1
|
Han J, Aljahdali N, Zhao S, Tang H, Harbottle H, Hoffmann M, Frye JG, Foley SL. Infection biology of Salmonella enterica. EcoSal Plus 2024; 12:eesp00012023. [PMID: 38415623 PMCID: PMC11636313 DOI: 10.1128/ecosalplus.esp-0001-2023] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 07/31/2023] [Indexed: 02/29/2024]
Abstract
Salmonella enterica is the leading cause of bacterial foodborne illness in the USA, with an estimated 95% of salmonellosis cases due to the consumption of contaminated food products. Salmonella can cause several different disease syndromes, with the most common being gastroenteritis, followed by bacteremia and typhoid fever. Among the over 2,600 currently identified serotypes/serovars, some are mostly host-restricted and host-adapted, while the majority of serotypes can infect a broader range of host species and are associated with causing both livestock and human disease. Salmonella serotypes and strains within serovars can vary considerably in the severity of disease that may result from infection, with some serovars that are more highly associated with invasive disease in humans, while others predominantly cause mild gastroenteritis. These observed clinical differences may be caused by the genetic make-up and diversity of the serovars. Salmonella virulence systems are very complex containing several virulence-associated genes with different functions that contribute to its pathogenicity. The different clinical syndromes are associated with unique groups of virulence genes, and strains often differ in the array of virulence traits they display. On the chromosome, virulence genes are often clustered in regions known as Salmonella pathogenicity islands (SPIs), which are scattered throughout different Salmonella genomes and encode factors essential for adhesion, invasion, survival, and replication within the host. Plasmids can also carry various genes that contribute to Salmonella pathogenicity. For example, strains from several serovars associated with significant human disease, including Choleraesuis, Dublin, Enteritidis, Newport, and Typhimurium, can carry virulence plasmids with genes contributing to attachment, immune system evasion, and other roles. The goal of this comprehensive review is to provide key information on the Salmonella virulence, including the contributions of genes encoded in SPIs and plasmids during Salmonella pathogenesis.
Collapse
Affiliation(s)
- Jing Han
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Nesreen Aljahdali
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
- Biological Science Department, College of Science, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Hailin Tang
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Heather Harbottle
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Rockville, Maryland, USA
| | - Maria Hoffmann
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland, USA
| | - Jonathan G. Frye
- Agricutlutral Research Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Steven L. Foley
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
2
|
Barker SA, Bernard AR, Morales Y, Johnson SJ, Dickenson NE. Structural and functional characterization of the IpaD π-helix reveals critical roles in DOC interaction, T3SS apparatus maturation, and Shigella virulence. J Biol Chem 2024; 300:107613. [PMID: 39079629 PMCID: PMC11400957 DOI: 10.1016/j.jbc.2024.107613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/09/2024] [Accepted: 07/21/2024] [Indexed: 08/29/2024] Open
Abstract
Shigella spp. are highly pathogenic members of the Enterobacteriaceae family, causing ∼269 million cases of bacillary dysentery and >200,000 deaths each year. Like many Gram-negative pathogens, Shigella rely on their type three secretion system (T3SS) to inject effector proteins into eukaryotic host cells, driving both cellular invasion and evasion of host immune responses. Exposure to the bile salt deoxycholate (DOC) significantly enhances Shigella virulence and is proposed to serve as a critical environmental signal present in the small intestine that prepares Shigella's T3SS for efficient infection of the colonic epithelium. Here, we uncover critical mechanistic details of the Shigella-specific DOC signaling process by describing the role of a π-helix secondary structure element within the T3SS tip protein invasion plasmid antigen D (IpaD). Biophysical characterization and high-resolution structures of IpaD mutants lacking the π-helix show that it is not required for global protein structure, but that it defines the native DOC binding site and prevents off target interactions. Additionally, Shigella strains expressing the π-helix deletion mutants illustrate the pathogenic importance of its role in guiding DOC interaction as flow cytometry and gentamycin protection assays show that the IpaD π-helix is essential for DOC-mediated apparatus maturation and enhanced invasion of eukaryotic cells. Together, these findings add to our understanding of the complex Shigella pathogenesis pathway and its evolution to respond to environmental bile salts by identifying the π-helix in IpaD as a critical structural element required for translating DOC exposure to virulence enhancement.
Collapse
Affiliation(s)
- Samuel A Barker
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Abram R Bernard
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Yalemi Morales
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Sean J Johnson
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA
| | - Nicholas E Dickenson
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah, USA.
| |
Collapse
|
3
|
Kirchenwitz M, Halfen J, von Peinen K, Prettin S, Kollasser J, Zur Lage S, Blankenfeldt W, Brakebusch C, Rottner K, Steffen A, Stradal TEB. RhoB promotes Salmonella survival by regulating autophagy. Eur J Cell Biol 2023; 102:151358. [PMID: 37703749 DOI: 10.1016/j.ejcb.2023.151358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/05/2023] [Accepted: 08/29/2023] [Indexed: 09/15/2023] Open
Abstract
Salmonella enterica serovar Typhimurium manipulates cellular Rho GTPases for host cell invasion by effector protein translocation via the Type III Secretion System (T3SS). The two Guanine nucleotide exchange (GEF) mimicking factors SopE and -E2 and the inositol phosphate phosphatase (PiPase) SopB activate the Rho GTPases Rac1, Cdc42 and RhoA, thereby mediating bacterial invasion. S. Typhimurium lacking these three effector proteins are largely invasion-defective. Type III secretion is crucial for both early and later phases of the intracellular life of S. Typhimurium. Here we investigated whether and how the small GTPase RhoB, known to localize on endomembrane vesicles and at the invasion site of S. Typhimurium, contributes to bacterial invasion and to subsequent steps relevant for S. Typhimurium lifestyle. We show that RhoB is significantly upregulated within hours of Salmonella infection. This effect depends on the presence of the bacterial effector SopB, but does not require its phosphatase activity. Our data reveal that SopB and RhoB bind to each other, and that RhoB localizes on early phagosomes of intracellular S. Typhimurium. Whereas both SopB and RhoB promote intracellular survival of Salmonella, RhoB is specifically required for Salmonella-induced upregulation of autophagy. Finally, in the absence of RhoB, vacuolar escape and cytosolic hyper-replication of S. Typhimurium is diminished. Our findings thus uncover a role for RhoB in Salmonella-induced autophagy, which supports intracellular survival of the bacterium and is promoted through a positive feedback loop by the Salmonella effector SopB.
Collapse
Affiliation(s)
- Marco Kirchenwitz
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Jessica Halfen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Kristin von Peinen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Silvia Prettin
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Jana Kollasser
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Susanne Zur Lage
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Cord Brakebusch
- Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Klemens Rottner
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Anika Steffen
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany.
| |
Collapse
|
4
|
Gok E, Unal N, Gungor B, Karakus G, Kaya S, Canturk P, Katin KP. Evaluation of the Anticancer and Biological Activities of Istaroxime via Ex Vivo Analyses, Molecular Docking and Conceptual Density Functional Theory Computations. Molecules 2023; 28:7458. [PMID: 38005181 PMCID: PMC10672917 DOI: 10.3390/molecules28227458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/11/2023] [Accepted: 10/18/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer is a disease that occurs as a result of abnormal or uncontrolled growth of cells due to DNA damage, among many other causes. Certain cancer treatments aim to increase the excess of DNA breaks to such an extent that they cannot escape from the general mechanism of cell checkpoints, leading to the apoptosis of mutant cells. In this study, one of the Sarco-endoplasmic reticulum Ca2+ATPase (SERCA2a) inhibitors, Istaroxime, was investigated. There has been very limited number of articles so far reporting Istaroxime's anticancer activity; thus, we aimed to evaluate the anticancer effects of Istaroxime by cell proliferation assay and revealed the cytotoxic activity of the compound. We further determined the interaction of Istaroxime with topoisomerase enzymes through enzyme activity tests and detailed molecular modeling analysis. Istaroxime exhibited an antiproliferative effect on A549, MCF7, and PC3 cell lines and inhibited Topoisomerase I, suggesting that Istaroxime can act as a Topoisomerase I inhibitor under in vitro conditions. Molecular docking analysis supported the experimental observations. A chemical reactivity analysis of the Istaroxime molecule was made in the light of Density Functional Theory computations. For this aim, important chemical reactivity descriptors such as hardness, electronegativity, and electrophilicity were computed and discussed as detailed.
Collapse
Affiliation(s)
- Ege Gok
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| | - Naz Unal
- Department of Biochemistry, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey; (N.U.); (B.G.)
| | - Burcin Gungor
- Department of Biochemistry, Faculty of Pharmacy, Yeditepe University, 34755 Istanbul, Turkey; (N.U.); (B.G.)
| | - Gulderen Karakus
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| | - Savas Kaya
- Department of Chemistry, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Pakize Canturk
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Sivas Cumhuriyet University, 58140 Sivas, Turkey;
| | - Konstantin P. Katin
- Nanoengineering in Electronics, Spintronics and Photonics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia;
| |
Collapse
|
5
|
El-Tantawy AI, Elmongy EI, Elsaeed SM, Abdel Aleem AAH, Binsuwaidan R, Eisa WH, Salman AU, Elharony NE, Attia NF. Synthesis, Characterization, and Docking Study of Novel Thioureidophosphonate-Incorporated Silver Nanocomposites as Potent Antibacterial Agents. Pharmaceutics 2023; 15:1666. [PMID: 37376114 DOI: 10.3390/pharmaceutics15061666] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Newly synthesized mono- and bis-thioureidophosphonate (MTP and BTP) analogues in eco-friendly conditions were employed as reducing/capping cores for 100, 500, and 1000 mg L-1 of silver nitrate. The physicochemical properties of silver nanocomposites (MTP(BTP)/Ag NCs) were fully elucidated using spectroscopic and microscopic tools. The antibacterial activity of the nanocomposites was screened against six multidrug-resistant pathogenic strains, comparable to ampicillin and ciprofloxacin commercial drugs. The antibacterial performance of BTP was more substantial than MTP, notably with the best minimum inhibitory concentration (MIC) of 0.0781 mg/mL towards Bacillus subtilis, Salmonella typhi, and Pseudomonas aeruginosa. Among all, BTP provided the clearest zone of inhibition (ZOI) of 35 ± 1.00 mm against Salmonella typhi. After the dispersion of silver nanoparticles (AgNPs), MTP/Ag NCs offered dose-dependently distinct advantages over the same nanoparticle with BTP; a more noteworthy decline by 4098 × MIC to 0.1525 × 10-3 mg/mL was recorded for MTP/Ag-1000 against Pseudomonas aeruginosa over BTP/Ag-1000. Towards methicillin-resistant Staphylococcus aureus (MRSA), the as-prepared MTP(BTP)/Ag-1000 displayed superior bactericidal ability in 8 h. Because of the anionic surface of MTP(BTP)/Ag-1000, they could effectively resist MRSA (ATCC-43300) attachment, achieving higher antifouling rates of 42.2 and 34.4% at most optimum dose (5 mg/mL), respectively. The tunable surface work function between MTP and AgNPs promoted the antibiofilm activity of MTP/Ag-1000 by 1.7 fold over BTP/Ag-1000. Lastly, the molecular docking studies affirmed the eminent binding affinity of BTP over MTP-besides the improved binding energy of MTP/Ag NC by 37.8%-towards B. subtilis-2FQT protein. Overall, this study indicates the immense potential of TP/Ag NCs as promising nanoscale antibacterial candidates.
Collapse
Affiliation(s)
- Ahmed I El-Tantawy
- Department of Chemistry, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Elshaymaa I Elmongy
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Shimaa M Elsaeed
- Department of Analysis and Evaluation, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | | | - Reem Binsuwaidan
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Wael H Eisa
- Spectroscopy Department, Physics Division, National Research Centre (NRC), Cairo 12622, Egypt
| | - Ayah Usama Salman
- Department of Botany and Microbiology, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Noura Elsayed Elharony
- Department of Chemistry, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt
| | - Nour F Attia
- Gas Analysis and Fire Safety Laboratory, Chemistry Division, National Institute for Standards, 136, Giza 12211, Egypt
| |
Collapse
|
6
|
Kumar Panda R, Darshana Patra S, Kumar Mohakud N, Ranjan Sahu B, Ghosh M, Misra N, Suar M. Draft genome of clinical isolate Salmonella enterica Typhimurium ms204 from Odisha, India, reveals multi drug resistance and decreased virulent gene expression. Gene 2023; 863:147248. [PMID: 36738898 DOI: 10.1016/j.gene.2023.147248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023]
Abstract
Salmonellosis, a food-borne illnesses caused by enteropathogenic bacterium Salmonella spp., is a continuous concern in both developed and developing countries. This study was carried out to perform an in-depth examination of an MDR Salmonella strain isolated from gastroenteritis patients in Odisha, India, in order to understand the genomic architecture, distribution of pathogenic island regions, and virulence factor diversity. Fecal samples were obtained from individuals with acute gastroenteritis and further subjected to panel of biochemical tests. The IlluminaHiSeq X sequencer system was used to generate whole-genome sequencing. The draft genome was submitted to gene prediction and annotation using RAST annotation system. Pathogenicity Island database and bioinformatics pipeline were used to find Salmonella pathogenicity islands (SPI) from the built scaffold. The gene expression in SPI1 and SPI2 encoded regions was investigated using qRT-PCR. The taxonomic position of Salmonella enterica subsp. enterica serovar Typhimurium was validated by serotype analysis and 16S rRNA based phylogenetic analysis. The de-novo genome assembly showed total length of 5,034,110 bp and produced 37 contigs. There are nine prophage areas, comprising of 12 regions and scaffold 8 contained a single plasmid, IncFIB. The isolate contains six known SPI genes content which was shown to be largely conserved from SPI1 to SPI2. We identified the sit ABCD cluster regulatory cascade and acquired antibiotic resistance genes in S. enterica Typhimurium ms204. Further research may aid in the correct diagnosis and monitoring of MDR Salmonella strains with a variety of physiological activities.
Collapse
Affiliation(s)
| | | | - Nirmal Kumar Mohakud
- Kalinga Institute of Medical Sciences (KIMS), KIIT University, Bhubaneswar 751024, India
| | - Bikash Ranjan Sahu
- Department of Zoology, Centurion University of Technology and Management, India
| | - Mrinmoy Ghosh
- KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar 751024, India
| | - Namrata Misra
- KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India; KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar 751024, India.
| |
Collapse
|
7
|
Mohakud NK, Panda RK, Patra SD, Sahu BR, Ghosh M, Kushwaha GS, Misra N, Suar M. Genome analysis and virulence gene expression profile of a multi drug resistant Salmonella enterica serovar Typhimurium ms202. Gut Pathog 2022; 14:28. [PMID: 35765034 PMCID: PMC9237969 DOI: 10.1186/s13099-022-00498-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/19/2022] [Indexed: 12/01/2022] Open
Abstract
Background In India, multi-drug resistance in Salmonella enterica serovar Typhimurium poses a significant health threat. Indeed, S. Typhimurium has remained unknown for a large portion of its genome associated with various physiological functions including mechanism of drug resistance and virulence. The whole-genome sequence of a Salmonella strain obtained from feces of a patient with gastroenteritis in Odisha, India, was analyzed for understanding the disease association and underlying virulence mechanisms. Results The de novo assembly yielded 17 contigs and showed 99.9% similarity to S. enterica sub sp enterica strain LT2 and S. enteric subsp salamae strain DSM 9220. S. Typhimurium ms202 strain constitutes six known Salmonella pathogenicity islands and nine different phages. The comparative interpretation of pathogenic islands displayed the genes contained in SPI-1 and SPI-2 to be highly conserved. We identified sit ABCD cluster regulatory cascade in SPI-1. Multiple antimicrobial resistance genes were identified that directly implies antibiotic-resistant phenotype. Notably, seven unique genes were identified as "acquired antibiotic resistance". These data suggest that virulence in S. enterica Typhimurium ms202 is associated with SPI-1 and SPI-2. Further, we found several virulent genes encoding SPI regions belonging to type III secretion systems (T3SS) of bacteria were significantly upregulated in ms202 compared to control LT2. Moreover, all these genes were significantly downregulated in S. enterica Typhimurium ms202 as compared to control LT2 on adding Mn2+ exogenously. Conclusions Our study raises a vital concern about the potential diffusion of a novel multi-drug resistant S. enterica Typhimurium ms202. It justifies this clinical pathogen to demonstrate a higher degree survival due to higher expression of virulent genes and enhanced ability of metallic ion acquisition. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-022-00498-w.
Collapse
Affiliation(s)
- Nirmal Kumar Mohakud
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India.,Kalinga Institute of Medical Sciences (KIMS), KIIT University, Bhubaneswar, 751024, India
| | | | | | | | - Mrinmoy Ghosh
- KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar, 751024, India.
| | - Gajraj Singh Kushwaha
- KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar, 751024, India
| | - Namrata Misra
- KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar, 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, KIIT University, Bhubaneswar, 751024, India. .,KIIT-Technology Business Incubator (KIIT-TBI), KIIT University, Bhubaneswar, 751024, India.
| |
Collapse
|
8
|
Bergeron JRC, Marlovits TC. Cryo-EM of the injectisome and type III secretion systems. Curr Opin Struct Biol 2022; 75:102403. [PMID: 35724552 PMCID: PMC10114087 DOI: 10.1016/j.sbi.2022.102403] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/04/2022] [Accepted: 05/16/2022] [Indexed: 11/25/2022]
Abstract
Double-membrane-spanning protein complexes, such as the T3SS, had long presented an intractable challenge for structural biology. As a consequence, until a few years ago, our molecular understanding of this fascinating complex was limited to composite models, consisting of structures of isolated domains, positioned within the overall complex. Most of the membrane-embedded components remained completely uncharacterized. In recent years, the emergence of cryo-electron microscopy (cryo-EM) as a method for determining protein structures to high resolution, has be transformative to our capacity to understand the architecture of this complex, and its mechanism of substrate transport. In this review, we summarize the recent structures of the various T3SS components, determined by cryo-EM, and highlight the regions of the complex that remain to be characterized. We also discuss the recent structural insights into the mechanism of effector transport through the T3SS. Finally, we highlight some of the challenges that remain to be tackled.
Collapse
Affiliation(s)
- Julien R C Bergeron
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK.
| | - Thomas C Marlovits
- Centre for Structural Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
9
|
Cryo-EM structure of the needle filament tip complex of the Salmonella type III secretion injectisome. Proc Natl Acad Sci U S A 2021; 118:2114552118. [PMID: 34706941 DOI: 10.1073/pnas.2114552118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 11/18/2022] Open
Abstract
Type III secretion systems are multiprotein molecular machines required for the virulence of several important bacterial pathogens. The central element of these machines is the injectisome, a ∼5-Md multiprotein structure that mediates the delivery of bacterially encoded proteins into eukaryotic target cells. The injectisome is composed of a cytoplasmic sorting platform, and a membrane-embedded needle complex, which is made up of a multiring base and a needle-like filament that extends several nanometers from the bacterial surface. The needle filament is capped at its distal end by another substructure known as the tip complex, which is crucial for the translocation of effector proteins through the eukaryotic cell plasma membrane. Here we report the cryo-EM structure of the Salmonella Typhimurium needle tip complex docked onto the needle filament tip. Combined with a detailed analysis of structurally guided mutants, this study provides major insight into the assembly and function of this essential component of the type III secretion protein injection machine.
Collapse
|
10
|
Hajra D, Nair AV, Chakravortty D. An elegant nano-injection machinery for sabotaging the host: Role of Type III secretion system in virulence of different human and animal pathogenic bacteria. Phys Life Rev 2021; 38:25-54. [PMID: 34090822 DOI: 10.1016/j.plrev.2021.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 05/23/2021] [Indexed: 01/22/2023]
Abstract
Various Gram-negative bacteria possess a specialized membrane-bound protein secretion system known as the Type III secretion system (T3SS), which transports the bacterial effector proteins into the host cytosol thereby helping in bacterial pathogenesis. The T3SS has a special needle-like translocon that can sense the contact with the host cell membrane and translocate effectors. The export apparatus of T3SS recognizes these effector proteins bound to chaperones and translocates them into the host cell. Once in the host cell cytoplasm, these effector proteins result in modulation of the host system and promote bacterial localization and infection. Using molecular biology, bioinformatics, genetic techniques, electron microscopic studies, and mathematical modeling, the structure and function of the T3SS and the corresponding effector proteins in various bacteria have been studied. The strategies used by different human pathogenic bacteria to modulate the host system and thereby enhance their virulence mechanism using T3SS have also been well studied. Here we review the history, evolution, and general structure of the T3SS, highlighting the details of its comparison with the flagellar export machinery. Also, this article provides mechanistic details about the common role of T3SS in subversion and manipulation of host cellular processes. Additionally, this review describes specific T3SS apparatus and the role of their specific effectors in bacterial pathogenesis by considering several human and animal pathogenic bacteria.
Collapse
Affiliation(s)
- Dipasree Hajra
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | - Abhilash Vijay Nair
- Department of Microbiology & Cell Biology, Indian Institute of Science, India
| | | |
Collapse
|
11
|
Hussain S, Ouyang P, Zhu Y, Khalique A, He C, Liang X, Shu G, Yin L. Type 3 secretion system 1 of Salmonella typhimurium and its inhibitors: a novel strategy to combat salmonellosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34154-34166. [PMID: 33966165 DOI: 10.1007/s11356-021-13986-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Unsuccessful vaccination against Salmonella due to a large number of serovars, and antibiotic resistance, necessitates the development of novel therapeutics to treat salmonellosis. The development of anti-virulence agents against multi-drug-resistant bacteria is a novel strategy because of its non-bacterial feature. Hence, a thorough study of the type three secretion system (T3SS) of Salmonella would help us better understand its role in bacterial pathogenesis and development of anti-virulence agents. However, T3SS can be inhibited by different chemicals at different stages of infection and sequenced delivery of effectors can be blocked to restrict the progression of disease. This review highlights the role of T3SS-1 in the internalization, survival, and replication of Salmonella within the intestinal epithelium and T3SS inhibitors. We concluded that the better we understand the structures and functions of T3SS, the more we have chances to develop anti-virulence agents. Furthermore, greater insights into the T3SS inhibitors of Salmonella would help in the mitigation of the antibiotic resistance problem and would lead us to the era of new therapeutics against salmonellosis.
Collapse
Affiliation(s)
- Sajjad Hussain
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Yingkun Zhu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Abdul Khalique
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Changliang He
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Xiaoxia Liang
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Gang Shu
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China
| | - Lizi Yin
- College of Veterinary Medicine, Sichuan Agriculture University, Huimin Road 211, Wenjiang, Chengdu, China.
| |
Collapse
|
12
|
Sierocki R, Jneid B, Orsini Delgado ML, Plaisance M, Maillère B, Nozach H, Simon S. An antibody targeting type III secretion system induces broad protection against Salmonella and Shigella infections. PLoS Negl Trop Dis 2021; 15:e0009231. [PMID: 33711056 PMCID: PMC7990167 DOI: 10.1371/journal.pntd.0009231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 03/24/2021] [Accepted: 02/11/2021] [Indexed: 11/18/2022] Open
Abstract
Salmonella and Shigella bacteria are food- and waterborne pathogens that are responsible for enteric infections in humans and are still the major cause of morbidity and mortality in the emerging countries. The existence of multiple Salmonella and Shigella serotypes as well as the emergence of strains resistant to antibiotics requires the development of broadly protective therapies. Recently, the needle tip proteins of the type III secretion system of these bacteria were successfully utilized (SipD for Salmonella and IpaD for Shigella) as vaccine immunogens to provide good prophylactic cross-protection in murine models of infections. From these experiments, we have isolated a cross-protective monoclonal antibody directed against a conserved region of both proteins. Its conformational epitope determined by Deep Mutational Scanning is conserved among needle tip proteins of all pathogenic Shigella species and Salmonella serovars, and are well recognized by this antibody. Our study provides the first in vivo experimental evidence of the importance of this common region in the mechanism of virulence of Salmonella and Shigella and opens the way to the development of cross-protective therapeutic agents. Salmonella and Shigella are responsible for gastrointestinal diseases and continue to remain a serious health hazard in South and South-East Asia and African countries, even more with the new emergence of multi drug resistances. Developed vaccines are either not commercialized (for Shigella) or cover only a limited number of serotypes (for Salmonella). There is thus a crucial need to develop cross-protective therapies. By targeting proteins SipD and IpaD belonging respectively to the injectisome of Salmonella and Shigella and necessary to their virulence, we have shown that a monoclonal antibody (mAb) directed against a conserved common region of their apical part provides good cross-protection prophylactic efficacy. We have determined the region targeted by this mAb which could explain why it is conserved among Salmonella and Shigella bacteria.
Collapse
Affiliation(s)
- Raphaël Sierocki
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Bakhos Jneid
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Maria Lucia Orsini Delgado
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Marc Plaisance
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Bernard Maillère
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Hervé Nozach
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Stéphanie Simon
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
13
|
Miletic S, Goessweiner-Mohr N, Marlovits TC. The Structure of the Type III Secretion System Needle Complex. Curr Top Microbiol Immunol 2020; 427:67-90. [PMID: 31667599 DOI: 10.1007/82_2019_178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The type III secretion system (T3SS) is an essential virulence factor of many pathogenic bacterial species including Salmonella, Yersinia, Shigella and enteropathogenic Escherichia coli (EPEC). It is an intricate molecular machine that spans the bacterial membranes and injects effector proteins into target host cells, enabling bacterial infection. The T3SS needle complex comprises of proteinaceous rings supporting a needle filament which extends out into the extracellular environment. It serves as the central conduit for translocating effector proteins. Multiple laboratories have dedicated a remarkable effort to decipher the structure and function of the needle complex. A combination of structural biology techniques such as cryo-electron microscopy (cryoEM), X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and computer modelling have been utilized to study different structural components at progressively higher resolutions. This chapter will provide an overview of the structural details of the T3SS needle complex, shedding light on this essential component of this fascinating bacterial system.
Collapse
Affiliation(s)
- Sean Miletic
- Center for Structural Systems Biology, Institute for Structural and Systems Biology, Universitätsklinikum Hamburg-Eppendorf, 85 Notkestraße, Hamburg, 22607, Germany
| | | | - Thomas C Marlovits
- Center for Structural Systems Biology, Institute for Structural and Systems Biology, Universitätsklinikum Hamburg-Eppendorf, 85 Notkestraße, Hamburg, 22607, Germany.
| |
Collapse
|
14
|
Wu S, Shen Y, Zhang S, Xiao Y, Shi S. Salmonella Interacts With Autophagy to Offense or Defense. Front Microbiol 2020; 11:721. [PMID: 32390979 PMCID: PMC7188831 DOI: 10.3389/fmicb.2020.00721] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/27/2020] [Indexed: 12/20/2022] Open
Abstract
Autophagy is an important component of the innate immune system in mammals. Low levels of basic autophagy are sustained in normal cells, to help with the clearance of aging organelles and misfolded proteins, thus maintaining their structural and functional stability. However, when cells are faced with challenges, such as starvation or pathogenic infection, their level of autophagy increases significantly. Salmonella is a facultative intracellular pathogen, which imposes an economic burden on the poultry farming industry and human public health. Previous studies have shown that Salmonella can induce the autophagy of cells following invasion, which to a certain extent helps to protect the cells from bacterial colonization. This review summarizes the latest research in the field of Salmonella-induced autophagy, including: (i) the autophagy induction and escape mechanisms employed by Salmonella during the infection of host cells; (ii) the effect of autophagy on intracellular Salmonella; (iii) the important autophagy adaptors that recognize intracellular Salmonella in host cells; and (iv) the effect of autophagy-modulating drugs on Salmonella infection.
Collapse
Affiliation(s)
- Shu Wu
- Department of Feed and Nutrition, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China.,Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Yiru Shen
- Department of Feed and Nutrition, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China.,Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, China
| | - Shan Zhang
- Department of Feed and Nutrition, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China.,Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, China
| | - Yunqi Xiao
- Department of Feed and Nutrition, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China.,Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, China
| | - Shourong Shi
- Department of Feed and Nutrition, Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China.,Institute of Effective Evaluation of Feed and Feed Additive (Poultry institute), Ministry of Agriculture, Yangzhou, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Type three secretion system in Salmonella Typhimurium: the key to infection. Genes Genomics 2020; 42:495-506. [PMID: 32112371 DOI: 10.1007/s13258-020-00918-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 02/12/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND Type Three Secretion Systems (T3SS) are nanomachine complexes, which display the ability to inject effector proteins directly into host cells. This skill allows for gram-negative bacteria to modulate several host cell responses, such as cytoskeleton rearrangement, signal transduction, and cytokine production, which in turn increase the pathogenicity of these bacteria. The Salmonella enterica subsp. enterica serovar Typhimurium (ST) T3SS has been the most characterized so far. Among gram-negative bacterium, ST is one of enterica groups predicted to have two T3SSs activated during different phases of infection. OBJECTIVE To comprise current information about ST T3SS structure and function as well as an overview of its assembly and hierarchical regulation. METHODS With a brief and straightforward reading, this review summarized aspects of both ST T3SS, such as its structure and function. That was possible due to the development of novel techniques, such as X-ray crystallography, cryoelectron microscopy, and nano-gold labelling, which also elucidated the mechanisms behind T3SS assembly and regulation, which was addressed in this review. CONCLUSION This paper provided fundamental overview of ST T3SS assembly and regulation, besides summarized the structure and function of this complex. Due to T3SS relevance in ST pathogenicity, this complex could become a potential target in therapeutic studies as this nanomachine modulates the infection process.
Collapse
|
16
|
Dey S, Chakravarty A, Guha Biswas P, De Guzman RN. The type III secretion system needle, tip, and translocon. Protein Sci 2019; 28:1582-1593. [PMID: 31301256 DOI: 10.1002/pro.3682] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 11/06/2022]
Abstract
Many Gram-negative bacteria pathogenic to plants and animals deploy the type III secretion system (T3SS) to inject virulence factors into their hosts. All bacteria that rely on the T3SS to cause infectious diseases in humans have developed antibiotic resistance. The T3SS is an attractive target for developing new antibiotics because it is essential in virulence, and part of its structural component is exposed on the bacterial surface. The structural component of the T3SS is the needle apparatus, which is assembled from over 20 different proteins and consists of a base, an extracellular needle, a tip, and a translocon. This review summarizes the current knowledge on the structure and assembly of the needle, tip, and translocon.
Collapse
Affiliation(s)
- Supratim Dey
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
| | | | | | | |
Collapse
|
17
|
Lou L, Zhang P, Piao R, Wang Y. Salmonella Pathogenicity Island 1 (SPI-1) and Its Complex Regulatory Network. Front Cell Infect Microbiol 2019; 9:270. [PMID: 31428589 PMCID: PMC6689963 DOI: 10.3389/fcimb.2019.00270] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/12/2019] [Indexed: 11/30/2022] Open
Abstract
Salmonella species can infect a diverse range of birds, reptiles, and mammals, including humans. The type III protein secretion system (T3SS) encoded by Salmonella pathogenicity island 1 (SPI-1) delivers effector proteins required for intestinal invasion and the production of enteritis. The T3SS is regarded as the most important virulence factor of Salmonella. SPI-1 encodes transcription factors that regulate the expression of some virulence factors of Salmonella, while other transcription factors encoded outside SPI-1 participate in the expression of SPI-1-encoded genes. SPI-1 genes are responsible for the invasion of host cells, regulation of the host immune response, e.g., the host inflammatory response, immune cell recruitment and apoptosis, and biofilm formation. The regulatory network of SPI-1 is very complex and crucial. Here, we review the function, effectors, and regulation of SPI-1 genes and their contribution to the pathogenicity of Salmonella.
Collapse
Affiliation(s)
- Lixin Lou
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Peng Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Rongli Piao
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States.,Department of Gastroenterology, First Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.,Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
18
|
Rakov AV, Mastriani E, Liu SL, Schifferli DM. Association of Salmonella virulence factor alleles with intestinal and invasive serovars. BMC Genomics 2019; 20:429. [PMID: 31138114 PMCID: PMC6540521 DOI: 10.1186/s12864-019-5809-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The role of Salmonella virulence factor (VF) allelic variation in modulating pathogenesis or host specificity has only been demonstrated in a few cases, mostly through serendipitous findings. Virulence factor (VF) alleles from Salmonella enterica subsp. enterica genomes were compared to identify potential associations with the host-adapted invasive serovars Typhi, Dublin, Choleraesuis, and Gallinarum, and with the broad host-range intestinal serovars Typhimurium, Enteritidis, and Newport. RESULTS Through a bioinformatics analysis of 500 Salmonella genomes, we have identified allelic variants of 70 VFs, many of which are associated with either one of the four host-adapted invasive Salmonella serovars or one of the three broad host-range intestinal serovars. In addition, associations between specific VF alleles and intra-serovar clusters, sequence types (STs) and/or host-adapted FimH adhesins were identified. Moreover, new allelic VF associations with non-typhoidal S. Enteritidis and S. Typhimurium (NTS) or invasive NTS (iNTS) were detected. CONCLUSIONS By analogy to the previously shown association of specific FimH adhesin alleles with optimal binding by host adapted Salmonella serovars, lineages or strains, we predict that some of the identified association of other VF alleles with host-adapted serovars, lineages or strains will reflect specific contributions to host adaptation and/or pathogenesis. The identification of these allelic associations will support investigations of the biological impact of VF alleles and better characterize the role of allelic variation in Salmonella pathogenesis. Most relevant functional experiments will test the potential causal contribution of the detected FimH-associated VF variants in host adapted virulence.
Collapse
Affiliation(s)
- Alexey V. Rakov
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania USA
- Present Address: Somov Institute of Epidemiology and Microbiology, Vladivostok, Russia
| | - Emilio Mastriani
- Systemomics Center, College of Pharmacy, Genomics Research Center, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Shu-Lin Liu
- Systemomics Center, College of Pharmacy, Genomics Research Center, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Harbin Medical University, Harbin, China
- HMU-UCCSM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada
| | - Dieter M. Schifferli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania USA
| |
Collapse
|
19
|
Lara-Tejero M, Galán JE. The Injectisome, a Complex Nanomachine for Protein Injection into Mammalian Cells. EcoSal Plus 2019; 8:10.1128/ecosalplus.ESP-0039-2018. [PMID: 30942149 PMCID: PMC6450406 DOI: 10.1128/ecosalplus.esp-0039-2018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Indexed: 12/20/2022]
Abstract
Type III protein secretion systems (T3SSs), or injectisomes, are multiprotein nanomachines present in many Gram-negative bacteria that have a sustained long-standing close relationship with a eukaryotic host. These secretion systems have evolved to modulate host cellular functions through the activity of the effector proteins they deliver. To reach their destination, T3SS effectors must cross the multibarrier bacterial envelope and the eukaryotic cell membrane. Passage through the bacterial envelope is mediated by the needle complex, a central component of T3SSs that expands both the inner and outer membranes of Gram-negative bacteria. A set of T3SS secreted proteins, known as translocators, form a channel in the eukaryotic plasma membrane through which the effector proteins are delivered to reach the host cell cytosol. While the effector proteins are tailored to the specific lifestyle of the bacterium that encodes them, the injectisome is conserved among the different T3SSs. The central role of T3SSs in pathogenesis and their high degree of conservation make them a desirable target for the development of antimicrobial therapies against several important bacterial pathogens.
Collapse
Affiliation(s)
- Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536
| | - Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536
| |
Collapse
|
20
|
Wagner S, Grin I, Malmsheimer S, Singh N, Torres-Vargas CE, Westerhausen S. Bacterial type III secretion systems: a complex device for the delivery of bacterial effector proteins into eukaryotic host cells. FEMS Microbiol Lett 2018; 365:5068689. [PMID: 30107569 PMCID: PMC6140923 DOI: 10.1093/femsle/fny201] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
Virulence-associated type III secretion systems (T3SS) serve the injection of bacterial effector proteins into eukaryotic host cells. They are able to secrete a great diversity of substrate proteins in order to modulate host cell function, and have evolved to sense host cell contact and to inject their substrates through a translocon pore in the host cell membrane. T3SS substrates contain an N-terminal signal sequence and often a chaperone-binding domain for cognate T3SS chaperones. These signals guide the substrates to the machine where substrates are unfolded and handed over to the secretion channel formed by the transmembrane domains of the export apparatus components and by the needle filament. Secretion itself is driven by the proton motive force across the bacterial inner membrane. The needle filament measures 20-150 nm in length and is crowned by a needle tip that mediates host-cell sensing. Secretion through T3SS is a highly regulated process with early, intermediate and late substrates. A strict secretion hierarchy is required to build an injectisome capable of reaching, sensing and penetrating the host cell membrane, before host cell-acting effector proteins are deployed. Here, we review the recent progress on elucidating the assembly, structure and function of T3SS injectisomes.
Collapse
Affiliation(s)
- Samuel Wagner
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), partner-site Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Iwan Grin
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Silke Malmsheimer
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Nidhi Singh
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Claudia E Torres-Vargas
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| | - Sibel Westerhausen
- University of Tübingen, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany
| |
Collapse
|
21
|
Dey S, Anbanandam A, Mumford BE, De Guzman RN. Characterization of Small-Molecule Scaffolds That Bind to the Shigella Type III Secretion System Protein IpaD. ChemMedChem 2017; 12:1534-1541. [PMID: 28750143 DOI: 10.1002/cmdc.201700348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 07/26/2017] [Indexed: 11/08/2022]
Abstract
Many pathogens such as Shigella and other bacteria assemble the type III secretion system (T3SS) nanoinjector to inject virulence proteins into their target cells to cause infectious diseases in humans. The rise of drug resistance among pathogens that rely on the T3SS for infectivity, plus the dearth of new antibiotics require alternative strategies in developing new antibiotics. The Shigella T3SS tip protein IpaD is an attractive target for developing anti-infectives because of its essential role in virulence and its exposure on the bacterial surface. Currently, the only known small molecules that bind to IpaD are bile salt sterols. In this study we identified four new small-molecule scaffolds that bind to IpaD, based on the methylquinoline, pyrrolidine-aniline, hydroxyindole, and morpholinoaniline scaffolds. NMR mapping revealed potential hotspots in IpaD for binding small molecules. These scaffolds can be used as building blocks in developing small-molecule inhibitors of IpaD that could lead to new anti-infectives.
Collapse
Affiliation(s)
- Supratim Dey
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
| | - Asokan Anbanandam
- Current address: Center for Drug Discovery and Innovation, University of South Florida, 3720 Spectrum Blvd., Suite #303, Tampa, FL, 33612, USA
| | - Ben E Mumford
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
| | - Roberto N De Guzman
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, 66045, USA
| |
Collapse
|
22
|
Barta ML, Shearer JP, Arizmendi O, Tremblay JM, Mehzabeen N, Zheng Q, Battaile KP, Lovell S, Tzipori S, Picking WD, Shoemaker CB, Picking WL. Single-domain antibodies pinpoint potential targets within Shigella invasion plasmid antigen D of the needle tip complex for inhibition of type III secretion. J Biol Chem 2017; 292:16677-16687. [PMID: 28842484 DOI: 10.1074/jbc.m117.802231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/14/2017] [Indexed: 12/18/2022] Open
Abstract
Numerous Gram-negative pathogens infect eukaryotes and use the type III secretion system (T3SS) to deliver effector proteins into host cells. One important T3SS feature is an extracellular needle with an associated tip complex responsible for assembly of a pore-forming translocon in the host cell membrane. Shigella spp. cause shigellosis, also called bacillary dysentery, and invade colonic epithelial cells via the T3SS. The tip complex of Shigella flexneri contains invasion plasmid antigen D (IpaD), which initially regulates secretion and provides a physical platform for the translocon pore. The tip complex represents a promising therapeutic target for many important T3SS-containing pathogens. Here, in an effort to further elucidate its function, we created a panel of single-VH domain antibodies (VHHs) that recognize distinct epitopes within IpaD. These VHHs recognized the in situ tip complex and modulated the infectious properties of Shigella Moreover, structural elucidation of several IpaD-VHH complexes provided critical insights into tip complex formation and function. Of note, one VHH heterodimer could reduce Shigella hemolytic activity by >80%. Our observations along with previous findings support the hypothesis that the hydrophobic translocator (IpaB in Shigella) likely binds to a region within the tip protein that is structurally conserved across all T3SS-possessing pathogens, suggesting potential therapeutic avenues for managing infections by these pathogens.
Collapse
Affiliation(s)
- Michael L Barta
- From the Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - Jonathan P Shearer
- Department of Infectious Diseases and Global Health, Tufts Clinical and Translational Science Institute, North Grafton, Massachusetts 02111
| | - Olivia Arizmendi
- From the Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - Jacqueline M Tremblay
- Department of Infectious Diseases and Global Health, Tufts Clinical and Translational Science Institute, North Grafton, Massachusetts 02111
| | - Nurjahan Mehzabeen
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, and
| | - Qi Zheng
- From the Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - Kevin P Battaile
- IMCA-CAT, Hauptman-Woodward Medical Research Institute, Argonne, Illinois 60439
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, Lawrence, Kansas 66047, and
| | - Saul Tzipori
- Department of Infectious Diseases and Global Health, Tufts Clinical and Translational Science Institute, North Grafton, Massachusetts 02111
| | - William D Picking
- From the Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047
| | - Charles B Shoemaker
- Department of Infectious Diseases and Global Health, Tufts Clinical and Translational Science Institute, North Grafton, Massachusetts 02111
| | - Wendy L Picking
- From the Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047,
| |
Collapse
|
23
|
Glasgow AA, Wong HT, Tullman-Ercek D. A Secretion-Amplification Role for Salmonella enterica Translocon Protein SipD. ACS Synth Biol 2017; 6:1006-1015. [PMID: 28301138 DOI: 10.1021/acssynbio.6b00335] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacterial type III secretion system (T3SS) is an important target for enabling high-titer production of proteins of biotechnological interest as well as for synthetic biology applications that rely on protein delivery to host cells. The T3SS forms a membrane-embedded needle complex that is capped by the translocon proteins and extends into the extracellular space. The needle tip complex in Salmonella enterica consists of three translocon proteins: SipB, SipC, and SipD. It is known that knocking out sipD disrupts T3SS regulation to cause constitutive secretion of native proteins. However, we discovered that complementation of SipD in trans via exogenous addition to T3SS-expressing cultures further improves heterologous protein secretion titers, suggesting a previously unknown but important role for this protein. Building on this knowledge, we have engineered a hyper-secreting strain of S. enterica for a greater than 100-fold improvement in the production of a variety of biotechnologically valuable heterologous proteins that are challenging to produce, such as toxic antimicrobial peptides and proteolysis-prone biopolymer proteins. We determined that transcription by several T3SS promoters is upregulated with the addition of SipD, that the N-terminal domain of SipD is sufficient to observe the increased secretion phenotype, and that the effect is post-transcriptional and post-translational. These results lend support to the use of bacterial secretion as a powerful protein production strategy, and the hypothesis that translocon proteins contribute to type III secretion regulation.
Collapse
Affiliation(s)
- Anum Azam Glasgow
- UC
Berkeley-UCSF Graduate Program in Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Han Teng Wong
- Department
of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720, United States
| | - Danielle Tullman-Ercek
- Department
of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center
for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
24
|
Klein JA, Dave BM, Raphenya AR, McArthur AG, Knodler LA. Functional relatedness in the Inv/Mxi-Spa type III secretion system family. Mol Microbiol 2017; 103:973-991. [PMID: 27997726 DOI: 10.1111/mmi.13602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 01/06/2023]
Abstract
Type III Secretion Systems (T3SSs) are structurally conserved nanomachines that span the inner and outer bacterial membranes, and via a protruding needle complex contact host cell membranes and deliver type III effector proteins. T3SS are phylogenetically divided into several families based on structural basal body components. Here we have studied the evolutionary and functional conservation of four T3SS proteins from the Inv/Mxi-Spa family: a cytosolic chaperone, two hydrophobic translocators that form a plasma membrane-integral pore, and the hydrophilic 'tip complex' translocator that connects the T3SS needle to the translocon pore. Salmonella enterica serovar Typhimurium (S. Typhimurium), a common cause of food-borne gastroenteritis, possesses two T3SSs, one belonging to the Inv/Mxi-Spa family. We used invasion-deficient S. Typhimurium mutants as surrogates for expression of translocator orthologs identified from an extensive phylogenetic analysis, and type III effector translocation and host cell invasion as a readout for complementation efficiency, and identified several Inv/Mxi-Spa orthologs that can functionally substitute for the S. Typhimurium chaperone and translocator proteins. Functional complementation correlates with amino acid sequence identity between orthologs, but varies considerably between the four proteins. This is the first in-depth survey of the functional interchangeability of Inv/Mxi-Spa T3SS proteins acting directly at the host-pathogen interface.
Collapse
Affiliation(s)
- Jessica A Klein
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Biren M Dave
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Amogelang R Raphenya
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Andrew G McArthur
- M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, DeGroote School of Medicine, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Leigh A Knodler
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
25
|
Viala JP, Prima V, Puppo R, Agrebi R, Canestrari MJ, Lignon S, Chauvin N, Méresse S, Mignot T, Lebrun R, Bouveret E. Acylation of the Type 3 Secretion System Translocon Using a Dedicated Acyl Carrier Protein. PLoS Genet 2017; 13:e1006556. [PMID: 28085879 PMCID: PMC5279801 DOI: 10.1371/journal.pgen.1006556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/30/2017] [Accepted: 12/29/2016] [Indexed: 12/18/2022] Open
Abstract
Bacterial pathogens often deliver effectors into host cells using type 3 secretion systems (T3SS), the extremity of which forms a translocon that perforates the host plasma membrane. The T3SS encoded by Salmonella pathogenicity island 1 (SPI-1) is genetically associated with an acyl carrier protein, IacP, whose role has remained enigmatic. In this study, using tandem affinity purification, we identify a direct protein-protein interaction between IacP and the translocon protein SipB. We show, by mass spectrometry and radiolabelling, that SipB is acylated, which provides evidence for a modification of the translocon that has not been described before. A unique and conserved cysteine residue of SipB is identified as crucial for this modification. Although acylation of SipB was not essential to virulence, we show that this posttranslational modification promoted SipB insertion into host-cell membranes and pore-forming activity linked to the SPI-1 T3SS. Cooccurrence of acyl carrier and translocon proteins in several γ- and β-proteobacteria suggests that acylation of the translocon is conserved in these other pathogenic bacteria. These results also indicate that acyl carrier proteins, known for their involvement in metabolic pathways, have also evolved as cofactors of new bacterial protein lipidation pathways. Acyl carrier proteins are small ubiquitous proteins involved in the synthesis of hydrocarbon based molecules. Notably, they are essential for the synthesis of fatty acids, which are the precursors of membrane phospholipids. They can also be involved in secondary metabolism, for example for the synthesis of molecules with antibacterial properties. Although acyl carrier proteins are widespread, the specific role of each individual protein seems comparatively poorly explored. In this study, we investigate the role of an acyl carrier protein genetically associated with a type 3 secretion system (T3SS). Many Gram-negative bacterial pathogens use T3SS to deliver effectors directly into the cytoplasm of eukaryotic host cells and to subvert host cellular pathways. For this purpose, the translocon, which is the terminal part of T3SS, forms a pore inserted into the host-cell membrane. Here we show that the acyl carrier protein associated with the T3SS has specialized to allow acylation of the translocon. The novel posttranslational modification of the translocon that we describe optimizes insertion into the host-cell membrane and pore-forming activity. This mechanism is likely to be conserved in other pathogenic bacteria given the conserved genetic association between T3SS and acyl carrier protein in several bacteria.
Collapse
Affiliation(s)
- Julie P. Viala
- Aix Marseille Univ, CNRS, IMM, LISM, Marseille, France
- * E-mail:
| | - Valérie Prima
- Aix Marseille Univ, CNRS, IMM, LISM, Marseille, France
| | - Rémy Puppo
- Aix Marseille Univ, CNRS, IMM, Proteomic Platform- IBISA, Marseille, France
| | - Rym Agrebi
- Aix Marseille Univ, CNRS, IMM, LCB, Marseille, France
| | | | - Sabrina Lignon
- Aix Marseille Univ, CNRS, IMM, Proteomic Platform- IBISA, Marseille, France
| | | | | | - Tâm Mignot
- Aix Marseille Univ, CNRS, IMM, LCB, Marseille, France
| | - Régine Lebrun
- Aix Marseille Univ, CNRS, IMM, Proteomic Platform- IBISA, Marseille, France
| | | |
Collapse
|
26
|
Abstract
Type III secretion systems (T3SSs) afford Gram-negative bacteria an intimate means of altering the biology of their eukaryotic hosts--the direct delivery of effector proteins from the bacterial cytoplasm to that of the eukaryote. This incredible biophysical feat is accomplished by nanosyringe "injectisomes," which form a conduit across the three plasma membranes, peptidoglycan layer, and extracellular space that form a barrier to the direct delivery of proteins from bacterium to host. The focus of this chapter is T3SS function at the structural level; we will summarize the core findings that have shaped our understanding of the structure and function of these systems and highlight recent developments in the field. In turn, we describe the T3SS secretory apparatus, consider its engagement with secretion substrates, and discuss the posttranslational regulation of secretory function. Lastly, we close with a discussion of the future prospects for the interrogation of structure-function relationships in the T3SS.
Collapse
|
27
|
Murillo I, Martinez-Argudo I, Blocker AJ. Genetic Dissection of the Signaling Cascade that Controls Activation of the Shigella Type III Secretion System from the Needle Tip. Sci Rep 2016; 6:27649. [PMID: 27277624 PMCID: PMC4899799 DOI: 10.1038/srep27649] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 05/24/2016] [Indexed: 01/25/2023] Open
Abstract
Many Gram-negative bacterial pathogens use type III secretion systems (T3SSs) for virulence. The Shigella T3SS consists of a hollow needle, made of MxiH and protruding from the bacterial surface, anchored in both bacterial membranes by multimeric protein rings. Atop the needle lies the tip complex (TC), formed by IpaD and IpaB. Upon physical contact with eukaryotic host cells, T3S is initiated leading to formation of a pore in the eukaryotic cell membrane, which is made of IpaB and IpaC. Through the needle and pore channels, further bacterial proteins are translocated inside the host cell to meditate its invasion. IpaD and the needle are implicated in transduction of the host cell-sensing signal to the T3S apparatus. Furthermore, the sensing-competent TC seems formed of 4 IpaDs topped by 1 IpaB. However, nothing further is known about the activation process. To investigate IpaB’s role during T3SS activation, we isolated secretion-deregulated IpaB mutants using random mutagenesis and a genetic screen. We found ipaB point mutations in leading to defects in secretion activation, which sometimes diminished pore insertion and host cell invasion. We also demonstrated IpaB communicates intramolecularly and intermolecularly with IpaD and MxiH within the TC because mutations affecting these interactions impair signal transduction.
Collapse
Affiliation(s)
- I Murillo
- School of Cellular &Molecular Medicine, University of Bristol, BS8 1TD, Bristol, United Kingdom
| | - I Martinez-Argudo
- School of Cellular &Molecular Medicine, University of Bristol, BS8 1TD, Bristol, United Kingdom.,Área de Genética, Facultad de Ciencias Ambientales y Bioquímica, Universitdad de Castilla-La Mancha, E-45071, Toledo, Spain
| | - A J Blocker
- Schools of Cellular &Molecular Medicine and Biochemistry, University of Bristol, BS8 1TD, Bristol, United Kingdom
| |
Collapse
|
28
|
De Tavernier E, Detalle L, Morizzo E, Roobrouck A, De Taeye S, Rieger M, Verhaeghe T, Correia A, Van Hegelsom R, Figueirido R, Noens J, Steffensen S, Stöhr T, Van de Velde W, Depla E, Dombrecht B. High Throughput Combinatorial Formatting of PcrV Nanobodies for Efficient Potency Improvement. J Biol Chem 2016; 291:15243-55. [PMID: 27226529 DOI: 10.1074/jbc.m115.684241] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 11/06/2022] Open
Abstract
Improving potencies through concomitant blockage of multiple epitopes and avid binding by fusing multiple (different) monovalent Nanobody building blocks via linker sequences into one multivalent polypeptide chain is an elegant alternative to affinity maturation. We explored a large and random formatting library of bivalent (combinations of two identical) and biparatopic (combinations of two different) Nanobodies for functional blockade of Pseudomonas aeruginosa PcrV. PcrV is an essential part of the P. aeruginosa type III secretion system (T3SS), and its oligomeric nature allows for multiple complex binding and blocking options. The library screening yielded a large number of promising biparatopic lead candidates, revealing significant (and non-trivial) preferences in terms of Nanobody building block and epitope bin combinations and orientations. Excellent potencies were confirmed upon further characterization in two different P. aeruginosa T3SS-mediated cytotoxicity assays. Three biparatopic Nanobodies were evaluated in a lethal mouse P. aeruginosa challenge pneumonia model, conferring 100% survival upon prophylactic administration and reducing lung P. aeruginosa burden by up to 2 logs. At very low doses, they protected the mice from P. aeruginosa infection-related changes in lung histology, myeloperoxidase production, and lung weight. Importantly, the most potent Nanobody still conferred protection after therapeutic administration up to 24 h post-infection. The concept of screening such formatting libraries for potency improvement is applicable to other targets and biological therapeutic platforms.
Collapse
Affiliation(s)
| | | | - Erika Morizzo
- From Ablynx N.V., Technologiepark 21, 9052 Ghent, Belgium
| | | | | | - Melanie Rieger
- From Ablynx N.V., Technologiepark 21, 9052 Ghent, Belgium
| | - Tom Verhaeghe
- From Ablynx N.V., Technologiepark 21, 9052 Ghent, Belgium
| | | | | | | | - Jeroen Noens
- From Ablynx N.V., Technologiepark 21, 9052 Ghent, Belgium
| | | | - Thomas Stöhr
- From Ablynx N.V., Technologiepark 21, 9052 Ghent, Belgium
| | | | - Erik Depla
- From Ablynx N.V., Technologiepark 21, 9052 Ghent, Belgium
| | | |
Collapse
|
29
|
McShan AC, Kaur K, Chatterjee S, Knight KM, De Guzman RN. NMR identification of the binding surfaces involved in the Salmonella and Shigella Type III secretion tip-translocon protein-protein interactions. Proteins 2016; 84:1097-107. [PMID: 27093649 DOI: 10.1002/prot.25055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/28/2016] [Accepted: 04/08/2016] [Indexed: 02/04/2023]
Abstract
The type III secretion system (T3SS) is essential for the pathogenesis of many bacteria including Salmonella and Shigella, which together are responsible for millions of deaths worldwide each year. The structural component of the T3SS consists of the needle apparatus, which is assembled in part by the protein-protein interaction between the tip and the translocon. The atomic detail of the interaction between the tip and the translocon proteins is currently unknown. Here, we used NMR methods to identify that the N-terminal domain of the Salmonella SipB translocon protein interacts with the SipD tip protein at a surface at the distal region of the tip formed by the mixed α/β domain and a portion of its coiled-coil domain. Likewise, the Shigella IpaB translocon protein and the IpaD tip protein interact with each other using similar surfaces identified for the Salmonella homologs. Furthermore, removal of the extreme N-terminal residues of the translocon protein, previously thought to be important for the interaction, had little change on the binding surface. Finally, mutations at the binding surface of SipD reduced invasion of Salmonella into human intestinal epithelial cells. Together, these results reveal the binding surfaces involved in the tip-translocon protein-protein interaction and advance our understanding of the assembly of the T3SS needle apparatus. Proteins 2016; 84:1097-1107. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Andrew C McShan
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045
| | - Kawaljit Kaur
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045
| | - Srirupa Chatterjee
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, 63110
| | - Kevin M Knight
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599
| | - Roberto N De Guzman
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, 66045
| |
Collapse
|
30
|
Kaur K, Chatterjee S, De Guzman RN. Characterization of the Shigella and Salmonella Type III Secretion System Tip-Translocon Protein-Protein Interaction by Paramagnetic Relaxation Enhancement. Chembiochem 2016; 17:745-752. [PMID: 26749041 PMCID: PMC4918631 DOI: 10.1002/cbic.201500556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 12/21/2022]
Abstract
Many Gram-negative pathogens, such as Shigella and Salmonella, assemble the type III secretion system (T3SS) to inject virulence proteins directly into eukaryotic cells to initiate infectious diseases. The needle apparatus of the T3SS consists of a base, an extracellular needle, a tip protein complex, and a translocon. The atomic structure of the assembled tip complex and the translocon is unknown. Here, we show by NMR paramagnetic relaxation enhancement (PRE) that the mixed α-β domain at the distal region of the Shigella and Salmonella tip proteins interacts with the N-terminal ectodomain of their major translocon proteins. Our results reveal the binding surfaces involved in the tip-translocon protein-protein interaction and provide insights about the assembly of the needle apparatus of the T3SS.
Collapse
Affiliation(s)
- Kawaljit Kaur
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Srirupa Chatterjee
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | - Roberto N De Guzman
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| |
Collapse
|
31
|
McShan AC, Anbanandam A, Patnaik S, De Guzman RN. Characterization of the Binding of Hydroxyindole, Indoleacetic acid, and Morpholinoaniline to the Salmonella Type III Secretion System Proteins SipD and SipB. ChemMedChem 2016; 11:963-71. [PMID: 26990667 DOI: 10.1002/cmdc.201600065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 03/05/2016] [Indexed: 01/01/2023]
Abstract
Many Gram-negative bacteria require the type III secretion system (T3SS) to cause infectious diseases in humans. A looming public health problem is that all bacterial pathogens that require the T3SS to cause infectious diseases in humans have developed multidrug resistance to current antibiotics. The T3SS is an attractive target for the development of new antibiotics because of its critical role in virulence. An initial step in developing anti-T3SS-based therapeutics is the identification of small molecules that can bind to T3SS proteins. Currently, the only small molecules that are known to bind to the Salmonella T3SS proteins SipD and SipB are bile salts (to SipD) and sphingolipids and cholesterol (to SipB). Herein we report the results of a surface plasmon resonance screen of 288 compounds wherein the binding of 4-morpholinoaniline to SipD, 3-indoleacetic acid to SipB, and 5-hydroxyindole to both SipD and SipB were identified. We also identified by NMR the SipD surfaces involved in binding. These three compounds represent a new class of molecules that can bind to T3SS tip (SipD) and translocon (SipB) proteins that could find use in future drug design.
Collapse
Affiliation(s)
- Andrew C McShan
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS, 66045, USA
| | - Asokan Anbanandam
- Biomolecular NMR Core Facility, University of Kansas, Lawrence, KS, 66045, USA
| | - Sikta Patnaik
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS, 66045, USA
| | - Roberto N De Guzman
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS, 66045, USA.
| |
Collapse
|
32
|
Molecular ruler determines needle length for the Salmonella Spi-1 injectisome. Proc Natl Acad Sci U S A 2015; 112:4098-103. [PMID: 25775540 DOI: 10.1073/pnas.1423492112] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The type-III secretion (T3S) systems of bacteria are part of self-assembling nanomachines: the bacterial flagellum that enables cells to propel themselves through liquid and across hydrated surfaces, and the injectisome that delivers pathogenic effector proteins into eukaryotic host cells. Although the flagellum and injectisome serve different purposes, they are evolutionarily related and share many structural similarities. Core features to these T3S systems are intrinsic length control mechanisms for external cellular projections: the hook of the flagellum and the injectisome needle. We present evidence that the Spi-1 injectisome, like the Salmonella flagellar hook, uses a secreted molecular ruler, InvJ, to determine needle length. This result supports a universal length control mechanism using molecular rulers for T3S systems.
Collapse
|
33
|
Bergeron JRC, Worrall LJ, De S, Sgourakis NG, Cheung AH, Lameignere E, Okon M, Wasney GA, Baker D, McIntosh LP, Strynadka NCJ. The modular structure of the inner-membrane ring component PrgK facilitates assembly of the type III secretion system basal body. Structure 2014; 23:161-172. [PMID: 25533490 DOI: 10.1016/j.str.2014.10.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 10/24/2022]
Abstract
The type III secretion system (T3SS) is a large macromolecular assembly found at the surface of many pathogenic Gram-negative bacteria. Its role is to inject toxic "effector" proteins into the cells of infected organisms. The molecular details of the assembly of this large, multimembrane-spanning complex remain poorly understood. Here, we report structural, biochemical, and functional analyses of PrgK, an inner-membrane component of the prototypical Salmonella typhimurium T3SS. We have obtained the atomic structures of the two ring building globular domains and show that the C-terminal transmembrane helix is not essential for assembly and secretion. We also demonstrate that structural rearrangement of the two PrgK globular domains, driven by an interconnecting linker region, may promote oligomerization into ring structures. Finally, we used electron microscopy-guided symmetry modeling to propose a structural model for the intimately associated PrgH-PrgK ring interaction within the assembled basal body.
Collapse
Affiliation(s)
- Julien R C Bergeron
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Liam J Worrall
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Soumya De
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Nikolaos G Sgourakis
- National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Adrienne H Cheung
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Emilie Lameignere
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mark Okon
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Gregory A Wasney
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - David Baker
- Department of Biochemistry, Department of Genome Sciences, and Howard Hughes Medical Institute, University of Washington, 4000 15th Avenue NE, Seattle, WA 98195, USA
| | - Lawrence P McIntosh
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada; Department of Chemistry, University of British Columbia, 2350 Health Sciences Mall, Vancouver BC, V6T 1Z3, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada; Centre for Blood Research, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
34
|
Cheung M, Shen DK, Makino F, Kato T, Roehrich AD, Martinez-Argudo I, Walker ML, Murillo I, Liu X, Pain M, Brown J, Frazer G, Mantell J, Mina P, Todd T, Sessions RB, Namba K, Blocker AJ. Three-dimensional electron microscopy reconstruction and cysteine-mediated crosslinking provide a model of the type III secretion system needle tip complex. Mol Microbiol 2014; 95:31-50. [PMID: 25353930 PMCID: PMC4539596 DOI: 10.1111/mmi.12843] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2014] [Indexed: 01/14/2023]
Abstract
Type III secretion systems are found in many Gram-negative bacteria. They are activated by contact with eukaryotic cells and inject virulence proteins inside them. Host cell detection requires a protein complex located at the tip of the device's external injection needle. The Shigella tip complex (TC) is composed of IpaD, a hydrophilic protein, and IpaB, a hydrophobic protein, which later forms part of the injection pore in the host membrane. Here we used labelling and crosslinking methods to show that TCs from a ΔipaB strain contain five IpaD subunits while the TCs from wild-type can also contain one IpaB and four IpaD subunits. Electron microscopy followed by single particle and helical image analysis was used to reconstruct three-dimensional images of TCs at ∼ 20 Å resolution. Docking of an IpaD crystal structure, constrained by the crosslinks observed, reveals that TC organisation is different from that of all previously proposed models. Our findings suggest new mechanisms for TC assembly and function. The TC is the only site within these secretion systems targeted by disease-protecting antibodies. By suggesting how these act, our work will allow improvement of prophylactic and therapeutic strategies.
Collapse
Affiliation(s)
- Martin Cheung
- Schools of Cellular & Molecular Medicine and Biochemistry, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rathinavelan T, Lara-Tejero M, Lefebre M, Chatterjee S, McShan AC, Guo DC, Tang C, Galan JE, De Guzman RN. NMR model of PrgI-SipD interaction and its implications in the needle-tip assembly of the Salmonella type III secretion system. J Mol Biol 2014; 426:2958-69. [PMID: 24951833 DOI: 10.1016/j.jmb.2014.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/10/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
Abstract
Salmonella and other pathogenic bacteria use the type III secretion system (T3SS) to inject virulence proteins into human cells to initiate infections. The structural component of the T3SS contains a needle and a needle tip. The needle is assembled from PrgI needle protomers and the needle tip is capped with several copies of the SipD tip protein. How a tip protein docks on the needle is unclear. A crystal structure of a PrgI-SipD fusion protein docked on the PrgI needle results in steric clash of SipD at the needle tip when modeled on the recent atomic structure of the needle. Thus, there is currently no good model of how SipD is docked on the PrgI needle tip. Previously, we showed by NMR paramagnetic relaxation enhancement (PRE) methods that a specific region in the SipD coiled coil is the binding site for PrgI. Others have hypothesized that a domain of the tip protein-the N-terminal α-helical hairpin-has to swing away during the assembly of the needle apparatus. Here, we show by PRE methods that a truncated form of SipD lacking the α-helical hairpin domain binds more tightly to PrgI. Further, PRE-based structure calculations revealed multiple PrgI binding sites on the SipD coiled coil. Our PRE results together with the recent NMR-derived atomic structure of the Salmonella needle suggest a possible model of how SipD might dock at the PrgI needle tip. SipD and PrgI are conserved in other bacterial T3SSs; thus, our results have wider implication in understanding other needle-tip complexes.
Collapse
Affiliation(s)
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Matthew Lefebre
- Department of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Srirupa Chatterjee
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Andrew C McShan
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Da-Chuan Guo
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Chun Tang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Jorge E Galan
- Department of Microbial Pathogenesis, Yale University School of Medicine, 295 Congress Avenue, New Haven, CT 06536, USA
| | - Roberto N De Guzman
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
36
|
Galán JE, Lara-Tejero M, Marlovits TC, Wagner S. Bacterial type III secretion systems: specialized nanomachines for protein delivery into target cells. Annu Rev Microbiol 2014; 68:415-38. [PMID: 25002086 DOI: 10.1146/annurev-micro-092412-155725] [Citation(s) in RCA: 384] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One of the most exciting developments in the field of bacterial pathogenesis in recent years is the discovery that many pathogens utilize complex nanomachines to deliver bacterially encoded effector proteins into target eukaryotic cells. These effector proteins modulate a variety of cellular functions for the pathogen's benefit. One of these protein-delivery machines is the type III secretion system (T3SS). T3SSs are widespread in nature and are encoded not only by bacteria pathogenic to vertebrates or plants but also by bacteria that are symbiotic to plants or insects. A central component of T3SSs is the needle complex, a supramolecular structure that mediates the passage of the secreted proteins across the bacterial envelope. Working in conjunction with several cytoplasmic components, the needle complex engages specific substrates in sequential order, moves them across the bacterial envelope, and ultimately delivers them into eukaryotic cells. The central role of T3SSs in pathogenesis makes them great targets for novel antimicrobial strategies.
Collapse
Affiliation(s)
- Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut 06536;
| | | | | | | |
Collapse
|
37
|
Nothelfer K, Arena ET, Pinaud L, Neunlist M, Mozeleski B, Belotserkovsky I, Parsot C, Dinadayala P, Burger-Kentischer A, Raqib R, Sansonetti PJ, Phalipon A. B lymphocytes undergo TLR2-dependent apoptosis upon Shigella infection. ACTA ACUST UNITED AC 2014; 211:1215-29. [PMID: 24863068 PMCID: PMC4042640 DOI: 10.1084/jem.20130914] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Shigella flexneri interacts with B cells and induces apoptosis via IpaD binding to TLR2. Antibody-mediated immunity to Shigella, the causative agent of bacillary dysentery, requires several episodes of infection to get primed and is short-lasting, suggesting that the B cell response is functionally impaired. We show that upon ex vivo infection of human colonic tissue, invasive S. flexneri interacts with and occasionally invades B lymphocytes. The induction of a type three secretion apparatus (T3SA)–dependent B cell death is observed in the human CL-01 B cell line in vitro, as well as in mouse B lymphocytes in vivo. In addition to cell death occurring in Shigella-invaded CL-01 B lymphocytes, we provide evidence that the T3SA needle tip protein IpaD can induce cell death in noninvaded cells. IpaD binds to and induces B cell apoptosis via TLR2, a signaling receptor thus far considered to result in activation of B lymphocytes. The presence of bacterial co-signals is required to sensitize B cells to apoptosis and to up-regulate tlr2, thus enhancing IpaD binding. Apoptotic B lymphocytes in contact with Shigella-IpaD are detected in rectal biopsies of infected individuals. This study therefore adds direct B lymphocyte targeting to the diversity of mechanisms used by Shigella to dampen the host immune response.
Collapse
Affiliation(s)
- Katharina Nothelfer
- Institut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, FranceInstitut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France
| | - Ellen T Arena
- Institut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, FranceInstitut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France
| | - Laurie Pinaud
- Institut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, FranceInstitut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France Université Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur UPMC, 75013 Paris, France
| | - Michel Neunlist
- INSERM U913, Institut des Maladies de l'Appareil Digestif du Centre Hospitalier Universitaire de Nantes, 44093 Nantes, France
| | - Brian Mozeleski
- Institut Pasteur, INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, 75015 Paris, France Institut Pasteur, INSERM U1041, Unité de Régulation Immunitaire et Vaccinologie, 75015 Paris, France
| | - Ilia Belotserkovsky
- Institut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, FranceInstitut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France
| | - Claude Parsot
- Institut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, FranceInstitut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France
| | | | - Anke Burger-Kentischer
- Molekulare Biotechnologie, Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB, 70569 Stuttgart, Germany
| | - Rubhana Raqib
- Laboratory Sciences Division, International Centre for Diarrhoeal Diseases Research, Bangladesh (ICDDR,B), Dhaka 1000, Bangladesh
| | - Philippe J Sansonetti
- Institut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, FranceInstitut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France Chaire de Microbiologie et Maladies Infectieuses, Collège de France, 75005 Paris, France
| | - Armelle Phalipon
- Institut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, FranceInstitut Pasteur, INSERM U786, Unité de Pathogénie Microbienne Moléculaire, 75015 Paris, France
| |
Collapse
|
38
|
Meghraoui A, Schiavolin L, Allaoui A. Single amino acid substitutions on the needle tip protein IpaD increased Shigella virulence. Microbes Infect 2014; 16:532-9. [PMID: 24726700 DOI: 10.1016/j.micinf.2014.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/22/2014] [Accepted: 03/31/2014] [Indexed: 11/19/2022]
Abstract
Infection of colonic epithelial cells by Shigella is associated with the type III secretion system, which serves as a molecular syringe to inject effectors into host cells. This system includes an extracellular needle used as a conduit for secreted proteins. Two of these proteins, IpaB and IpaD, dock at the needle tip to control secretion and are also involved in the insertion of a translocation pore into host cell membrane allowing effector delivery. To better understand the function of IpaD, we substituted thirteen residues conserved among homologous proteins in other bacterial species. Generated variants were tested for their ability to surface expose IpaB and IpaD, to control secretion, to insert the translocation pore, and to invade host cells. In addition to a first group of seven ipaD variants that behaved similarly to the wild-type strain, we identified a second group with mutations V314D and I319D that deregulated secretion of all effectors, but remained fully invasive. Moreover, we identified a third group with mutations Y153A, T161D, Q165L and Y276A, that exhibited increased levels of translocators secretion, pore formation, and cell entry. Altogether, our results offer a better understanding of the role of IpaD in the control of Shigella virulence.
Collapse
Affiliation(s)
- Alaeddine Meghraoui
- Laboratoire de Bactériologie Moléculaire, Faculté de Médecine, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Bruxelles, Belgium
| | - Lionel Schiavolin
- Laboratoire de Bactériologie Moléculaire, Faculté de Médecine, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Bruxelles, Belgium
| | - Abdelmounaaïm Allaoui
- Laboratoire de Bactériologie Moléculaire, Faculté de Médecine, Université Libre de Bruxelles, Route de Lennik, 808, 1070 Bruxelles, Belgium.
| |
Collapse
|
39
|
Abrusci P, McDowell MA, Lea SM, Johnson S. Building a secreting nanomachine: a structural overview of the T3SS. Curr Opin Struct Biol 2014; 25:111-7. [PMID: 24704748 PMCID: PMC4045390 DOI: 10.1016/j.sbi.2013.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/05/2013] [Accepted: 11/06/2013] [Indexed: 12/21/2022]
Abstract
To fulfill complex biological tasks, such as locomotion and protein translocation, bacteria assemble macromolecular nanomachines. One such nanodevice, the type III secretion system (T3SS), has evolved to provide a means of transporting proteins from the bacterial cytoplasm across the periplasmic and extracellular spaces. T3SS can be broadly classified into two highly homologous families: the flagellar T3SS which drive cell motility, and the non-flagellar T3SS (NF-T3SS) that inject effector proteins into eukaryotic host cells, a trait frequently associated with virulence. Although the structures and symmetries of ancillary components of the T3SS have diversified to match requirements of different species adapted to different niches, recent genetic, molecular and structural studies demonstrate that these systems are built by arranging homologous modular protein assemblies.
Collapse
Affiliation(s)
- Patrizia Abrusci
- Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Melanie A McDowell
- Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, United Kingdom
| | - Susan M Lea
- Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, United Kingdom.
| | - Steven Johnson
- Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
40
|
Burkinshaw BJ, Strynadka NCJ. Assembly and structure of the T3SS. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1649-63. [PMID: 24512838 DOI: 10.1016/j.bbamcr.2014.01.035] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/27/2014] [Accepted: 01/29/2014] [Indexed: 02/06/2023]
Abstract
The Type III Secretion System (T3SS) is a multi-mega Dalton apparatus assembled from more than twenty components and is found in many species of animal and plant bacterial pathogens. The T3SS creates a contiguous channel through the bacterial and host membranes, allowing injection of specialized bacterial effector proteins directly to the host cell. In this review, we discuss our current understanding of T3SS assembly and structure, as well as highlight structurally characterized Salmonella effectors. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Brianne J Burkinshaw
- Department of Biochemistry and Molecular Biology, Center for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology, Center for Blood Research, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
41
|
Barison N, Gupta R, Kolbe M. A sophisticated multi-step secretion mechanism: how the type 3 secretion system is regulated. Cell Microbiol 2013; 15:1809-17. [PMID: 23927570 DOI: 10.1111/cmi.12178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 11/28/2022]
Abstract
Many Gram-negative pathogens utilize type 3 secretion systems (T3SSs) for a successful infection. The T3SS is a large macromolecular complex which spans both bacterial membranes and delivers effector proteins into the host cell. The infection requires spatiotemporal control of diverse sets of secreted effectors and various mechanisms have evolved to regulate T3SS in response to external stimuli. This review will describe mechanisms that may control type 3 secretion, revealing a multi-step regulatory strategy. We then propose an updated model of T3SS that illustrates different stages of secretion and integrates the most recent structural and functional data.
Collapse
Affiliation(s)
- Nicola Barison
- Max-Planck-Institute for Infection Biology, Cellular Microbiology, Charitéplatz 1, 10117, Berlin, Germany
| | | | | |
Collapse
|
42
|
Chaudhury S, Battaile KP, Lovell S, Plano GV, De Guzman RN. Structure of the Yersinia pestis tip protein LcrV refined to 1.65 Å resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 2013; 69:477-81. [PMID: 23695558 PMCID: PMC3660882 DOI: 10.1107/s1744309113008579] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 03/28/2013] [Indexed: 07/19/2023]
Abstract
The human pathogen Yersinia pestis requires the assembly of the type III secretion system (T3SS) for virulence. The structural component of the T3SS contains an external needle and a tip complex, which is formed by LcrV in Y. pestis. The structure of an LcrV triple mutant (K40A/D41A/K42A) in a C273S background has previously been reported to 2.2 Å resolution. Here, the crystal structure of LcrV without the triple mutation in a C273S background is reported at a higher resolution of 1.65 Å. Overall the two structures are similar, but there are also notable differences, particularly near the site of the triple mutation. The refined structure revealed a slight shift in the backbone positions of residues Gly28-Asn43 and displayed electron density in the loop region consisting of residues Ile46-Val63, which was disordered in the original structure. In addition, the helical turn region spanning residues Tyr77-Gln95 adopts a different orientation.
Collapse
Affiliation(s)
- Sukanya Chaudhury
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| | - Kevin P. Battaile
- IMCA-CAT, Hauptman–Woodward Medical Research Institute, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Scott Lovell
- Protein Structure Laboratory, Del Shankel Structural Biology Center, University of Kansas, 2034 Becker Drive, Lawrence, KS 66047, USA
| | - Gregory V. Plano
- Department of Microbiology and Immunology, University of Miami, Miami, FL 33136, USA
| | - Roberto N. De Guzman
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA
| |
Collapse
|
43
|
Chatterjee S, Chaudhury S, McShan AC, Kaur K, De Guzman RN. Structure and biophysics of type III secretion in bacteria. Biochemistry 2013; 52:2508-17. [PMID: 23521714 DOI: 10.1021/bi400160a] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Many plant and animal bacterial pathogens assemble a needle-like nanomachine, the type III secretion system (T3SS), to inject virulence proteins directly into eukaryotic cells to initiate infection. The ability of bacteria to inject effectors into host cells is essential for infection, survival, and pathogenesis for many Gram-negative bacteria, including Salmonella, Escherichia, Shigella, Yersinia, Pseudomonas, and Chlamydia spp. These pathogens are responsible for a wide variety of diseases, such as typhoid fever, large-scale food-borne illnesses, dysentery, bubonic plague, secondary hospital infections, and sexually transmitted diseases. The T3SS consists of structural and nonstructural proteins. The structural proteins assemble the needle apparatus, which consists of a membrane-embedded basal structure, an external needle that protrudes from the bacterial surface, and a tip complex that caps the needle. Upon host cell contact, a translocon is assembled between the needle tip complex and the host cell, serving as a gateway for translocation of effector proteins by creating a pore in the host cell membrane. Following delivery into the host cytoplasm, effectors initiate and maintain infection by manipulating host cell biology, such as cell signaling, secretory trafficking, cytoskeletal dynamics, and the inflammatory response. Finally, chaperones serve as regulators of secretion by sequestering effectors and some structural proteins within the bacterial cytoplasm. This review will focus on the latest developments and future challenges concerning the structure and biophysics of the needle apparatus.
Collapse
Affiliation(s)
- Srirupa Chatterjee
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | |
Collapse
|
44
|
Demers JP, Sgourakis NG, Gupta R, Loquet A, Giller K, Riedel D, Laube B, Kolbe M, Baker D, Becker S, Lange A. The common structural architecture of Shigella flexneri and Salmonella typhimurium type three secretion needles. PLoS Pathog 2013; 9:e1003245. [PMID: 23555258 PMCID: PMC3605151 DOI: 10.1371/journal.ppat.1003245] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/23/2013] [Indexed: 11/25/2022] Open
Abstract
The Type Three Secretion System (T3SS), or injectisome, is a macromolecular infection machinery present in many pathogenic Gram-negative bacteria. It consists of a basal body, anchored in both bacterial membranes, and a hollow needle through which effector proteins are delivered into the target host cell. Two different architectures of the T3SS needle have been previously proposed. First, an atomic model of the Salmonella typhimurium needle was generated from solid-state NMR data. The needle subunit protein, PrgI, comprises a rigid-extended N-terminal segment and a helix-loop-helix motif with the N-terminus located on the outside face of the needle. Second, a model of the Shigella flexneri needle was generated from a high-resolution 7.7-Å cryo-electron microscopy density map. The subunit protein, MxiH, contains an N-terminal α-helix, a loop, another α-helix, a 14-residue-long β-hairpin (Q51–Q64) and a C-terminal α-helix, with the N-terminus facing inward to the lumen of the needle. In the current study, we carried out solid-state NMR measurements of wild-type Shigella flexneri needles polymerized in vitro and identified the following secondary structure elements for MxiH: a rigid-extended N-terminal segment (S2-T11), an α-helix (L12-A38), a loop (E39-P44) and a C-terminal α-helix (Q45-R83). Using immunogold labeling in vitro and in vivo on functional needles, we located the N-terminus of MxiH subunits on the exterior of the assembly, consistent with evolutionary sequence conservation patterns and mutagenesis data. We generated a homology model of Shigella flexneri needles compatible with both experimental data: the MxiH solid-state NMR chemical shifts and the state-of-the-art cryoEM density map. These results corroborate the solid-state NMR structure previously solved for Salmonella typhimurium PrgI needles and establish that Shigella flexneri and Salmonella typhimurium subunit proteins adopt a conserved structure and orientation in their assembled state. Our study reveals a common structural architecture of T3SS needles, essential to understand T3SS-mediated infection and develop treatments. Gram-negative bacteria use a molecular machinery called the Type Three Secretion System (T3SS) to deliver toxic proteins to the host cell. Our research group has recently solved the structure of the extracellular T3SS needle of Salmonella typhimurium. Employing solid-state NMR, we could determine local structure parameters such as dihedral angles and inter-nuclear proximities for this supramolecular assembly. Concurrently, a high-resolution cryo-electron microscopy density map of the T3SS needle of Shigella flexneri was obtained by Fujii et al. Modeling of the Shigella needle subunit protein to fit the EM density produced a model incompatible with the atomic model of the Salmonella needle in terms of secondary structure and subunit orientation. Here, we determined directly the secondary structure of the Shigella needle subunit using solid-state NMR, and its orientation using in vitro and in vivo immunogold labeling in functional needles. We found that Shigella subunits adopt the same secondary structure and orientation as in the atomic model of Salmonella, and we generated a homology model of the Shigella needle consistent with the EM density. Knowing the common T3SS needle architecture is essential for understanding the secretion mechanism and interactions of the needle with other components of the T3SS, and to develop therapeutics.
Collapse
Affiliation(s)
- Jean-Philippe Demers
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Nikolaos G. Sgourakis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Rashmi Gupta
- Department for Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Antoine Loquet
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Karin Giller
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Dietmar Riedel
- Laboratory for Electron Microscopy, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Britta Laube
- Core Facility Microscopy, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Michael Kolbe
- Department for Cellular Microbiology, Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail: (MK); (DB); (SB); (AL)
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- * E-mail: (MK); (DB); (SB); (AL)
| | - Stefan Becker
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- * E-mail: (MK); (DB); (SB); (AL)
| | - Adam Lange
- Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- * E-mail: (MK); (DB); (SB); (AL)
| |
Collapse
|
45
|
Schiavolin L, Meghraoui A, Cherradi Y, Biskri L, Botteaux A, Allaoui A. Functional insights into theShigellatype III needle tip IpaD in secretion control and cell contact. Mol Microbiol 2013; 88:268-82. [DOI: 10.1111/mmi.12185] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Lionel Schiavolin
- Laboratoire de Bactériologie Moléculaire; Faculté de Médecine; Université Libre de Bruxelles; Route de Lennik, 808; 1070; Bruxelles; Belgium
| | - Alaeddine Meghraoui
- Laboratoire de Bactériologie Moléculaire; Faculté de Médecine; Université Libre de Bruxelles; Route de Lennik, 808; 1070; Bruxelles; Belgium
| | - Youness Cherradi
- Laboratoire de Bactériologie Moléculaire; Faculté de Médecine; Université Libre de Bruxelles; Route de Lennik, 808; 1070; Bruxelles; Belgium
| | - Latéfa Biskri
- Laboratoire de Bactériologie Moléculaire; Faculté de Médecine; Université Libre de Bruxelles; Route de Lennik, 808; 1070; Bruxelles; Belgium
| | - Anne Botteaux
- Laboratoire de Bactériologie Moléculaire; Faculté de Médecine; Université Libre de Bruxelles; Route de Lennik, 808; 1070; Bruxelles; Belgium
| | - Abdelmounaaïm Allaoui
- Laboratoire de Bactériologie Moléculaire; Faculté de Médecine; Université Libre de Bruxelles; Route de Lennik, 808; 1070; Bruxelles; Belgium
| |
Collapse
|
46
|
Roehrich AD, Guillossou E, Blocker AJ, Martinez-Argudo I. Shigella IpaD has a dual role: signal transduction from the type III secretion system needle tip and intracellular secretion regulation. Mol Microbiol 2013; 87:690-706. [PMID: 23305090 PMCID: PMC3575693 DOI: 10.1111/mmi.12124] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2012] [Indexed: 12/25/2022]
Abstract
Type III secretion systems (T3SSs) are protein injection devices essential for the interaction of many Gram-negative bacteria with eukaryotic cells. While Shigella assembles its T3SS when the environmental conditions are appropriate for invasion, secretion is only activated after physical contact with a host cell. First, the translocators are secreted to form a pore in the host cell membrane, followed by effectors which manipulate the host cell. Secretion activation is tightly controlled by conserved T3SS components: the needle tip proteins IpaD and IpaB, the needle itself and the intracellular gatekeeper protein MxiC. To further characterize the role of IpaD during activation, we combined random mutagenesis with a genetic screen to identify ipaD mutant strains unable to respond to host cell contact. Class II mutants have an overall defect in secretion induction. They map to IpaD's C-terminal helix and likely affect activation signal generation or transmission. The Class I mutant secretes translocators prematurely and is specifically defective in IpaD secretion upon activation. A phenotypically equivalent mutant was found in mxiC. We show that IpaD and MxiC act in the same intracellular pathway. In summary, we demonstrate that IpaD has a dual role and acts at two distinct locations during secretion activation.
Collapse
Affiliation(s)
- A Dorothea Roehrich
- School of Cellular & Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
47
|
Protein export according to schedule: architecture, assembly, and regulation of type III secretion systems from plant- and animal-pathogenic bacteria. Microbiol Mol Biol Rev 2012; 76:262-310. [PMID: 22688814 DOI: 10.1128/mmbr.05017-11] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Flagellar and translocation-associated type III secretion (T3S) systems are present in most gram-negative plant- and animal-pathogenic bacteria and are often essential for bacterial motility or pathogenicity. The architectures of the complex membrane-spanning secretion apparatuses of both systems are similar, but they are associated with different extracellular appendages, including the flagellar hook and filament or the needle/pilus structures of translocation-associated T3S systems. The needle/pilus is connected to a bacterial translocon that is inserted into the host plasma membrane and mediates the transkingdom transport of bacterial effector proteins into eukaryotic cells. During the last 3 to 5 years, significant progress has been made in the characterization of membrane-associated core components and extracellular structures of T3S systems. Furthermore, transcriptional and posttranscriptional regulators that control T3S gene expression and substrate specificity have been described. Given the architecture of the T3S system, it is assumed that extracellular components of the secretion apparatus are secreted prior to effector proteins, suggesting that there is a hierarchy in T3S. The aim of this review is to summarize our current knowledge of T3S system components and associated control proteins from both plant- and animal-pathogenic bacteria.
Collapse
|
48
|
Kosarewicz A, Königsmaier L, Marlovits TC. The blueprint of the type-3 injectisome. Philos Trans R Soc Lond B Biol Sci 2012; 367:1140-54. [PMID: 22411984 DOI: 10.1098/rstb.2011.0205] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Type-3 secretion systems are sophisticated syringe-like nanomachines present in many animal and plant Gram-negative pathogens. They are capable of translocating an arsenal of specific bacterial toxins (effector proteins) from the prokaryotic cytoplasm across the three biological membranes directly into the eukaryotic cytosol, some of which modulate host cell mechanisms for the benefit of the pathogen. They populate a particular biological niche, which is maintained by specific, pathogen-dependent effectors. In contrast, the needle complex, which is the central component of this specialized protein delivery machine, is structurally well-conserved. It is a large supramolecular cylindrical structure composed of multiple copies of a relatively small subset of proteins, is embedded in the bacterial membranes and protrudes from the pathogen's surface with a needle filament. A central channel traverses the entire needle complex, and serves as a hollow conduit for proteins destined to travel this secretion pathway. In the past few years, there has been a tremendous increase in an understanding on both the structural and the mechanistic level. This review will thus focus on new insights of this remarkable molecular machine.
Collapse
Affiliation(s)
- Agata Kosarewicz
- Research Institute of Molecular Pathology, Dr. Bohr Gasse 7, A-1030 Vienna, Austria
| | | | | |
Collapse
|
49
|
Barta ML, Guragain M, Adam P, Dickenson NE, Patil M, Geisbrecht BV, Picking WL, Picking WD. Identification of the bile salt binding site on IpaD from Shigella flexneri and the influence of ligand binding on IpaD structure. Proteins 2012; 80:935-45. [PMID: 22423359 DOI: 10.1002/prot.23251] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Type III secretion (TTS) is an essential virulence factor for Shigella flexneri, the causative agent of shigellosis. The Shigella TTS apparatus (TTSA) is an elegant nanomachine that is composed of a basal body, an external needle to deliver effectors into human cells, and a needle tip complex that controls secretion activation. IpaD is at the tip of the nascent TTSA needle where it controls the first step of TTS activation. The bile salt deoxycholate (DOC) binds to IpaD to induce recruitment of the translocator protein IpaB into the maturing tip complex. We recently used spectroscopic analyses to show that IpaD undergoes a structural rearrangement that accompanies binding to DOC. Here, we report a crystal structure of IpaD with DOC bound and test the importance of the residues that make up the DOC binding pocket on IpaD function. IpaD binds DOC at the interface between helices α3 and α7, with concomitant movement in the orientation of helix α7 relative to its position in unbound IpaD. When the IpaD residues involved in DOC binding are mutated, some are found to lead to altered invasion and secretion phenotypes. These findings suggest that adoption of a DOC bound structural state for IpaD primes the Shigella TTSA for contact with host cells. The data presented here and in the studies leading up to this work provide the foundation for developing a model of the first step in Shigella TTS activation.
Collapse
Affiliation(s)
- Michael L Barta
- Division of Cell Biology, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Nicklasson M, Sjöling Å, von Mentzer A, Qadri F, Svennerholm AM. Expression of colonization factor CS5 of enterotoxigenic Escherichia coli (ETEC) is enhanced in vivo and by the bile component Na glycocholate hydrate. PLoS One 2012; 7:e35827. [PMID: 22563407 PMCID: PMC3342736 DOI: 10.1371/journal.pone.0035827] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 03/22/2012] [Indexed: 01/07/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is an important cause of acute watery diarrhoea in developing countries. Colonization factors (CFs) on the bacterial surface mediate adhesion to the small intestinal epithelium. Two of the most common CFs worldwide are coli surface antigens 5 and 6 (CS5, CS6). In this study we investigated the expression of CS5 and CS6 in vivo, and the effects of bile and sodium bicarbonate, present in the human gut, on the expression of CS5. Five CS5+CS6 ETEC isolates from adult Bangladeshi patients with acute diarrhoea were studied. The level of transcription from the CS5 operon was approximately 100-fold higher than from the CS6 operon in ETEC bacteria recovered directly from diarrhoeal stool without sub-culturing (in vivo). The glyco-conjugated primary bile salt sodium glycocholate hydrate (NaGCH) induced phenotypic expression of CS5 in a dose-dependent manner and caused a 100-fold up-regulation of CS5 mRNA levels; this is the first description of NaGCH as an enteropathogenic virulence inducer. The relative transcription levels from the CS5 and CS6 operons in the presence of bile or NaGCH in vitro were similar to those in vivo. Another bile salt, sodium deoxycholate (NaDC), previously reported to induce enteropathogenic virulence, also induced expression of CS5, whereas sodium bicarbonate did not.
Collapse
Affiliation(s)
- Matilda Nicklasson
- Institute of Biomedicine, Department of Microbiology and Immunology, University of Gothenburg, Göteborg, Sweden.
| | | | | | | | | |
Collapse
|