1
|
Sim MJW, Li B, Long EO. Peptide-specific natural killer cell receptors. OXFORD OPEN IMMUNOLOGY 2025; 6:iqaf003. [PMID: 40297637 PMCID: PMC12036969 DOI: 10.1093/oxfimm/iqaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Class I and II human leukocyte antigens (HLA-I and HLA-II) present peptide antigens for immunosurveillance by T cells. HLA molecules also form ligands for a plethora of innate, germline-encoded receptors. Many of these receptors engage HLA molecules in a peptide sequence independent manner, with binding sites outside the peptide binding groove. However, some receptors, typically expressed on natural killer (NK) cells, engage the HLA presented peptide directly. Remarkably, some of these receptors display exquisite specificity for peptide sequences, with the capacity to detect sequences conserved in pathogens. Here, we review evidence for peptide-specific NK cell receptors (PSNKRs) and discuss their potential roles in immunity.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Beining Li
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, United States of America
| |
Collapse
|
2
|
Saunders PM, Illing PT, Coin L, Wong SC, Oates CVL, Purcell AW, Brooks AG. Peptide selectivity of killer cell immunoglobulin-like receptors differs with allotypic variation in HLA class I. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:747-761. [PMID: 40127639 DOI: 10.1093/jimmun/vkaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 12/18/2024] [Indexed: 03/26/2025]
Abstract
Natural killer (NK) cell activation is regulated by killer cell immunoglobulin-like receptors (KIRs) that recognize human leukocyte antigen (HLA) class I molecules. While polymorphism in HLA can directly impact these interactions, the extent to which the HLA-associated peptide repertoire modulates NK cell function is less well understood. Therefore, the peptide requirements for the recognition of 2 ligands, HLA-B*57:01 and HLA-A*24:02, that share similar KIR3DL1 binding residues but differ in their capacity to inhibit human NK cells were assessed. Immunopeptidome and functional analyses of endogenous peptides associated with each allotype showed that both repertoires contained peptides capable of facilitating or impairing KIR3DL1-dependent recognition of target cells. While distinct sequence features at positions 7 and 8 of the bound peptide similarly impacted recognition of both HLA class I allotypes, HLA-B*57:01 remained a more potent ligand overall. In silico analyses suggested that most peptides presented by HLA-B*57:01 would facilitate KIR3DL1 engagement, whereas the peptide repertoire of HLA-A*24:02 possessed fewer peptides predicted to support strong KIR3DL1 recognition. Nevertheless, the exogenous addition of highly permissive peptides to cells expressing HLA-A*24:02 could bolster KIR3DL1-mediated NK cell inhibition of peptide-competent cells to levels seen with HLA-B*57:01. Together, these data indicate that allotypic differences in peptide repertoire impact KIR recognition of HLA class I and suggest that NK cells have the potential to sense infection- or transformation-induced repertoire perturbations, particularly when the intrinsic KIR/HLA interactions are of modest avidity.
Collapse
Affiliation(s)
- Philippa M Saunders
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Patricia T Illing
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Lachlan Coin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Shu Cheng Wong
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Clare V L Oates
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Anthony W Purcell
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Andrew G Brooks
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Correale P, Baglio G, Parrella R, Saladino RE, Cuomo N, Scarano F, Francone M, Cuzzola M, Foti G, Mutti L, Pentimalli F, Giordano A. A rapid ecologic analysis, confirmed by a case-control study, identifies class I HLA alleles correlated to the risk of COVID-19. J Transl Med 2025; 23:303. [PMID: 40065352 PMCID: PMC11892203 DOI: 10.1186/s12967-025-06285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Several studies suggest that the heterogeneous spread of SARS-CoV-2 pandemics started on December 2019 could be partially upheld by the prevalence of permissive class I HLA alleles in specific populations. Such HLA alleles are in fact unable to shape an efficient anti-viral immune-response in the hosts or sustain an exaggerated inflammatory T cell mediated response responsible for the COVID-19 disease. We previously reported an ecologic correlation between the risk of COVID-19 spreading across Italy and the germinal expression of permissive HLA-C*01 and -B*44 alleles in specific inter and intraregional populations along the first spreading wave. METHODS Considering that SARS-CoV-2 has undergone multiple adaptative mutations since the beginning of pandemics related to a natural immunization and to the worldwide campaign of anti-SARS-CoV-2 vaccination, we have carried out further analyses to evaluate whether the predictive value of class I HLA-allele gene prevalence and COVID-19 incidence has changed with time along the first four pandemics spreading waves in Italy. To this purpose we carried out an ecologic study followed by a case-control study. RESULTS | Our data revealed that the direct correlation of HLA-C*01, and HLA-B*44 gene expression and COVID-19 risk was completely lost just after the first pandemics wave in Italy. On the contrary, the expression of HLA-B*49 allele in specific populations emerged as inversely correlated to the risk of COVID-19 and could be considered as a protective factor. The statistical significance of this correlation was progressively enforced in each subsequent spreading wave until February 2022. The following case-control study in the two Regions of Campania and Calabria in Italy confirmed the protective value of HLA-B*49 allele gene expression (OR = 0.289; p = 0.041), although statistical significance is lost after adjustment by logistic regression model. The analysis also detected multiple class I HLA-alleles whose expression was strongly correlated with COVID-19 risk: HLA-B*08 (ORadj = 3.193; p = 0.015); -B*14:01 (ORadj = 3.596; p = 0.018); -B*15:01 (ORadj = 5.124; p = 0.001); -B*35 (ORadj = 2.972; p = 0.002). CONCLUSIONS Our study not only identifies specific HLA alleles related to COVID-19 risk but also exemplifies a rapid and inexpensive approach that can be used to identify individuals needing prioritization during vaccination campaigns.
Collapse
Affiliation(s)
- Pierpaolo Correale
- Unit of Medical Oncology, Grand Metropolitan Hospital 'Bianchi Melacrino Morelli', I-89124, Reggio Calabria, Italy
| | - Giovanni Baglio
- Research Unit of AGENAS, Italian National Agency for Regional Healthcare Services, Rome, Italy
| | - Roberto Parrella
- Unit of Respiratory Infectious Diseases, "Azienda Ospedaliera Specialistica Dei Colli", Naples, Italy
- Link Campus University, Rome, Italy
| | - Rita Emilena Saladino
- Tissue Typing Unit Grand Metropolitan Hospital 'Bianchi Melacrino Morelli', 89124, Reggio Calabria, Italy
| | - Nunzia Cuomo
- Unit of Microbiology and Virology "Azienda Ospedaliera Specialistica Dei Colli", Naples, Italy
| | - Francesco Scarano
- Unit of Respiratory Infectious Diseases, "Azienda Ospedaliera Specialistica Dei Colli", Naples, Italy
| | - Marina Francone
- Tissue Typing Unit Grand Metropolitan Hospital 'Bianchi Melacrino Morelli', 89124, Reggio Calabria, Italy
| | - Maria Cuzzola
- Tissue Typing Unit Grand Metropolitan Hospital 'Bianchi Melacrino Morelli', 89124, Reggio Calabria, Italy
| | - Giuseppe Foti
- Unit of Infectious Diseases, Grand Metropolitan Hospital 'Bianchi Melacrino Morelli', 89124, Reggio Calabria, Italy
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, BioLife Science Bldg. Suite 333, 1900 North 12th Street, Philadelphia, PA, 19122, USA
- Department of Applied Sciences and Biotechnology, Università Dell'Aquila, L'Aquila, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University, S.S. 100 Km. 18, 70010, Casamassima, BA, Italy.
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, BioLife Science Bldg. Suite 333, 1900 North 12th Street, Philadelphia, PA, 19122, USA.
- Department of Medical Biotechnologies, University of Siena, Siena, Italy.
| |
Collapse
|
4
|
Sim MJW, Long EO. The peptide selectivity model: Interpreting NK cell KIR-HLA-I binding interactions and their associations to human diseases. Trends Immunol 2024; 45:959-970. [PMID: 39578117 DOI: 10.1016/j.it.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/24/2024]
Abstract
Combinations of the highly polymorphic KIR and HLA-I genes are associated with numerous human diseases. Interpreting these associations requires a molecular understanding of the multiple killer-cell immunoglobulin-like receptor (KIR)-human leukocyte antigen-1 (HLA-I) receptor-ligand interactions on natural killer (NK) cells and identifying the salient features that underlie disease risk. We hypothesize that a critical discriminating factor in KIR-HLA-I interactions is the selective detection of HLA-I-bound peptides by KIRs. We propose a 'peptide selectivity model', where high-avidity KIR-HLA-I interactions reflect low selectivity for peptides conferring consistent NK cell inhibition across different tissue immunopeptidomes. Conversely, lower-avidity interactions (including those with activating KIRs) are more dependent on HLA-I-bound peptide sequence, requiring an appreciation of how HLA-I immunopeptidomes influence KIR binding and regulate NK cell function. Relevant to understanding NK cell function and pathology, we interpret known KIR-HLA-I combinations and their associations with certain human diseases in the context of this 'peptide selectivity model'.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, OX3 7DQ, UK.
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD, 20852, USA
| |
Collapse
|
5
|
Olp MD, Laufer VA, Valesano AL, Zimmerman A, Woodside KJ, Lu Y, Lauring AS, Cusick MF. HLA-C Peptide Repertoires as Predictors of Clinical Response during Early SARS-CoV-2 Infection. Life (Basel) 2024; 14:1181. [PMID: 39337964 PMCID: PMC11433606 DOI: 10.3390/life14091181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
The human leukocyte antigen (HLA) system plays a pivotal role in the immune response to viral infections, mediating the presentation of viral peptides to T cells and influencing both the strength and specificity of the host immune response. Variations in HLA genotypes across individuals lead to differences in susceptibility to viral infection and severity of illness. This study uses observations from the early phase of the COVID-19 pandemic to explore how specific HLA class I molecules affect clinical responses to SARS-CoV-2 infection. By analyzing paired high-resolution HLA types and viral genomic sequences from 60 patients, we assess the relationship between predicted HLA class I peptide binding repertoires and infection severity as measured by the sequential organ failure assessment score. This approach leverages functional convergence across HLA-C alleles to identify relationships that may otherwise be inaccessible due to allelic diversity and limitations in sample size. Surprisingly, our findings show that severely symptomatic infection in this cohort is associated with disproportionately abundant binding of SARS-CoV-2 structural and non-structural protein epitopes by patient HLA-C molecules. In addition, the extent of overlap between a given patient's predicted HLA-C and HLA-A peptide binding repertoires correlates with worse prognoses in this cohort. The findings highlight immunologic mechanisms linking HLA-C molecules with the human response to viral pathogens that warrant further investigation.
Collapse
Affiliation(s)
- Michael D Olp
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Vincent A Laufer
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrew L Valesano
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Andrea Zimmerman
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| | - Kenneth J Woodside
- Sharing Hope of South Carolina, Charleston, SC 29414, USA
- Gift of Life Michigan, Ann Arbor, MI 48108, USA
- Academia Invisus LLC, Ann Arbor, MI 48107, USA
| | - Yee Lu
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matthew F Cusick
- Department of Pathology, University of Michigan, 2800 Plymouth Rd Building 35, Ann Arbor, MI 48109, USA
| |
Collapse
|
6
|
Olejnik-Wojciechowska J, Boboryko D, Bratborska AW, Rusińska K, Ostrowski P, Baranowska M, Pawlik A. The Role of Epigenetic Factors in the Pathogenesis of Psoriasis. Int J Mol Sci 2024; 25:3831. [PMID: 38612637 PMCID: PMC11011681 DOI: 10.3390/ijms25073831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Psoriasis is a chronic inflammatory skin disease, the prevalence of which is increasing. Genetic, genomic, and epigenetic changes play a significant role in the pathogenesis of psoriasis. This review summarizes the impact of epigenetics on the development of psoriasis and highlights challenges for the future. The development of epigenetics provides a basis for the search for genetic markers associated with the major histocompatibility complex. Genome-wide association studies have made it possible to link psoriasis to genes and therefore to epigenetics. The acquired knowledge may in the future serve as a solid foundation for developing newer, increasingly effective methods of treating psoriasis. In this narrative review, we discuss the role of epigenetic factors in the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Joanna Olejnik-Wojciechowska
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.O.-W.); (D.B.); (M.B.)
| | - Dominika Boboryko
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.O.-W.); (D.B.); (M.B.)
| | | | - Klaudia Rusińska
- Department of General Pathology, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland;
| | - Piotr Ostrowski
- Department of Nursing, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland
| | - Magdalena Baranowska
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.O.-W.); (D.B.); (M.B.)
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, al. Powstańców Wlkp. 72, 70-111 Szczecin, Poland; (J.O.-W.); (D.B.); (M.B.)
| |
Collapse
|
7
|
Ogoshi K, Iwata K, Kunisaki C. Association between perforated peptic ulcers, human leukocyteantigen-restricted human endogenous retrovirus gene-derived peptides, and carcinogenesis after acid-suppressive therapy. ANNALS OF CANCER RESEARCH AND THERAPY 2023; 31:42-52. [DOI: 10.4993/acrt.31.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Kyoji Ogoshi
- Department of Gastrointestinal Surgery, Tokai University
- Division of Surgery, Seisho Hospital
| | - Kunihiro Iwata
- Department of Gastrointestinal Surgery, Tokai University
| | - Chikara Kunisaki
- Department of Surgery, Gastroenterological Center, Yokohama City University
| |
Collapse
|
8
|
Höfle J, Trenkner T, Kleist N, Schwane V, Vollmers S, Barcelona B, Niehrs A, Fittje P, Huynh‐Tran VH, Sauter J, Schmidt AH, Peine S, Hoelzemer A, Richert L, Altfeld M, Körner C. Engagement of TRAIL triggers degranulation and IFNγ production in human natural killer cells. EMBO Rep 2022; 23:e54133. [PMID: 35758160 PMCID: PMC9346491 DOI: 10.15252/embr.202154133] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 12/12/2022] Open
Abstract
NK cells utilize a large array of receptors to screen their surroundings for aberrant or virus‐infected cells. Given the vast diversity of receptors expressed on NK cells we seek to identify receptors involved in the recognition of HIV‐1‐infected cells. By combining an unbiased large‐scale screening approach with a functional assay, we identify TRAIL to be associated with NK cell degranulation against HIV‐1‐infected target cells. Further investigating the underlying mechanisms, we demonstrate that TRAIL is able to elicit multiple effector functions in human NK cells independent of receptor‐mediated induction of apoptosis. Direct engagement of TRAIL not only results in degranulation but also IFNγ production. Moreover, TRAIL‐mediated NK cell activation is not limited to its cognate death receptors but also decoy receptor I, adding a new perspective to the perceived regulatory role of decoy receptors in TRAIL‐mediated cytotoxicity. Based on these findings, we propose that TRAIL not only contributes to the anti‐HIV‐1 activity of NK cells but also possesses a multifunctional role beyond receptor‐mediated induction of apoptosis, acting as a regulator for the induction of different effector functions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pia Fittje
- Leibniz Institute of Virology Hamburg Germany
| | - Van Hung Huynh‐Tran
- Inserm, Bordeaux Population Health Research Center UMR1219 and Inria, team SISTM University of Bordeaux Bordeaux France
| | | | | | - Sven Peine
- Institute of Transfusion Medicine University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Angelique Hoelzemer
- Leibniz Institute of Virology Hamburg Germany
- German Center for Infection Research (DZIF) Partner Site Hamburg‐Lübeck‐Borstel‐Riems Hamburg Germany
- First Department of Medicine Division of Infectious Diseases University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | - Laura Richert
- Inserm, Bordeaux Population Health Research Center UMR1219 and Inria, team SISTM University of Bordeaux Bordeaux France
| | - Marcus Altfeld
- Leibniz Institute of Virology Hamburg Germany
- Institute of Immunology University Medical Center Hamburg‐Eppendorf Hamburg Germany
| | | |
Collapse
|
9
|
Vollmers S, Lobermeyer A, Niehrs A, Fittje P, Indenbirken D, Nakel J, Virdi S, Brias S, Trenkner T, Sauer G, Peine S, Behrens GM, Lehmann C, Meurer A, Pauli R, Postel N, Roider J, Scholten S, Spinner CD, Stephan C, Wolf E, Wyen C, Richert L, Norman PJ, Sauter J, Schmidt AH, Hoelzemer A, Altfeld M, Körner C. Host KIR/HLA-C Genotypes Determine HIV-Mediated Changes of the NK Cell Repertoire and Are Associated With Vpu Sequence Variations Impacting Downmodulation of HLA-C. Front Immunol 2022; 13:922252. [PMID: 35911762 PMCID: PMC9334850 DOI: 10.3389/fimmu.2022.922252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/13/2022] [Indexed: 12/29/2022] Open
Abstract
NK cells play a pivotal role in viral immunity, utilizing a large array of activating and inhibitory receptors to identify and eliminate virus-infected cells. Killer-cell immunoglobulin-like receptors (KIRs) represent a highly polymorphic receptor family, regulating NK cell activity and determining the ability to recognize target cells. Human leukocyte antigen (HLA) class I molecules serve as the primary ligand for KIRs. Herein, HLA-C stands out as being the dominant ligand for the majority of KIRs. Accumulating evidence indicated that interactions between HLA-C and its inhibitory KIR2DL receptors (KIR2DL1/L2/L3) can drive HIV-1-mediated immune evasion and thus may contribute to the intrinsic control of HIV-1 infection. Of particular interest in this context is the recent observation that HIV-1 is able to adapt to host HLA-C genotypes through Vpu-mediated downmodulation of HLA-C. However, our understanding of the complex interplay between KIR/HLA immunogenetics, NK cell-mediated immune pressure and HIV-1 immune escape is still limited. Therefore, we investigated the impact of specific KIR/HLA-C combinations on the NK cell receptor repertoire and HIV-1 Vpu protein sequence variations of 122 viremic, untreated HIV-1+ individuals. Compared to 60 HIV-1- controls, HIV-1 infection was associated with significant changes within the NK cell receptor repertoire, including reduced percentages of NK cells expressing NKG2A, CD8, and KIR2DS4. In contrast, the NKG2C+ and KIR3DL2+ NK cell sub-populations from HIV-1+ individuals was enlarged compared to HIV-1- controls. Stratification along KIR/HLA-C genotypes revealed a genotype-dependent expansion of KIR2DL1+ NK cells that was ultimately associated with increased binding affinities between KIR2DL1 and HLA-C allotypes. Lastly, our data hinted to a preferential selection of Vpu sequence variants that were associated with HLA-C downmodulation in individuals with high KIR2DL/HLA-C binding affinities. Altogether, our study provides evidence that HIV-1-associated changes in the KIR repertoire of NK cells are to some extent predetermined by host KIR2DL/HLA-C genotypes. Furthermore, analysis of Vpu sequence polymorphisms indicates that differential KIR2DL/HLA-C binding affinities may serve as an additional mechanism how host genetics impact immune evasion by HIV-1.
Collapse
Affiliation(s)
| | | | | | - Pia Fittje
- Leibniz Institute of Virology, Hamburg, Germany
| | | | | | | | - Sebastien Brias
- Leibniz Institute of Virology, Hamburg, Germany
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Gabriel Sauer
- Department I for Internal Medicine, University Hospital of Cologne, Cologne, Germany
| | - Sven Peine
- Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Georg M.N. Behrens
- Department for Rheumatology and Clinical Immunology, Hannover Medical School, Hannover, Germany
| | - Clara Lehmann
- Department I for Internal Medicine, Division of Infectious Diseases, University Hospital Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Anja Meurer
- Center for Internal Medicine and Infectiology, Munich, Germany
| | - Ramona Pauli
- Medizinisches Versorgungszentrum (MVZ) am Isartor, Munich, Germany
| | - Nils Postel
- Prinzmed, Practice for Infectious Diseases, Munich, Germany
| | - Julia Roider
- Department of Internal Medicine IV, Department of Infectious Diseases, Ludwig-Maximilians University Munich, Munich, Germany
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | | | - Christoph D. Spinner
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Technical University of Munich, School of Medicine, University Hospital rechts der Isar, Department of Internal Medicine II, Munich, Germany
| | - Christoph Stephan
- Infectious Diseases Unit, Goethe-University Hospital Frankfurt, Frankfurt, Germany
| | | | - Christoph Wyen
- Department I for Internal Medicine, Division of Infectious Diseases, University Hospital Cologne, Cologne, Germany
- Praxis am Ebertplatz, Cologne, Germany
| | - Laura Richert
- University of Bordeaux, Inserm U1219 Bordeaux Population Health, Inria Sistm, Bordeaux, France
| | - Paul J. Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Aurora, CO, United States
- Department of Immunology and Microbiology, University of Colorado, Aurora, CO, United States
| | | | | | - Angelique Hoelzemer
- Leibniz Institute of Virology, Hamburg, Germany
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Marcus Altfeld
- Leibniz Institute of Virology, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Christian Körner
- Leibniz Institute of Virology, Hamburg, Germany
- *Correspondence: Christian Körner,
| |
Collapse
|
10
|
Fittje P, Hœlzemer A, Garcia-Beltran WF, Vollmers S, Niehrs A, Hagemann K, Martrus G, Körner C, Kirchhoff F, Sauter D, Altfeld M. HIV-1 Nef-mediated downregulation of CD155 results in viral restriction by KIR2DL5+ NK cells. PLoS Pathog 2022; 18:e1010572. [PMID: 35749424 PMCID: PMC9231786 DOI: 10.1371/journal.ppat.1010572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 05/05/2022] [Indexed: 01/02/2023] Open
Abstract
Antiviral NK cell activity is regulated through the interaction of activating and inhibitory NK cell receptors with their ligands on infected cells. HLA class I molecules serve as ligands for most killer cell immunoglobulin-like receptors (KIRs), but no HLA class I ligands for the inhibitory NK cell receptor KIR2DL5 have been identified to date. Using a NK cell receptor/ligand screening approach, we observed no strong binding of KIR2DL5 to HLA class I or class II molecules, but confirmed that KIR2DL5 binds to the poliovirus receptor (PVR, CD155). Functional studies using primary human NK cells revealed a significantly decreased degranulation of KIR2DL5+ NK cells in response to CD155-expressing target cells. We subsequently investigated the role of KIR2DL5/CD155 interactions in HIV-1 infection, and showed that multiple HIV-1 strains significantly decreased CD155 expression levels on HIV-1-infected primary human CD4+ T cells via a Nef-dependent mechanism. Co-culture of NK cells with HIV-1-infected CD4+ T cells revealed enhanced anti-viral activity of KIR2DL5+ NK cells against wild-type versus Nef-deficient viruses, indicating that HIV-1-mediated downregulation of CD155 renders infected cells more susceptible to recognition by KIR2DL5+ NK cells. These data show that CD155 suppresses the antiviral activity of KIR2DL5+ NK cells and is downmodulated by HIV-1 Nef protein as potential trade-off counteracting activating NK cell ligands, demonstrating the ability of NK cells to counteract immune escape mechanisms employed by HIV-1. HIV infection remains a global health emergency that has caused around 36 million deaths. NK cells play an important role in the control of HIV-1 infections, and are able to detect and destroy infected cells using a large array of activating and inhibitory receptors, including KIRs. Here we demonstrate that CD155 serves as a functional interaction partner for the inhibitory NK cell receptor KIR2DL5, and that KIR2DL5+ NK cells are inhibited by CD155-expressing target cells. CD155 surface expression on HIV-1-infected CD4+ T cells was downregulated by the HIV-1 Nef protein, resulting in increased anti-viral activity of KIR2DL5+ NK cells through the loss of inhibitory signals. Taken together, these studies demonstrate functional consequences of the novel interaction between KIR2DL5 and CD155 for the antiviral activity of KIR2DL5+ NK cells during HIV-1 infection.
Collapse
Affiliation(s)
- Pia Fittje
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | - Angelique Hœlzemer
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- First Department of Internal Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Wilfredo F. Garcia-Beltran
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- Department of Pathology, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, United States of America
| | | | - Annika Niehrs
- Leibniz Institute of Virology (LIV), Hamburg, Germany
| | | | | | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Marcus Altfeld
- Leibniz Institute of Virology (LIV), Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- * E-mail:
| |
Collapse
|
11
|
Vollmers S, Lobermeyer A, Körner C. The New Kid on the Block: HLA-C, a Key Regulator of Natural Killer Cells in Viral Immunity. Cells 2021; 10:cells10113108. [PMID: 34831331 PMCID: PMC8620871 DOI: 10.3390/cells10113108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/01/2022] Open
Abstract
The human leukocyte antigen system (HLA) is a cluster of highly polymorphic genes essential for the proper function of the immune system, and it has been associated with a wide range of diseases. HLA class I molecules present intracellular host- and pathogen-derived peptides to effector cells of the immune system, inducing immune tolerance in healthy conditions or triggering effective immune responses in pathological situations. HLA-C is the most recently evolved HLA class I molecule, only present in humans and great apes. Differentiating from its older siblings, HLA-A and HLA-B, HLA-C exhibits distinctive features in its expression and interaction partners. HLA-C serves as a natural ligand for multiple members of the killer-cell immunoglobulin-like receptor (KIR) family, which are predominately expressed by natural killer (NK) cells. NK cells are crucial for the early control of viral infections and accumulating evidence indicates that interactions between HLA-C and its respective KIR receptors determine the outcome and progression of viral infections. In this review, we focus on the unique role of HLA-C in regulating NK cell functions and its consequences in the setting of viral infections.
Collapse
|
12
|
Abstract
Natural Killer (NK) cells are key effectors of the innate immune system which represent the first line of defense against viral infections. NK cell activation depends on the engagement of a complex receptor repertoire expressed on their surface, consisting of both activating and inhibitory receptors. Among the known NK cell receptors, the family of killer Ig-like receptors (KIRs) consists in activating/inhibitory receptors that interact with specific human leukocyte antigen (HLA) molecules expressed on target cells. In particular, the expression of peculiar KIRs have been reported to be associated to viral infection susceptibility. Interestingly, a significant association between the development and onset of different human pathologies, such as tumors, neurodegeneration and infertility, and a clonal KIRs expression on NK cells has been described in presence of viral infections, supporting the crucial role of KIRs in defining the effect of viral infections in different tissues and organs. This review aims to report the state of art about the role of KIRs receptors in NK cell activation and viral infection control.
Collapse
|
13
|
Migliorini F, Torsiello E, Spiezia F, Oliva F, Tingart M, Maffulli N. Association between HLA genotypes and COVID-19 susceptibility, severity and progression: a comprehensive review of the literature. Eur J Med Res 2021; 26:84. [PMID: 34344463 PMCID: PMC8329616 DOI: 10.1186/s40001-021-00563-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/27/2021] [Indexed: 01/08/2023] Open
Abstract
The COVID-19 pandemic has markedly impacted on cultural, political, and economic structures all over the world. Several aspects of its pathogenesis and related clinical consequences have not yet been elucidated. Infection rates, as well morbidity and mortality differed within countries. It is intriguing for scientists to understand how patient genetics may influence the outcome of the condition, to clarify which aspects could be related the clinical variability of SARS-CoV-2 disease. We reviewed the studies exploring the role of human leukocyte antigens (HLA) genotypes on individual responses to SARS-CoV-2 infection and/or progression, discussing also the contribution of the immunological patterns MHC-related. In March 2021, the main online databases were accessed. All the articles that investigated the possible association between the HLA genotypes and related polymorphisms with susceptibility, severity and progression of COVID-19 were considered. Although both genetic and environmental factors are certainly expected to influence the susceptibility to or protection of individuals, the HLA and related polymorphisms can influence susceptibility, progression and severity of SARS-CoV-2 infection. The crucial role played by HLA molecules in the immune response, especially through pathogen-derived peptide presentation, and the huge molecular variability of HLA alleles in the human populations could be responsible for the different rates of infection and the different patients following COVID-19 infection.
Collapse
Affiliation(s)
- Filippo Migliorini
- Department of Orthopaedic and Trauma Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany.
| | - Ernesto Torsiello
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| | - Filippo Spiezia
- Ospedale San Carlo Potenza, Via Potito Petrone, 85100, Potenza, Italy
| | - Francesco Oliva
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| | - Markus Tingart
- Department of Orthopaedic and Trauma Surgery, RWTH University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
- Faculty of Medicine, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke on Trent, England
- Barts and the London School of Medicine and Dentistry, Centre for Sports and Exercise Medicine, Mile End Hospital, Queen Mary University of London, 275 Bancroft Road, London, E1 4DG, England
| |
Collapse
|
14
|
Piersma SJ, Brizić I. Natural killer cell effector functions in antiviral defense. FEBS J 2021; 289:3982-3999. [PMID: 34125493 DOI: 10.1111/febs.16073] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/27/2021] [Accepted: 06/14/2021] [Indexed: 11/27/2022]
Abstract
Natural killer (NK) cells are innate lymphoid cells involved in the control of tumors and viral infections. They provide protection by producing cytokines and by directly lysing target cells. Both effector mechanisms have been identified to contribute to viral control, depending on the context of infection. Activation of NK cells depends on the integration of signals received by cytokine receptors and activation and inhibitory receptors recognizing ligands expressed by virus-infected cells. While the control of viral infections by NK cells is well established, the signals perceived by NK cells and how these signals integrate to mediate optimal viral control have been focus of ongoing research. Here, we discuss the current knowledge on NK cell activation and integration of signals that lead to interferon gamma production and cytotoxicity in viral infections. We review NK cell interactions with viruses, with particular focus on murine cytomegalovirus studies, which helped elucidate crucial aspects of antiviral NK cell immunity.
Collapse
Affiliation(s)
- Sytse J Piersma
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Croatia
| |
Collapse
|
15
|
Abstract
Psoriasis is a chronic inflammatory skin condition with regional and ethnic differences in its prevalence and clinical manifestations. Human leukocyte antigen (HLA)-Cw6 is the disease allele conferring the greatest risk to psoriasis, but its prevalence is lower in Asian individuals. Recent studies have found associations between HLA-Cw1 and some Asian populations with psoriasis, especially Southern Chinese. HLA-Cw6 was associated with type I early-onset psoriasis, guttate psoriasis, Koebner phenomenon, and better response to methotrexate, interleukin (IL)-12/23, IL-17, and IL-23 targeting drugs. In contrast, HLA-Cw1 positivity has been associated with erythrodermic psoriasis, pustular psoriasis, and the axial type of psoriatic arthritis. Furthermore, HLA-Cw1 was more frequently associated with high-need patients who did not respond to conventional therapies. No known trigger factor nor autoantigen has been identified for HLA-Cw1 positivity. However, HLA-Cw1 has been linked to some viral agents. For example, cytotoxic T lymphocytes recognize multiple cytomegalovirus pp65-derived epitopes presented by HLA alleles, including HLA-C*01:02. In addition, cytomegalovirus can lead to severe exacerbation of psoriatic skin disease. The proposed interaction between viral infection, HLA-Cw1, and psoriasis is through the killer cell immunoglobulin-like receptors of natural killer cells. Given the diverse nature of psoriasis pathogenesis and the difference in HLA-Cw prevalence in different racial groups, more studies are needed to confirm the role of HLA-Cw1 in psoriasis.
Collapse
|
16
|
Strumillo ST, Kartavykh D, de Carvalho FF, Cruz NC, de Souza Teodoro AC, Sobhie Diaz R, Curcio MF. Host-virus interaction and viral evasion. Cell Biol Int 2021; 45:1124-1147. [PMID: 33533523 PMCID: PMC8014853 DOI: 10.1002/cbin.11565] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
With each infectious pandemic or outbreak, the medical community feels the need to revisit basic concepts of immunology to understand and overcome the difficult times brought about by these infections. Regarding viruses, they have historically been responsible for many deaths, and such a peculiarity occurs because they are known to be obligate intracellular parasites that depend upon the host's cell machinery for their replication. Successful infection with the production of essential viral components requires constant viral evolution as a strategy to manipulate the cellular environment, including host internal factors, the host's nonspecific and adaptive immune responses to viruses, the metabolic and energetic state of the infected cell, and changes in the intracellular redox environment during the viral infection cycle. Based on this knowledge, it is fundamental to develop new therapeutic strategies for controlling viral dissemination, by means of antiviral therapies, vaccines, or antioxidants, or by targeting the inhibition or activation of cell signaling pathways or metabolic pathways that are altered during infection. The rapid recovery of altered cellular homeostasis during viral infection is still a major challenge. Here, we review the strategies by which viruses evade the host's immune response and potential tools used to develop more specific antiviral therapies to cure, control, or prevent viral diseases.
Collapse
Affiliation(s)
- Scheilla T Strumillo
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Denis Kartavykh
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Fábio F de Carvalho
- Departament of Educational Development, Getulio Vargas Foundation, São Paulo, Brazil
| | - Nicolly C Cruz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Ana C de Souza Teodoro
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Marli F Curcio
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Ziegler MC, Naidoo K, Chapel A, Nkotwana S, Mann J, Mncube Z, Ismael N, Goulder P, Ndung’u T, Altfeld M, Thobakgale CF. HIV-1 evades a Gag mutation that abrogates killer cell immunoglobulin-like receptor binding and disinhibits natural killer cells in infected individuals with KIR2DL2+/HLA-C*03: 04+ genotype. AIDS 2021; 35:151-154. [PMID: 33273184 PMCID: PMC7856308 DOI: 10.1097/qad.0000000000002721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
: HIV-1 sequence variations impact binding of inhibitory killer cell immunoglobulin-like receptors (KIRs) to human leukocyte antigen class I (HLA-I) molecules modulating natural killer cell function. HIV-1 strains encoding amino acids that mediate binding of inhibitory KIRs might therefore have a selective benefit in individuals expressing the respective KIR/HLA genotypes. Here, we demonstrate that HIV-1 clade C avoids a p24 Gag mutation that abolishes binding of KIR2DL2 to HLA-C03:04 and disinhibits natural killer cells in individual encoding for this genotype.
Collapse
Affiliation(s)
- Maja C. Ziegler
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Kewreshini Naidoo
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Anais Chapel
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sindiswa Nkotwana
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Jaclyn Mann
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Zenele Mncube
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Nasreen Ismael
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Philip Goulder
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Thumbi Ndung’u
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard University, Cambridge, MA, USA
- Africa Health Research Institute, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
- Division of Infection and Immunity, University College London, London, UK
| | - Marcus Altfeld
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Christina F. Thobakgale
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- University of the Witwatersrand, Faculty of Health Sciences, Centre for HIV and STIs, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|
18
|
HIV-1 induced changes in HLA-C*03 : 04-presented peptide repertoires lead to reduced engagement of inhibitory natural killer cell receptors. AIDS 2020; 34:1713-1723. [PMID: 32501836 PMCID: PMC8635260 DOI: 10.1097/qad.0000000000002596] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Viral infections influence intracellular peptide repertoires available for presentation by HLA-I. Alterations in HLA-I/peptide complexes can modulate binding of killer immunoglobuline-like receptors (KIRs) and thereby the function of natural killer (NK) cells. Although multiple studies have provided evidence that HLA-I/KIR interactions play a role in HIV-1 disease progression, the consequence of HIV-1 infection for HLA-I/KIR interactions remain largely unknown. DESIGN We determined changes in HLA-I presented peptides resulting from HIV-1-infection of primary human CD4 T cells and assessed the impact of changes in peptide repertoires on HLA-I/KIR interactions. METHODS Liquid chromatography-coupled tandem mass spectrometry to identify HLA-I presented peptides, cell-based in-vitro assays to evaluate functional consequences of alterations in immunopeptidome and atomistic molecular dynamics simulations to confirm experimental data. RESULTS A total of 583 peptides exclusively presented on HIV-1-infected cells were identified, of which only 0.2% represented HIV-1 derived peptides. Focusing on HLA-C*03 : 04/KIR2DL3 interactions, we observed that HLA-C*03 : 04-presented peptides derived from noninfected CD4 T cells mediated stronger binding of inhibitory KIR2DL3 than peptides derived from HIV-1-infected cells. Furthermore, the most abundant peptide presented by HLA-C*03 : 04 on noninfected CD4 T cells (VIYPARISL) mediated the strongest KIR2DL3-binding, while the most abundant peptide presented on HIV-1-infected cells (YAIQATETL) did not mediate KIR2DL3-binding. Molecular dynamics simulations of HLA-C*03 : 04/KIR2DL3 interactions in the context of these two peptides revealed that VIYPARISL significantly enhanced the HLA-C*03 : 04/peptide contact area to KIR2DL3 compared with YAIQATETL. CONCLUSION These data demonstrate that HIV-1 infection-induced changes in HLA-I-presented peptides can reduce engagement of inhibitory KIRs, providing a mechanism for enhanced activation of NK cells by virus-infected cells.
Collapse
|
19
|
Bouayad A. Innate immune evasion by SARS-CoV-2: Comparison with SARS-CoV. Rev Med Virol 2020; 30:1-9. [PMID: 32734714 DOI: 10.1002/rmv.2135] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023]
Abstract
SARS-CoV-2 virus, a member of the Coronaviridae family, causes Covid-19 pandemic disease with severe respiratory illness. Multiple strategies enable SARS-CoV-2 to eventually overcome antiviral innate immune mechanisms which are important components of viral pathogenesis. This review considers several mechanisms of SARS-CoV-2 innate immune evasion including suppression of IFN-α/β production at the earliest stage of infection, mechanisms that exhaust natural killer cell-mediated cytotoxicity, overstimulation of NLRP3 inflammasome and induction of a cytokine storm. A comparison with SARS-CoV is made. Greater knowledge of these and other immune evasion tactics may provide us with improved possibilities for research into this novel deadly virus.
Collapse
Affiliation(s)
- Abdellatif Bouayad
- Laboratory of Immunohematology and Cellular Therapy, Faculty of Medicine and Pharmacy, Mohammed First University, Oujda, Morocco.,Laboratory of Immunology, Mohammed VI Hospital, Oujda, Morocco
| |
Collapse
|
20
|
Correale P, Mutti L, Pentimalli F, Baglio G, Saladino RE, Sileri P, Giordano A. HLA-B*44 and C*01 Prevalence Correlates with Covid19 Spreading across Italy. Int J Mol Sci 2020; 21:ijms21155205. [PMID: 32717807 PMCID: PMC7432860 DOI: 10.3390/ijms21155205] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/23/2022] Open
Abstract
The spread of COVID-19 is showing huge, unexplained, differences between northern and southern Italy. We hypothesized that the regional prevalence of specific class I human leukocyte antigen (HLA) alleles, which shape the anti-viral immune response, might partly underlie these differences. Through an ecological approach, we analyzed whether a set of HLA alleles (A, B, C), known to be involved in the immune response against infections, correlates with COVID-19 incidence. COVID-19 data were provided by the National Civil Protection Department, whereas HLA allele prevalence was retrieved through the Italian Bone-Marrow Donors Registry. Among all the alleles, HLA-A*25, B*08, B*44, B*15:01, B*51, C*01, and C*03 showed a positive log-linear correlation with COVID-19 incidence rate fixed on 9 April 2020 in proximity of the national outbreak peak (Pearson’s coefficients between 0.50 and 0.70, p-value < 0.0001), whereas HLA-B*14, B*18, and B*49 showed an inverse log-linear correlation (Pearson’s coefficients between −0.47 and −0.59, p-value < 0.0001). When alleles were examined simultaneously using a multiple regression model to control for confounding factors, HLA-B*44 and C*01 were still positively and independently associated with COVID-19: a growth rate of 16% (95%CI: 0.1–35%) per 1% point increase in B*44 prevalence; and of 19% (95%CI: 1–41%) per 1% point increase in C*01 prevalence. Our epidemiologic analysis, despite the limits of the ecological approach, is strongly suggestive of a permissive role of HLA-C*01 and B*44 towards SARS-CoV-2 infection, which warrants further investigation in case-control studies. This study opens a new potential avenue for the identification of sub-populations at risk, which could provide Health Services with a tool to define more targeted clinical management strategies and priorities in vaccination campaigns.
Collapse
Affiliation(s)
- Pierpaolo Correale
- Unit of Medical Oncology, Oncology Department, Grand Metropolitan Hospital ‘Bianchi Melacrino Morelli’, I-89124 Reggio Calabria, Italy;
| | - Luciano Mutti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, I-80131 Napoli, Italy;
| | | | - Rita Emilena Saladino
- Tissue Typing Unit, Grand Metropolitan Hospital ‘Bianchi Melacrino Morelli’, I-89124 Reggio Calabria, Italy;
| | | | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA;
- Department of Medical Biotechnologies, University of Siena, I-53100 Siena, Italy
- Correspondence: ; Tel.: +1-215-204-9520; Fax: +1-215-204-9522
| |
Collapse
|
21
|
Hopfensperger K, Richard J, Stürzel CM, Bibollet-Ruche F, Apps R, Leoz M, Plantier JC, Hahn BH, Finzi A, Kirchhoff F, Sauter D. Convergent Evolution of HLA-C Downmodulation in HIV-1 and HIV-2. mBio 2020; 11:e00782-20. [PMID: 32665270 PMCID: PMC7360927 DOI: 10.1128/mbio.00782-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/11/2020] [Indexed: 12/13/2022] Open
Abstract
HLA-C-mediated antigen presentation induces the killing of human immunodeficiency virus (HIV)-infected CD4+ T cells by cytotoxic T lymphocytes (CTLs). To evade killing, many HIV-1 group M strains decrease HLA-C surface levels using their accessory protein Vpu. However, some HIV-1 group M isolates lack this activity, possibly to prevent the activation of natural killer (NK) cells. Analyzing diverse primate lentiviruses, we found that Vpu-mediated HLA-C downregulation is not limited to pandemic group M but is also found in HIV-1 groups O and P as well as several simian immunodeficiency viruses (SIVs). We show that Vpu targets HLA-C primarily at the protein level, independently of its ability to suppress NF-κB-driven gene expression, and that in some viral lineages, HLA-C downregulation may come at the cost of efficient counteraction of the restriction factor tetherin. Remarkably, HIV-2, which does not carry a vpu gene, uses its accessory protein Vif to decrease HLA-C surface expression. This Vif activity requires intact binding sites for the Cullin5/Elongin ubiquitin ligase complex but is separable from its ability to counteract APOBEC3G. Similar to HIV-1 Vpu, the degree of HIV-2 Vif-mediated HLA-C downregulation varies considerably among different virus isolates. In agreement with opposing selection pressures in vivo, we show that the reduction of HLA-C surface levels by HIV-2 Vif is accompanied by increased NK cell-mediated killing. In summary, our results highlight the complex role of HLA-C in lentiviral infections and demonstrate that HIV-1 and HIV-2 have evolved at least two independent mechanisms to decrease HLA-C levels on infected cells.IMPORTANCE Genome-wide association studies suggest that HLA-C expression is a major determinant of viral load set points and CD4+ T cell counts in HIV-infected individuals. On the one hand, efficient HLA-C expression enables the killing of infected cells by cytotoxic T lymphocytes (CTLs). On the other hand, HLA-C sends inhibitory signals to natural killer (NK) cells and enhances the infectivity of newly produced HIV particles. HIV-1 group M viruses modulate HLA-C expression using the accessory protein Vpu, possibly to balance CTL- and NK cell-mediated immune responses. Here, we show that the second human immunodeficiency virus, HIV-2, can use its accessory protein Vif to evade HLA-C-mediated restriction. Furthermore, our mutational analyses provide insights into the underlying molecular mechanisms. In summary, our results reveal how the two human AIDS viruses modulate HLA-C, a key component of the antiviral immune response.
Collapse
Affiliation(s)
| | - Jonathan Richard
- Centre de Recherche du CHUM, Montreal, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
| | - Christina M Stürzel
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frederic Bibollet-Ruche
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Richard Apps
- NIH Center for Human Immunology, National Institutes of Health, Bethesda, Maryland, USA
| | - Marie Leoz
- Normandie Université, UNIROUEN, UNICAEN, GRAM 2.0, Rouen, France
| | - Jean-Christophe Plantier
- Normandie Université, UNIROUEN, UNICAEN, GRAM 2.0, Rouen University Hospital, Department of Virology, Laboratory Associated with the National Reference Center on HIV, Rouen, France
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrés Finzi
- Centre de Recherche du CHUM, Montreal, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
22
|
Li Q, Liu S, Zhang S, Liu C, Sun M, Li C, Zhang X, Chen J, Yao Y, Shi L. Human leucocyte antigen but not KIR alleles and haplotypes associated with chronic HCV infection in a Chinese Han population. Int J Immunogenet 2019; 46:263-273. [PMID: 30932338 DOI: 10.1111/iji.12425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/28/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
The host immune system plays a key role in the elimination of infected cells which depend on killer-cell immunoglobulin-like receptors (KIR), human leucocyte antigen (HLA) class I molecules and their combinations. To evaluate the roles of HLAclass I, KIR genes and their combination in Chronic hepatitis C virus (HCV) infection (CHC), a total of 301 CHCs and 239 controls in a Chinese Han population were included for HLA and KIR genotyping using next-generation sequencing and multiplex PCR sequence-specific priming, respectively. The allele frequency of HLA-C*08:01 was significantly higher in the CHCs than that of the controls (0.088 vs. 0.040, OR = 2.332, 95%CI: 1.361-3.996, p = 0.022), while the frequencies of B*13:01 (0.032 vs. 0.084, OR = 0.357, 95%CI: 0.204-0.625, p = 0.009) and C*08:04 (0.008 vs. 0.038, OR = 0.214, 95%CI: 0.079-0.581, p = 0.022) were significantly lower in the CHCs. The frequencies of haplotype A*11:01-C*08:01 were higher in the CHCs (0.058 vs. 0.019, OR = 3.096, 95%CI: 1.486-6.452, p = 0.026), while haplotype B*13:01-C*03:04 were lower in the CHCs compared to the controls (0.028 vs. 0.071, OR = 0.377, 95%CI: 0.207-0.685, p = 0.012). No association of CHC with KIR genes, genotypes, or haplotypes, as well as HLA/KIR combinations was observed. Our results indicated that HLA-C*08:01 was a risk factor for CHC, while HLA-C*08:04 and HLA-B*13:01 were protective factors against CHC. Haplotypes HLA-A*11:01-C*08:01 could increase susceptibility to CHC, while HLA-B*13:01-C*03:04 could be protective against CHC in the Chinese Han population.
Collapse
Affiliation(s)
- Qiongfen Li
- Division for Expended Program of Immunization of Yunnan Center for Disease Control and Prevention, Kunming, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | | | - Chengxiu Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Chuanyin Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Xinwen Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Jun Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Yufeng Yao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research & Development on Severe Infectious Disease, Kunming, China
| |
Collapse
|
23
|
Wauquier N, Petitdemange C, Tarantino N, Maucourant C, Coomber M, Lungay V, Bangura J, Debré P, Vieillard V. HLA-C-restricted viral epitopes are associated with an escape mechanism from KIR2DL2 + NK cells in Lassa virus infection. EBioMedicine 2019; 40:605-613. [PMID: 30711514 PMCID: PMC6413685 DOI: 10.1016/j.ebiom.2019.01.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/31/2022] Open
Abstract
Background Lassa virus (LASV) is the etiologic agent of an acute hemorrhagic fever endemic in West Africa. Natural killer (NK) cells control viral infections in part through the interaction between killer cell immunoglobulin-like receptors (KIRs) and their ligands. LASV infection is associated with defective immune responses, including inhibition of NK cell activity in the presence of MHC-class 1+-infected target cells. Methods We compared individual KIR and HLA-class 1 genotypes of 68 healthy volunteers to 51 patients infected with LASV in Sierra Leone, including 37 survivors and 14 fatalities. Next, potential HLA-C1, HLA-C2, and HLA-Bw4 binding epitopes were in silico screened among LASV nucleoprotein (NP) and envelope glycoprotein (GP). Selected 10-mer peptides were then tested in peptide-HLA stabilization, KIR binding and polyfunction assays. Findings LASV-infected patients were similar to healthy controls, except for the inhibitory KIR2DL2 gene. We found a specific increase in the HLA-C1:KIR2DL2 interaction in fatalities (10/11) as compared to survivors (12/19) and controls (19/29). We also identified that strong of NP and GP viral epitopes was only observed with HLA-C molecules, and associated with strong inhibition of degranulation in the presence of KIR2DL+ NK cells. This inhibitory effect significantly increased in the presence of the vGP420 variant, detected in 28.1% of LASV sequences. Interpretation Our finding suggests that presentation of specific LASV epitopes by HLA-C alleles to the inhibitory KIR2DL2 receptor on NK cells could potentially prevent the killing of infected cells and provides insights into the mechanisms by which LASV can escape NK-cell-mediated immune pressure.
Collapse
Affiliation(s)
- Nadia Wauquier
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France; Metabiota, San Francisco, CA, USA
| | - Caroline Petitdemange
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Nadine Tarantino
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Christopher Maucourant
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | | | | | | | - Patrice Debré
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France
| | - Vincent Vieillard
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses (CIMI-Paris), Paris, France.
| |
Collapse
|
24
|
Bastidas-Legarda LY, Khakoo SI. Conserved and variable natural killer cell receptors: diverse approaches to viral infections. Immunology 2019; 156:319-328. [PMID: 30570753 DOI: 10.1111/imm.13039] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/12/2018] [Indexed: 02/07/2023] Open
Abstract
Natural killer (NK) cells are lymphocytes of the innate immune system with essential roles during viral infections. NK cell functions are mediated through a repertoire of non-rearranging inhibitory and activating receptors that interact with major histocompatibility complex (MHC)-peptide complexes on the surface of infected cells. Recent work studying the conserved CD94-NKG2A and variable killer cell immunoglobulin-like receptor-MHC systems suggest that these two receptor families may have subtly different properties in terms of interactions with MHC class I bound peptides, and in recognition of down-regulation of MHC class I. In this review, we discuss how these properties generate diversity in the NK cell response to viruses.
Collapse
Affiliation(s)
- Leidy Y Bastidas-Legarda
- Faculty of Medicine, Clinical and Experimental Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| | - Salim I Khakoo
- Faculty of Medicine, Clinical and Experimental Sciences, Southampton General Hospital, University of Southampton, Southampton, UK
| |
Collapse
|
25
|
Ziegler MC, Grañana FB, Garcia-Beltran WF, Schulze Zur Wiesch J, Hoffmann C, Rechtien A, Lunemann S, Altfeld M. Stable Frequencies of HLA-C *03:04/Peptide-Binding KIR2DL2/3 + Natural Killer Cells Following Vaccination. Front Immunol 2018; 9:2361. [PMID: 30386333 PMCID: PMC6199360 DOI: 10.3389/fimmu.2018.02361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/24/2018] [Indexed: 11/30/2022] Open
Abstract
Inhibitory KIRs play a central role in regulating NK cell activity. KIR2DL2/3 bind to HLA-C molecules, but the modulation of these interactions by viral infections and presentation of viral epitopes is not well-understood. We investigated whether the frequencies of KIR2DL2/3+ NK cells recognizing HLA-C*03:04/viral peptide complexes were impacted by YFV vaccination or HIV-1 and HCV infection. Ex vivo HLA class I tetramer staining of primary human NK cells derived from YFV-vaccinated individuals, or HIV-1- or HCV-infected individuals revealed that the YFV/HLA-C*03:04-NS2A4−13-tetramer bound to a larger proportion of KIR2DL2/3+ NK cells compared to HIV-1/HLA-C*03:04-Gag296−304- or HCV/HLA-C*03:04-Core136−144-tetramers. The YFV/HLA-C*03:04-NS2A4−13-tetramer also exhibited a stronger avidity to KIR2DL2/3 compared to the other tested tetramers. The proportional frequencies of KIR2DL2/3+ NK cells binding to the three tested HLA-C*03:04 tetramers were identical between YFV-vaccinated individuals or HIV-1- or HCV-infected individuals, and remained stable following YFV vaccination. These data demonstrate consistent hierarchies in the frequency of primary KIR2DL2/3+ NK cells binding HLA-C*03:04/peptide complexes that were determined by the HLA-C-presented peptide and not modulated by the underlying viral infection or vaccination.
Collapse
Affiliation(s)
- Maja Christiane Ziegler
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ferran Borràs Grañana
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Wilfredo F Garcia-Beltran
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, United States
| | | | - Christian Hoffmann
- ICH Study Center, Infektionsmedizinisches Centrum Hamburg, Hamburg, Germany
| | - Anne Rechtien
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,First Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Partner Site Hamburg-Lübeck-Borstel-Riems, German Center for Infection Research, Hamburg, Germany
| | - Sebastian Lunemann
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Marcus Altfeld
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.,Partner Site Hamburg-Lübeck-Borstel-Riems, German Center for Infection Research, Hamburg, Germany
| |
Collapse
|
26
|
Biron CA, Altfeld M. Is There Natural Killer Cell Memory and Can It Be Harnessed by Vaccination? Can Natural Killer and CD8 T Cells Switch Jobs? Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029892. [PMID: 29254975 DOI: 10.1101/cshperspect.a029892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells are components of innate immunity mediating defense at early times after viral infections. Their cytokine production and cell-mediated cytotoxicity functions overlap those of CD8 T cells elicited later during primary adaptive immune responses, but the populations are distinguished by their basal states and activating receptors as well as the kinetics of their responses. Demonstration of long-lived NK cells has led to speculation on the potential for inducing these to contribute to immunological memory. Conversely, activated CD8 T cells can acquire responses to innate cytokines and, as a result, have the potential to contribute to innate immunity. These observations beg the question: what is required to be a player in innate and adaptive immunity?
Collapse
Affiliation(s)
- Christine A Biron
- Department of Molecular Microbiology and Immunology, The Division of Biology and Medicine, and The Warren Alpert Medical School, Brown University, Providence, Rhode Island 02903
| | - Marcus Altfeld
- Institute of Immunology, University Medical Center Hamburg-Eppendorf; and Department of Virus Immunology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| |
Collapse
|
27
|
Bachtel ND, Umviligihozo G, Pickering S, Mota TM, Liang H, Del Prete GQ, Chatterjee P, Lee GQ, Thomas R, Brockman MA, Neil S, Carrington M, Bwana B, Bangsberg DR, Martin JN, Kallas EG, Donini CS, Cerqueira NB, O’Doherty UT, Hahn BH, Jones RB, Brumme ZL, Nixon DF, Apps R. HLA-C downregulation by HIV-1 adapts to host HLA genotype. PLoS Pathog 2018; 14:e1007257. [PMID: 30180214 PMCID: PMC6138419 DOI: 10.1371/journal.ppat.1007257] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/14/2018] [Accepted: 08/02/2018] [Indexed: 01/09/2023] Open
Abstract
HIV-1 can downregulate HLA-C on infected cells, using the viral protein Vpu, and the magnitude of this downregulation varies widely between primary HIV-1 variants. The selection pressures that result in viral downregulation of HLA-C in some individuals, but preservation of surface HLA-C in others are not clear. To better understand viral immune evasion targeting HLA-C, we have characterized HLA-C downregulation by a range of primary HIV-1 viruses. 128 replication competent viral isolates from 19 individuals with effective anti-retroviral therapy, show that a substantial minority of individuals harbor latent reservoir virus which strongly downregulates HLA-C. Untreated infections display no change in HLA-C downregulation during the first 6 months of infection, but variation between viral quasispecies can be detected in chronic infection. Vpu molecules cloned from plasma of 195 treatment naïve individuals in chronic infection demonstrate that downregulation of HLA-C adapts to host HLA genotype. HLA-C alleles differ in the pressure they exert for downregulation, and individuals with higher levels of HLA-C expression favor greater viral downregulation of HLA-C. Studies of primary and mutant molecules identify 5 residues in the transmembrane region of Vpu, and 4 residues in the transmembrane domain of HLA-C, which determine interactions between Vpu and HLA. The observed adaptation of Vpu-mediated downregulation to host genotype indicates that HLA-C alleles differ in likelihood of mediating a CTL response that is subverted by viral downregulation, and that preservation of HLA-C expression is favored in the absence of these responses. Finding that latent reservoir viruses can downregulate HLA-C could have implications for HIV-1 cure therapy approaches in some individuals.
Collapse
Affiliation(s)
- Nathaniel D. Bachtel
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington DC, United States of America
| | | | - Suzanne Pickering
- Department of Infectious Disease, King’s College London School of Medicine, Guy’s Hospital, London, United Kingdom
| | - Talia M. Mota
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington DC, United States of America
| | - Hua Liang
- Department of Statistics and Biostatistics, George Washington University, Washington DC, United States of America
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, United States of America
| | - Pramita Chatterjee
- Cancer and Inflammation Program, HLA Immunogenetics Section, Basic Science Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, United States of America
| | - Guinevere Q. Lee
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
| | - Rasmi Thomas
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- Henry M. Jackson Foundation, Bethesda, Maryland, United States of America
| | - Mark A. Brockman
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Stuart Neil
- Department of Infectious Disease, King’s College London School of Medicine, Guy’s Hospital, London, United Kingdom
| | - Mary Carrington
- Cancer and Inflammation Program, HLA Immunogenetics Section, Basic Science Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, Massachusetts, United States of America
| | - Bosco Bwana
- Mbarara University of Science and Technology, Mbarara, Uganda
| | - David R. Bangsberg
- Mbarara University of Science and Technology, Mbarara, Uganda
- Oregon Health & Science University, Portland State University School of Public Health, Portland, Oregon, United States of America
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, United States of America
| | | | | | | | - Una T. O’Doherty
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Beatrice H. Hahn
- Departments of Medicine and Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - R. Brad Jones
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington DC, United States of America
| | - Zabrina L. Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, Canada
| | - Douglas F. Nixon
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington DC, United States of America
| | - Richard Apps
- Department of Microbiology, Immunology & Tropical Medicine, The George Washington University, Washington DC, United States of America
| |
Collapse
|
28
|
Hammer Q, Rückert T, Romagnani C. Natural killer cell specificity for viral infections. Nat Immunol 2018; 19:800-808. [PMID: 30026479 DOI: 10.1038/s41590-018-0163-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/05/2018] [Indexed: 12/12/2022]
Abstract
Natural killer (NK) cells are lymphocytes that contribute to the early immune responses to viruses. NK cells are innate immune cells that do not express rearranged antigen receptors but sense their environment via receptors for pro-inflammatory cytokines, as well as via germline-encoded activating receptors specific for danger or pathogen signals. A group of such activating receptors is stochastically expressed by certain subsets within the NK cell compartment. After engagement of the cognate viral ligand, these receptors contribute to the specific activation and 'preferential' population expansion of defined NK cell subsets, which partially recapitulate some features of adaptive lymphocytes. In this Review, we discuss the numerous modes for the specific recognition of viral antigens and peptides by NK cells and the implications of this for the composition of the NK cell repertoire as well as for the the selection of viral variants.
Collapse
Affiliation(s)
- Quirin Hammer
- Innate Immunity, German Rheumatism Research Center, Leibniz Association, Berlin, Germany.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Timo Rückert
- Innate Immunity, German Rheumatism Research Center, Leibniz Association, Berlin, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center, Leibniz Association, Berlin, Germany. .,Medical Department I, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
29
|
Mathaiyan M, Suresh A, Balamurugan R. Binding property of HIV p24 and Reverse transcriptase by chalcones from Pongamia pinnata seeds. Bioinformation 2018; 14:279-284. [PMID: 30237673 PMCID: PMC6137571 DOI: 10.6026/97320630014279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 01/12/2023] Open
Abstract
HIV remains a challenging life threatening viral agent for humans despite available anti HIV drugs. The known effective drug named HAART clears the circulating viruses but not the intracellular viruses. Therefore, it is of interest to identify molecules with improved anti-HIV activity from natural plant sources. Hence, we studied the anti-HIV potency of an Indian medicinal plant named Pongamia pinnata. Aqueous extracts were made from leaf, seed and roots of Pongmia pinnata and screened for anti HIV-1 activity using HIV-1 p24 and reverse transcriptase (RT) inhibition assays. Further, the active chalcone derivatives namely, P24 protein and RT enzymes showed promising binding score against Glabarachalcone and Karanijin. Among these extracts, P. pinnta aqueous seed extracts have shown HIV-1 p24 inhibition at 66.9 ± 4.4 percentage. However, RT inhibition assay showed only 36.8%. Hence, the HIV-1 p24 inhibition infers either the prevention of virus entry or inhibits other enzymes and or interferes with virion assembly.
Collapse
Affiliation(s)
- Manikannan Mathaiyan
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai-600 119
| | - Arumugam Suresh
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai-600 119
| | - Rangasamy Balamurugan
- Central Research Laboratory, Sri Manakula Vinayagar Medical College & Hospital, Madagadipet, Puducherry- 605107
| |
Collapse
|
30
|
Regulation and Function of NK and T Cells During Dengue Virus Infection and Vaccination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1062:251-264. [PMID: 29845538 PMCID: PMC7121313 DOI: 10.1007/978-981-10-8727-1_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The focus of this review is to discuss findings in the last 10 years that have advanced our understanding of human NK cell responses to dengue virus. We will review recently identified interactions of activating and inhibitory receptors on NK cells with dengue virus, human NK responses to natural dengue infection and highlight possible interactions by which NK cells may shape adaptive immune responses. T cell responses to natural dengue infection will be reviewed by Laura Rivino in Chap. 17 . With the advent of numerous dengue vaccine clinical trials, we will also review T and NK cell immune responses to dengue virus vaccination. As our understanding of the diverse functions of NK cell has advanced, it has become increasingly clear that human NK cell responses to viral infections are more complicated than initially recognized.
Collapse
|
31
|
HLA Class I Downregulation by HIV-1 Variants from Subtype C Transmission Pairs. J Virol 2018; 92:JVI.01633-17. [PMID: 29321314 DOI: 10.1128/jvi.01633-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/23/2017] [Indexed: 02/08/2023] Open
Abstract
HIV-1 downregulates human leukocyte antigen A (HLA-A) and HLA-B from the surface of infected cells primarily to evade CD8 T cell recognition. HLA-C was thought to remain on the cell surface and bind inhibitory killer immunoglobulin-like receptors, preventing natural killer (NK) cell-mediated suppression. However, a recent study found HIV-1 primary viruses have the capacity to downregulate HLA-C. The goal of this study was to assess the heterogeneity of HLA-A, HLA-B, and HLA-C downregulation among full-length primary viruses from six chronically infected and six newly infected individuals from transmission pairs and to determine whether transmitted/founder variants exhibit common HLA class I downregulation characteristics. We measured HLA-A, HLA-B, HLA-C, and total HLA class I downregulation by flow cytometry of primary CD4 T cells infected with 40 infectious molecular clones. Primary viruses mediated a range of HLA class I downregulation capacities (1.3- to 6.1-fold) which could differ significantly between transmission pairs. Downregulation of HLA-C surface expression on infected cells correlated with susceptibility to in vitro NK cell suppression of virus release. Despite this, transmitted/founder variants did not share a downregulation signature and instead were more similar to the quasispecies of matched donor partners. These data indicate that a range of viral abilities to downregulate HLA-A, HLA-B, and HLA-C exist within and between individuals that can have functional consequences on immune recognition.IMPORTANCE Subtype C HIV-1 is the predominant subtype involved in heterosexual transmission in sub-Saharan Africa. Authentic subtype C viruses that contain natural sequence variations throughout the genome often are not used in experimental systems due to technical constraints and sample availability. In this study, authentic full-length subtype C viruses, including transmitted/founder viruses, were examined for the ability to disrupt surface expression of HLA class I molecules, which are central to both adaptive and innate immune responses to viral infections. We found that the HLA class I downregulation capacity of primary viruses varied, and HLA-C downregulation capacity impacted viral suppression by natural killer cells. Transmitted viruses were not distinct in the capacity for HLA class I downregulation or natural killer cell evasion. These results enrich our understanding of the phenotypic variation existing among natural HIV-1 viruses and how that might impact the ability of the immune system to recognize infected cells in acute and chronic infection.
Collapse
|
32
|
Holder KA, Comeau EM, Grant MD. Origins of natural killer cell memory: special creation or adaptive evolution. Immunology 2018; 154:38-49. [PMID: 29355919 DOI: 10.1111/imm.12898] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 01/09/2018] [Accepted: 01/14/2018] [Indexed: 12/13/2022] Open
Abstract
The few initial formative studies describing non-specific and apparently spontaneous activity of natural killer (NK) cells have since multiplied into thousands of scientific reports defining their unique capacities and means of regulation. Characterization of the array of receptors that govern NK cell education and activation revealed an unexpected relationship with the major histocompatibility molecules that NK cells originally became well known for ignoring. Proceeding true to form, NK cells continue to up-end archetypal understanding of their ever-expanding capabilities. Discovery that the NK cell repertoire is extremely diverse and can be reshaped by particular viruses into unique subsets of adaptive NK cells challenges, or at least broadens, the definition of immunological memory. This review provides an overview of studies identifying adaptive NK cells, addressing the origins of NK cell memory and introducing the heretical concept of NK cells with extensive antigenic specificity. Whether these newly apparent properties reflect adaptive utilization of known NK cell attributes and receptors or a specially creative allocation from an undefined receptor array remains to be fully determined.
Collapse
Affiliation(s)
- Kayla A Holder
- Immunology and Infectious Diseases Programme, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| | - Emilie M Comeau
- Immunology and Infectious Diseases Programme, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| | - Michael D Grant
- Immunology and Infectious Diseases Programme, Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St John's, NL, Canada
| |
Collapse
|
33
|
Hölzemer A, Garcia-Beltran WF, Altfeld M. Natural Killer Cell Interactions with Classical and Non-Classical Human Leukocyte Antigen Class I in HIV-1 Infection. Front Immunol 2017; 8:1496. [PMID: 29184550 PMCID: PMC5694438 DOI: 10.3389/fimmu.2017.01496] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
Natural killer (NK) cells are effector lymphocytes of the innate immune system that are able to mount a multifaceted antiviral response within hours following infection. This is achieved through an array of cell surface receptors surveilling host cells for alterations in human leukocyte antigen class I (HLA-I) expression and other ligands as signs of viral infection, malignant transformation, and cellular stress. This interaction between HLA-I ligands and NK-cell receptor is not only important for recognition of diseased cells but also mediates tuning of NK-cell-effector functions. HIV-1 alters the expression of HLA-I ligands on infected cells, rendering them susceptible to NK cell-mediated killing. However, over the past years, various HIV-1 evasion strategies have been discovered to target NK-cell-receptor ligands and allow the virus to escape from NK cell-mediated immunity. While studies have been mainly focusing on the role of polymorphic HLA-A, -B, and -C molecules, less is known about how HIV-1 affects the more conserved, non-classical HLA-I molecules HLA-E, -G, and -F. In this review, we will focus on the recent progress in understanding the role of non-classical HLA-I ligands in NK cell-mediated recognition of HIV-1-infected cells.
Collapse
Affiliation(s)
- Angelique Hölzemer
- First Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | | | - Marcus Altfeld
- German Center for Infection Research (DZIF), Partner site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
34
|
Zhang XH, Lian XD, Dai ZX, Zheng HY, Chen X, Zheng YT. α3-Deletion Isoform of HLA-A11 Modulates Cytotoxicity of NK Cells: Correlations with HIV-1 Infection of Cells. THE JOURNAL OF IMMUNOLOGY 2017; 199:2030-2042. [PMID: 28784847 DOI: 10.4049/jimmunol.1602183] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/14/2017] [Indexed: 01/16/2023]
Abstract
Alternative splicing occurs frequently in many genes, especially those involved in immunity. Unfortunately, the functions of many alternatively spliced molecules from immunologically relevant genes remain unknown. Classical HLA-I molecules are expressed on almost all nucleated cells and play a pivotal role in both innate and adaptive immunity. Although splice variants of HLA-I genes have been reported, the details of their functions have not been reported. In the current study, we determined the characteristics, expression, and function of a novel splice variant of HLA-A11 named HLA-A11svE4 HLA-A11svE4 is located on the cell surface without β2-microglobulin (β2m). Additionally, HLA-A11svE4 forms homodimers as well as heterodimers with HLA-A open conformers, instead of combining with β2m. Moreover, HLA-A11svE4 inhibits the activation of NK cells to protect target cells. Compared with β2m and HLA-A11, the heterodimer of HLA-A11svE4 and HLA-A11 protected target cells from lysis by NK cells more effectively. Furthermore, HLA-AsvE4 expression was upregulated by HIV-1 in vivo and by HSV, CMV, and hepatitis B virus in vitro. In addition, our findings indicated that HLA-A11svE4 molecules were functional in activating CD8+ T cells through Ag presentation. Taken together, these results suggested that HLA-A11svE4 can homodimerize and form a novel heterodimeric complex with HLA-A11 open conformers. Furthermore, the data are consistent with HLA-A11svE4 playing a role in the immune escape of HIV-1.
Collapse
Affiliation(s)
- Xi-He Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; and
| | - Xiao-Dong Lian
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; and
| | - Zheng-Xi Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Hong-Yi Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Xin Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China; and
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province/Key Laboratory of Bioactive Peptides of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| |
Collapse
|
35
|
Crux NB, Elahi S. Human Leukocyte Antigen (HLA) and Immune Regulation: How Do Classical and Non-Classical HLA Alleles Modulate Immune Response to Human Immunodeficiency Virus and Hepatitis C Virus Infections? Front Immunol 2017; 8:832. [PMID: 28769934 PMCID: PMC5513977 DOI: 10.3389/fimmu.2017.00832] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
The genetic factors associated with susceptibility or resistance to viral infections are likely to involve a sophisticated array of immune response. These genetic elements may modulate other biological factors that account for significant influence on the gene expression and/or protein function in the host. Among them, the role of the major histocompatibility complex in viral pathogenesis in particular human immunodeficiency virus (HIV) and hepatitis C virus (HCV), is very well documented. We, recently, added a novel insight into the field by identifying the molecular mechanism associated with the protective role of human leukocyte antigen (HLA)-B27/B57 CD8+ T cells in the context of HIV-1 infection and why these alleles act as a double-edged sword protecting against viral infections but predisposing the host to autoimmune diseases. The focus of this review will be reexamining the role of classical and non-classical HLA alleles, including class Ia (HLA-A, -B, -C), class Ib (HLA-E, -F, -G, -H), and class II (HLA-DR, -DQ, -DM, and -DP) in immune regulation and viral pathogenesis (e.g., HIV and HCV). To our knowledge, this is the very first review of its kind to comprehensively analyze the role of these molecules in immune regulation associated with chronic viral infections.
Collapse
Affiliation(s)
- Nicole B. Crux
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- Faculty of Medicine and Dentistry, Department of Dentistry, University of Alberta, Edmonton, AB, Canada
- Faculty of Medicine and Dentistry, Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
36
|
Carrillo-Bustamante P, de Boer RJ, Keşmir C. Specificity of inhibitory KIRs enables NK cells to detect changes in an altered peptide environment. Immunogenetics 2017; 70:87-97. [PMID: 28695292 PMCID: PMC5775373 DOI: 10.1007/s00251-017-1019-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/20/2017] [Indexed: 12/12/2022]
Abstract
The activity of natural killer (NK) cells is tightly regulated by inhibitory and activating receptors. Inhibitory killer immunoglobulin-like receptors (iKIRs) survey the surface of target cells by monitoring the expression of human leukocyte antigen (HLA) class I. The binding of iKIRs has been shown to be sensitive to the peptides presented by HLA class I, implying that iKIRs have the ability to detect the changes in the repertoire of peptide-HLA class I complexes (pHLA), a process occurring during viral infection and in tumor cells. To study how the pHLA repertoire changes upon infection, and whether an iKIR is able to detect these changes, we study peptides eluted from cells prior and after infection with measles virus (MV). Remarkably, most changes in the repertoire of potential iKIR ligands are predicted to be caused by the altered expression of self-peptides. We show that an iKIR can detect these changes in the presented peptides only if it is sufficiently specific, e.g., if iKIRs can distinguish between different amino acids in the contact residues (e.g., position 7 and 8). Our analysis further indicates that one single iKIR per host is not sufficient to detect changes in the peptide repertoire, suggesting that a multigene family encoding for different iKIRs is required for successful peptide recognition.
Collapse
Affiliation(s)
- Paola Carrillo-Bustamante
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands. .,Center for Modeling and Simulation in the Biosciences (BIOMS/IWR), Max Planck Institute, Heidelberg, Germany.
| | - Rob J de Boer
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Can Keşmir
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
37
|
Chapel A, Garcia-Beltran WF, Hölzemer A, Ziegler M, Lunemann S, Martrus G, Altfeld M. Peptide-specific engagement of the activating NK cell receptor KIR2DS1. Sci Rep 2017; 7:2414. [PMID: 28546555 PMCID: PMC5445099 DOI: 10.1038/s41598-017-02449-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/11/2017] [Indexed: 01/10/2023] Open
Abstract
The activating NK cell receptor KIR2DS1 has been shown to be involved in many disorders including autoimmune diseases, malignancies and pregnancy outcomes. However, the precise ligands and functions of this receptor remain unclear. We aimed to gain a better understanding of the factors involved in the binding of KIR2DS1 and its inhibitory counterpart KIR2DL1 to HLA class I molecules, and the consequences for KIR2DS1+ NK-cell function. A systematic screen that assessed binding to 97 HLA-I proteins confirmed that KIR2DS1-binding was narrowly restricted to HLA-C group 2 complexes, while KIR2DL1 showed a broader binding specificity. Using KIR2DS1ζ+ Jurkat reporter-cells and peptide-pulsed 721.221.TAP1KO-HLA-C*06:02 cells, we identified the synthetic peptide SRGPVHHLL presented by HLA-C*06:02 that strongly engaged KIR2DS1- and KIR2DL1-binding. Functional analysis showed that this HLA-C*06:02-presented peptide can furthermore activate primary KIR2DS1(+) NK cell clones. Thus, we demonstrated peptide-dependent binding of the activating NK cell receptor KIR2DS1, providing new insights into the underlying mechanisms involved in KIR2DS1-related disorders.
Collapse
Affiliation(s)
- Anaïs Chapel
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Angelique Hölzemer
- Department of Internal Medicine, University Hospital Eppendorf (UKE), Hamburg, Germany
| | - Maja Ziegler
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Sebastian Lunemann
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Gloria Martrus
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Marcus Altfeld
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany.
| |
Collapse
|
38
|
Pollmann J, Rölle A, Hofmann M, Cerwenka A. Hepatitis C Virus and Human Cytomegalovirus-Natural Killer Cell Subsets in Persistent Viral Infections. Front Immunol 2017; 8:566. [PMID: 28567042 PMCID: PMC5434107 DOI: 10.3389/fimmu.2017.00566] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/27/2017] [Indexed: 12/17/2022] Open
Abstract
Hepatitis C virus (HCV) and human cytomegalovirus (HCMV) are prominent examples of RNA and DNA viruses, respectively, that establish a persistent infection in their host. HCV affects over 185 million patients worldwide, who are at high risk for developing liver fibrosis, liver cirrhosis, and ultimately hepatocellular carcinoma. Recent breakthroughs in HCV therapy, using direct-acting antivirals have provided the opportunity to monitor natural killer (NK) cells after clearance of a chronic infection. There is now increasing evidence that the individual NK cell repertoire before infection is predictive for the course of disease. HCMV affects the majority of the global population. While being asymptomatic in healthy individuals, HCMV represents a severe clinical challenge in immunocompromised patients. Both viral infections, HCV and HCMV, lead to long-lasting and profound alterations within the entire NK cell compartment. This review article, will discuss the diverse range of changes in the NK cell compartment as well as potential consequences for the course of disease.
Collapse
Affiliation(s)
- Julia Pollmann
- Research Group Innate Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alexander Rölle
- Clinical Cooperation Unit Applied Tumor-Immunity, German Cancer Research Center (DKFZ), National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Maike Hofmann
- Faculty of Medicine, Department of Medicine II, University Hospital Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | - Adelheid Cerwenka
- Research Group Innate Immunity, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Medical Faculty Mannheim, Division of Immunbiochemistry, University Heidelberg, Heidelberg, Germany
| |
Collapse
|
39
|
Keib A, Günther PS, Faist B, Halenius A, Busch DH, Neuenhahn M, Jahn G, Dennehy KM. Presentation of a Conserved Adenoviral Epitope on HLA-C*0702 Allows Evasion of Natural Killer but Not T Cell Responses. Viral Immunol 2017; 30:149-156. [PMID: 28085643 DOI: 10.1089/vim.2016.0145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Infection with adenovirus is a major cause of infectious mortality in children following hematopoietic stem-cell transplantation. While adoptive transfer of epitope-specific T cells is a particularly effective therapeutic approach, there are few suitable adenoviral peptide epitopes described to date. Here, we describe the adenoviral peptide epitope FRKDVNMVL from hexon protein, and its variant FRKDVNMIL, that is restricted by human leukocyte antigen (HLA)-C*0702. Since HLA-C*0702 can be recognized by both T cells and natural killer (NK) cells, we characterized responses by both cell types. T cells specific for FRKDVNMVL were detected in peripheral blood mononuclear cells expanded from eight of ten healthy HLA-typed donors by peptide-HLA multimer staining, and could also be detected by cultured interferon γ ELISpot assays. Surprisingly, HLA-C*0702 was not downregulated during infection, in contrast to the marked downregulation of HLA-A*0201, suggesting that adenovirus cannot evade T cell responses to HLA-C*0702-restricted peptide epitopes. By contrast, NK responses were inhibited following adenoviral peptide presentation. Notably, presentation of the FRKDVNMVL peptide enhanced binding of HLA-C*0702 to the inhibitory receptor KIR2DL3 and decreased NK cytotoxic responses, suggesting that adenoviruses may use this peptide to evade NK responses. Given the immunodominance of FRKDVNMVL-specific T cell responses, apparent lack of HLA-C*0702 downregulation during infection, and the high frequency of this allotype, this peptide epitope may be particularly useful for adoptive T cell transfer therapy of adenovirus infection.
Collapse
Affiliation(s)
- Anna Keib
- 1 Institute for Medical Virology, University Hospital Tübingen , Tübingen, Germany
| | - Patrick S Günther
- 1 Institute for Medical Virology, University Hospital Tübingen , Tübingen, Germany
| | - Benjamin Faist
- 2 Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich , Munich, Germany
| | - Anne Halenius
- 3 Institute of Virology, University Hospital Freiburg , Freiburg, Germany
| | - Dirk H Busch
- 2 Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich , Munich, Germany .,4 German Center for Infection Research (DZIF) , Partner Sites Tübingen and Munich, Germany
| | - Michael Neuenhahn
- 2 Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich , Munich, Germany .,4 German Center for Infection Research (DZIF) , Partner Sites Tübingen and Munich, Germany
| | - Gerhard Jahn
- 1 Institute for Medical Virology, University Hospital Tübingen , Tübingen, Germany
| | - Kevin M Dennehy
- 1 Institute for Medical Virology, University Hospital Tübingen , Tübingen, Germany .,4 German Center for Infection Research (DZIF) , Partner Sites Tübingen and Munich, Germany
| |
Collapse
|
40
|
Lin Z, Kuroki K, Kuse N, Sun X, Akahoshi T, Qi Y, Chikata T, Naruto T, Koyanagi M, Murakoshi H, Gatanaga H, Oka S, Carrington M, Maenaka K, Takiguchi M. HIV-1 Control by NK Cells via Reduced Interaction between KIR2DL2 and HLA-C ∗12:02/C ∗14:03. Cell Rep 2016; 17:2210-2220. [PMID: 27880898 PMCID: PMC5184766 DOI: 10.1016/j.celrep.2016.10.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 09/12/2016] [Accepted: 10/20/2016] [Indexed: 11/28/2022] Open
Abstract
Natural killer (NK) cells control viral infection in part through the interaction between killer cell immunoglobulin-like receptors (KIRs) and their human leukocyte antigen (HLA) ligands. We investigated 504 anti-retroviral (ART)-free Japanese patients chronically infected with HIV-1 and identified two KIR/HLA combinations, KIR2DL2/HLA-C∗12:02 and KIR2DL2/HLA-C∗14:03, that impact suppression of HIV-1 replication. KIR2DL2+ NK cells suppressed viral replication in HLA-C∗14:03+ or HLA-C∗12:02+ cells to a significantly greater extent than did KIR2DL2- NK cells in vitro. Functional analysis showed that the binding between HIV-1-derived peptide and HLA-C∗14:03 or HLA-C∗12:02 influenced KIR2DL2+ NK cell activity through reduced expression of the peptide-HLA (pHLA) complex on the cell surface (i.e., reduced KIR2DL2 ligand expression), rather than through reduced binding affinity of KIR2DL2 to the respective pHLA complexes. Thus, KIR2DL2/HLA-C∗12:02 and KIR2DL2/HLA-C∗14:03 compound genotypes have protective effects on control of HIV-1 through a mechanism involving KIR2DL2-mediated NK cell recognition of virus-infected cells, providing additional understanding of NK cells in HIV-1 infection.
Collapse
Affiliation(s)
- Zhansong Lin
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan
| | - Kimiko Kuroki
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Nozomi Kuse
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan
| | - Xiaoming Sun
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan
| | - Tomohiro Akahoshi
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan
| | - Ying Qi
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Inc., Frederick National Laboratories for Cancer Research, Frederick, MD 21701, USA
| | - Takayuki Chikata
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan
| | - Takuya Naruto
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan
| | - Madoka Koyanagi
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hayato Murakoshi
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan
| | - Hiroyuki Gatanaga
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Shinichi Oka
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan; AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Mary Carrington
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Inc., Frederick National Laboratories for Cancer Research, Frederick, MD 21701, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139-3583, USA
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060-0812, Japan
| | - Masafumi Takiguchi
- Center for AIDS Research, Kumamoto University, Chuo-ku, Kumamoto 860-0811, Japan.
| |
Collapse
|
41
|
Lunemann S, Martrus G, Hölzemer A, Chapel A, Ziegler M, Körner C, Garcia Beltran W, Carrington M, Wedemeyer H, Altfeld M. Sequence variations in HCV core-derived epitopes alter binding of KIR2DL3 to HLA-C∗03:04 and modulate NK cell function. J Hepatol 2016; 65:252-8. [PMID: 27057987 PMCID: PMC4955726 DOI: 10.1016/j.jhep.2016.03.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 03/23/2016] [Accepted: 03/30/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Both natural killer (NK) cells and human leukocyte antigen (HLA)/killer cell immunoglobulin like receptor (KIR) interactions have been shown to play an important role in the control, clearance and progression of hepatitis C virus (HCV) disease. Here we aimed at elucidating the effects of viral peptides derived from HCV on HLA stabilization, changes in KIR binding and primary NK cell function. METHODS Transporter for antigen presentation-deficient 722.221 cells stably transfected with HLA-C∗03:04 were used to screen 200 overlapping peptides, covering the non-structural protein 3 (NS3) and core protein of HCV genotype 1, for their ability to bind and stabilize HLA-C∗03:04. Binding of KIR2DL3 to the HLA-peptide complex was assessed using a KIR2DL3-IgG fusion construct. Primary NK cells were isolated from healthy donors to investigate the effects of identified peptides on KIR2DL3(+) NK cell function. RESULTS Thirty-one peptides able to stabilize HLA-C∗03:04 were identified. One 9mer peptide, YIPLVGAPL, resulted in significantly higher KIR2DL3 binding to HLA-C∗03:04(+) 722.221 cells and suppression of primary KIR2DL3(+) NK cell function. Interestingly this sequence exhibited a high frequency of mutations in different HCV genotypes. These genotype-specific peptides showed lower HLA-C∗03:04 stabilization, decreased binding of the inhibitory KIR2DL3 and lower inhibition of NK cell function. CONCLUSIONS Taken together we show that a viral peptide derived from the core protein of HCV genotype 1 binding to HLA-C∗03:04 results in a sequence-dependent engagement of the inhibitory NK cell receptor KIR2DL3, while the large majority of the remaining 30 HLA-C∗03:04 binding HCV core peptides did not. These data show that sequence variations within HCV can modulate NK cell function, providing potential pathways for viral escape. LAY SUMMARY We identified a HCV peptide that dampens NK cell responses, and thereby possibly prevents killing of infected cells through this part of the innate immune system. This is facilitated via presentation of the viral peptide on HLA∗03:04 to the inhibitory KIR receptor KIR2DL3 on NK cells. Naturally occurring sequence mutations in the peptide alter these interactions making the inhibition less efficient.
Collapse
Affiliation(s)
- Sebastian Lunemann
- Department for Viral Immunology, Heinrich-Pette-Institute, Hamburg, Germany
| | - Gloria Martrus
- Department for Viral Immunology, Heinrich-Pette-Institute, Hamburg, Germany
| | - Angelique Hölzemer
- Department of Internal Medicine, University Hospital Eppendorf, Hamburg, Germany
| | - Anais Chapel
- Department for Viral Immunology, Heinrich-Pette-Institute, Hamburg, Germany
| | - Maja Ziegler
- Department for Viral Immunology, Heinrich-Pette-Institute, Hamburg, Germany
| | - Christian Körner
- Department for Viral Immunology, Heinrich-Pette-Institute, Hamburg, Germany
| | | | - Mary Carrington
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA; Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Heiner Wedemeyer
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Marcus Altfeld
- Department for Viral Immunology, Heinrich-Pette-Institute, Hamburg, Germany.
| |
Collapse
|
42
|
Ma Y, Li X, Kuang E. Viral Evasion of Natural Killer Cell Activation. Viruses 2016; 8:95. [PMID: 27077876 PMCID: PMC4848590 DOI: 10.3390/v8040095] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/21/2016] [Accepted: 03/31/2016] [Indexed: 12/11/2022] Open
Abstract
Natural killer (NK) cells play a key role in antiviral innate defenses because of their abilities to kill infected cells and secrete regulatory cytokines. Additionally, NK cells exhibit adaptive memory-like antigen-specific responses, which represent a novel antiviral NK cell defense mechanism. Viruses have evolved various strategies to evade the recognition and destruction by NK cells through the downregulation of the NK cell activating receptors. Here, we review the recent findings on viral evasion of NK cells via the impairment of NK cell-activating receptors and ligands, which provide new insights on the relationship between NK cells and viral actions during persistent viral infections.
Collapse
Affiliation(s)
- Yi Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Xiaojuan Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan 2nd Road, Guangzhou 510080, China.
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74, Zhongshan 2nd Road, Guangzhou 510080, China.
- Key Laboratory of Tropical Disease Control (Sun Yat-Sen University), Ministry of Education, Guangzhou 510080, China.
| |
Collapse
|
43
|
Davis ZB, Cogswell A, Scott H, Mertsching A, Boucau J, Wambua D, Le Gall S, Planelles V, Campbell KS, Barker E. A Conserved HIV-1-Derived Peptide Presented by HLA-E Renders Infected T-cells Highly Susceptible to Attack by NKG2A/CD94-Bearing Natural Killer Cells. PLoS Pathog 2016; 12:e1005421. [PMID: 26828202 PMCID: PMC4735451 DOI: 10.1371/journal.ppat.1005421] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/06/2016] [Indexed: 11/21/2022] Open
Abstract
Major histocompatibility class I (MHC-I)-specific inhibitory receptors on natural killer (NK) cells (iNKRs) tolerize mature NK cell responses toward normal cells. NK cells generate cytolytic responses to virus-infected or malignant target cells with altered or decreased MHC-I surface expression due to the loss of tolerizing ligands. The NKG2A/CD94 iNKR suppresses NK cell responses through recognition of the non-classical MHC-I, HLA-E. We used HIV-infected primary T-cells as targets in an in vitro cytolytic assay with autologous NK cells from healthy donors. In these experiments, primary NKG2A/CD94(+) NK cells surprisingly generated the most efficient responses toward HIV-infected T-cells, despite high HLA-E expression on the infected targets. Since certain MHC-I-presented peptides can alter recognition by iNKRs, we hypothesized that HIV-1-derived peptides presented by HLA-E on infected cells may block engagement with NKG2A/CD94, thereby engendering susceptibility to NKG2A/CD94(+) NK cells. We demonstrate that HLA-E is capable of presenting a highly conserved peptide from HIV-1 capsid (AISPRTLNA) that is not recognized by NKG2A/CD94. We further confirmed that HLA-C expressed on HIV-infected cells restricts attack by KIR2DL(+) CD56(dim) NK cells, in contrast to the efficient responses by CD56(bright) NK cells, which express predominantly NKG2A/CD94 and lack KIR2DLs. These findings are important since the use of NK cells was recently proposed to treat latently HIV-1-infected patients in combination with latency reversing agents. Our results provide a mechanistic basis to guide these future clinical studies, suggesting that ex vivo-expanded NKG2A/CD94(+) KIR2DL(-) NK cells may be uniquely beneficial.
Collapse
Affiliation(s)
- Zachary B. Davis
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Andrew Cogswell
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Hamish Scott
- Division of Infection and Immunity and Cell Signaling and Cell Death, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Amanda Mertsching
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Daniel Wambua
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Sylvie Le Gall
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Vicente Planelles
- Department of Pathology, University of Utah, Salt Lake City, Utah, United States of America
| | - Kerry S. Campbell
- Fox Chase Cancer Center, Institute for Cancer Research, Philadelphia, Pennsylvania, United States of America
| | - Edward Barker
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, Illinois, United States of America
| |
Collapse
|
44
|
Naranbhai V, de Assis Rosa D, Werner L, Moodley R, Hong H, Kharsany A, Mlisana K, Sibeko S, Garrett N, Chopera D, Carr WH, Abdool Karim Q, Hill AVS, Abdool Karim SS, Altfeld M, Gray CM, Ndung'u T. Killer-cell Immunoglobulin-like Receptor (KIR) gene profiles modify HIV disease course, not HIV acquisition in South African women. BMC Infect Dis 2016; 16:27. [PMID: 26809736 PMCID: PMC4727384 DOI: 10.1186/s12879-016-1361-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/18/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Killer-cell Immunoglobulin-like Receptors (KIR) interact with Human Leukocyte Antigen (HLA) to modify natural killer- and T-cell function. KIR are implicated in HIV acquisition by small studies that have not been widely replicated. A role for KIR in HIV disease progression is more widely replicated and supported by functional studies. METHODS To assess the role of KIR and KIR ligands in HIV acquisition and disease course, we studied at-risk women in South Africa between 2004-2010. Logistic regression was used for nested case-control analysis of 154 women who acquired vs. 155 who did not acquire HIV, despite high exposure. Linear mixed-effects models were used for cohort analysis of 139 women followed prospectively for a median of 54 months (IQR 31-69) until 2014. RESULTS Neither KIR repertoires nor HLA alleles were associated with HIV acquisition. However, KIR haplotype BB was associated with lower viral loads (-0.44 log10 copies/ml; SE = 0.18; p = 0.03) and higher CD4+ T-cell counts (+80 cells/μl; SE = 42; p = 0.04). This was largely explained by the protective effect of KIR2DL2/KIR2DS2 on the B haplotype and reciprocal detrimental effect of KIR2DL3 on the A haplotype. CONCLUSIONS Although neither KIR nor HLA appear to have a role in HIV acquisition, our data are consistent with involvement of KIR2DL2 in HIV control. Additional studies to replicate these findings are indicated.
Collapse
Affiliation(s)
- V Naranbhai
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa. .,Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa.
| | - D de Assis Rosa
- National Institute of Communicable Diseases, Sandringham, South Africa. .,University of the Witwatersrand, Johannesburg, South Africa.
| | - L Werner
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - R Moodley
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa.
| | - H Hong
- Division of Virology, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
| | - A Kharsany
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - K Mlisana
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - S Sibeko
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - N Garrett
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa.
| | - D Chopera
- University of Cape Town, Cape Town, South Africa.
| | - W H Carr
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa. .,City University of New York - Medgar Evers College, New York, USA. .,Ragon Institute of MGH, MIT and Harvard University, Boston, USA.
| | - Q Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa. .,Mailman School of Public Health, Columbia University, New York, USA.
| | - A V S Hill
- Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - S S Abdool Karim
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa. .,Mailman School of Public Health, Columbia University, New York, USA.
| | - M Altfeld
- Ragon Institute of MGH, MIT and Harvard University, Boston, USA. .,Leibniz Institute for Experimental Virology, Heinrich Pette Institute, Hamburg, Germany.
| | - C M Gray
- National Institute of Communicable Diseases, Sandringham, South Africa. .,University of Cape Town, Cape Town, South Africa.
| | - T Ndung'u
- HIV Pathogenesis Programme, University of KwaZulu-Natal, Durban, South Africa. .,Ragon Institute of MGH, MIT and Harvard University, Boston, USA. .,KwaZulu-Natal Research Institute for Tuberculosis and HIV, University of KwaZulu-Natal, Durban, South Africa. .,Max Planck Institute for Infection Biology, Chariteplatz, D-10117, Berlin, Germany.
| |
Collapse
|
45
|
Salzberger W, Garcia-Beltran WF, Dugan H, Gubbala S, Simoneau C, Gressens SB, Jost S, Altfeld M. Influence of Glycosylation Inhibition on the Binding of KIR3DL1 to HLA-B*57:01. PLoS One 2015; 10:e0145324. [PMID: 26680341 PMCID: PMC4683028 DOI: 10.1371/journal.pone.0145324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/01/2015] [Indexed: 11/19/2022] Open
Abstract
Viral infections can affect the glycosylation pattern of glycoproteins involved in antiviral immunity. Given the importance of protein glycosylation for immune function, we investigated the effect that modulation of the highly conserved HLA class I N-glycan has on KIR:HLA interactions and NK cell function. We focused on HLA-B*57:01 and its interaction with KIR3DL1, which has been shown to play a critical role in determining the progression of a number of human diseases, including human immunodeficiency virus-1 infection. 721.221 cells stably expressing HLA-B*57:01 were treated with a panel of glycosylation enzyme inhibitors, and HLA class I expression and KIR3DL1 binding was quantified. In addition, the functional outcomes of HLA-B*57:01 N-glycan disruption/modulation on KIR3DL1ζ+ Jurkat reporter cells and primary human KIR3DL1+ NK cells was assessed. Different glycosylation enzyme inhibitors had varying effects on HLA-B*57:01 expression and KIR3DL1-Fc binding. The most remarkable effect was that of tunicamycin, an inhibitor of the first step of N-glycosylation, which resulted in significantly reduced KIR3DL1-Fc binding despite sustained expression of HLA-B*57:01 on 721.221 cells. This effect was paralleled by decreased activation of KIR3DL1ζ+ Jurkat reporter cells, as well as increased degranulation of primary human KIR3DL1+ NK cell clones when encountering HLA-B*57:01-expressing 721.221 cells that were pre-treated with tunicamycin. Overall, these results demonstrate that N-glycosylation of HLA class I is important for KIR:HLA binding and has an impact on NK cell function.
Collapse
Affiliation(s)
- Wilhelm Salzberger
- Department of Virus Immunology, Heinrich-Pette-Institut, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | | | - Haley Dugan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Supreetha Gubbala
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Camille Simoneau
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Simon B. Gressens
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Stephanie Jost
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
| | - Marcus Altfeld
- Department of Virus Immunology, Heinrich-Pette-Institut, Leibniz Institute for Experimental Virology, Hamburg, Germany
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
46
|
Hölzemer A, Thobakgale CF, Jimenez Cruz CA, Garcia-Beltran WF, Carlson JM, van Teijlingen NH, Mann JK, Jaggernath M, Kang SG, Körner C, Chung AW, Schafer JL, Evans DT, Alter G, Walker BD, Goulder PJ, Carrington M, Hartmann P, Pertel T, Zhou R, Ndung’u T, Altfeld M. Selection of an HLA-C*03:04-Restricted HIV-1 p24 Gag Sequence Variant Is Associated with Viral Escape from KIR2DL3+ Natural Killer Cells: Data from an Observational Cohort in South Africa. PLoS Med 2015; 12:e1001900; discussion e1001900. [PMID: 26575988 PMCID: PMC4648589 DOI: 10.1371/journal.pmed.1001900] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/07/2015] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Viruses can evade immune surveillance, but the underlying mechanisms are insufficiently understood. Here, we sought to understand the mechanisms by which natural killer (NK) cells recognize HIV-1-infected cells and how this virus can evade NK-cell-mediated immune pressure. METHODS AND FINDINGS Two sequence mutations in p24 Gag associated with the presence of specific KIR/HLA combined genotypes were identified in HIV-1 clade C viruses from a large cohort of infected, untreated individuals in South Africa (n = 392), suggesting viral escape from KIR+ NK cells through sequence variations within HLA class I-presented epitopes. One sequence polymorphism at position 303 of p24 Gag (TGag303V), selected for in infected individuals with both KIR2DL3 and HLA-C*03:04, enabled significantly better binding of the inhibitory KIR2DL3 receptor to HLA-C*03:04-expressing cells presenting this variant epitope compared to the wild-type epitope (wild-type mean 18.01 ± 10.45 standard deviation [SD] and variant mean 44.67 ± 14.42 SD, p = 0.002). Furthermore, activation of primary KIR2DL3+ NK cells from healthy donors in response to HLA-C*03:04+ target cells presenting the variant epitope was significantly reduced in comparison to cells presenting the wild-type sequence (wild-type mean 0.78 ± 0.07 standard error of the mean [SEM] and variant mean 0.63 ± 0.07 SEM, p = 0.012). Structural modeling and surface plasmon resonance of KIR/peptide/HLA interactions in the context of the different viral sequence variants studied supported these results. Future studies will be needed to assess processing and antigen presentation of the investigated HIV-1 epitope in natural infection, and the consequences for viral control. CONCLUSIONS These data provide novel insights into how viruses can evade NK cell immunity through the selection of mutations in HLA-presented epitopes that enhance binding to inhibitory NK cell receptors. Better understanding of the mechanisms by which HIV-1 evades NK-cell-mediated immune pressure and the functional validation of a structural modeling approach will facilitate the development of novel targeted immune interventions to harness the antiviral activities of NK cells.
Collapse
Affiliation(s)
- Angelique Hölzemer
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Heinrich-Pette-Institut, Leibniz Institute for Experimental Virology, Hamburg, Germany
- First Department of Internal Medicine, University Medical Center Hamburg—Eppendorf, Hamburg, Germany
| | - Christina F. Thobakgale
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Camilo A. Jimenez Cruz
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, United States of America
| | | | | | | | - Jaclyn K. Mann
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Manjeetha Jaggernath
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Seung-gu Kang
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, United States of America
| | - Christian Körner
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Heinrich-Pette-Institut, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Amy W. Chung
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Jamie L. Schafer
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Microbiology, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - David T. Evans
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Microbiology, New England Primate Research Center, Southborough, Massachusetts, United States of America
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Madison, Wisconsin, United States of America
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Philip J. Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Cancer and Inflammation Program, Laboratory of Experimental Immunology, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Pia Hartmann
- First Department of Internal Medicine, Division of Infectious Diseases, University of Cologne, Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
| | - Thomas Pertel
- Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruhong Zhou
- Computational Biology Center, IBM Thomas J. Watson Research Center, Yorktown Heights, New York, United States of America
| | - Thumbi Ndung’u
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
- Max Planck Institute for Infection Biology, Berlin, Germany
- KwaZulu-Natal Research Institute for Tuberculosis and HIV, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, United States of America
- Heinrich-Pette-Institut, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
47
|
Abstract
Natural killer (NK) cells are immune cells that play a crucial role against viral infections and tumors. To be tolerant against healthy tissue and simultaneously attack infected cells, the activity of NK cells is tightly regulated by a sophisticated array of germline-encoded activating and inhibiting receptors. The best characterized mechanism of NK cell activation is “missing self” detection, i.e., the recognition of virally infected or transformed cells that reduce their MHC expression to evade cytotoxic T cells. To monitor the expression of MHC-I on target cells, NK cells have monomorphic inhibitory receptors which interact with conserved MHC molecules. However, there are other NK cell receptors (NKRs) encoded by gene families showing a remarkable genetic diversity. Thus, NKR haplotypes contain several genes encoding for receptors with activating and inhibiting signaling, and that vary in gene content and allelic polymorphism. But if missing-self detection can be achieved by a monomorphic NKR system why have these polygenic and polymorphic receptors evolved? Here, we review the expansion of NKR receptor families in different mammal species, and we discuss several hypotheses that possibly underlie the diversification of the NK cell receptor complex, including the evolution of viral decoys, peptide sensitivity, and selective MHC-downregulation.
Collapse
|
48
|
Schafer JL, Ries M, Guha N, Connole M, Colantonio AD, Wiertz EJ, Wilson NA, Kaur A, Evans DT. Suppression of a Natural Killer Cell Response by Simian Immunodeficiency Virus Peptides. PLoS Pathog 2015; 11:e1005145. [PMID: 26333068 PMCID: PMC4557930 DOI: 10.1371/journal.ppat.1005145] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 08/12/2015] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cell responses in primates are regulated in part through interactions between two highly polymorphic molecules, the killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their major histocompatibility complex (MHC) class I ligands on target cells. We previously reported that the binding of a common MHC class I molecule in the rhesus macaque, Mamu-A1*002, to the inhibitory receptor Mamu-KIR3DL05 is stabilized by certain simian immunodeficiency virus (SIV) peptides, but not by others. Here we investigated the functional implications of these interactions by testing SIV peptides bound by Mamu-A1*002 for the ability to modulate Mamu-KIR3DL05+ NK cell responses. Twenty-eight of 75 SIV peptides bound by Mamu-A1*002 suppressed the cytolytic activity of primary Mamu-KIR3DL05+ NK cells, including three immunodominant CD8+ T cell epitopes previously shown to stabilize Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. Substitutions at C-terminal positions changed inhibitory peptides into disinhibitory peptides, and vice versa, without altering binding to Mamu-A1*002. The functional effects of these peptide variants on NK cell responses also corresponded to their effects on Mamu-A1*002 tetramer binding to Mamu-KIR3DL05. In assays with mixtures of inhibitory and disinhibitory peptides, low concentrations of inhibitory peptides dominated to suppress NK cell responses. Consistent with the inhibition of Mamu-KIR3DL05+ NK cells by viral epitopes presented by Mamu-A1*002, SIV replication was significantly higher in Mamu-A1*002+ CD4+ lymphocytes co-cultured with Mamu-KIR3DL05+ NK cells than with Mamu-KIR3DL05- NK cells. These results demonstrate that viral peptides can differentially affect NK cell responses by modulating MHC class I interactions with inhibitory KIRs, and provide a mechanism by which immunodeficiency viruses may evade NK cell responses. Natural killer (NK) cells recognize and kill infected cells without prior antigenic stimulation, and thus provide an important early defense against virus infection. NK cell responses in primates are regulated in part through interactions between two highly polymorphic molecules, the killer-cell immunoglobulin-like receptors (KIRs) on NK cells and their major histocompatibility complex (MHC) class I ligands on target cells. Inhibitory KIRs normally suppress NK cell responses through interactions with their MHC class I ligands on the surface of healthy cells. However, when these interactions are perturbed, this inhibition is lost resulting in NK cell activation and killing of the target cell. We investigated the functional implications of simian immunodeficiency virus (SIV) peptides bound by a common MHC class I molecule in the rhesus macaque that stabilize or disrupt binding to an inhibitory KIR. Whereas SIV peptides that stabilized KIR-MHC class I binding suppressed NK cell activation, peptides that disrupted this interaction did not and resulted in NK cell lysis. These findings demonstrate that viral peptides can modulate NK cell responses through KIR-MHC class I interactions, and are consistent with the possibility that human and simian immunodeficiency viruses may acquire changes in epitopes that increase the binding of MHC class I ligands to inhibitory KIRs as a mechanism to suppress NK cell responses.
Collapse
Affiliation(s)
- Jamie L. Schafer
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Moritz Ries
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Natasha Guha
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Michelle Connole
- Division of Immunology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Arnaud D. Colantonio
- Division of Immunology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - Emmanuel J. Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nancy A. Wilson
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Amitinder Kaur
- Division of Immunology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
| | - David T. Evans
- Department of Microbiology and Immunobiology, Harvard Medical School, New England Primate Research Center, Southborough, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
49
|
Ansari AW, Ahmad F, Meyer-Olson D, Kamarulzaman A, Jacobs R, Schmidt RE. Natural killer cell heterogeneity: cellular dysfunction and significance in HIV-1 immuno-pathogenesis. Cell Mol Life Sci 2015; 72:3037-49. [PMID: 25939268 PMCID: PMC11113101 DOI: 10.1007/s00018-015-1911-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 11/28/2022]
Abstract
Natural killer (NK) cells are innate immune effectors that provide first line of defence against viruses. Human NK cells are heterogeneous in nature, and their functions rely on a dynamic balance between germ-line-encoded activating and inhibitory receptors. HIV-1 infection results in altered NK cell receptor repertoire and impaired effector functions including the ability to lyse virus-infected cells and secretion of antiviral cytokine IFN-γ. Over the last decade, additional NK cell subset-specific molecules have been identified, leading to emergence of a more complex cellular diversity than previously thought. Herein, we discuss NK cell subset redistribution, altered receptor repertoire and influence of interaction of polymorphic leucocyte antigen (HLA) and killer cell immunoglobulin-like receptors (KIR) on HIV-1 disease progression.
Collapse
Affiliation(s)
- A. Wahid Ansari
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Lambah Pantai, 50603 Kuala Lumpur, Malaysia
- Department of Medicine, Faculty of Medicine, University of Malaya, Lambah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Fareed Ahmad
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Dirk Meyer-Olson
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Adeeba Kamarulzaman
- Centre of Excellence for Research in AIDS (CERiA), University of Malaya, Lambah Pantai, 50603 Kuala Lumpur, Malaysia
- Department of Medicine, Faculty of Medicine, University of Malaya, Lambah Pantai, 50603 Kuala Lumpur, Malaysia
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| | - Reinhold E. Schmidt
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg-Str.1, 30625 Hannover, Germany
| |
Collapse
|
50
|
Innate immunity against HIV-1 infection. Nat Immunol 2015; 16:554-62. [PMID: 25988887 DOI: 10.1038/ni.3157] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 03/25/2015] [Indexed: 02/06/2023]
Abstract
During acute HIV-1 infection, viral pathogen-associated molecular patterns are recognized by pathogen-recognition receptors (PRRs) of infected cells, which triggers a signaling cascade that initiates innate intracellular antiviral defenses aimed at restricting the replication and spread of the virus. This cell-intrinsic response propagates outward via the action of secreted factors such as cytokines and chemokines that activate innate immune cells and attract them to the site of infection and to local lymphatic tissue. Antiviral innate effector cells can subsequently contribute to the control of viremia and modulate the quality of the adaptive immune response to HIV-1. The concerted actions of PRR signaling, specific viral-restriction factors, innate immune cells, innate-adaptive immune crosstalk and viral evasion strategies determine the outcome of HIV-1 infection and immune responses.
Collapse
|