1
|
Nguyen TTD, Zayed M, Kim YC, Jeong BH. The First Genetic Characterization of the SPRN Gene in Pekin Ducks ( Anas platyrhynchos domesticus). Animals (Basel) 2024; 14:1588. [PMID: 38891635 PMCID: PMC11171214 DOI: 10.3390/ani14111588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Prion diseases are fatal neurodegenerative disorders characterized by an accumulation of misfolded prion protein (PrPSc) in brain tissues. The shadow of prion protein (Sho) encoded by the shadow of prion protein gene (SPRN) is involved in prion disease progress. The interaction between Sho and PrP accelerates the PrPSc conversion rate while the SPRN gene polymorphisms have been associated with prion disease susceptibility in several species. Until now, the SPRN gene has not been investigated in ducks. We identified the duck SPRN gene sequence and investigated the genetic polymorphisms of 184 Pekin ducks. We compared the duck SPRN nucleotide sequence and the duck Sho protein amino acid sequence with those of several other species. Finally, we predicted the duck Sho protein structure and the effects of non-synonymous single nucleotide polymorphisms (SNPs) using computational programs. We were the first to report the Pekin duck SPRN gene sequence. The duck Sho protein sequence showed 100% identity compared with the chicken Sho protein sequence. We found 27 novel SNPs in the duck SPRN gene. Four amino acid substitutions were predicted to affect the hydrogen bond distribution in the duck Sho protein structure. Although MutPred2 and SNPs&GO predicted that all non-synonymous polymorphisms were neutral or benign, SIFT predicted that four variants, A22T, G49D, A68T, and M105I, were deleterious. To the best of our knowledge, this is the first report about the genetic and structural characteristics of the duck SPRN gene.
Collapse
Affiliation(s)
- Thi-Thuy-Duong Nguyen
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-ro, Iksan 54531, Republic of Korea (M.Z.)
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Mohammed Zayed
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-ro, Iksan 54531, Republic of Korea (M.Z.)
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Surgery, College of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Yong-Chan Kim
- Department of Biological Sciences, Andong National University, Andong 36729, Republic of Korea
| | - Byung-Hoon Jeong
- Korea Zoonosis Research Institute, Jeonbuk National University, 820-120, Hana-ro, Iksan 54531, Republic of Korea (M.Z.)
- Department of Bioactive Material Sciences, Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
2
|
Membrane Domain Localization and Interaction of the Prion-Family Proteins, Prion and Shadoo with Calnexin. MEMBRANES 2021; 11:membranes11120978. [PMID: 34940479 PMCID: PMC8704586 DOI: 10.3390/membranes11120978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/30/2022]
Abstract
The cellular prion protein (PrPC) is renowned for its infectious conformational isoform PrPSc, capable of templating subsequent conversions of healthy PrPCs and thus triggering the group of incurable diseases known as transmissible spongiform encephalopathies. Besides this mechanism not being fully uncovered, the protein’s physiological role is also elusive. PrPC and its newest, less understood paralog Shadoo are glycosylphosphatidylinositol-anchored proteins highly expressed in the central nervous system. While they share some attributes and neuroprotective actions, opposing roles have also been reported for the two; however, the amount of data about their exact functions is lacking. Protein–protein interactions and membrane microdomain localizations are key determinants of protein function. Accurate identification of these functions for a membrane protein, however, can become biased due to interactions occurring during sample processing. To avoid such artifacts, we apply a non-detergent-based membrane-fractionation approach to study the prion protein and Shadoo. We show that the two proteins occupy similarly raft and non-raft membrane fractions when expressed in N2a cells and that both proteins pull down the chaperone calnexin in both rafts and non-rafts. These indicate their possible binding to calnexin in both types of membrane domains, which might be a necessary requisite to aid the inherently unstable native conformation during their lifetime.
Collapse
|
3
|
Mice Treated Subcutaneously with Mouse LPS-Converted PrP res or LPS Alone Showed Brain Gene Expression Profiles Characteristic of Prion Disease. Vet Sci 2021; 8:vetsci8090200. [PMID: 34564594 PMCID: PMC8473295 DOI: 10.3390/vetsci8090200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022] Open
Abstract
Previously, we showed that bacterial lipopolysaccharide (LPS) converts mouse PrPC protein to a beta-rich isoform (moPrPres) resistant to proteinase K. In this study, we aimed to test if the LPS-converted PrPres is infectious and alters the expression of genes related to prion pathology in brains of terminally sick mice. Ninety female FVB/N mice at 5 weeks of age were randomly assigned to 6 groups treated subcutaneously (sc) for 6 weeks either with: (1) Saline (CTR); (2) LPS from Escherichia coli 0111:B4 (LPS), (3) one-time sc administration of de novo generated mouse recombinant prion protein (moPrP; 29-232) rich in beta-sheet by incubation with LPS (moPrPres), (4) LPS plus one-time sc injection of moPrPres, (5) one-time sc injection of brain homogenate from Rocky Mountain Lab (RLM) scrapie strain, and (6) LPS plus one-time sc injection of RML. Results showed that all treatments altered the expression of various genes related to prion disease and neuroinflammation starting at 11 weeks post-infection and more profoundly at the terminal stage. In conclusion, sc administration of de novo generated moPrPres, LPS, and a combination of moPrPres with LPS were able to alter the expression of multiple genes typical of prion pathology and inflammation.
Collapse
|
4
|
Eskandari-Sedighi G, Cortez LM, Yang J, Daude N, Shmeit K, Sim V, Westaway D. Quaternary Structure Changes for PrP Sc Predate PrP C Downregulation and Neuronal Death During Progression of Experimental Scrapie Disease. Mol Neurobiol 2021; 58:375-390. [PMID: 32959170 PMCID: PMC7695655 DOI: 10.1007/s12035-020-02112-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 09/01/2020] [Indexed: 01/20/2023]
Abstract
Prion diseases are fatal neurodegenerative diseases in mammals with the unique characteristics of misfolding and aggregation of the cellular prion protein (PrPC) to the scrapie prion (PrPSc). Although neuroinflammation and neuronal loss feature within the disease process, the details of PrPC/PrPSc molecular transition to generate different aggregated species, and the correlation between each species and sequence of cellular events in disease pathogenesis are not fully understood. In this study, using mice inoculated with the RML isolate of mouse-adapted scrapie as a model, we applied asymmetric flow field-flow fractionation to monitor PrPC and PrPSc particle sizes and we also measured seeding activity and resistance to proteases. For cellular analysis in brain tissue, we measured inflammatory markers and synaptic damage, and used the isotropic fractionator to measure neuronal loss; these techniques were applied at different timepoints in a cross-sectional study of disease progression. Our analyses align with previous reports defining significant decreases in PrPC levels at pre-clinical stages of the disease and demonstrate that these decreases become significant before neuronal loss. We also identified the earliest PrPSc assemblies at a timepoint equivalent to 40% elapsed time for the disease incubation period; we propose that these assemblies, mostly composed of proteinase K (PK)-sensitive species, play an important role in triggering disease pathogenesis. Lastly, we show that the PK-resistant assemblies of PrPSc that appear at timepoints close to the terminal stage have similar biophysical characteristics, and hence that preparative use of PK-digestion selects for this specific subpopulation. In sum, our data argue that qualitative, as well as quantitative, changes in PrP conformers occur at the midpoint of subclinical phase; these changes affect quaternary structure and may occur at the threshold where adaptive responses become inadequate to deal with pathogenic processes.
Collapse
Affiliation(s)
- Ghazaleh Eskandari-Sedighi
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada
| | - Leonardo M Cortez
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - Jing Yang
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada
| | - Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada
| | - Klinton Shmeit
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada
| | - Valerie Sim
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, AB, Canada
| | - David Westaway
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
- Centre for Prions and Protein Folding Diseases, University of Alberta, 204 Brain and Aging Research Building, Edmonton, AB, T6G 2M8, Canada.
| |
Collapse
|
5
|
Louka A, Zacco E, Temussi PA, Tartaglia GG, Pastore A. RNA as the stone guest of protein aggregation. Nucleic Acids Res 2020; 48:11880-11889. [PMID: 33068411 PMCID: PMC7708036 DOI: 10.1093/nar/gkaa822] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/12/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
The study of prions as infectious aggregates dates several decades. From its original formulation, the definition of a prion has progressively changed to the point that many aggregation-prone proteins are now considered bona fide prions. RNA molecules, not included in the original 'protein-only hypothesis', are also being recognized as important factors contributing to the 'prion behaviour', that implies the transmissibility of an aberrant fold. In particular, an association has recently emerged between aggregation and the assembly of prion-like proteins in RNA-rich complexes, associated with both physiological and pathological events. Here, we discuss the historical rising of the concept of prion-like domains, their relation to RNA and their role in protein aggregation. As a paradigmatic example, we present the case study of TDP-43, an RNA-binding prion-like protein associated with amyotrophic lateral sclerosis. Through this example, we demonstrate how the current definition of prions has incorporated quite different concepts making the meaning of the term richer and more stimulating. An important message that emerges from our analysis is the dual role of RNA in protein aggregation, making RNA, that has been considered for many years a 'silent presence' or the 'stone guest' of protein aggregation, an important component of the process.
Collapse
Affiliation(s)
- Alexandra Louka
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London SE5 9RT, UK
| | - Elsa Zacco
- Center for Human Technologies, Central RNA laboratory, Istituto Italiano di Tecnologia, Genova 16152, Italy
| | - Piero Andrea Temussi
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London SE5 9RT, UK
- University “Federico II’’ Napoli, via Cynthia, Napoli 80100, Italy
| | - Gian Gaetano Tartaglia
- Center for Human Technologies, Central RNA laboratory, Istituto Italiano di Tecnologia, Genova 16152, Italy
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain and ICREA, 23 Passeig Lluıs Companys, Barcelona 08010, Spain
- Charles Darwin department of Biology and Biotechnology, Sapienza University of Rome, Piazzale A. Moro 5, Rome 00185, Italy
| | - Annalisa Pastore
- UK Dementia Research Institute at the Maurice Wohl Institute of King's College London, London SE5 9RT, UK
| |
Collapse
|
6
|
Proteasomal Inhibition Redirects the PrP-Like Shadoo Protein to the Nucleus. Mol Neurobiol 2019; 56:7888-7904. [PMID: 31129810 PMCID: PMC6815274 DOI: 10.1007/s12035-019-1623-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/24/2019] [Indexed: 01/08/2023]
Abstract
The Shadoo protein (Sho) exhibits homology to the hydrophobic region of the cellular isoform of prion protein (PrPC). As prion-infected brains gradually accumulate infectivity-associated isoforms of prion protein (PrPSc), levels of mature endogenous Sho become reduced. To study the regulatory effect of the proteostatic network on Sho expression, we investigated the action of lactacystin, MG132, NH4Cl, and 3-methyladenine (3-MA) in two cell culture models. In primary mixed neuronal and glial cell cultures (MNGCs) from transgenic mice expressing wild-type Sho from the PrP gene promoter (Tg.Sprn mice), lactacystin- and MG132-mediated inhibition of proteasomal activity shifted the repertoire of Sho species towards unglycosylated forms appearing in the nuclei; conversely, the autophagic modulators NH4Cl and 3-MA did not affect Sho or PrPC glycosylation patterns. Mouse N2a neuroblastoma cells expressing Sho under control of a housekeeping gene promoter treated with MG132 or lactacystin also showed increased nuclear localization of unglycosylated Sho. As two proteasomal inhibitors tested in two cell paradigms caused redirection of Sho to nuclei at the expense of processing through the secretory pathway, our findings define a balanced shift in subcellular localization that thereby differs from the decreases in net Sho species seen in prion-infected brains. Our data are indicative of a physiological pathway to access Sho functions in the nucleus under conditions of impaired proteasomal activity. We also infer that these conditions would comprise a context wherein Sho’s N-terminal nucleic acid–binding RGG repeat region is brought into play.
Collapse
|
7
|
The function of the cellular prion protein in health and disease. Acta Neuropathol 2018; 135:159-178. [PMID: 29151170 DOI: 10.1007/s00401-017-1790-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/11/2022]
Abstract
The essential role of the cellular prion protein (PrPC) in prion disorders such as Creutzfeldt-Jakob disease is well documented. Moreover, evidence is accumulating that PrPC may act as a receptor for protein aggregates and transduce neurotoxic signals in more common neurodegenerative disorders, such as Alzheimer's disease. Although the pathological roles of PrPC have been thoroughly characterized, a general consensus on its physiological function within the brain has not yet been established. Knockout studies in various organisms, ranging from zebrafish to mice, have implicated PrPC in a diverse range of nervous system-related activities that include a key role in the maintenance of peripheral nerve myelination as well as a general ability to protect against neurotoxic stimuli. Thus, the function of PrPC may be multifaceted, with different cell types taking advantage of unique aspects of its biology. Deciphering the cellular function(s) of PrPC and the consequences of its absence is not simply an academic curiosity, since lowering PrPC levels in the brain is predicted to be a powerful therapeutic strategy for the treatment of prion disease. In this review, we outline the various approaches that have been employed in an effort to uncover the physiological and pathological functions of PrPC. While these studies have revealed important clues about the biology of the prion protein, the precise reason for PrPC's existence remains enigmatic.
Collapse
|
8
|
Abstract
Shadoo (Sho), a member of prion protein family, has been shown to prevent embryonic lethality in Prnp0/0 mice and to be reduced in the brains of rodents with terminal prion diseases. Sho can also affect PrP structural dynamics and can increase the prion conversion into its misfolded isoform (PrPSc), which is amyloidogenic and strictly related to expression, intracellular localization and association of PrPC to lipid rafts. We reasoned that if Sho possesses a natural tendency to convert to amyloid-like forms in vitro, it should be able to exhibit “prion-like” properties, such as PK-resistance and aggregation state, also in live cells. We tested this hypothesis, by different approaches in neuronal cells, finding that Sho shows folding properties partially dependent on lipid rafts integrity whose alteration, as well as proteasomal block, regulated generation of intermediate Sho isoforms and exacerbated its misfolding. Moreover, a 18 kDa isoform of Sho, likely bearing the signal peptide, was targeted to mitochondria by interacting with the molecular chaperone TRAP1 which, in turn controlled Sho dual targeting to ER or mitochondria. Our studies contribute to understand the role of molecular chaperones and of PrP-related folding intermediates in “prion-like” conversion.
Collapse
|
9
|
Mays CE, Soto C. The stress of prion disease. Brain Res 2016; 1648:553-560. [PMID: 27060771 DOI: 10.1016/j.brainres.2016.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/01/2016] [Accepted: 04/05/2016] [Indexed: 01/31/2023]
Abstract
Prion diseases are fatal neurodegenerative disorders that include scrapie of sheep, bovine spongiform encephalopathy of cattle, chronic wasting disease of cervids, and Creutzfeldt-Jakob disease (CJD) of humans. The etiology for prion diseases can be infectious, sporadic, or hereditary. However, the common denominator for all types is the formation of a transmissible agent composed of a β-sheet-rich, misfolded version of the host-encoded prion protein (PrPC), known as PrPSc. PrPSc self-replicates through a template-assisted process that converts the α-helical conformation of PrPC into the disease-associated isoform. In parallel with PrPSc accumulation, spongiform change is pathologically observed in the central nervous system, where "holes" appear because of massive neuronal death. Here, we review the cellular pathways triggered in response to PrPSc formation and accumulation. Available data suggest that neuronal dysfunction and death may be caused by what originates as a cellular pro-survival response to chronic PrPSc accumulation. We also discuss what is known about the complex cross-talk between the endoplasmic reticulum stress components and the quality control pathways. Better knowledge about these processes may lead to innovative therapeutic strategies based on manipulating the stress response and its consequences for neurodegeneration. This article is part of a Special Issue entitled SI:ER stress.
Collapse
Affiliation(s)
- Charles E Mays
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas Houston Medical School, Houston, TX 77030, USA.
| |
Collapse
|
10
|
Daude N, Gapeshina H, Dong B, Winship I, Westaway D. Neuroprotective properties of the PrP-like Shadoo glycoprotein assessed in the middle cerebral artery occlusion model of ischemia. Prion 2016; 9:376-93. [PMID: 26516793 PMCID: PMC4964864 DOI: 10.1080/19336896.2015.1105432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biochemical similarities have been noted between the natively unstructured region of the cellular prion protein, PrPC, and a GPI-linked glycoprotein called Shadoo (Sho); these proteins are encoded by the Prnp and Sprn genes, respectively. Both proteins are expressed in the adult central nervous system and they share overlapping partners, including each other, in interactome studies. As prior studies have ascribed neuroprotective properties to the N-terminal region of PrPC, specifically the octarepeat region, we investigated Sho's neuroprotective properties. To this end we assessed Sho-null (Sprn0/0) and hemizygous (Sprn0/+) mice in the middle cerebral artery occlusion (MCAO) model versus wild type mice and also vs. transgene-rescued Sprn0/0-TgSprn mice. Sprn0/0 mice had a tendency to greater fragility in reaching endpoint and deficits in parameters including infarct volume and neurogenesis, with a reciprocal trend noted in transgene-rescued mice; however these effects did not reach significance. Loss of both PrPC and Sho immunostaining occurred in parallel to neuronal loss on the ipsilateral side of MCAO-lesioned animals; while focal elevations in immunostaining in the penumbra region were sometimes evident for PrPC, they were not noted for Sho. Our studies argue against discernible neuroprotective action of Sho in the genetic backgrounds used for this MCAO paradigm. Whether or not the positively charged N-terminal regions in Sho and PrPC fulfil different roles in vivo remains to be determined.
Collapse
Affiliation(s)
- Nathalie Daude
- a Center for Prion and Protein Folding Diseases; University of Alberta ; Edmonton , AB , Canada
| | - Hristina Gapeshina
- a Center for Prion and Protein Folding Diseases; University of Alberta ; Edmonton , AB , Canada
| | - Bin Dong
- b Neurochemical Research Unit; University of Alberta ; Edmonton , AB , Canada
| | - Ian Winship
- b Neurochemical Research Unit; University of Alberta ; Edmonton , AB , Canada
| | - David Westaway
- a Center for Prion and Protein Folding Diseases; University of Alberta ; Edmonton , AB , Canada
| |
Collapse
|
11
|
Zhao H, Wang SQ, Qing LL, Liu LL, Zhang YP. Expression of BSE-associated proteins in the CNS and lymphoreticular tissues of cattle and buffalo. Sci Bull (Beijing) 2016. [DOI: 10.1007/s11434-016-1130-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Li Q, Richard CA, Moudjou M, Vidic J. Purification and Refolding to Amyloid Fibrils of (His)6-tagged Recombinant Shadoo Protein Expressed as Inclusion Bodies in E. coli. J Vis Exp 2015:e53432. [PMID: 26709825 DOI: 10.3791/53432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The Escherichia coli expression system is a powerful tool for the production of recombinant eukaryotic proteins. We use it to produce Shadoo, a protein belonging to the prion family. A chromatographic method for the purification of (His)6-tagged recombinant Shadoo expressed as inclusion bodies is described. The inclusion bodies are solubilized in 8 M urea and bound to a Ni(2+)-charged column to perform ion affinity chromatography. Bound proteins are eluted by a gradient of imidazole. Fractions containing Shadoo protein are subjected to size exclusion chromatography to obtain a highly purified protein. In the final step purified Shadoo is desalted to remove salts, urea and imidazole. Recombinant Shadoo protein is an important reagent for biophysical and biochemical studies of protein conformation disorders occurring in prion diseases. Many reports demonstrated that prion neurodegenerative diseases originate from the deposition of stable, ordered amyloid fibrils. Sample protocols describing how to fibrillate Shadoo into amyloid fibrils at acidic and neutral/basic pHs are presented. The methods on how to produce and fibrillate Shadoo can facilitate research in laboratories working on prion diseases, since it allows for production of large amounts of protein in a rapid and low cost manner.
Collapse
|
13
|
Prion Infectivity Plateaus and Conversion to Symptomatic Disease Originate from Falling Precursor Levels and Increased Levels of Oligomeric PrPSc Species. J Virol 2015; 89:12418-26. [PMID: 26423957 DOI: 10.1128/jvi.02142-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/25/2015] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED In lethal prion neurodegenerative diseases, misfolded prion proteins (PrP(Sc)) replicate by redirecting the folding of the cellular prion glycoprotein (PrP(C)). Infections of different durations can have a subclinical phase with constant levels of infectious particles, but the mechanisms underlying this plateau and a subsequent exit to overt clinical disease are unknown. Using tandem biophysical techniques, we show that attenuated accumulation of infectious particles in presymptomatic disease is preceded by a progressive fall in PrP(C) level, which constricts replication rate and thereby causes the plateau effect. Furthermore, disease symptoms occurred at the threshold associated with increasing levels of small, relatively less protease-resistant oligomeric prion particles (oPrP(Sc)). Although a hypothetical lethal isoform of PrP cannot be excluded, our data argue that diminishing residual PrP(C) levels and continuously increasing levels of oPrP(Sc) are crucial determinants in the transition from presymptomatic to symptomatic prion disease. IMPORTANCE Prions are infectious agents that cause lethal brain diseases; they arise from misfolding of a cell surface protein, PrP(C) to a form called PrP(Sc). Prion infections can have long latencies even though there is no protective immune response. Accumulation of infectious prion particles has been suggested to always reach the same plateau in the brain during latent periods, with clinical disease only occurring when hypothetical toxic forms (called PrP(L) or TPrP) begin to accumulate. We show here that infectivity plateaus arise because PrP(C) precursor levels become downregulated and that the duration of latent periods can be accounted for by the level of residual PrP(C), which transduces a toxic effect, along with the amount of oligomeric forms of PrP(Sc).
Collapse
|
14
|
Ciric D, Richard CA, Moudjou M, Chapuis J, Sibille P, Daude N, Westaway D, Adrover M, Béringue V, Martin D, Rezaei H. Interaction between Shadoo and PrP Affects the PrP-Folding Pathway. J Virol 2015; 89:6287-93. [PMID: 25855735 PMCID: PMC4474288 DOI: 10.1128/jvi.03429-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/27/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Prion diseases are characterized by conformational changes of a cellular prion protein (PrP(C)) into a β-sheet-enriched and aggregated conformer (PrP(Sc)). Shadoo (Sho), a member of the prion protein family, is expressed in the central nervous system (CNS) and is highly conserved among vertebrates. On the basis of histoanatomical colocalization and sequence similarities, it is suspected that Sho and PrP may be functionally related. The downregulation of Sho expression during prion pathology and the direct interaction between Sho and PrP, as revealed by two-hybrid analysis, suggest a relationship between Sho and prion replication. Using biochemical and biophysical approaches, we demonstrate that Sho forms a 1:1 complex with full-length PrP with a dissociation constant in the micromolar range, and this interaction consequently modifies the PrP-folding pathway. Using a truncated PrP that mimics the C-terminal C1 fragment, an allosteric binding behavior with a Hill number of 4 was observed, suggesting that at least a tetramerization state occurs. A cell-based prion titration assay performed with different concentrations of Sho revealed an increase in the PrP(Sc) conversion rate in the presence of Sho. Collectively, our observations suggest that Sho can affect the prion replication process by (i) acting as a holdase and (ii) interfering with the dominant-negative inhibitor effect of the C1 fragment. IMPORTANCE Since the inception of the prion theory, the search for a cofactor involved in the conversion process has been an active field of research. Although the PrP interactome presents a broad landscape, candidates corresponding to specific criteria for cofactors are currently missing. Here, we describe for the first time that Sho can affect PrP structural dynamics and therefore increase the prion conversion rate. A biochemical characterization of Sho-PrP indicates that Sho acts as an ATP-independent holdase.
Collapse
Affiliation(s)
- Danica Ciric
- National Institute for Agricultural Research (INRA), Pathological Macro-Assemblies and Prion Pathology Group (MAP), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Charles-Adrien Richard
- National Institute for Agricultural Research (INRA), Pathological Macro-Assemblies and Prion Pathology Group (MAP), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Mohammed Moudjou
- National Institute for Agricultural Research (INRA), Pathological Macro-Assemblies and Prion Pathology Group (MAP), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Jérôme Chapuis
- National Institute for Agricultural Research (INRA), Pathological Macro-Assemblies and Prion Pathology Group (MAP), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Pierre Sibille
- National Institute for Agricultural Research (INRA), Pathological Macro-Assemblies and Prion Pathology Group (MAP), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Nathalie Daude
- University of Alberta, Centre for Prion and Protein Folding Diseases, Research in Neurodegenerative Diseases, Edmonton, AB, Canada
| | - David Westaway
- University of Alberta, Centre for Prion and Protein Folding Diseases, Research in Neurodegenerative Diseases, Edmonton, AB, Canada
| | - Miguel Adrover
- Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Departament de Química, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Vincent Béringue
- National Institute for Agricultural Research (INRA), Pathological Macro-Assemblies and Prion Pathology Group (MAP), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Davy Martin
- National Institute for Agricultural Research (INRA), Pathological Macro-Assemblies and Prion Pathology Group (MAP), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| | - Human Rezaei
- National Institute for Agricultural Research (INRA), Pathological Macro-Assemblies and Prion Pathology Group (MAP), UR892, Virologie Immunologie Moléculaires, Jouy-en-Josas, France
| |
Collapse
|
15
|
Qing LL, Zhao H, Liu LL. Progress on low susceptibility mechanisms of transmissible spongiform encephalopathies. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 35:436-45. [PMID: 25297084 DOI: 10.13918/j.issn.2095-8137.2014.5.436] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are a group of fatal neurodegenerative diseases detected in a wide range of mammalian species. The "protein-only" hypothesis of TSE suggests that prions are transmissible particles devoid of nucleic acid and the primary pathogenic event is thought to be the conversion of cellular prion protein (PrP(C)) into the disease-associated isoform (PrP(Sc)). According to susceptibility to TSEs, animals can be classified into susceptible species and low susceptibility species. In this review we focus on several species with low susceptibility to TSEs: dogs, rabbits, horses and buffaloes. We summarize recent studies into the characteristics of low susceptibility regarding protein structure, and biochemical and genetic properties.
Collapse
Affiliation(s)
- Li-Li Qing
- Laboratory of Conservation and Utilization of Bio-resources, Yunnan University, Kunming 650091, China
| | - Hui Zhao
- Laboratory of Conservation and Utilization of Bio-resources, Yunnan University, Kunming 650091, China.
| | - Lin-Lin Liu
- Laboratory of Conservation and Utilization of Bio-resources, Yunnan University, Kunming 650091, China
| |
Collapse
|
16
|
Sakudo A, Onodera T. Prion protein (PrP) gene-knockout cell lines: insight into functions of the PrP. Front Cell Dev Biol 2015; 2:75. [PMID: 25642423 PMCID: PMC4295555 DOI: 10.3389/fcell.2014.00075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 12/22/2014] [Indexed: 11/13/2022] Open
Abstract
Elucidation of prion protein (PrP) functions is crucial to fully understand prion diseases. A major approach to studying PrP functions is the use of PrP gene-knockout (Prnp (-/-)) mice. So far, six types of Prnp (-/-) mice have been generated, demonstrating the promiscuous functions of PrP. Recently, other PrP family members, such as Doppel and Shadoo, have been found. However, information obtained from comparative studies of structural and functional analyses of these PrP family proteins do not fully reveal PrP functions. Recently, varieties of Prnp (-/-) cell lines established from Prnp (-/-) mice have contributed to the analysis of PrP functions. In this mini-review, we focus on Prnp (-/-) cell lines and summarize currently available Prnp (-/-) cell lines and their characterizations. In addition, we introduce the recent advances in the methodology of cell line generation with knockout or knockdown of the PrP gene. We also discuss how these cell lines have provided valuable insights into PrP functions and show future perspectives.
Collapse
Affiliation(s)
- Akikazu Sakudo
- Laboratory of Biometabolic Chemistry, Faculty of Medicine, School of Health Sciences, University of the Ryukyus Nishihara, Japan
| | - Takashi Onodera
- Research Center for Food Safety, School of Agricultural and Life Sciences, University of Tokyo Tokyo, Japan
| |
Collapse
|
17
|
Li S, Ju C, Han C, Li Z, Liu W, Ye X, Xu J, Xulong L, Wang X, Chen Z, Meng K, Wan J. Unchanged survival rates of Shadoo knockout mice after infection with mouse-adapted scrapie. Prion 2014; 8:339-43. [PMID: 25495671 DOI: 10.4161/19336896.2014.971574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Previous studies have demonstrated that Shadoo (Sho), a GPI-linked glycoprotein encoded by the Sprn gene with a membrane localization similar to PrP(C), is reduced in the brains of rodents with terminal prion disease. To determine the functional significance of Sho in prion disease pathogenesis, Sho-deficient mice were generated by gene targeting. Sho knockout and control wild-type (WT) mice were infected with themouse-adapted scrapie strains 22L or RML. No significant differences in survival, the incubation period of prion disease or other disease features were observed between Sho mutant and WT mice. In this model of prion disease, Sho removal had no effect on disease pathogenesis.
Collapse
Affiliation(s)
- Sha Li
- a Institute of Military Veterinary; Academy of Military Medical Science ; Changchun , China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Tsangaras K, Kolokotronis SO, Ulrich RG, Morand S, Michaux J, Greenwood AD. Negative Purifying Selection Drives Prion and Doppel Protein Evolution. J Mol Evol 2014; 79:12-20. [DOI: 10.1007/s00239-014-9632-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 07/03/2014] [Indexed: 12/16/2022]
|
19
|
Yang X, Zhang Y, Zhang L, He T, Zhang J, Li C. Prion protein and cancers. Acta Biochim Biophys Sin (Shanghai) 2014; 46:431-40. [PMID: 24681883 DOI: 10.1093/abbs/gmu019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The normal cellular prion protein, PrP(C) is a highly conserved and widely expressed cell surface glycoprotein in all mammals. The expression of PrP is pivotal in the pathogenesis of prion diseases; however, the normal physiological functions of PrP(C) remain incompletely understood. Based on the studies in cell models, a plethora of functions have been attributed to PrP(C). In this paper, we reviewed the potential roles that PrP(C) plays in cell physiology and focused on its contribution to tumorigenesis.
Collapse
Affiliation(s)
- Xiaowen Yang
- Department of the First Abdominal Surgery, Jiangxi Tumor Hospital, Nanchang 330029, China
| | - Yan Zhang
- Department of Molecular Endocrinology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Lihua Zhang
- Department of Pathology, Zhongda Hospital, Southeast University, Nanjing 210009, China
| | - Tianlin He
- Department of General Surgery, Changhai Hospital of Second Military Medical University, Shanghai 200433, China
| | - Jie Zhang
- Department of Stomatology, The First Affiliated Hospital of Shihezi University Medical College, Shihezi 832000, China
| | - Chaoyang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| |
Collapse
|
20
|
Wang S, Zhao H, Zhang Y. Advances in research on Shadoo, shadow of prion protein. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0129-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Mays CE, Kim C, Haldiman T, van der Merwe J, Lau A, Yang J, Grams J, Di Bari MA, Nonno R, Telling GC, Kong Q, Langeveld J, McKenzie D, Westaway D, Safar JG. Prion disease tempo determined by host-dependent substrate reduction. J Clin Invest 2014; 124:847-58. [PMID: 24430187 DOI: 10.1172/jci72241] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/07/2013] [Indexed: 01/01/2023] Open
Abstract
The symptoms of prion infection can take years or decades to manifest following the initial exposure. Molecular markers of prion disease include accumulation of the misfolded prion protein (PrPSc), which is derived from its cellular precursor (PrPC), as well as downregulation of the PrP-like Shadoo (Sho) glycoprotein. Given the overlapping cellular environments for PrPC and Sho, we inferred that PrPC levels might also be altered as part of a host response during prion infection. Using rodent models, we found that, in addition to changes in PrPC glycosylation and proteolytic processing, net reductions in PrPC occur in a wide range of prion diseases, including sheep scrapie, human Creutzfeldt-Jakob disease, and cervid chronic wasting disease. The reduction in PrPC results in decreased prion replication, as measured by the protein misfolding cyclic amplification technique for generating PrPSc in vitro. While PrPC downregulation is not discernible in animals with unusually short incubation periods and high PrPC expression, slowly evolving prion infections exhibit downregulation of the PrPC substrate required for new PrPSc synthesis and as a receptor for pathogenic signaling. Our data reveal PrPC downregulation as a previously unappreciated element of disease pathogenesis that defines the extensive, presymptomatic period for many prion strains.
Collapse
|
22
|
Zhang J, Guo Y, Xie WL, Xu Y, Ren K, Shi Q, Zhang BY, Chen C, Tian C, Gao C, Dong XP. Disruption of glycosylation enhances ubiquitin-mediated proteasomal degradation of Shadoo in Scrapie-infected rodents and cultured cells. Mol Neurobiol 2014; 49:1373-84. [PMID: 24390475 DOI: 10.1007/s12035-013-8612-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 12/08/2013] [Indexed: 01/06/2023]
Abstract
Shadoo (Sho) is an N-glycosylated glycophosphatidylinositol-anchored protein that is expressed in the brain and exhibits neuroprotective properties. Recently, research has shown that a reduction of Sho levels may reflect the presence of PrPSc in the brain. However, the possible mechanism by which prion infection triggers down-regulation of Sho remains unclear. In the present study, Western blot and immunohistochemical assays revealed that Sho, especially glycosylated Sho, declined markedly in the brains of five scrapie agent-infected hamsters and mice at the terminal stages. Analyses of the down-regulation of Sho levels with the emergence of PrPSc C2 proteolytic fragments did not identify close association in all tested scrapie-infected models. To further investigate the mechanism of depletion of Sho in prion disease, a Sho-expressing plasmid with HA tag was introduced into a scrapie-infected cell line, SMB-S15, and its normal cell line, SMB-PS. Western blot assay revealed dramatically decreased Sho in SMB-S15 cells, especially its glycosylated form. Proteasome inhibitor MG132 reversed the decrease of nonglycosylated Sho, but had little effect on glycosylated Sho. N-acetylglucosamine transferase inhibitor tunicamycin efficiently reduced the glycosylations of Sho and PrPC in SMB-PS cells, while two other endoplasmic reticulum stress inducers showed clear inhibition of diglycosylated PrPC, but did not change the expression level and profile of Sho. Furthermore, immunoprecipitation of HA-Sho illustrated ubiquitination of Sho in SMB-S15 cells, but not in SMB-PS cells. We propose that the depletions of Sho in scrapie-infected cell lines due to inhibition of glycosylation mediate protein destabilization and subsequently proteasome degradation after modification by ubiquitination.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases (Zhejiang University), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Chang-Bai Road 155, Beijing, 102206, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mays CE, Coomaraswamy J, Watts JC, Yang J, Ko KW, Strome B, Mercer RC, Wohlgemuth SL, Schmitt-Ulms G, Westaway D. Endoproteolytic processing of the mammalian prion glycoprotein family. FEBS J 2013; 281:862-76. [DOI: 10.1111/febs.12654] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/25/2013] [Accepted: 11/19/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Charles E. Mays
- Centre for Prions and Protein Folding Diseases; University of Alberta; Edmonton Canada
| | | | - Joel C. Watts
- Department of Biochemistry and Tanz Centre for Research in Neurodegenerative Diseases; University of Toronto; ON Canada
| | - Jing Yang
- Centre for Prions and Protein Folding Diseases; University of Alberta; Edmonton Canada
| | - Kerry W.S. Ko
- Centre for Prions and Protein Folding Diseases; University of Alberta; Edmonton Canada
| | - Bob Strome
- Department of Biochemistry and Tanz Centre for Research in Neurodegenerative Diseases; University of Toronto; ON Canada
| | - Robert C.C. Mercer
- Centre for Prions and Protein Folding Diseases; University of Alberta; Edmonton Canada
| | - Serene L. Wohlgemuth
- Centre for Prions and Protein Folding Diseases; University of Alberta; Edmonton Canada
| | - Gerold Schmitt-Ulms
- Department of Biochemistry and Tanz Centre for Research in Neurodegenerative Diseases; University of Toronto; ON Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases; University of Alberta; Edmonton Canada
- Division of Neurology; Department of Biochemistry; University of Alberta; Edmonton Canada
| |
Collapse
|
24
|
Li Q, Chevalier C, Henry C, Richard CA, Moudjou M, Vidic J. Shadoo binds lipid membranes and undergoes aggregation and fibrillization. Biochem Biophys Res Commun 2013; 438:519-25. [PMID: 23911790 DOI: 10.1016/j.bbrc.2013.07.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
Lipid membrane can enhance prion protein (PrP) pathological fibrillogenesis. A neuronal paralog of PrP, named Shadoo (Sho), is localized to similar membrane environment as PrP and can also convert to amyloid-like fibrilles. To gain insight into the role of Sho in prion diseases, we studied Sho interactions with cellular membrane models. Sho was found to bind anionic lipid vesicles. Spectroscopic and microscopic data showed that membrane-associated Sho slowly converted into amyloid fibers. Furthermore, binding of Sho to anionic liposomes has a disruptive effect on the integrity of the lipid bilayer leading to the formation of supramolecular lipid-protein complexes. In consequence, the role of Sho in prion diseases might depend on the oligomerization state of Sho but also the nature of these lipoprotein assembles.
Collapse
Affiliation(s)
- Qiaojing Li
- Virologie et Immunologie Moléculaires - INRA, Jouy en Josas, France
| | | | | | | | | | | |
Collapse
|
25
|
Introduction: Invited Speakers. Prion 2013; 7:1-9. [PMID: 29095078 PMCID: PMC4031666 DOI: 10.4161/pri.26105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The Alberta Prion Research Institute, part of Alberta Innovates Bio Solutions, is proud to host the world's largest international prion research congress, PRION 2013: Conquering Frontiers, in Banff, Alberta, Canada from May 26-29, 2013. PRION 2013 will be only the second time this international meeting has been held outside of Europe since it began in 2004. The PRION 2013 International Scientific Advisory Committee includes leading international scholars and policy advisors in both human and animal protein misfolding research from 12 countries: Australia, Brazil, Canada, China, England, France, Germany, Japan, The Netherlands, Scotland, Spain and the United States. Prion and protein misfolding science can inform policy, risk management and mitigation, diagnoses and potential treatments in a range of areas from wildlife management to human dementias and neurodegenerative diseases. Compelling evidence is emerging that prion-like mechanisms may underlie a number of the human neurodegenerative diseases and dementias, providing the opportunity to seek out new treatments and for the cross-fertilization of ideas between the two related fields. This approach will be highlighted at PRION 2013. The theme of PRION 2013 is "Conquering Frontiers." It will be a continuation of the science covered in previous meetings with an emphasis on looking toward investigations in the new frontiers created by the relationships between prion diseases and human neurodegenerative diseases and dementias. The four-day session features scientific talks, workshops and posters on the following themes: Prion and Prion-like Diseases in Humans; Prion Diseases in Animals; Protein Structure and Biology; and Socioeconomic Impacts. The knowledge exchange that will take place at PRION 2013 will help to shape the future of prion and protein misfolding research and its application around the world.
Collapse
|
26
|
Zhao H, Liu LL, Du SH, Wang SQ, Zhang YP. Comparative analysis of the Shadoo gene between cattle and buffalo reveals significant differences. PLoS One 2012; 7:e46601. [PMID: 23071594 PMCID: PMC3468620 DOI: 10.1371/journal.pone.0046601] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/01/2012] [Indexed: 12/03/2022] Open
Abstract
Background While prions play a central role in the pathogenesis of transmissible spongiform encephalopathies, the biology of these proteins and the pathophysiology of these diseases remain largely unknown. Since no case of bovine spongiform encephalopathy (BSE) has ever been reported in buffalo despite their phylogenetic proximity to cattle, genetic differences may be driving the different susceptibilities of these two species to BSE. We thus hypothesized that differences in expression of the most recently identified member of the prion family or Shadoo (SPRN) gene may relate to these species-specific differences. Principal Findings We first analyzed and compared the polymorphisms of the SPRN gene (∼4.4 kb), including the putative promoter, coding and 3′ regions, and further verified the entire ORF and putative promoter. This yielded a total of 117 fixed differences, remarkably: 1) a 12-bp insertion/deletion polymorphism in the hydrophobic domain of the cattle but not buffalo gene, introducing a four amino acid expansion/contraction in a series of 5 tandem Ala/Gly-containing repeats; 2) two fixed missense mutations (102Ser→Gly and 119Thr→Ala), and three missense mutations (92Pro>Thr/Met, 122Thr>Ile and 139Arg>Trp) in the coding region presenting different (P<0.05) genotypic and allelic frequency distributions between cattle and buffalo; and, 3) functional luciferase-reporter experiments for the predicted promoter region, consistent with a significantly higher activity in buffalo than cattle. Supporting these findings, immunoblotting revealed higher relative expression levels of Sho protein in cerebrum from buffalo than from cattle. In addition, for cattle, highest Sho expression was detected in obex, as compared to cerebrum or cerebellum. Significance Our findings support Sho as a non-PrP specific marker for prion infections, with obex as the best tissue source for the detection of Sho in TSE rapid tests. Moreover, these discoveries may prove advantageous for further understanding the biology of prion diseases.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding Sites
- Brain/metabolism
- Buffaloes/genetics
- Cattle/genetics
- Encephalopathy, Bovine Spongiform/genetics
- Gene Components
- Gene Expression
- Gene Frequency
- Genes, Reporter
- INDEL Mutation
- Luciferases, Renilla/biosynthesis
- Luciferases, Renilla/genetics
- Mutation, Missense
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Organ Specificity
- Polymorphism, Genetic
- Protein Structure, Tertiary
- Repetitive Sequences, Nucleic Acid
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Hui Zhao
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, People’s Republic of China
| | - Lin-Lin Liu
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, People’s Republic of China
| | - Shou-Hui Du
- School of Life Science, Yunnan University, Kunming, People’s Republic of China
| | - Si-Qi Wang
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, People’s Republic of China
| | - Ya-Ping Zhang
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, People’s Republic of China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China
- * E-mail:
| |
Collapse
|
27
|
Abstract
Shadoo (Sho) is a brain glycoprotein with similarities to the unstructured region of PrPC. Frameshift alleles of the Sho gene, Sprn, are reported in variant Creutzfeldt-Jakob disease (vCJD) patients while Sprn mRNA knockdown in PrP-null (Prnp0/0) embryos produces lethality, advancing Sho as the hypothetical PrP-like “pi” protein. Also, Sho levels are reduced as misfolded PrP accumulates during prion infections. To penetrate these issues we created Sprn null alleles (Daude et al., Proc. Natl. Acad. Sci USA 2012; 109(23): 9035–40). Results from the challenge of Sprn null and TgSprn transgenic mice with rodent-adapted prions coalesce to define downregulation of Sho as a “tracer” for the formation of misfolded PrP. However, classical BSE and rodent-adapted BSE isolates may behave differently, as they do for other facets of the pathogenic process, and this intriguing variation warrants closer scrutiny. With regards to physiological function, double knockout mice (Sprn0/0/Prnp0/0) mice survived to over 600 d of age. This suggests that Sho is not pi, or, given the accumulating data for many activities for PrPC, that the pi hypothesis invoking a discrete signaling pathway to maintain neuronal viability is no longer tenable.
Collapse
Affiliation(s)
- Nathalie Daude
- Centre for Prions and Protein Folding Diseases, University of Alberta Edmonton, AB, Canada
| | | |
Collapse
|
28
|
Association of an indel polymorphism in the 3′UTR of the caprine SPRN gene with scrapie positivity in the central nervous system. J Gen Virol 2012; 93:1620-1623. [DOI: 10.1099/vir.0.041400-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The aim of this study was to analyse the SPRN genes of goats from several scrapie outbreaks in order to detect polymorphisms and to look for association with scrapie occurrence, by an unmatched case–control study. A region of the caprine SPRN gene encompassing the entire ORF and a fragment of the 3′UTR revealed a total of 11 mutations: 10 single-nucleotide polymorphisms and one indel polymorphism. Only two non-synonymous mutations occurring at very low incidence were identified. A significant association with scrapie positivity in the central nervous system was found for an indel polymorphism (602_606insCTCCC) in the 3′UTR. Bioinformatics analyses suggest that this indel may modulate scrapie susceptibility via a microRNA-mediated post-transcriptional mechanism. This is the first study to demonstrate an association between the SPRN gene and goat scrapie. The identified indel may serve as a genetic target other than PRNP to predict disease risk in future genetics-based scrapie-control approaches in goats.
Collapse
|
29
|
Ehsani S, Salehzadeh A, Huo H, Reginold W, Pocanschi CL, Ren H, Wang H, So K, Sato C, Mehrabian M, Strome R, Trimble WS, Hazrati LN, Rogaeva E, Westaway D, Carlson GA, Schmitt-Ulms G. LIV-1 ZIP ectodomain shedding in prion-infected mice resembles cellular response to transition metal starvation. J Mol Biol 2012; 422:556-574. [PMID: 22687393 DOI: 10.1016/j.jmb.2012.06.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 05/22/2012] [Accepted: 06/01/2012] [Indexed: 10/28/2022]
Abstract
We recently documented the co-purification of members of the LIV-1 subfamily of ZIP (Zrt-, Irt-like Protein) zinc transporters (LZTs) with the cellular prion protein (PrP(C)) and, subsequently, established that the prion gene family descended from an ancestral LZT gene. Here, we begin to address whether the study of LZTs can shed light on the biology of prion proteins in health and disease. Starting from an observation of an abnormal LZT immunoreactive band in prion-infected mice, subsequent cell biological analyses uncovered a surprisingly coordinated biology of ZIP10 (an LZT member) and prion proteins that involves alterations to N-glycosylation and endoproteolysis in response to manipulations to the extracellular divalent cation milieu. Starving cells of manganese or zinc, but not copper, causes shedding of the N1 fragment of PrP(C) and of the ectodomain of ZIP10. For ZIP10, this posttranslational biology is influenced by an interaction between its PrP-like ectodomain and a conserved metal coordination site within its C-terminal multi-spanning transmembrane domain. The transition metal starvation-induced cleavage of ZIP10 can be differentiated by an immature N-glycosylation signature from a constitutive cleavage targeting the same site. Data from this work provide a first glimpse into a hitherto neglected molecular biology that ties PrP to its LZT cousins and suggest that manganese or zinc starvation may contribute to the etiology of prion disease in mice.
Collapse
Affiliation(s)
- Sepehr Ehsani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Ashkan Salehzadeh
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Hairu Huo
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2
| | - William Reginold
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Cosmin L Pocanschi
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2
| | - Hezhen Ren
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2
| | - Kelvin So
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2
| | - Mohadeseh Mehrabian
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Robert Strome
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2
| | - William S Trimble
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada M5G 1X8
| | - Lili-Naz Hazrati
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2.,Department of Medicine, University of Toronto, Toronto, ON, Canada M5G 2C4
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada T6G 2M8
| | | | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada M5S 3H2.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada M5S 1A8
| |
Collapse
|
30
|
Knockout of the prion protein (PrP)-like Sprn gene does not produce embryonic lethality in combination with PrP(C)-deficiency. Proc Natl Acad Sci U S A 2012; 109:9035-40. [PMID: 22619325 DOI: 10.1073/pnas.1202130109] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Sprn gene encodes Shadoo (Sho), a glycoprotein with biochemical properties similar to the unstructured region of cellular prion protein (PrP(C)). Sho has been considered a candidate for the hypothetical π protein that supplies a PrP(C)-like function to maintain the viability of Prnp(0/0) mice lacking the PrP(C) protein. To understand these relationships more clearly we probed the cell biology of Sho and created knockout mice. Besides full-length and a "C1" C-terminal fragment, we describe a 6-kDa N-terminal Sho neuropeptide, "N1," which is present in membrane-enriched subcellular fractions of wild-type mice. Sprn null alleles were produced that delete all protein coding sequences yet spare the Mtg1 gene transcription unit that overlaps the Sprn 3' UTR; the resulting mice bred to homozygosity were viable and fertile, although Sprn(0/0) mice maintained in two genetic backgrounds weighed less than wild-type mice. Lack of Sho protein did not affect prion incubation time. Contrasting with lethality reported for knockdown of expression in Prnp(0/0) embryos using lentiviruses targeted against the Sprn 3' UTR, we established that double-knockout mice deficient in both Sho and PrP(C) are fertile and viable up to 690 d of age. Our data reduce the impetus for equating Sho with the notional π protein and are not readily reconciled with hypotheses wherein expression of PrP(C) and Sho are both required for completion of embryogenesis. Alternatively, and in accord with some reports for PrP(C), we infer that Sho's activity will prove germane to the maintenance of neuronal viability in postnatal life.
Collapse
|
31
|
Abstract
The evolutionary origins of vertebrate prion genes had remained elusive until recently when multiple lines of evidence converged to the proposition that members of the prion gene family represent an ancient branch of a larger family of ZIP metal ion transporters. (1) A follow-up investigation which explored the mechanism of evolution in more detail led to the surprising conclusion that the emergence of the prion founder gene likely involved the reverse transcription of a spliced transcript of a LIV-1 ZIP predecessor gene. (2) The objective of this perspective is to discuss the possible significance of this reunion of ZIP and prion gene subfamilies for understanding the biology of the prion protein in health and disease. While a recent review article broadly introduced this area of research, (3) the emphasis here is to comment on some of the more pertinent concepts, experimental paradigms, ongoing developments and challenges.
Collapse
Affiliation(s)
- Sepehr Ehsani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON Canada
| | | | | | | |
Collapse
|
32
|
Advances in biotechnology and linking outputs to variation in complex traits: Plant and Animal Genome meeting January 2012. Funct Integr Genomics 2012; 12:1-9. [DOI: 10.1007/s10142-012-0270-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 12/22/2022]
|
33
|
PrionHome: a database of prions and other sequences relevant to prion phenomena. PLoS One 2012; 7:e31785. [PMID: 22363733 PMCID: PMC3282748 DOI: 10.1371/journal.pone.0031785] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/18/2012] [Indexed: 01/03/2023] Open
Abstract
Prions are units of propagation of an altered state of a protein or proteins; prions can propagate from organism to organism, through cooption of other protein copies. Prions contain no necessary nucleic acids, and are important both as both pathogenic agents, and as a potential force in epigenetic phenomena. The original prions were derived from a misfolded form of the mammalian Prion Protein PrP. Infection by these prions causes neurodegenerative diseases. Other prions cause non-Mendelian inheritance in budding yeast, and sometimes act as diseases of yeast. We report the bioinformatic construction of the PrionHome, a database of >2000 prion-related sequences. The data was collated from various public and private resources and filtered for redundancy. The data was then processed according to a transparent classification system of prionogenic sequences (i.e., sequences that can make prions), prionoids (i.e., proteins that propagate like prions between individual cells), and other prion-related phenomena. There are eight PrionHome classifications for sequences. The first four classifications are derived from experimental observations: prionogenic sequences, prionoids, other prion-related phenomena, and prion interactors. The second four classifications are derived from sequence analysis: orthologs, paralogs, pseudogenes, and candidate-prionogenic sequences. Database entries list: supporting information for PrionHome classifications, prion-determinant areas (where relevant), and disordered and compositionally-biased regions. Also included are literature references for the PrionHome classifications, transcripts and genomic coordinates, and structural data (including comparative models made for the PrionHome from manually curated alignments). We provide database usage examples for both vertebrate and fungal prion contexts. Using the database data, we have performed a detailed analysis of the compositional biases in known budding-yeast prionogenic sequences, showing that the only abundant bias pattern is for asparagine bias with subsidiary serine bias. We anticipate that this database will be a useful experimental aid and reference resource. It is freely available at: http://libaio.biol.mcgill.ca/prion.
Collapse
|
34
|
Watts JC, Stöhr J, Bhardwaj S, Wille H, Oehler A, DeArmond SJ, Giles K, Prusiner SB. Protease-resistant prions selectively decrease Shadoo protein. PLoS Pathog 2011; 7:e1002382. [PMID: 22163178 PMCID: PMC3219722 DOI: 10.1371/journal.ppat.1002382] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 10/04/2011] [Indexed: 11/30/2022] Open
Abstract
The central event in prion diseases is the conformational conversion of the cellular prion protein (PrP(C)) into PrP(Sc), a partially protease-resistant and infectious conformer. However, the mechanism by which PrP(Sc) causes neuronal dysfunction remains poorly understood. Levels of Shadoo (Sho), a protein that resembles the flexibly disordered N-terminal domain of PrP(C), were found to be reduced in the brains of mice infected with the RML strain of prions [1], implying that Sho levels may reflect the presence of PrP(Sc) in the brain. To test this hypothesis, we examined levels of Sho during prion infection using a variety of experimental systems. Sho protein levels were decreased in the brains of mice, hamsters, voles, and sheep infected with different natural and experimental prion strains. Furthermore, Sho levels were decreased in the brains of prion-infected, transgenic mice overexpressing Sho and in infected neuroblastoma cells. Time-course experiments revealed that Sho levels were inversely proportional to levels of protease-resistant PrP(Sc). Membrane anchoring and the N-terminal domain of PrP both influenced the inverse relationship between Sho and PrP(Sc). Although increased Sho levels had no discernible effect on prion replication in mice, we conclude that Sho is the first non-PrP marker specific for prion disease. Additional studies using this paradigm may provide insight into the cellular pathways and systems subverted by PrP(Sc) during prion disease.
Collapse
Affiliation(s)
- Joel C. Watts
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
| | - Jan Stöhr
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
| | - Sumita Bhardwaj
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
| | - Holger Wille
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Abby Oehler
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Stephen J. DeArmond
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pathology, University of California, San Francisco, San Francisco, California, United States of America
| | - Kurt Giles
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| | - Stanley B. Prusiner
- Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, California, United States of America
- Department of Neurology, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|