1
|
Han ML, Alsaadi Y, Zhao J, Zhu Y, Lu J, Jiang X, Ma W, Patil NA, Dunstan RA, Le Brun AP, Wickremasinghe H, Hu X, Wu Y, Yu HH, Wang J, Barlow CK, Bergen PJ, Shen HH, Lithgow T, Creek DJ, Velkov T, Li J. Arginine catabolism is essential to polymyxin dependence in Acinetobacter baumannii. Cell Rep 2024; 43:114410. [PMID: 38923457 PMCID: PMC11338987 DOI: 10.1016/j.celrep.2024.114410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/03/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Polymyxins are often the only effective antibiotics against the "Critical" pathogen Acinetobacter baumannii. Worryingly, highly polymyxin-resistant A. baumannii displaying dependence on polymyxins has emerged in the clinic, leading to diagnosis and treatment failures. Here, we report that arginine metabolism is essential for polymyxin-dependent A. baumannii. Specifically, the arginine degradation pathway was significantly altered in polymyxin-dependent strains compared to wild-type strains, with critical metabolites (e.g., L-arginine and L-glutamate) severely depleted and expression of the astABCDE operon significantly increased. Supplementation of arginine increased bacterial metabolic activity and suppressed polymyxin dependence. Deletion of astA, the first gene in the arginine degradation pathway, decreased phosphatidylglycerol and increased phosphatidylethanolamine levels in the outer membrane, thereby reducing the interaction with polymyxins. This study elucidates the molecular mechanism by which arginine metabolism impacts polymyxin dependence in A. baumannii, underscoring its critical role in improving diagnosis and treatment of life-threatening infections caused by "undetectable" polymyxin-dependent A. baumannii.
Collapse
Affiliation(s)
- Mei-Ling Han
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia.
| | - Yasser Alsaadi
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Jinxin Zhao
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Yan Zhu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Jing Lu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Xukai Jiang
- National Glycoengineering Research Centre, Shandong University, Qingdao 266237, China
| | - Wendong Ma
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Nitin A Patil
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Rhys A Dunstan
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Anton P Le Brun
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - Hasini Wickremasinghe
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Xiaohan Hu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Yimin Wu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Heidi H Yu
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Jiping Wang
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Christopher K Barlow
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Phillip J Bergen
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Hsin-Hui Shen
- Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Trevor Lithgow
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia
| | - Darren J Creek
- Monash Proteomics and Metabolomics Facility, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Tony Velkov
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Jian Li
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Centre to Impact AMR, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
2
|
Dunstan RA, Hay ID, Lithgow T. Defining Membrane Protein Localization by Isopycnic Density Gradients. Methods Mol Biol 2024; 2715:91-98. [PMID: 37930523 DOI: 10.1007/978-1-0716-3445-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Bacterial membrane proteins account for around one-third of the proteome in many species and can represent much more than half of the mass of the membranes. Classic techniques in cell biology can be applied to characterize bacterial membranes and their membrane protein constituents, and here we describe a protocol for the purification of outer membranes and inner membranes from Escherichia coli. This allows for compositional analysis of the membranes as well as functional analyses. The procedure can be applied with minor modifications to other bacterial species including those carrying capsular polysaccharide attached to the outer membrane.
Collapse
Affiliation(s)
- Rhys A Dunstan
- Centre to Impact AMR, Monash University, Melbourne, VIC, Australia
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Iain D Hay
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Trevor Lithgow
- Centre to Impact AMR, Monash University, Melbourne, VIC, Australia.
- Infection Program and Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Barbat B, Douzi B, Ball G, Tribout M, El Karkouri K, Kellenberger C, Voulhoux R. Insights into dynamics and gating properties of T2SS secretins. SCIENCE ADVANCES 2023; 9:eadg6996. [PMID: 37792935 PMCID: PMC10550240 DOI: 10.1126/sciadv.adg6996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023]
Abstract
Secretins are outer membrane (OM) channels found in various bacterial nanomachines that secrete or assemble large extracellular structures. High-resolution 3D structures of type 2 secretion system (T2SS) secretins revealed bimodular channels with a C-module, holding a conserved central gate and an optional top gate, followed by an N-module for which multiple structural organizations have been proposed. Here, we perform a structure-driven in vivo study of the XcpD secretin, which validates one of the organizations of the N-module whose flexibility enables alternative conformations. We also show the existence of the central gate in vivo and its required flexibility, which is key for substrate passage and watertightness control. Last, functional, genomic, and phylogenetic analyses indicate that the optional top gate provides a gain of watertightness. Our data illustrate how the gating properties of T2SS secretins allow these large channels to overcome the duality between the necessity of preserving the OM impermeability while simultaneously promoting the secretion of large, folded effectors.
Collapse
Affiliation(s)
- Brice Barbat
- LCB-UMR7283, CNRS, Aix Marseille Université, IMM, Marseille, France
| | - Badreddine Douzi
- LCB-UMR7283, CNRS, Aix Marseille Université, IMM, Marseille, France
- Université de Lorraine, INRAE, DynAMic, Nancy, F-54000 France
| | - Geneviève Ball
- LCB-UMR7283, CNRS, Aix Marseille Université, IMM, Marseille, France
| | - Mathilde Tribout
- LCB-UMR7283, CNRS, Aix Marseille Université, IMM, Marseille, France
| | | | | | - Romé Voulhoux
- LCB-UMR7283, CNRS, Aix Marseille Université, IMM, Marseille, France
| |
Collapse
|
4
|
Yu Z, Wu Y, Chen M, Huo T, Zheng W, Ludtke SJ, Shi X, Wang Z. Membrane translocation process revealed by in situ structures of type II secretion system secretins. Nat Commun 2023; 14:4025. [PMID: 37419909 PMCID: PMC10329019 DOI: 10.1038/s41467-023-39583-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/20/2023] [Indexed: 07/09/2023] Open
Abstract
The GspD secretin is the outer membrane channel of the bacterial type II secretion system (T2SS) which secrets diverse toxins that cause severe diseases such as diarrhea and cholera. GspD needs to translocate from the inner to the outer membrane to exert its function, and this process is an essential step for T2SS to assemble. Here, we investigate two types of secretins discovered so far in Escherichia coli, GspDα, and GspDβ. By electron cryotomography subtomogram averaging, we determine in situ structures of key intermediate states of GspDα and GspDβ in the translocation process, with resolution ranging from 9 Å to 19 Å. In our results, GspDα and GspDβ present entirely different membrane interaction patterns and ways of transitioning the peptidoglycan layer. From this, we hypothesize two distinct models for the membrane translocation of GspDα and GspDβ, providing a comprehensive perspective on the inner to outer membrane biogenesis of T2SS secretins.
Collapse
Affiliation(s)
- Zhili Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yaoming Wu
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Muyuan Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Tong Huo
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Wei Zheng
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Steven J Ludtke
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Cryo Electron Microscopy and Tomography Core, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaodong Shi
- Jiangsu Province Key Laboratory of Anesthesiology and Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China.
| | - Zhao Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Cryo Electron Microscopy and Tomography Core, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Barbat B, Douzi B, Voulhoux R. Structural lessons on bacterial secretins. Biochimie 2023; 205:110-116. [PMID: 36096236 DOI: 10.1016/j.biochi.2022.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 08/31/2022] [Indexed: 11/30/2022]
Abstract
To exchange and communicate with their surroundings, bacteria have evolved multiple active and passive mechanisms for trans-envelope transport. Among the pore-forming complexes found in the outer membrane of Gram-negative bacteria, secretins are distinctive homo-oligomeric channels dedicated to the active translocation of voluminous structures such as folded proteins, assembled fibers, virus particles or DNA. Members of the bacterial secretin family share a common cylinder-shaped structure with a gated pore-forming part inserted in the outer membrane, and a periplasmic channel connected to the inner membrane components of the corresponding nanomachine. In this mini-review, we will present what recently determined 3D structures have told us about the mechanisms of translocation through secretins of large substrates to the bacterial surface or in the extracellular milieu.
Collapse
Affiliation(s)
- Brice Barbat
- LCB-UMR7283, CNRS, Aix Marseille Université, IMM, 13009, Marseille, France
| | | | - Romé Voulhoux
- LCB-UMR7283, CNRS, Aix Marseille Université, IMM, 13009, Marseille, France.
| |
Collapse
|
6
|
Yu Z, Wu Y, Chen M, Huo T, Zheng W, Ludtke SJ, Shi X, Wang Z. In situ structures of secretins from bacterial type II secretion system reveal their membrane interactions and translocation process. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523476. [PMID: 36711656 PMCID: PMC9882097 DOI: 10.1101/2023.01.10.523476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The GspD secretin is the outer membrane channel of the bacterial type II secretion system (T2SS) which secrets diverse effector proteins or toxins that cause severe diseases such as diarrhea and cholera. GspD needs to translocate from the inner to the outer membrane to exert its function, and this process is an essential step for T2SS to assemble. Here, we investigate two types of secretins discovered so far in Escherichia coli , GspD α and GspD β , respectively. By electron cryotomography subtomogram averaging, we determine in situ structures of all the key intermediate states of GspD α and GspD β in the translocation process, with resolution ranging from 9 Å to 19 Å. In our results, GspD α and GspD β present entirely different membrane interaction patterns and ways of going across the peptidoglycan layer. We propose two distinct models for the membrane translocation of GspD α and GspD β , providing a comprehensive perspective on the inner to outer membrane biogenesis of T2SS secretins.
Collapse
|
7
|
Rybakova D, Müller H, Olimi E, Schaefer A, Cernava T, Berg G. To defend or to attack? Antagonistic interactions between Serratia plymuthica and fungal plant pathogens, a species-specific volatile dialogue. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1020634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Volatile organic compounds (VOCs) are involved in microbial interspecies communication and in the mode of action of various antagonistic interactions. They are important for balancing host-microbe interactions and provide the basis for developing biological control strategies to control plant pathogens. We studied the interactions between the bacterial antagonist Serratia plymuthica HRO-C48 and three fungal plant pathogens Rhizoctonia solani, Leptosphaeria maculans and Verticillium longisporum. Significant differences in fungal growth inhibition by the Serratia-emitted VOCs in pairwise dual culture assays and changes in the transcriptome of the bacterium and in the volatilomes of both interacting partners were observed. Even though the rate of fungal growth inhibition by Serratia was variable, the confrontation of the bacterium with the VOCs of all three fungi changed the levels of expression of the genes involved in stress response, biofilm formation, and the production of antimicrobial VOCs. Pairwise interacting microorganisms switched between defense (downregulation of gene expression) and attack (upregulation of gene expression and metabolism followed by growth inhibition of the interacting partner) modes, subject to the combinations of microorganisms that were interacting. In the attack mode HRO-C48 significantly inhibited the growth of R. solani while simultaneously boosting its own metabolism; by contrast, its metabolism was downregulated when HRO-C48 went into a defense mode that was induced by the L. maculans and V. longisporum VOCs. L. maculans growth was slightly reduced by the one bacterial VOC methyl acetate that induced a strong downregulation of expression of genes involved in almost all metabolic functions in S. plymuthica. Similarly, the interaction between S. plymuthica and V. longisporum resulted in an insignificant growth reduction of the fungus and repressed the rate of bacterial metabolism on the transcriptional level, accompanied by an intense volatile dialogue. Overall, our results indicate that VOCs substantially contribute to the highly break species-specific interactions between pathogens and their natural antagonists and thus deserving of increased consideration for pathogen control.
Collapse
|
8
|
Scaffolding Protein GspB/OutB Facilitates Assembly of the Dickeya dadantii Type 2 Secretion System by Anchoring the Outer Membrane Secretin Pore to the Inner Membrane and to the Peptidoglycan Cell Wall. mBio 2022; 13:e0025322. [PMID: 35546537 PMCID: PMC9239104 DOI: 10.1128/mbio.00253-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The phytopathogenic proteobacterium Dickeya dadantii secretes an array of plant cell wall-degrading enzymes and other virulence factors via the type 2 secretion system (T2SS). T2SSs are widespread among important plant, animal, and human bacterial pathogens. This multiprotein complex spans the double membrane cell envelope and secretes fully folded proteins through a large outer membrane pore formed by 15 subunits of the secretin GspD. Secretins are also found in the type 3 secretion system and the type 4 pili. Usually, specialized lipoproteins termed pilotins assist the targeting and assembly of secretins into the outer membrane. Here, we show that in D. dadantii, the pilotin acts in concert with the scaffolding protein GspB. Deletion of gspB profoundly impacts secretin assembly, pectinase secretion, and virulence. Structural studies reveal that GspB possesses a conserved periplasmic homology region domain that interacts directly with the N-terminal secretin domain. Site-specific photo-cross-linking unravels molecular details of the GspB-GspD complex in vivo. We show that GspB facilitates outer membrane targeting and assembly of the secretin pores and anchors them to the inner membrane while the C-terminal extension of GspB provides a scaffold for the secretin channel in the peptidoglycan cell wall. Phylogenetic analysis shows that in other bacteria, GspB homologs vary in length and domain composition and act in concert with either a cognate ATPase GspA or the pilotin GspS.
Collapse
|
9
|
Yaman D, Averhoff B. Functional dissection of structural regions of the Thermus thermophilus competence protein PilW: Implication in secretin complex stability, natural transformation and pilus functions. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183666. [PMID: 34143999 DOI: 10.1016/j.bbamem.2021.183666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/29/2021] [Accepted: 06/01/2021] [Indexed: 01/13/2023]
Abstract
Uptake of DNA from the environment into the bacterial cytoplasm is mediated by a macromolecular transport machinery that is similar in structure and function to type IV pili (T4P) and, indeed, DNA translocator and T4P share common components. One is the secretin PilQ which is assembled into homopolymeric complexes forming highly dynamic outer membrane (OM) channels mediating pilus extrusion and DNA uptake. How PilQ interacts with the motor is still enigmatic. Here, we have used biochemical and genetic techniques to study the interaction of PilQ with PilW, a unique protein which is essential for natural transformation and T4P extrusion of T. thermophilus. PilQ and PilW form high molecular mass complexes in the OM of T. thermophilus. When pilW was deleted, PilQ complexes were no longer observed but only PilQ monomers, accompanied by a loss of DNA uptake as well as a loss of T4P and twitching motility. Piliation of a ΔpilT2/ΔpilW double mutant suggests that PilW is important for stable assembly of PilQ complexes. To analyze the role of different regions of PilW, partial deletions (pilW∆2-40, pilW∆50-150, pilW∆163-216 and pilW∆216-292) were generated and the effect on DNA uptake, PilQ complex formation and T4P functions such as twitching motility, biofilm formation and cell-cell interaction was studied. These studies revealed that a central disordered region in PilW is required for pilus dynamics. We propose that PilW is part of a protein network that connects the transport ATPase to drive different functions of the DNA translocator and T4P.
Collapse
Affiliation(s)
- Deniz Yaman
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
10
|
Naskar S, Hohl M, Tassinari M, Low HH. The structure and mechanism of the bacterial type II secretion system. Mol Microbiol 2020; 115:412-424. [PMID: 33283907 DOI: 10.1111/mmi.14664] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/03/2020] [Indexed: 12/17/2022]
Abstract
The type II secretion system (T2SS) is a multi-protein complex used by many bacteria to move substrates across their cell membrane. Substrates released into the environment serve as local and long-range effectors that promote nutrient acquisition, biofilm formation, and pathogenicity. In both animals and plants, the T2SS is increasingly recognized as a key driver of virulence. The T2SS spans the bacterial cell envelope and extrudes substrates through an outer membrane secretin channel using a pseudopilus. An inner membrane assembly platform and a cytoplasmic motor controls pseudopilus assembly. This microreview focuses on the structure and mechanism of the T2SS. Advances in cryo-electron microscopy are enabling increasingly elaborate sub-complexes to be resolved. However, key questions remain regarding the mechanism of pseudopilus extension and retraction, and how this is coupled with the choreography of the substrate moving through the secretion system. The T2SS is part of an ancient type IV filament superfamily that may have been present within the last universal common ancestor (LUCA). Overall, mechanistic principles that underlie T2SS function have implication for other closely related systems such as the type IV and tight adherence pilus systems.
Collapse
Affiliation(s)
- Souvik Naskar
- Department of Infectious Disease, Imperial College, London, UK
| | - Michael Hohl
- Department of Infectious Disease, Imperial College, London, UK
| | | | - Harry H Low
- Department of Infectious Disease, Imperial College, London, UK
| |
Collapse
|
11
|
Perlaza-Jiménez L, Wu Q, Torres VVL, Zhang X, Li J, Rocker A, Lithgow T, Zhou T, Vijaykrishna D. Forensic genomics of a novel Klebsiella quasipneumoniae type from a neonatal intensive care unit in China reveals patterns of colonization, evolution and epidemiology. Microb Genom 2020; 6:mgen000433. [PMID: 32931409 PMCID: PMC7660260 DOI: 10.1099/mgen.0.000433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
During March 2017, a neonatal patient with severe diarrhoea subsequently developed septicaemia and died, with Klebsiella isolated as the causative microorganism. In keeping with infection control protocols, the coincident illness of an attending staff member and three other neonates with Klebsiella infection triggered an outbreak response, leading to microbiological assessment of isolates collected from the staff member and all 21 co-housed neonates. Multilocus sequence typing and genomic sequencing identified that the isolates from the 21 neonates were of a new Klebsiella sequence type, ST2727, and taxonomically belonged to K. quasipneumoniae subsp. similipneumoniae (formerly referred to as KpIIB). Genomic characterization showed that the isolated ST2727 strains had diverged from other K. quasipneumoniae subsp. similipneumoniae strains at least 90 years ago, whereas the neonatal samples were highly similar with a genomic divergence of 3.6 months. There was no relationship to the Klebsiella isolate from the staff member. This demonstrates that no transmission occurred from staff to patient or between patients. Rather, the data suggest that ST2727 colonized each neonate from a common hospital source. Sequence-based analysis of the genomes revealed several genes for antimicrobial resistance and some virulence features, but suggest that ST2727 is neither extremely-drug resistant nor hypervirulent. Our results highlight the clinical significance and genomic properties of ST2727 and urge genome-based measures be implemented for diagnostics and surveillance within hospital environments. Additionally, the present study demonstrates the need to scale the power of genomic analysis in retrospective studies where relatively few samples are available.
Collapse
Affiliation(s)
| | - Qing Wu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Von Vergel L. Torres
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Australia
| | - Xiaoxiao Zhang
- Women’s Hospital School of Medicine Zhejiang University, Hangzhou, PR China
| | - Jiahui Li
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Australia
| | - Andrea Rocker
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Australia
| | - Trevor Lithgow
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Australia
| | - Tieli Zhou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Dhanasekaran Vijaykrishna
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Australia
| |
Collapse
|
12
|
Majewski DD, Okon M, Heinkel F, Robb CS, Vuckovic M, McIntosh LP, Strynadka NCJ. Characterization of the Pilotin-Secretin Complex from the Salmonella enterica Type III Secretion System Using Hybrid Structural Methods. Structure 2020; 29:125-138.e5. [PMID: 32877645 DOI: 10.1016/j.str.2020.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/21/2020] [Accepted: 08/11/2020] [Indexed: 12/01/2022]
Abstract
The type III secretion system (T3SS) is a multi-membrane-spanning protein channel used by Gram-negative pathogenic bacteria to secrete effectors directly into the host cell cytoplasm. In the many species reliant on the T3SS for pathogenicity, proper assembly of the outer membrane secretin pore depends on a diverse family of lipoproteins called pilotins. We present structural and biochemical data on the Salmonella enterica pilotin InvH and the S domain of its cognate secretin InvG. Characterization of InvH by X-ray crystallography revealed a dimerized, α-helical pilotin. Size-exclusion-coupled multi-angle light scattering and small-angle X-ray scattering provide supporting evidence for the formation of an InvH homodimer in solution. Structures of the InvH-InvG heterodimeric complex determined by X-ray crystallography and NMR spectroscopy indicate a predominantly hydrophobic interface. Knowledge of the interaction between InvH and InvG brings us closer to understanding the mechanisms by which pilotins assemble the secretin pore.
Collapse
Affiliation(s)
- Dorothy D Majewski
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Mark Okon
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Florian Heinkel
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - Craig S Robb
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Marija Vuckovic
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Lawrence P McIntosh
- Michael Smith Laboratories, Department of Biochemistry and Molecular Biology, and Department of Chemistry, University of British Columbia, Vancouver, BC, Canada.
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and the Center for Blood Research, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
13
|
Zhu Y, Lu J, Han M, Jiang X, Azad MAK, Patil NA, Lin Y, Zhao J, Hu Y, Yu HH, Chen K, Boyce JD, Dunstan RA, Lithgow T, Barlow CK, Li W, Schneider‐Futschik EK, Wang J, Gong B, Sommer B, Creek DJ, Fu J, Wang L, Schreiber F, Velkov T, Li J. Polymyxins Bind to the Cell Surface of Unculturable Acinetobacter baumannii and Cause Unique Dependent Resistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000704. [PMID: 32775156 PMCID: PMC7403960 DOI: 10.1002/advs.202000704] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/28/2020] [Indexed: 05/13/2023]
Abstract
Multidrug-resistant Acinetobacter baumannii is a top-priority pathogen globally and polymyxins are a last-line therapy. Polymyxin dependence in A. baumannii (i.e., nonculturable on agar without polymyxins) is a unique and highly-resistant phenotype with a significant potential to cause treatment failure in patients. The present study discovers that a polymyxin-dependent A. baumannii strain possesses mutations in both lpxC (lipopolysaccharide biosynthesis) and katG (reactive oxygen species scavenging) genes. Correlative multiomics analyses show a significantly remodeled cell envelope and remarkably abundant phosphatidylglycerol in the outer membrane (OM). Molecular dynamics simulations and quantitative membrane lipidomics reveal that polymyxin-dependent growth emerges only when the lipopolysaccharide-deficient OM distinctively remodels with ≥ 35% phosphatidylglycerol, and with "patch" binding on the OM by the rigid polymyxin molecules containing strong intramolecular hydrogen bonding. Rather than damaging the OM, polymyxins bind to the phosphatidylglycerol-rich OM and strengthen the membrane integrity, thereby protecting bacteria from external reactive oxygen species. Dependent growth is observed exclusively with polymyxin analogues, indicating a critical role of the specific amino acid sequence of polymyxins in forming unique structures for patch-binding to bacterial OM. Polymyxin dependence is a novel antibiotic resistance mechanism and the current findings highlight the risk of 'invisible' polymyxin-dependent isolates in the evolution of resistance.
Collapse
Affiliation(s)
- Yan Zhu
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Jing Lu
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Mei‐Ling Han
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Xukai Jiang
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Mohammad A. K. Azad
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Nitin A. Patil
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Yu‐Wei Lin
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Jinxin Zhao
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Yang Hu
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Heidi H. Yu
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Ke Chen
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - John D. Boyce
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Rhys A. Dunstan
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Trevor Lithgow
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | | | - Weifeng Li
- School of Physics and State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100China
| | | | - Jiping Wang
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| | - Bin Gong
- School of Computer Science and TechnologyShandong UniversityJinan250100China
| | - Bjorn Sommer
- Department of Computer and Information ScienceUniversity of KonstanzKonstanz78457Germany
| | - Darren J. Creek
- Drug Delivery, Disposition and DynamicsMonash Institute of Pharmaceutical SciencesMonash UniversityMelbourne3052Australia
| | - Jing Fu
- Department of Mechanical and Aerospace EngineeringMonash UniversityMelbourne3800Australia
| | - Lushan Wang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdao CampusQingdao266237China
| | - Falk Schreiber
- Department of Computer and Information ScienceUniversity of KonstanzKonstanz78457Germany
| | - Tony Velkov
- Department of Pharmacology and TherapeuticsUniversity of MelbourneMelbourne3010Australia
| | - Jian Li
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityMelbourne3800Australia
| |
Collapse
|
14
|
Silva YRDO, Contreras-Martel C, Macheboeuf P, Dessen A. Bacterial secretins: Mechanisms of assembly and membrane targeting. Protein Sci 2020; 29:893-904. [PMID: 32020694 DOI: 10.1002/pro.3835] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/25/2020] [Accepted: 01/28/2020] [Indexed: 12/20/2022]
Abstract
Secretion systems are employed by bacteria to transport macromolecules across membranes without compromising their integrities. Processes including virulence, colonization, and motility are highly dependent on the secretion of effector molecules toward the immediate cellular environment, and in some cases, into the host cytoplasm. In Type II and Type III secretion systems, as well as in Type IV pili, homomultimeric complexes known as secretins form large pores in the outer bacterial membrane, and the localization and assembly of such 1 MDa molecules often relies on pilotins or accessory proteins. Significant progress has been made toward understanding details of interactions between secretins and their partner proteins using approaches ranging from bacterial genetics to cryo electron microscopy. This review provides an overview of the mode of action of pilotins and accessory proteins for T2SS, T3SS, and T4PS secretins, highlighting recent near-atomic resolution cryo-EM secretin complex structures and underlining the importance of these interactions for secretin functionality.
Collapse
Affiliation(s)
- Yuri Rafael de Oliveira Silva
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, São Paulo, Brazil.,Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Carlos Contreras-Martel
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Pauline Macheboeuf
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Andréa Dessen
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, São Paulo, Brazil.,Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| |
Collapse
|
15
|
Chernyatina AA, Low HH. Core architecture of a bacterial type II secretion system. Nat Commun 2019; 10:5437. [PMID: 31780649 PMCID: PMC6882859 DOI: 10.1038/s41467-019-13301-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/25/2019] [Indexed: 01/01/2023] Open
Abstract
Bacterial type II secretion systems (T2SSs) translocate virulence factors, toxins and enzymes across the cell outer membrane. Here we use negative stain and cryo-electron microscopy to reveal the core architecture of an assembled T2SS from the pathogen Klebsiella pneumoniae. We show that 7 proteins form a ~2.4 MDa complex that spans the cell envelope. The outer membrane complex includes the secretin PulD, with all domains modelled, and the pilotin PulS. The inner membrane assembly platform components PulC, PulE, PulL, PulM and PulN have a relative stoichiometric ratio of 2:1:1:1:1. The PulE ATPase, PulL and PulM combine to form a flexible hexameric hub. Symmetry mismatch between the outer membrane complex and assembly platform is overcome by PulC linkers spanning the periplasm, with PulC HR domains binding independently at the secretin base. Our results show that the T2SS has a highly dynamic modular architecture, with implication for pseudo-pilus assembly and substrate loading.
Collapse
Affiliation(s)
| | - Harry H Low
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK.
| |
Collapse
|
16
|
Gunasinghe SD, Shiota T, Stubenrauch CJ, Schulze KE, Webb CT, Fulcher AJ, Dunstan RA, Hay ID, Naderer T, Whelan DR, Bell TDM, Elgass KD, Strugnell RA, Lithgow T. The WD40 Protein BamB Mediates Coupling of BAM Complexes into Assembly Precincts in the Bacterial Outer Membrane. Cell Rep 2019; 23:2782-2794. [PMID: 29847806 DOI: 10.1016/j.celrep.2018.04.093] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/05/2018] [Accepted: 04/23/2018] [Indexed: 01/28/2023] Open
Abstract
The β-barrel assembly machinery (BAM) complex is essential for localization of surface proteins on bacterial cells, but the mechanism by which it functions is unclear. We developed a direct stochastic optical reconstruction microscopy (dSTORM) methodology to view the BAM complex in situ. Single-cell analysis showed that discrete membrane precincts housing several BAM complexes are distributed across the E. coli surface, with a nearest neighbor distance of ∼200 nm. The auxiliary lipoprotein subunit BamB was crucial for this spatial distribution, and in situ crosslinking shows that BamB makes intimate contacts with BamA and BamB in neighboring BAM complexes within the precinct. The BAM complex precincts swell when outer membrane protein synthesis is maximal, visual proof that the precincts are active in protein assembly. This nanoscale interrogation of the BAM complex in situ suggests a model whereby bacterial outer membranes contain highly organized assembly precincts to drive integral protein assembly.
Collapse
Affiliation(s)
- Sachith D Gunasinghe
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Takuya Shiota
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; Organization for Promotion of Tenure Track, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Christopher J Stubenrauch
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Keith E Schulze
- Monash Micro Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Chaille T Webb
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Alex J Fulcher
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; Monash Micro Imaging, Monash University, Clayton, VIC 3800, Australia; Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Biochemistry & Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Rhys A Dunstan
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Iain D Hay
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia
| | - Thomas Naderer
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Biochemistry & Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Donna R Whelan
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Toby D M Bell
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | - Kirstin D Elgass
- Monash Micro Imaging, Monash University, Clayton, VIC 3800, Australia; Hudson Institute of Medical Research, Clayton, VIC 3800, Australia
| | - Richard A Strugnell
- Department of Microbiology & Immunology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Trevor Lithgow
- Infection & Immunity Program, Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
17
|
Zhang D, Gao Y, Ke X, Yi M, Liu Z, Han X, Shi C, Lu M. Bacillus velezensis LF01: in vitro antimicrobial activity against fish pathogens, growth performance enhancement, and disease resistance against streptococcosis in Nile tilapia (Oreochromis niloticus). Appl Microbiol Biotechnol 2019; 103:9023-9035. [PMID: 31654082 DOI: 10.1007/s00253-019-10176-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/17/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
Streptococcus agalactiae is a major pathogen causing streptococcosis. To prevent and control this bacterial disease, antagonistic bacteria have become a new research hotspot. This study evaluated the probiotic potential of Bacillus velezensis LF01 strain, which is antagonistic to S. agalactiae. The active compounds produced by LF01 showed antimicrobial activity against a broad spectrum of fish pathogens, including S. agalactiae, Streptococcus iniae, Aeromonas hydrophila, Edwardsiella tarda, Edwardsiella ictaluri, Aeromonas schubertii, Aeromonas veronii, Aeromonas jandaei, and Vibrio harveyi. The antimicrobial compounds were heat stable, pH stable, UV stable, resistant to proteases, and could be stored for a long time. To evaluate the probiotic function of LF01 in Nile tilapia, juveniles were divided into three treatment groups: a control group, an interval feeding group, and a continuous feeding group. Tilapia fed with LF01-supplemented diets (1.0 × 109 CFU/g) showed significantly better growth performances than those of the control group (P < 0.05). Tilapia fed with LF01-supplemented diets significantly increased lysozyme (LZY) and superoxide dismutase (SOD) activities. The expression of three immune-related genes (C3, lyzc, and MHC-IIβ) was higher in the intestine, head kidney, and gill of tilapia from the continuous feeding group than in those from the control group (P < 0.05). Tilapia fed with LF01-supplemented diets showed remarkably improved survival rates after S. agalactiae infection, and analysis of their intestinal tract pathogens revealed that the abundance of Edwardsiella and Plesiomonas had significantly decreased compared with the control group. Our findings demonstrate that LF01 is an effective antagonist against various fish pathogens and has potential for controlling infections by Streptococcus spp. and other pathogens in tilapia.
Collapse
Affiliation(s)
- Defeng Zhang
- Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.,Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Yanxia Gao
- Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.,Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Xiaoli Ke
- Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Mengmeng Yi
- Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Zhigang Liu
- Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Xueqing Han
- Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Cunbin Shi
- Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.,Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China
| | - Maixin Lu
- Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China. .,Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, China.
| |
Collapse
|
18
|
Abstract
The type II secretion system (T2SS) delivers toxins and a range of hydrolytic enzymes, including proteases, lipases, and carbohydrate-active enzymes, to the cell surface or extracellular space of Gram-negative bacteria. Its contribution to survival of both extracellular and intracellular pathogens as well as environmental species of proteobacteria is evident. This dynamic, multicomponent machinery spans the entire cell envelope and consists of a cytoplasmic ATPase, several inner membrane proteins, a periplasmic pseudopilus, and a secretin pore embedded in the outer membrane. Despite the trans-envelope configuration of the T2S nanomachine, proteins to be secreted engage with the system first once they enter the periplasmic compartment via the Sec or TAT export system. Thus, the T2SS is specifically dedicated to their outer membrane translocation. The many sequence and structural similarities between the T2SS and type IV pili suggest a common origin and argue for a pilus-mediated mechanism of secretion. This minireview describes the structures, functions, and interactions of the individual T2SS components and the general architecture of the assembled T2SS machinery and briefly summarizes the transport and function of a growing list of T2SS exoproteins. Recent advances in cryo-electron microscopy, which have led to an increased understanding of the structure-function relationship of the secretin channel and the pseudopilus, are emphasized.
Collapse
|
19
|
Natarajan J, Singh N, Rapaport D. Assembly and targeting of secretins in the bacterial outer membrane. Int J Med Microbiol 2019; 309:151322. [PMID: 31262642 DOI: 10.1016/j.ijmm.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 06/04/2019] [Accepted: 06/18/2019] [Indexed: 11/20/2022] Open
Abstract
In Gram-negative bacteria, secretion of toxins ensure the survival of the bacterium. Such toxins are secreted by sophisticated multiprotein systems. The most conserved part in some of these secretion systems are components, called secretins, which form the outer membrane ring in these systems. Recent structural studies shed some light on the oligomeric organization of secretins. However, the mechanisms by which these proteins are targeted to the outer membrane and assemble there into ring structures are still not fully understood. This review discusses the various species-specific targeting and assembly pathways that are taken by secretins in order to form their functional oligomers.
Collapse
Affiliation(s)
- Janani Natarajan
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany.
| | - Nidhi Singh
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), Elfriede-Aulhorn-Str.6, 72076 Tübingen, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Hoppe-Seyler-Str. 4, 72076 Tübingen, Germany
| |
Collapse
|
20
|
White RC, Cianciotto NP. Assessing the impact, genomics and evolution of type II secretion across a large, medically important genus: the Legionella type II secretion paradigm. Microb Genom 2019; 5. [PMID: 31166887 PMCID: PMC6617341 DOI: 10.1099/mgen.0.000273] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The type II secretion system (T2SS) plays a major role in promoting bacterial survival in the environment and in human hosts. One of the best characterized T2SS is that of Legionella pneumophila, the agent of Legionnaires’ disease. Secreting at least 25 proteins, including degradative enzymes, eukaryotic-like proteins and novel effectors, this T2SS contributes to the ability of L. pneumophila to grow at low temperatures, infect amoebal and macrophage hosts, damage lung tissue, evade the immune system, and undergo sliding motility. The genes encoding the T2SS are conserved across the genus Legionella, which includes 62 species and >30 pathogens in addition to L. pneumophila. The vast majority of effectors associated with L. pneumophila are shared by a large number of Legionella species, hinting at a critical role for them in the ecology of Legionella as a whole. However, no other species has the same repertoire as L. pneumophila, with, as a general rule, phylogenetically more closely related species sharing similar sets of effectors. T2SS effectors that are involved in infection of a eukaryotic host(s) are more prevalent throughout Legionella, indicating that they are under stronger selective pressure. The Legionella T2SS apparatus is closest to that of Aquicella (another parasite of amoebae), and a significant number of L. pneumophila effectors have their closest homologues in Aquicella. Thus, the T2SS of L. pneumophila probably originated within the order Legionellales, with some of its effectors having arisen within that Aquicella-like progenitor, while other effectors derived from the amoebal host, mimiviruses, fungi and less closely related bacteria.
Collapse
Affiliation(s)
- Richard C White
- 1 Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- 1 Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
21
|
Howard SP, Estrozi LF, Bertrand Q, Contreras-Martel C, Strozen T, Job V, Martins A, Fenel D, Schoehn G, Dessen A. Structure and assembly of pilotin-dependent and -independent secretins of the type II secretion system. PLoS Pathog 2019; 15:e1007731. [PMID: 31083688 PMCID: PMC6532946 DOI: 10.1371/journal.ppat.1007731] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/23/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023] Open
Abstract
The type II secretion system (T2SS) is a cell envelope-spanning macromolecular complex that is prevalent in Gram-negative bacterial species. It serves as the predominant virulence mechanism of many bacteria including those of the emerging human pathogens Vibrio vulnificus and Aeromonas hydrophila. The system is composed of a core set of highly conserved proteins that assemble an inner membrane platform, a periplasmic pseudopilus and an outer membrane complex termed the secretin. Localization and assembly of secretins in the outer membrane requires recognition of secretin monomers by two different partner systems: an inner membrane accessory complex or a highly sequence-diverse outer membrane lipoprotein, termed the pilotin. In this study, we addressed the question of differential secretin assembly mechanisms by using cryo-electron microscopy to determine the structures of the secretins from A. hydrophila (pilotin-independent ExeD) and V. vulnificus (pilotin-dependent EpsD). These structures, at approximately 3.5 Å resolution, reveal pentadecameric stoichiometries and C-terminal regions that carry a signature motif in the case of a pilotin-dependent assembly mechanism. We solved the crystal structure of the V. vulnificus EpsS pilotin and confirmed the importance of the signature motif for pilotin-dependent secretin assembly by performing modelling with the C-terminus of EpsD. We also show that secretin assembly is essential for membrane integrity and toxin secretion in V. vulnificus and establish that EpsD requires the coordinated activity of both the accessory complex EpsAB and the pilotin EpsS for full assembly and T2SS function. In contrast, mutation of the region of the S-domain that is normally the site of pilotin interactions has little effect on assembly or function of the ExeD secretin. Since secretins are essential outer membrane channels present in a variety of secretion systems, these results provide a structural and functional basis for understanding the key assembly steps for different members of this vast pore-forming family of proteins.
Collapse
Affiliation(s)
- S. Peter Howard
- Dept. Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Leandro F. Estrozi
- Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Quentin Bertrand
- Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | | | - Timothy Strozen
- Dept. Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Viviana Job
- Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Alexandre Martins
- Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Daphna Fenel
- Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Guy Schoehn
- Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Andréa Dessen
- Univ Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas, São Paulo, Brazil
| |
Collapse
|
22
|
González-Rivera C, Khara P, Awad D, Patel R, Li YG, Bogisch M, Christie PJ. Two pKM101-encoded proteins, the pilus-tip protein TraC and Pep, assemble on the Escherichia coli cell surface as adhesins required for efficient conjugative DNA transfer. Mol Microbiol 2018; 111:96-117. [PMID: 30264928 DOI: 10.1111/mmi.14141] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/20/2018] [Accepted: 09/22/2018] [Indexed: 01/10/2023]
Abstract
Mobile genetic elements (MGEs) encode type IV secretion systems (T4SSs) known as conjugation machines for their transmission between bacterial cells. Conjugation machines are composed of an envelope-spanning translocation channel, and those functioning in Gram-negative species additionally elaborate an extracellular pilus to initiate donor-recipient cell contacts. We report that pKM101, a self-transmissible MGE functioning in the Enterobacteriaceae, has evolved a second target cell attachment mechanism. Two pKM101-encoded proteins, the pilus-tip adhesin TraC and a protein termed Pep, are exported to the cell surface where they interact and also form higher order complexes appearing as distinct foci or patches around the cell envelope. Surface-displayed TraC and Pep are required for an efficient conjugative transfer, 'extracellular complementation' potentially involving intercellular protein transfer, and activation of a Pseudomonas aeruginosa type VI secretion system. Both proteins are also required for bacteriophage PRD1 infection. TraC and Pep are exported across the outer membrane by a mechanism potentially involving the β-barrel assembly machinery. The pKM101 T4SS, thus, deploys alternative routing pathways for the delivery of TraC to the pilus tip or both TraC and Pep to the cell surface. We propose that T4SS-encoded, pilus-independent attachment mechanisms maximize the probability of MGE propagation and might be widespread among this translocation superfamily.
Collapse
Affiliation(s)
- Christian González-Rivera
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Pratick Khara
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Dominik Awad
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Roosheel Patel
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | - Yang Grace Li
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| | | | - Peter J Christie
- Department of Microbiology and Molecular Genetics, McGovern Medical School, 6431 Fannin St, Houston, TX, 77030, USA
| |
Collapse
|
23
|
Majewski DD, Worrall LJ, Strynadka NCJ. Secretins revealed: structural insights into the giant gated outer membrane portals of bacteria. Curr Opin Struct Biol 2018; 51:61-72. [DOI: 10.1016/j.sbi.2018.02.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/28/2018] [Indexed: 01/19/2023]
|
24
|
Rapisarda C, Tassinari M, Gubellini F, Fronzes R. Using Cryo-EM to Investigate Bacterial Secretion Systems. Annu Rev Microbiol 2018; 72:231-254. [PMID: 30004822 DOI: 10.1146/annurev-micro-090817-062702] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacterial secretion systems are responsible for releasing macromolecules to the extracellular milieu or directly into other cells. These membrane complexes are associated with pathogenicity and bacterial fitness. Understanding of these large assemblies has exponentially increased in the last few years thanks to electron microscopy. In fact, a revolution in this field has led to breakthroughs in characterizing the structures of secretion systems and other macromolecular machineries so as to obtain high-resolution images of complexes that could not be crystallized. In this review, we give a brief overview of structural advancements in the understanding of secretion systems, focusing in particular on cryo-electron microscopy, whether tomography or single-particle analysis. We describe how such techniques have contributed to knowledge of the mechanism of macromolecule secretion in bacteria and the impact they will have in the future.
Collapse
Affiliation(s)
- Chiara Rapisarda
- Structure et Fonction des Nanomachines Bactériennes, Institut Européen de Chimie et Biologie, 33607 Pessac, France; , .,CNRS UMR5234, Université de Bordeaux, 33076 Bordeaux, France
| | - Matteo Tassinari
- Institut Pasteur, Unité de Microbiologie Structurale, 75724 Paris, France; .,CNRS UMR3528, Institut Pasteur, 75015 Paris, France
| | - Francesca Gubellini
- Institut Pasteur, Unité de Microbiologie Structurale, 75724 Paris, France; .,CNRS UMR3528, Institut Pasteur, 75015 Paris, France
| | - Rémi Fronzes
- Structure et Fonction des Nanomachines Bactériennes, Institut Européen de Chimie et Biologie, 33607 Pessac, France; , .,CNRS UMR5234, Université de Bordeaux, 33076 Bordeaux, France
| |
Collapse
|
25
|
Structural insight into the assembly of the type II secretion system pilotin–secretin complex from enterotoxigenic Escherichia coli. Nat Microbiol 2018; 3:581-587. [DOI: 10.1038/s41564-018-0148-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 03/07/2018] [Indexed: 12/29/2022]
|
26
|
Elhosseiny NM, Attia AS. Acinetobacter: an emerging pathogen with a versatile secretome. Emerg Microbes Infect 2018; 7:33. [PMID: 29559620 PMCID: PMC5861075 DOI: 10.1038/s41426-018-0030-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/08/2017] [Accepted: 01/09/2018] [Indexed: 02/06/2023]
Abstract
Acinetobacter baumannii is a notorious pathogen that has emerged as a healthcare nightmare in recent years because it causes serious infections that are associated with high morbidity and mortality rates. Due to its exceptional ability to acquire resistance to almost all available antibiotics, A. baumannii is currently ranked as the first pathogen on the World Health Organization’s priority list for the development of new antibiotics. The versatile range of effectors secreted by A. baumannii represents a large proportion of the virulence arsenal identified in this bacterium to date. Thus, these factors, together with the secretory machinery responsible for their extrusion into the extracellular milieu, are key targets for novel therapeutics that are greatly needed to combat this deadly pathogen. In this review, we provide a comprehensive, up-to-date overview of the organization and regulatory aspects of the Acinetobacter secretion systems, with a special emphasis on their versatile substrates that could be targeted to fight the deadly infections caused by this elusive pathogen.
Collapse
Affiliation(s)
- Noha M Elhosseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
27
|
Abstract
Bacterial secretins are outer membrane proteins that provide a path for secreted proteins to access the cell exterior/surface. They are one of the core components of secretion machines and are found in type II and type III secretion systems (T2SS and T3SS, respectively). The secretins comprise giant ring-shaped homo-oligomers whose precise atomic organization was only recently deciphered thanks to spectacular developments in cryo-electron microscopy (cryo-EM) imaging techniques.
Collapse
Affiliation(s)
- Alain Filloux
- Imperial College London, Department of Life Sciences, MRC-CMBI, London, United Kingdom
| | - Romé Voulhoux
- Aix Marseille University, CNRS, IMM, LISM, Marseille, France
| |
Collapse
|
28
|
Structure and Membrane Topography of the Vibrio-Type Secretin Complex from the Type 2 Secretion System of Enteropathogenic Escherichia coli. J Bacteriol 2018; 200:JB.00521-17. [PMID: 29084860 DOI: 10.1128/jb.00521-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 10/25/2017] [Indexed: 12/11/2022] Open
Abstract
The β-barrel assembly machinery (BAM) complex is the core machinery for the assembly of β-barrel membrane proteins, and inhibition of BAM complex activity is lethal to bacteria. Discovery of integral membrane proteins that are key to pathogenesis and yet do not require assistance from the BAM complex raises the question of how these proteins assemble into bacterial outer membranes. Here, we address this question through a structural analysis of the type 2 secretion system (T2SS) secretin from enteropathogenic Escherichia coli O127:H6 strain E2348/69. Long β-strands assemble into a barrel extending 17 Å through and beyond the outer membrane, adding insight to how these extensive β-strands are assembled into the E. coli outer membrane. The substrate docking chamber of this secretin is shown to be sufficient to accommodate the substrate mucinase SteC.IMPORTANCE In order to cause disease, bacterial pathogens inhibit immune responses and induce pathology that will favor their replication and dissemination. In Gram-negative bacteria, these key attributes of pathogenesis depend on structures assembled into or onto the outer membrane. One of these is the T2SS. The Vibrio-type T2SS mediates cholera toxin secretion in Vibrio cholerae, and in Escherichia coli O127:H6 strain E2348/69, the same machinery mediates secretion of the mucinases that enable the pathogen to penetrate intestinal mucus and thereby establish deadly infections.
Collapse
|
29
|
Pérez-Acosta JA, Martínez-Porchas M, Elizalde-Contreras JM, Leyva JM, Ruiz-May E, Gollas-Galván T, Martínez-Córdova LR, Huerta-Ocampo JÁ. Proteomic profiling of integral membrane proteins associated to pathogenicity inVibrio parahaemolyticusstrains. Microbiol Immunol 2018; 62:14-23. [DOI: 10.1111/1348-0421.12556] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Jesús A. Pérez-Acosta
- Department of Scientific and Technological Research DICTUS; Sonora University; Boulevard Luis Donaldo Colosio entre Reforma y Sahuaripa; Hermosillo Sonora, 83000 Mexico
| | - Marcel Martínez-Porchas
- Research Center for Food and Development A.C.; Carretera a La Victoria; Hermosillo Sonora 83304 Mexico
| | | | - Juan Manuel Leyva
- Research Center for Food and Development A.C.; Carretera a La Victoria; Hermosillo Sonora 83304 Mexico
| | - Eliel Ruiz-May
- Institute of Ecology; Carretera antigua a Coatepec 351; El Haya, Xalapa Veracruz 91070 Mexico
| | - Teresa Gollas-Galván
- Research Center for Food and Development A.C.; Carretera a La Victoria; Hermosillo Sonora 83304 Mexico
| | - Luis R. Martínez-Córdova
- Department of Scientific and Technological Research DICTUS; Sonora University; Boulevard Luis Donaldo Colosio entre Reforma y Sahuaripa; Hermosillo Sonora, 83000 Mexico
| | - José Ángel Huerta-Ocampo
- CONACYT-Research Center for Food and Development A.C., Carretera a La Victoria; Hermosillo; Sonora, 83304 Mexico
| |
Collapse
|
30
|
Aoki E, Fujiwara K, Shimizu A, Takase-Yoden S, Ikeguchi M. Optimization of Haemophilus influenzae adhesin transmembrane domain expression in Escherichia coli. Protein Expr Purif 2017; 145:19-24. [PMID: 29284141 DOI: 10.1016/j.pep.2017.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 11/20/2022]
Abstract
To obtain a high yield of the transmembrane domain of Haemophilus influenzae adhesin (HiaTD) in Escherichia coli, we attempted to express the HiaTD with and without a signal sequence using a T7 expression system. The expression level of HiaTD after induction was followed by quantification of the purified HiaTD, flow cytometric analysis of the outer membrane integrated HiaTD, and immunoblotting assay of fractionated cell lysate. In the expression system with a signal sequence, although the amount of cell-surface-expressed HiaTD increased over time, the number of HiaTD-expressing cells decreased, probably because of plasmid instability. As a result, the amount of purified HiaTD reached a plateau at 2 h postinduction. Although expression without the signal sequence provides a large amount of proteins as inclusion bodies in some membrane proteins, HiaTD expressed without a signal sequence was not observed as inclusion bodies and seemed to be assembled into the outer membrane during or after cell lysis.
Collapse
Affiliation(s)
- Eriko Aoki
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Kazuo Fujiwara
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Akio Shimizu
- Department of Environmental Engineering for Symbiosis, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Sayaka Takase-Yoden
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan
| | - Masamichi Ikeguchi
- Department of Bioinformatics, Soka University, 1-236 Tangi-machi, Hachioji, Tokyo 192-8577, Japan.
| |
Collapse
|
31
|
Guo L, Huang L, Su Y, Qin Y, Zhao L, Yan Q. secA, secD, secF, yajC, and yidC contribute to the adhesion regulation of Vibrio alginolyticus. Microbiologyopen 2017; 7:e00551. [PMID: 29057613 PMCID: PMC5911994 DOI: 10.1002/mbo3.551] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/26/2017] [Accepted: 09/18/2017] [Indexed: 11/30/2022] Open
Abstract
Vibrio alginolyticus caused great losses to aquaculture. Adhesion is an important virulence factor of V. alginolyticus. In this study, the relationship between V. alginolyticus adhesion and type II secretion system genes (secA, secD, secF, yajC, and yidC) was determined using gene silencing, qRT‐PCR and in vitro adhesion assay. The results showed that the expression of target genes and the bacterial adhesion exhibited significant decreases after transient gene silencing and stable gene silencing, which indicated that secA, secD, secF, yajC, and yidC played roles in the bacterial adhesion of V. alginolyticus. The expression of secA, secD, secF, yajC, and yidC were significantly influenced by temperature, salinity, pH and starvation. The results indicated that the expression of secA, secD, secF, yajC, and yidC were sensitive to different environmental factors, whereas environmental factors can affect V. alginolyticus adhesion via the expression of secA, secD, secF, yajC, and yidC.
Collapse
Affiliation(s)
- Lina Guo
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Yongquan Su
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China.,College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yingxue Qin
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Lingmin Zhao
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China
| | - Qingpi Yan
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen, Fujian, China.,State Key Laboratory of Large Yellow Croaker Breeding, Ningde, Fujian, China
| |
Collapse
|
32
|
Webb CT, Chandrapala D, Oslan SN, Bamert RS, Grinter RD, Dunstan RA, Gorrell RJ, Song J, Strugnell RA, Lithgow T, Kwok T. Reductive evolution in outer membrane protein biogenesis has not compromised cell surface complexity in Helicobacter pylori. Microbiologyopen 2017; 6. [PMID: 29055967 PMCID: PMC5727368 DOI: 10.1002/mbo3.513] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 12/18/2022] Open
Abstract
Helicobacter pylori is a gram‐negative bacterial pathogen that chronically inhabits the human stomach. To survive and maintain advantage, it has evolved unique host–pathogen interactions mediated by Helicobacter‐specific proteins in the bacterial outer membrane. These outer membrane proteins (OMPs) are anchored to the cell surface via a C‐terminal β‐barrel domain, which requires their assembly by the β‐barrel assembly machinery (BAM). Here we have assessed the complexity of the OMP C‐terminal β‐barrel domains employed by H. pylori, and characterized the H. pyloriBAM complex. Around 50 Helicobacter‐specific OMPs were assessed with predictive structural algorithms. The data suggest that H. pylori utilizes a unique β‐barrel architecture that might constitute H. pylori‐specific Type V secretions system. The structural and functional diversity in these proteins is encompassed by their extramembrane domains. Bioinformatic and biochemical characterization suggests that the low β‐barrel‐complexity requires only minimalist assembly machinery. The H. pylori proteins BamA and BamD associate to form a BAM complex, with features of BamA enabling an oligomerization that might represent a mechanism by which a minimalist BAM complex forms a larger, sophisticated machinery capable of servicing the outer membrane proteome of H. pylori.
Collapse
Affiliation(s)
- Chaille T. Webb
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Dilini Chandrapala
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | - Siti Nurbaya Oslan
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Department of BiochemistryFaculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaSerdangSelangorMalaysia
- Enzyme and Microbial Technology Research CenterUniversiti Putra MalaysiaSerdangSelangorMalaysia
| | - Rebecca S. Bamert
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rhys D. Grinter
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rhys A. Dunstan
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Rebecca J. Gorrell
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| | - Jiangning Song
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
- Monash Centre for Data ScienceFaculty of Information TechnologyMonash UniversityMelbourneAustralia
| | - Richard A. Strugnell
- Department of Microbiology & ImmunologyUniversity of MelbourneParkvilleAustralia
| | - Trevor Lithgow
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
| | - Terry Kwok
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of MicrobiologyMonash UniversityClaytonAustralia
- Infection & Immunity ProgramBiomedicine Discovery Institute and Department of Biochemistry and Molecular BiologyMonash UniversityClaytonAustralia
| |
Collapse
|
33
|
Structural Basis of Type 2 Secretion System Engagement between the Inner and Outer Bacterial Membranes. mBio 2017; 8:mBio.01344-17. [PMID: 29042496 PMCID: PMC5646249 DOI: 10.1128/mbio.01344-17] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sophisticated nanomachines are used by bacteria for protein secretion. In Gram-negative bacteria, the type 2 secretion system (T2SS) is composed of a pseudopilus assembly platform in the inner membrane and a secretin complex in the outer membrane. The engagement of these two megadalton-sized complexes is required in order to secrete toxins, effectors, and hydrolytic enzymes. Pseudomonas aeruginosa has at least two T2SSs, with the ancestral nanomachine having a secretin complex composed of XcpQ. Until now, no high-resolution structural information was available to distinguish the features of this Pseudomonas-type secretin, which varies greatly in sequence from the well-characterized Klebsiella-type and Vibrio-type secretins. We have purified the ~1-MDa secretin complex and analyzed it by cryo-electron microscopy. Structural comparisons with the Klebsiella-type secretin complex revealed a striking structural homology despite the differences in their sequence characteristics. At 3.6-Å resolution, the secretin complex was found to have 15-fold symmetry throughout the membrane-embedded region and through most of the domains in the periplasm. However, the N1 domain and N0 domain were not well ordered into this 15-fold symmetry. We suggest a model wherein this disordering of the subunit symmetry for the periplasmic N domains provides a means to engage with the 6-fold symmetry in the inner membrane platform, with a metastable engagement that can be disrupted by substrate proteins binding to the region between XcpP, in the assembly platform, and the XcpQ secretin. How the outer membrane and inner membrane components of the T2SS engage each other and yet can allow for substrate uptake into the secretin chamber has challenged the protein transport field for some time. This vexing question is of significance because the T2SS collects folded protein substrates in the periplasm for transport out of the bacterium and yet must discriminate these few substrate proteins from all the other hundred or so folded proteins in the periplasm. The structural analysis here supports a model wherein substrates must compete against a metastable interaction between XcpP in the assembly platform and the XcpQ secretin, wherein only structurally encoded features in the T2SS substrates compete well enough to disrupt XcpQ-XcpP for entry into the XcpQ chamber, for secretion across the outer membrane.
Collapse
|
34
|
Gu S, Shevchik VE, Shaw R, Pickersgill RW, Garnett JA. The role of intrinsic disorder and dynamics in the assembly and function of the type II secretion system. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1255-1266. [PMID: 28733198 DOI: 10.1016/j.bbapap.2017.07.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/02/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Many Gram-negative commensal and pathogenic bacteria use a type II secretion system (T2SS) to transport proteins out of the cell. These exported proteins or substrates play a major role in toxin delivery, maintaining biofilms, replication in the host and subversion of host immune responses to infection. We review the current structural and functional work on this system and argue that intrinsically disordered regions and protein dynamics are central for assembly, exo-protein recognition, and secretion competence of the T2SS. The central role of intrinsic disorder-order transitions in these processes may be a particular feature of type II secretion.
Collapse
Affiliation(s)
- Shuang Gu
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, United Kingdom
| | - Vladimir E Shevchik
- Université de Lyon, F-69003, Université Lyon 1, Lyon, F-69622, INSA-Lyon, Villeurbanne F-69621, CNRS, UMR5240, Microbiologie Adaptation et Pathogénie, Lyon F-69622, France
| | - Rosie Shaw
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, United Kingdom
| | - Richard W Pickersgill
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, United Kingdom.
| | - James A Garnett
- Queen Mary University of London, School of Biological and Chemical Sciences, London E1 4NS, United Kingdom.
| |
Collapse
|
35
|
Thomassin JL, Santos Moreno J, Guilvout I, Tran Van Nhieu G, Francetic O. The trans-envelope architecture and function of the type 2 secretion system: new insights raising new questions. Mol Microbiol 2017; 105:211-226. [DOI: 10.1111/mmi.13704] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Jenny-Lee Thomassin
- Department of structural biology and chemistry, Biochemistry of Macromolecular Interactions Unit; Institut Pasteur; 28 rue du Dr Roux 75724 Paris Cedex 15 France
- Centre National de la Recherche Scientifique (CNRS); ERL6002 75724 Paris France
| | - Javier Santos Moreno
- Université Paris Diderot (Paris 7) Sorbonne Paris Cité; Paris France
- Laboratory of Intercellular Communication and Microbial Infections; CIRB, Collège de France; 11 Place Marcelin Berthelot 75005 Paris France
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1050; 75005 Paris France
- Centre National de la Recherche Scientifique (CNRS), UMR7241; 75005 Paris France
- MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres; 75005 Paris France
| | - Ingrid Guilvout
- Department of structural biology and chemistry, Biochemistry of Macromolecular Interactions Unit; Institut Pasteur; 28 rue du Dr Roux 75724 Paris Cedex 15 France
- Centre National de la Recherche Scientifique (CNRS); ERL6002 75724 Paris France
| | - Guy Tran Van Nhieu
- Laboratory of Intercellular Communication and Microbial Infections; CIRB, Collège de France; 11 Place Marcelin Berthelot 75005 Paris France
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1050; 75005 Paris France
- Centre National de la Recherche Scientifique (CNRS), UMR7241; 75005 Paris France
- MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres; 75005 Paris France
| | - Olivera Francetic
- Department of structural biology and chemistry, Biochemistry of Macromolecular Interactions Unit; Institut Pasteur; 28 rue du Dr Roux 75724 Paris Cedex 15 France
- Centre National de la Recherche Scientifique (CNRS); ERL6002 75724 Paris France
| |
Collapse
|
36
|
Oramadike CE, Ogunbanwo ST. Antagonistic activity of Thymus vulgaris extracts against Vibrio species isolated from seafoods. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2017; 54:1199-1205. [PMID: 28416870 PMCID: PMC5380626 DOI: 10.1007/s13197-017-2543-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 01/18/2017] [Accepted: 02/08/2017] [Indexed: 10/20/2022]
Abstract
This study examined the antibacterial activity of Thymus vulgaris on multiple antibiotic resistant (MAR) Vibrio parahaemolyticus and Vibrio fluvialis isolated from shrimps. The ethanol extract of T. vulgaris antibacterial properties was assessed using the agar diffusion method. Survival of test organisms in shrimp meat using different concentrations of T. vulgaris was done using standard method. The quantitative and qualitative phytochemical tests of T. vulgaris extract were determined. The ethanol extract had antimicrobial activities on the test organisms showing 20.00 ± 0.0 and 23.00 ± 0.0 mm zone of inhibition on V. parahaemolyticus and V. fluvialis respectively. T. vulgaris completely decreased microbial load of V. parahaemolyticus and V. fluvialis in 150 and 60 min, respectively. The phytochemical screening for the ethanol extract reported phenol, alkaloids, tannin, saponin, anthraquinone flavonoid and cardiac glycoside as 51.76, 26.60, 6.76, 54.33, 30.35 89.65 and 18.23 mg/100 g, respectively. This study reveals the antibacterial property of T. vulgaris on the MAR Vibrio species.
Collapse
Affiliation(s)
- Chigozie Eunice Oramadike
- Nigerian Institute for Oceanography and Marine Research, No. 3, Wilmot Point Road, off Ahmadu Bello Way, P.M.B. 12729, Victoria Island, Lagos Nigeria
| | | |
Collapse
|
37
|
Yan Z, Yin M, Xu D, Zhu Y, Li X. Structural insights into the secretin translocation channel in the type II secretion system. Nat Struct Mol Biol 2017; 24:177-183. [DOI: 10.1038/nsmb.3350] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 12/06/2016] [Indexed: 12/31/2022]
|
38
|
Edgar RJ, Chen J, Kant S, Rechkina E, Rush JS, Forsberg LS, Jaehrig B, Azadi P, Tchesnokova V, Sokurenko EV, Zhu H, Korotkov KV, Pancholi V, Korotkova N. SpyB, a Small Heme-Binding Protein, Affects the Composition of the Cell Wall in Streptococcus pyogenes. Front Cell Infect Microbiol 2016; 6:126. [PMID: 27790410 PMCID: PMC5061733 DOI: 10.3389/fcimb.2016.00126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/27/2016] [Indexed: 12/01/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus or GAS) is a hemolytic human pathogen associated with a wide variety of infections ranging from minor skin and throat infections to life-threatening invasive diseases. The cell wall of GAS consists of peptidoglycan sacculus decorated with a carbohydrate comprising a polyrhamnose backbone with immunodominant N-acetylglucosamine side-chains. All GAS genomes contain the spyBA operon, which encodes a 35-amino-acid membrane protein SpyB, and a membrane-bound C3-like ADP-ribosyltransferase SpyA. In this study, we addressed the function of SpyB in GAS. Phenotypic analysis of a spyB deletion mutant revealed increased bacterial aggregation, and reduced sensitivity to β-lactams of the cephalosporin class and peptidoglycan hydrolase PlyC. Glycosyl composition analysis of cell wall isolated from the spyB mutant suggested an altered carbohydrate structure compared with the wild-type strain. Furthermore, we found that SpyB associates with heme and protoporphyrin IX. Heme binding induces SpyB dimerization, which involves disulfide bond formation between the subunits. Thus, our data suggest the possibility that SpyB activity is regulated by heme.
Collapse
Affiliation(s)
- Rebecca J. Edgar
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
| | - Sashi Kant
- Department of Pathology, Ohio State UniversityColumbus, OH, USA
| | - Elena Rechkina
- Department of Microbiology, University of WashingtonSeattle, WA, USA
| | - Jeffrey S. Rush
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
| | | | - Bernhard Jaehrig
- Complex Carbohydrate Research Center, University of GeorgiaAthens, GA, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of GeorgiaAthens, GA, USA
| | | | | | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
| | - Konstantin V. Korotkov
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
| | - Vijay Pancholi
- Department of Pathology, Ohio State UniversityColumbus, OH, USA
| | - Natalia Korotkova
- Department of Molecular and Cellular Biochemistry, University of KentuckyLexington, KY, USA
| |
Collapse
|
39
|
Elhosseiny NM, El-Tayeb OM, Yassin AS, Lory S, Attia AS. The secretome of Acinetobacter baumannii ATCC 17978 type II secretion system reveals a novel plasmid encoded phospholipase that could be implicated in lung colonization. Int J Med Microbiol 2016; 306:633-641. [PMID: 27713027 DOI: 10.1016/j.ijmm.2016.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/24/2016] [Accepted: 09/30/2016] [Indexed: 02/01/2023] Open
Abstract
Acinetobacter baumannii infections are compounded with a striking lack of treatment options. In many Gram-negative bacteria, secreted proteins play an important early role in avoiding host defences. Typically, these proteins are targeted to the external environment or into host cells using dedicated transport systems. Despite the fact that medically relevant species of Acinetobacter possess a type II secretion system (T2SS), only recently, its significance as an important pathway for delivering virulence factors has gained attention. Using in silico analysis to characterize the genetic determinants of the T2SS, which are found clustered in other organisms, in Acinetobacter species, they appear to have a unique genetic organization and are distributed throughout the genome. When compared to other T2SS orthologs, individual components of the T2SS apparatus showed the highest similarity to those of Pseudomonas aeruginosa. A mutant of Acinetobacter baumannii strain ATCC 17978 lacking the secretin component of the T2SS (ΔgspD), together with a trans-complemented mutant, were tested in a series of in vitro and in vivo assays to determine the role of T2SS in pathogenicity. The ΔgspD mutant displayed decreased lipolytic activity, associated with attenuated colonization ability in a murine pneumonia model. These phenotypes are linked to LipAN, a novel plasmid-encoded phospholipase, identified through mass spectroscopy as a T2SS substrate. Recombinant LipAN showed specific phospholipase activity in vitro. Proteomics on the T2-dependent secretome of ATCC 17978 strain revealed its potential dedication to the secretion of a number of lipolytic enzymes, among others which could contribute to its virulence. This study highlights the role of T2SS as an active contributor to the virulence of A. baumannii potentially through secretion of a newly identified phospholipase.
Collapse
Affiliation(s)
- Noha M Elhosseiny
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ossama M El-Tayeb
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Aymen S Yassin
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Stephen Lory
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
40
|
Tan L, Moriel DG, Totsika M, Beatson SA, Schembri MA. Differential Regulation of the Surface-Exposed and Secreted SslE Lipoprotein in Extraintestinal Pathogenic Escherichia coli. PLoS One 2016; 11:e0162391. [PMID: 27598999 PMCID: PMC5012682 DOI: 10.1371/journal.pone.0162391] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 08/22/2016] [Indexed: 11/19/2022] Open
Abstract
Extra-intestinal pathogenic Escherichia coli (ExPEC) are responsible for diverse infections including meningitis, sepsis and urinary tract infections. The alarming rise in anti-microbial resistance amongst ExPEC complicates treatment and has highlighted the need for alternative preventive measures. SslE is a lipoprotein secreted by a dedicated type II secretion system in E. coli that was first identified as a potential vaccine candidate using reverse genetics. Although the function and protective efficacy of SslE has been studied, the molecular mechanisms that regulate SslE expression remain to be fully elucidated. Here, we show that while the expression of SslE can be detected in E. coli culture supernatants, different strains express and secrete different amounts of SslE when grown under the same conditions. While the histone-like transcriptional regulator H-NS strongly represses sslE at ambient temperatures, the variation in SslE expression at human physiological temperature suggested a more complex mode of regulation. Using a genetic screen to identify novel regulators of sslE in the high SslE-expressing strain UTI89, we defined a new role for the nucleoid-associated regulator Fis and the ribosome-binding GTPase TypA as positive regulators of sslE transcription. We also showed that Fis-mediated enhancement of sslE transcription is dependent on a putative Fis-binding sequence located upstream of the -35 sequence in the core promoter element, and provide evidence to suggest that Fis may work in complex with H-NS to control SslE expression. Overall, this study has defined a new mechanism for sslE regulation and increases our understanding of this broadly conserved E. coli vaccine antigen.
Collapse
Affiliation(s)
- Lendl Tan
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Brisbane, Australia
| | - Danilo G. Moriel
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Brisbane, Australia
| | - Makrina Totsika
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, QLD 4059, Brisbane, Australia
| | - Scott A. Beatson
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Brisbane, Australia
| | - Mark A. Schembri
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, QLD 4072, Brisbane, Australia
- * E-mail:
| |
Collapse
|
41
|
De Geyter J, Tsirigotaki A, Orfanoudaki G, Zorzini V, Economou A, Karamanou S. Protein folding in the cell envelope of Escherichia coli. Nat Microbiol 2016; 1:16107. [PMID: 27573113 DOI: 10.1038/nmicrobiol.2016.107] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/02/2016] [Indexed: 11/09/2022]
Abstract
While the entire proteome is synthesized on cytoplasmic ribosomes, almost half associates with, localizes in or crosses the bacterial cell envelope. In Escherichia coli a variety of mechanisms are important for taking these polypeptides into or across the plasma membrane, maintaining them in soluble form, trafficking them to their correct cell envelope locations and then folding them into the right structures. The fidelity of these processes must be maintained under various environmental conditions including during stress; if this fails, proteases are called in to degrade mislocalized or aggregated proteins. Various soluble, diffusible chaperones (acting as holdases, foldases or pilotins) and folding catalysts are also utilized to restore proteostasis. These responses can be general, dealing with multiple polypeptides, with functional overlaps and operating within redundant networks. Other chaperones are specialized factors, dealing only with a few exported proteins. Several complex machineries have evolved to deal with binding to, integration in and crossing of the outer membrane. This complex protein network is responsible for fundamental cellular processes such as cell wall biogenesis; cell division; the export, uptake and degradation of molecules; and resistance against exogenous toxic factors. The underlying processes, contributing to our fundamental understanding of proteostasis, are a treasure trove for the development of novel antibiotics, biopharmaceuticals and vaccines.
Collapse
Affiliation(s)
- Jozefien De Geyter
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Alexandra Tsirigotaki
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Georgia Orfanoudaki
- Institute of Molecular Biology and Biotechnology, FORTH and Department of Biology, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece
| | - Valentina Zorzini
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| | - Anastassios Economou
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium.,Institute of Molecular Biology and Biotechnology, FORTH and Department of Biology, University of Crete, PO Box 1385, GR-711 10 Iraklio, Crete, Greece
| | - Spyridoula Karamanou
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, B-3000 Leuven, Belgium
| |
Collapse
|
42
|
Folding outer membrane proteins independently of the β-barrel assembly machinery: an assembly pathway for multimeric complexes? Biochem Soc Trans 2016; 44:845-50. [DOI: 10.1042/bst20160003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Indexed: 11/17/2022]
Abstract
Since the discovery of the essential role of the β-barrel assembly machinery (BAM) for the membrane insertion of outer membrane proteins (OMPs) that are unrelated in sequence, members of this universally conserved family dominate discussions on OMP assembly in bacteria, mitochondria and chloroplasts. However, several multimeric bacterial OMPs assemble independently of the catalyzing BAM-component BamA. Recent progress on this alternative pathway is reviewed here, and a model for BAM-independent assembly for multimeric OMPs is proposed in which monomer delivery to the membrane and stable prepore formation are key steps towards productive membrane insertion.
Collapse
|
43
|
Lipids assist the membrane insertion of a BAM-independent outer membrane protein. Sci Rep 2015; 5:15068. [PMID: 26463896 PMCID: PMC4604470 DOI: 10.1038/srep15068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/14/2015] [Indexed: 02/04/2023] Open
Abstract
Like several other large, multimeric bacterial outer membrane proteins (OMPs), the assembly of the Klebsiella oxytoca OMP PulD does not rely on the universally conserved β-barrel assembly machinery (BAM) that catalyses outer membrane insertion. The only other factor known to interact with PulD prior to or during outer membrane targeting and assembly is the cognate chaperone PulS. Here, in vitro translation-transcription coupled PulD folding demonstrated that PulS does not act during the membrane insertion of PulD, and engineered in vivo site-specific cross-linking between PulD and PulS showed that PulS binding does not prevent membrane insertion. In vitro folding kinetics revealed that PulD is atypical compared to BAM-dependent OMPs by inserting more rapidly into membranes containing E. coli phospholipids than into membranes containing lecithin. PulD folding was fast in diC14:0-phosphatidylethanolamine liposomes but not diC14:0-phosphatidylglycerol liposomes, and in diC18:1-phosphatidylcholine liposomes but not in diC14:1-phosphatidylcholine liposomes. These results suggest that PulD efficiently exploits the membrane composition to complete final steps in insertion and explain how PulD can assemble independently of any protein-assembly machinery. Lipid-assisted assembly in this manner might apply to other large OMPs whose assembly is BAM-independent.
Collapse
|
44
|
Jeeves M, Knowles TJ. A novel pathway for outer membrane protein biogenesis in Gram-negative bacteria. Mol Microbiol 2015; 97:607-11. [PMID: 26059329 PMCID: PMC4973683 DOI: 10.1111/mmi.13082] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 02/04/2023]
Abstract
The understanding of the biogenesis of the outer membrane of Gram‐negative bacteria is of critical importance due to the emergence of bacteria that are becoming resistant to available antibiotics. A problem that is most serious for Gram‐negative bacteria, with essentially few antibiotics under development or likely to be available for clinical use in the near future. The understanding of the Gram‐negative bacterial outer membrane is therefore critical to developing new antimicrobial agents, as this membrane makes direct contact with the external milieu, and the proteins present within this membrane are the instruments of microbial warfare, playing key roles in microbial pathogenesis, virulence and multidrug resistance. To date, a single outer membrane complex has been identified as essential for the folding and insertion of proteins into the outer membrane, this is the β‐barrel assembly machine (BAM) complex, which in some cases is supplemented by the Translocation and Assembly Module (TAM). In this issue of Molecular Microbiology, Dunstan et al. have identified a novel pathway for the insertion of a subset of integral membrane proteins into the Gram‐negative outer membrane that is independent of the BAM complex and TAM.
Collapse
Affiliation(s)
- Mark Jeeves
- School of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Timothy J Knowles
- School of Cancer Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
45
|
Gazi AD. Commentary: The absence of protein Y4yS affects negatively the abundance of T3SS Mesorhizobium loti secretin, RhcC2, in bacterial membranes. Front Microbiol 2015; 6:710. [PMID: 26236295 PMCID: PMC4500985 DOI: 10.3389/fmicb.2015.00710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/29/2015] [Indexed: 11/20/2022] Open
Affiliation(s)
- Anastasia D Gazi
- Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique Gif-sur-Yvette, France
| |
Collapse
|
46
|
Andrade BGN, de Veiga Ramos N, Marin MFA, Fonseca EL, Vicente ACP. The genome of a clinical Klebsiella variicola strain reveals virulence-associated traits and a pl9-like plasmid. FEMS Microbiol Lett 2015; 360:13-6. [PMID: 25135672 DOI: 10.1111/1574-6968.12583] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/14/2014] [Indexed: 01/28/2023] Open
Abstract
Klebsiella species frequently cause clinically relevant human infections worldwide. We report the draft genome sequence of a Brazilian clinical isolate (Bz19) of the recently recognized species Klebsiella variicola. The comparison of Bz19 genome content with the At-22 (environmental K. variicola) and several clinical Klebsiella pneumoniae shows that these species share a set of virulence-associated determinants. Of note, this K. variicola strain harbours a plasmid-like element that shares the same backbone present in a multidrug-resistant plasmid found in a clinical K. pneumoniae isolated in USA.
Collapse
|
47
|
Dunstan RA, Hay ID, Wilksch JJ, Schittenhelm RB, Purcell AW, Clark J, Costin A, Ramm G, Strugnell RA, Lithgow T. Assembly of the secretion pores GspD, Wza and CsgG into bacterial outer membranes does not require the Omp85 proteins BamA or TamA. Mol Microbiol 2015; 97:616-29. [DOI: 10.1111/mmi.13055] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2015] [Indexed: 01/07/2023]
Affiliation(s)
- Rhys A. Dunstan
- Department of Microbiology; Monash University; Clayton Vic. 3800 Australia
- Department of Biochemistry and Molecular Biology; Monash University; Clayton Vic. 3800 Australia
| | - Iain D. Hay
- Department of Microbiology; Monash University; Clayton Vic. 3800 Australia
| | - Jonathan J. Wilksch
- Department of Microbiology & Immunology; The Peter Doherty Institute for Infection and Immunity; University of Melbourne; Parkville Vic. 3052 Australia
| | - Ralf B. Schittenhelm
- Department of Biochemistry and Molecular Biology; Monash University; Clayton Vic. 3800 Australia
| | - Anthony W. Purcell
- Department of Biochemistry and Molecular Biology; Monash University; Clayton Vic. 3800 Australia
| | - Joan Clark
- Department of Biochemistry and Molecular Biology; Monash University; Clayton Vic. 3800 Australia
| | - Adam Costin
- Department of Biochemistry and Molecular Biology; Monash University; Clayton Vic. 3800 Australia
| | - Georg Ramm
- Department of Biochemistry and Molecular Biology; Monash University; Clayton Vic. 3800 Australia
| | - Richard A. Strugnell
- Department of Microbiology & Immunology; The Peter Doherty Institute for Infection and Immunity; University of Melbourne; Parkville Vic. 3052 Australia
| | - Trevor Lithgow
- Department of Microbiology; Monash University; Clayton Vic. 3800 Australia
| |
Collapse
|
48
|
ExsB is required for correct assembly of the Pseudomonas aeruginosa type III secretion apparatus in the bacterial membrane and full virulence in vivo. Infect Immun 2015; 83:1789-98. [PMID: 25690097 DOI: 10.1128/iai.00048-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/06/2015] [Indexed: 01/31/2023] Open
Abstract
Pseudomonas aeruginosa is responsible for high-morbidity infections of cystic fibrosis patients and is a major agent of nosocomial infections. One of its most potent virulence factors is a type III secretion system (T3SS) that injects toxins directly into the host cell cytoplasm. ExsB, a lipoprotein localized in the bacterial outer membrane, is one of the components of this machinery, of which the function remained elusive until now. The localization of the exsB gene within the exsCEBA regulatory gene operon suggested an implication in the T3SS regulation, while its similarity with yscW from Yersinia spp. argued in favor of a role in machinery assembly. The present work shows that ExsB is necessary for full in vivo virulence of P. aeruginosa. Furthermore, the requirement of ExsB for optimal T3SS assembly and activity is demonstrated using eukaryotic cell infection and in vitro assays. In particular, ExsB promotes the assembly of the T3SS secretin in the bacterial outer membrane, highlighting the molecular role of ExsB as a pilotin. This involvement in the regulation of the T3S apparatus assembly may explain the localization of the ExsB-encoding gene within the regulatory gene operon.
Collapse
|
49
|
Tosi T, Estrozi L, Job V, Guilvout I, Pugsley A, Schoehn G, Dessen A. Structural Similarity of Secretins from Type II and Type III Secretion Systems. Structure 2014; 22:1348-1355. [DOI: 10.1016/j.str.2014.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 06/02/2014] [Accepted: 07/21/2014] [Indexed: 01/07/2023]
|
50
|
Type II secretion system: A magic beanstalk or a protein escalator. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1568-77. [DOI: 10.1016/j.bbamcr.2013.12.020] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/13/2013] [Accepted: 12/23/2013] [Indexed: 12/12/2022]
|