disease indices of XYZ in 2012, 2013, 2016, and 2017 were 0.19, 0.39, 0.70, and 0.90, respectively, indicating that XYZ displayed a very rapid increase of disease severity in the field. To investigate the mechanism underlying the quick erosion of resistance of XYZ, we collected isolates from both XYZ and MBYZ for pathogenicity testing against six different isogenic lines. The isolates collected from XYZ showed a similar virulence spectrum across four different years whereas those from MBYZ showed increasing virulence to the Pi50 and Pib isogenic lines from 2012 to 2017. Molecular analysis of AvrPib in the isolates from MBYZ identified four different AvrPib haplotypes, i.e., AvrPib-AP1-1, AvrPib-AP1-2, avrPib-AP2, and avrPib-AP3, verified by sequencing. AvrPib-AP1-1 and AvrPib-AP1-2 are avirulent to Pib whereas avrPib-AP2 and avrPib-AP3 are virulent. Insertions of a Pot3 and an Mg-SINE were identified in avrPib-AP2 and avrPib-AP3, respectively. Two major lineages based on rep-PCR analysis were further deduced in the field population, implying that the field population is composed of genetically related isolates. Our data suggest that clonal propagation and quick dominance of virulent isolates against the previously resistant variety could be the major genetic events contributing to the loss of varietal resistance against rice blast in the field.
Collapse
Affiliation(s)
- Wenjuan Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jing Su
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Kailing Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jianyuan Yang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shen Chen
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Congying Wang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Aiqing Feng
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Ocean Science, Minjiang University, Fuzhou 350108, China
| | - Xiaoyan Wei
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Xiaoyuan Zhu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Guo-Dong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bo Zhou
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| |
Collapse
|
49
|
Liu M, Hu J, Zhang A, Dai Y, Chen W, He Y, Zhang H, Zheng X, Zhang Z. Auxilin-like protein MoSwa2 promotes effector secretion and virulence as a clathrin uncoating factor in the rice blast fungus Magnaporthe oryzae. THE NEW PHYTOLOGIST 2021; 230:720-736. [PMID: 33423301 PMCID: PMC8048681 DOI: 10.1111/nph.17181] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/04/2021] [Indexed: 05/03/2023]
Abstract
Plant pathogens exploit the extracellular matrix (ECM) to inhibit host immunity during their interactions with the host. The formation of ECM involves a series of continuous steps of vesicular transport events. To understand how such vesicle trafficking impacts ECM and virulence in the rice blast fungus Magnaporthe oryzae, we characterised MoSwa2, a previously identified actin-regulating kinase MoArk1 interacting protein, as an orthologue of the auxilin-like clathrin uncoating factor Swa2 of the budding yeast Saccharomyces cerevisiae. We found that MoSwa2 functions as an uncoating factor of the coat protein complex II (COPII) via an interaction with the COPII subunit MoSec24-2. Loss of MoSwa2 led to a deficiency in the secretion of extracellular proteins, resulting in both restricted growth of invasive hyphae and reduced inhibition of host immunity. Additionally, extracellular fluid (ECF) proteome analysis revealed that MoSwa2-regulated extracellular proteins include many redox proteins such as the berberine bridge enzyme-like (BBE-like) protein MoSef1. We further found that MoSef1 functions as an apoplastic virulent factor that inhibits the host immune response. Our studies revealed a novel function of a COPII uncoating factor in vesicular transport that is critical in the suppression of host immunity and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Muxing Liu
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjing210095China
| | - Jiexiong Hu
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Ao Zhang
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Ying Dai
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Weizhong Chen
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Yanglan He
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Haifeng Zhang
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Xiaobo Zheng
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
| | - Zhengguang Zhang
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityKey Laboratory of Integrated Management of Crop Diseases and PestsMinistry of EducationNanjing210095China
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjing210095China
| |
Collapse
|
50
|
Gan P, Hiroyama R, Tsushima A, Masuda S, Shibata A, Ueno A, Kumakura N, Narusaka M, Hoat TX, Narusaka Y, Takano Y, Shirasu K. Telomeres and a repeat-rich chromosome encode effector gene clusters in plant pathogenic Colletotrichum fungi. Environ Microbiol 2021; 23:6004-6018. [PMID: 33780109 DOI: 10.1111/1462-2920.15490] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Members of the Colletotrichum gloeosporioides species complex are causal agents of anthracnose in many commercially important plants. Closely related strains have different levels of pathogenicity on hosts despite their close phylogenetic relationship. To gain insight into the genetics underlying these differences, we generated and annotated whole-genome assemblies of multiple isolates of C. fructicola (Cf) and C. siamense (Cs), as well as three previously unsequenced species, C. aenigma (Ca), C. tropicale and C. viniferum with different pathogenicity on strawberry. Based on comparative genomics, we identified accessory regions with a high degree of conservation in strawberry-pathogenic Cf, Cs and Ca strains. These regions encode homologs of pathogenicity-related genes known as effectors, organized in syntenic gene clusters, with copy number variations in different strains of Cf, Cs and Ca. Analysis of highly contiguous assemblies of Cf, Cs and Ca revealed the association of related accessory effector gene clusters with telomeres and repeat-rich chromosomes and provided evidence of exchange between these two genomic compartments. In addition, expression analysis indicated that orthologues in syntenic gene clusters showed a tendency for correlated gene expression during infection. These data provide insight into mechanisms by which Colletotrichum genomes evolve, acquire and organize effectors.
Collapse
Affiliation(s)
- Pamela Gan
- RIKEN Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan
| | - Ryoko Hiroyama
- RIKEN Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan
| | - Ayako Tsushima
- RIKEN Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan.,Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Sachiko Masuda
- RIKEN Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan
| | - Arisa Shibata
- RIKEN Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan
| | - Akiko Ueno
- RIKEN Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan
| | - Naoyoshi Kumakura
- RIKEN Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan
| | - Mari Narusaka
- Research Institute for Biological Sciences, Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Okayama, Japan
| | | | - Yoshihiro Narusaka
- Research Institute for Biological Sciences, Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Okayama, Japan
| | | | - Ken Shirasu
- RIKEN Center for Sustainable Resource Sciences, Yokohama, Kanagawa, Japan.,Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| |
Collapse
|