1
|
Calcraft T, Stanke-Scheffler N, Nans A, Lindemann D, Taylor IA, Rosenthal PB. Integrated cryoEM structure of a spumaretrovirus reveals cross-kingdom evolutionary relationships and the molecular basis for assembly and virus entry. Cell 2024; 187:4213-4230.e19. [PMID: 39013471 DOI: 10.1016/j.cell.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/26/2024] [Accepted: 06/11/2024] [Indexed: 07/18/2024]
Abstract
Foamy viruses (FVs) are an ancient lineage of retroviruses, with an evolutionary history spanning over 450 million years. Vector systems based on Prototype Foamy Virus (PFV) are promising candidates for gene and oncolytic therapies. Structural studies of PFV contribute to the understanding of the mechanisms of FV replication, cell entry and infection, and retroviral evolution. Here we combine cryoEM and cryoET to determine high-resolution in situ structures of the PFV icosahedral capsid (CA) and envelope glycoprotein (Env), including its type III transmembrane anchor and membrane-proximal external region (MPER), and show how they are organized in an integrated structure of assembled PFV particles. The atomic models reveal an ancient retroviral capsid architecture and an unexpected relationship between Env and other class 1 fusion proteins of the Mononegavirales. Our results represent the de novo structure determination of an assembled retrovirus particle.
Collapse
Affiliation(s)
- Thomas Calcraft
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicole Stanke-Scheffler
- Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Andrea Nans
- Structural Biology Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Dirk Lindemann
- Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany.
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Peter B Rosenthal
- Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
2
|
Identification of Cartilaginous Fish Endogenous Foamy Virus Rooting to Vertebrate Counterparts. J Virol 2023; 97:e0181622. [PMID: 36651746 PMCID: PMC9972966 DOI: 10.1128/jvi.01816-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Foamy viruses (FVs) are ideal models for studying the long-term evolutionary history between viruses and their hosts. Currently, FVs have been documented in nearly all major taxa of vertebrates, but evidence is lacking for true FV infiltration in cartilaginous fish, the most basal living vertebrates with jaws. Here, we screened 11 available genomes and 10 transcriptome sequence assemblies of cartilaginous fish and revealed a novel endogenous foamy virus, termed cartilaginous fish endogenous foamy virus (CFEFV), in the genomes of sharks and rays. Genomic analysis of CFEFVs revealed feature motifs that were retained among canonical FVs. Phylogenetic analysis using polymerase sequences revealed the rooting nature of CFEFVs to vertebrate FVs, indicating their deep origin. Interestingly, three viral lineages were found in a shark (Scyliorhinus torazame), one of which was clustered with ray-finned fish foamy-like viruses, indicating that multiple episodes of viral infiltrations had occurred in this species. These findings fill a major gap in the Spumaretrovirinae taxon and reveal the aquatic origin of FVs found in terrestrial vertebrates. IMPORTANCE Although foamy viruses (FVs) have been found in major branches of vertebrates, the presence of these viruses in cartilaginous fish, the most basal living vertebrates with jaws, remains to be explored. This study revealed a collection of cartilaginous endogenous FVs in sharks and rays through in silico genomic mining. These viruses were rooted in the polymerase (POL) phylogeny, indicating the ancient aquatic origin of FVs. However, their envelope (ENV) protein grouped with those of amphibian FVs, suggesting different evolutionary histories of different FV genes. Overall, we provide the last missing gap for the taxonomic investigation of Spumaretrovirinae and provide concrete support for the aquatic origin of FVs.
Collapse
|
3
|
Munz CM, Kreher H, Erdbeer A, Richter S, Westphal D, Yi B, Behrendt R, Stanke N, Lindel F, Lindemann D. Efficient production of inhibitor-free foamy virus glycoprotein-containing retroviral vectors by proteoglycan-deficient packaging cells. Mol Ther Methods Clin Dev 2022; 26:394-412. [PMID: 36034773 PMCID: PMC9388887 DOI: 10.1016/j.omtm.2022.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 07/07/2022] [Indexed: 11/21/2022]
Abstract
Foamy viruses (FVs) or heterologous retroviruses pseudotyped with FV glycoprotein enable transduction of a great variety of target tissues of disparate species. Specific cellular entry receptors responsible for this exceptionally broad tropism await their identification. Though, ubiquitously expressed heparan sulfate proteoglycan (HS-PG) is known to serve as an attachment factor of FV envelope (Env)-containing virus particles, greatly enhancing target cell permissiveness. Production of high-titer, FV Env-containing retroviral vectors is strongly dependent on the use of cationic polymer-based transfection reagents like polyethyleneimine (PEI). We identified packaging cell-surface HS-PG expression to be responsible for this requirement. Efficient release of FV Env-containing virus particles necessitates neutralization of HS-PG binding sites by PEI. Remarkably, remnants of PEI in FV Env-containing vector supernatants, which are not easily removable, negatively impact target cell transduction, in particular those of myeloid and lymphoid origin. To overcome this limitation for production of FV Env-containing retrovirus supernatants, we generated 293T-based packaging cell lines devoid of HS-PG by genome engineering. This enabled, for the first, time production of inhibitor-free, high-titer FV Env-containing virus supernatants by non-cationic polymer-mediated transfection. Depending on the type of virus, produced titers were 2- to 10-fold higher compared with those obtained by PEI transfection.
Collapse
Affiliation(s)
- Clara Marie Munz
- Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Henriette Kreher
- Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Alexander Erdbeer
- Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Stefanie Richter
- Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Dana Westphal
- Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Buqing Yi
- Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Rayk Behrendt
- Institute of Immunology, Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, 01307 Dresden, Germany
| | - Nicole Stanke
- Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
| | - Fabian Lindel
- Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- Corresponding author Fabian Lindel,Cell line Screening & Development (CLSD), Novartis Institutes for BioMedical Research (NIBR), WSJ-360, Kohlenstrasse, 4056 Basel, Switzerland.
| | - Dirk Lindemann
- Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, 01307 Dresden, Germany
- Corresponding author Dirk Lindemann, Institute of Medical Microbiology and Virology, University Hospital and Medical Faculty “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
| |
Collapse
|
4
|
Yan J, Zheng Y, Yuan P, Wang S, Han S, Yin J, Peng B, Li Z, Sun Y, He X, Liu W. Novel Host Protein TBC1D16, a GTPase Activating Protein of Rab5C, Inhibits Prototype Foamy Virus Replication. Front Immunol 2021; 12:658660. [PMID: 34367131 PMCID: PMC8339588 DOI: 10.3389/fimmu.2021.658660] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 07/08/2021] [Indexed: 11/16/2022] Open
Abstract
Prototype foamy virus (PFV) is a member of the oldest family of retroviruses and maintains lifelong latent infection in the host. The lifelong latent infection of PFV may be maintained by the restriction factors of viral replication in the host. However, the mechanisms involved in PFV latent infection are poorly understood. Here, we found that TBC1D16, a TBC domain-containing protein, is significantly down-regulated after PFV infection. Tre2/Bub2/Cdc16 (TBC) domain-containing proteins function as Rab GTPase-activating proteins (GAPs) and are participates in the progression of some diseases and many signaling pathways. However, whether TBC proteins are involved in PFV replication has not been determined. Here, we found that TBC1D16 is a novel antiviral protein that targets Rab5C to suppress PFV replication. Overexpression TBC1D16 inhibited the transcription and expression of Tas and Gag, and silencing TBC1D16 enhanced the PFV replication. Moreover, the highly conserved amino acid residues R494 and Q531 in the TBC domain of TBC1D16 were essential for inhibiting PFV replication. We also found that TBC1D16 promoted the production of PFV-induced IFN-β and the transcription of downstream genes. These results suggest that TBC1D16 might be the first identified TBC proteins that inhibited PFV replication and the mechanism by which TBC1D16 inhibited PFV replication could provide new insights for PFV latency.
Collapse
Affiliation(s)
- Jun Yan
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yingcheng Zheng
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Peipei Yuan
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Department of Immunology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Shanshan Wang
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Song Han
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jun Yin
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Biwen Peng
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Zhi Li
- College of Life Sciences, Shanxi Normal University, Xi’an, China
| | - Yan Sun
- College of Life Sciences, Shanxi Normal University, Xi’an, China
| | - Xiaohua He
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wanhong Liu
- Hubei Province Key Laboratory of Allergy and Immunology, Department of Immunology, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Shenzhen Research Institute, Wuhan University, Shenzhen, China
| |
Collapse
|
5
|
Jaguva Vasudevan AA, Becker D, Luedde T, Gohlke H, Münk C. Foamy Viruses, Bet, and APOBEC3 Restriction. Viruses 2021; 13:504. [PMID: 33803830 PMCID: PMC8003144 DOI: 10.3390/v13030504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 01/24/2023] Open
Abstract
Non-human primates (NHP) are an important source of viruses that can spillover to humans and, after adaptation, spread through the host population. Whereas HIV-1 and HTLV-1 emerged as retroviral pathogens in humans, a unique class of retroviruses called foamy viruses (FV) with zoonotic potential are occasionally detected in bushmeat hunters or zookeepers. Various FVs are endemic in numerous mammalian natural hosts, such as primates, felines, bovines, and equines, and other animals, but not in humans. They are apathogenic, and significant differences exist between the viral life cycles of FV and other retroviruses. Importantly, FVs replicate in the presence of many well-defined retroviral restriction factors such as TRIM5α, BST2 (Tetherin), MX2, and APOBEC3 (A3). While the interaction of A3s with HIV-1 is well studied, the escape mechanisms of FVs from restriction by A3 is much less explored. Here we review the current knowledge of FV biology, host restriction factors, and FV-host interactions with an emphasis on the consequences of FV regulatory protein Bet binding to A3s and outline crucial open questions for future studies.
Collapse
Affiliation(s)
- Ananda Ayyappan Jaguva Vasudevan
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Daniel Becker
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.B.); (H.G.)
| | - Tom Luedde
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (D.B.); (H.G.)
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre & Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carsten Münk
- Clinic for Gastroenterology, Hepatology and Infectiology, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
6
|
Bussienne C, Marquet R, Paillart JC, Bernacchi S. Post-Translational Modifications of Retroviral HIV-1 Gag Precursors: An Overview of Their Biological Role. Int J Mol Sci 2021; 22:ijms22062871. [PMID: 33799890 PMCID: PMC8000049 DOI: 10.3390/ijms22062871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 11/24/2022] Open
Abstract
Protein post-translational modifications (PTMs) play key roles in eukaryotes since they finely regulate numerous mechanisms used to diversify the protein functions and to modulate their signaling networks. Besides, these chemical modifications also take part in the viral hijacking of the host, and also contribute to the cellular response to viral infections. All domains of the human immunodeficiency virus type 1 (HIV-1) Gag precursor of 55-kDa (Pr55Gag), which is the central actor for viral RNA specific recruitment and genome packaging, are post-translationally modified. In this review, we summarize the current knowledge about HIV-1 Pr55Gag PTMs such as myristoylation, phosphorylation, ubiquitination, sumoylation, methylation, and ISGylation in order to figure out how these modifications affect the precursor functions and viral replication. Indeed, in HIV-1, PTMs regulate the precursor trafficking between cell compartments and its anchoring at the plasma membrane, where viral assembly occurs. Interestingly, PTMs also allow Pr55Gag to hijack the cell machinery to achieve viral budding as they drive recognition between viral proteins or cellular components such as the ESCRT machinery. Finally, we will describe and compare PTMs of several other retroviral Gag proteins to give a global overview of their role in the retroviral life cycle.
Collapse
|
7
|
The Unique, the Known, and the Unknown of Spumaretrovirus Assembly. Viruses 2021; 13:v13010105. [PMID: 33451128 PMCID: PMC7828637 DOI: 10.3390/v13010105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/22/2022] Open
Abstract
Within the family of Retroviridae, foamy viruses (FVs) are unique and unconventional with respect to many aspects in their molecular biology, including assembly and release of enveloped viral particles. Both components of the minimal assembly and release machinery, Gag and Env, display significant differences in their molecular structures and functions compared to the other retroviruses. This led to the placement of FVs into a separate subfamily, the Spumaretrovirinae. Here, we describe the molecular differences in FV Gag and Env, as well as Pol, which is translated as a separate protein and not in an orthoretroviral manner as a Gag-Pol fusion protein. This feature further complicates FV assembly since a specialized Pol encapsidation strategy via a tripartite Gag-genome–Pol complex is used. We try to relate the different features and specific interaction patterns of the FV Gag, Pol, and Env proteins in order to develop a comprehensive and dynamic picture of particle assembly and release, but also other features that are indirectly affected. Since FVs are at the root of the retrovirus tree, we aim at dissecting the unique/specialized features from those shared among the Spuma- and Orthoretrovirinae. Such analyses may shed light on the evolution and characteristics of virus envelopment since related viruses within the Ortervirales, for instance LTR retrotransposons, are characterized by different levels of envelopment, thus affecting the capacity for intercellular transmission.
Collapse
|
8
|
Dupont A, Glück IM, Ponti D, Stirnnagel K, Hütter S, Perrotton F, Stanke N, Richter S, Lindemann D, Lamb DC. Identification of an Intermediate Step in Foamy Virus Fusion. Viruses 2020; 12:v12121472. [PMID: 33371254 PMCID: PMC7766700 DOI: 10.3390/v12121472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/20/2022] Open
Abstract
Viral glycoprotein-mediated membrane fusion is an essential step for productive infection of host cells by enveloped viruses; however, due to its rarity and challenges in detection, little is known about the details of fusion events at the single particle level. Here, we have developed dual-color foamy viruses (FVs) composed of eGFP-tagged prototype FV (PFV) Gag and mCherry-tagged Env of either PFV or macaque simian FV (SFVmac) origin that have been optimized for detection of the fusion process. Using our recently developed tracking imaging correlation (TrIC) analysis, we were able to detect the fusion process for both PFV and SFVmac Env containing virions. PFV Env-mediated fusion was observed both at the plasma membrane as well as from endosomes, whereas SFVmac Env-mediated fusion was only observed from endosomes. PFV Env-mediated fusion was observed to happen more often and more rapidly than as for SFVmac Env. Strikingly, using the TrIC method, we detected a novel intermediate state where the envelope and capsids are still tethered but separated by up to 400 nm before final separation of Env and Gag occurred.
Collapse
Affiliation(s)
- Aurélie Dupont
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany; (A.D.); (I.M.G.); (D.P.); (F.P.)
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- LIPhy, University Grenoble Alpes, CNRS, F-38000 Grenoble, France
| | - Ivo M. Glück
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany; (A.D.); (I.M.G.); (D.P.); (F.P.)
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Dorothee Ponti
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany; (A.D.); (I.M.G.); (D.P.); (F.P.)
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
| | - Kristin Stirnnagel
- Medical Faculty “Carl Gustav Carus”, Institute of Virology, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (K.S.); (S.H.); (N.S.); (S.R.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Sylvia Hütter
- Medical Faculty “Carl Gustav Carus”, Institute of Virology, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (K.S.); (S.H.); (N.S.); (S.R.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Florian Perrotton
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany; (A.D.); (I.M.G.); (D.P.); (F.P.)
| | - Nicole Stanke
- Medical Faculty “Carl Gustav Carus”, Institute of Virology, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (K.S.); (S.H.); (N.S.); (S.R.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Stefanie Richter
- Medical Faculty “Carl Gustav Carus”, Institute of Virology, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (K.S.); (S.H.); (N.S.); (S.R.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
| | - Dirk Lindemann
- Medical Faculty “Carl Gustav Carus”, Institute of Virology, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany; (K.S.); (S.H.); (N.S.); (S.R.)
- CRTD/DFG-Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstr. 105, 01307 Dresden, Germany
- Correspondence: (D.L.); (D.C.L.)
| | - Don C. Lamb
- Department of Chemistry, Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany; (A.D.); (I.M.G.); (D.P.); (F.P.)
- Center for Nano Science (CENS), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Nanosystems Initiative München (NIM), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Center for Integrated Protein Science (CIPSM), Ludwig Maximilians-Universität München, Butenandtstraße 5-13, 81377 München, Germany
- Correspondence: (D.L.); (D.C.L.)
| |
Collapse
|
9
|
Aiewsakun P, Simmonds P, Katzourakis A. The First Co-Opted Endogenous Foamy Viruses and the Evolutionary History of Reptilian Foamy Viruses. Viruses 2019; 11:v11070641. [PMID: 31336856 PMCID: PMC6669660 DOI: 10.3390/v11070641] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 12/17/2022] Open
Abstract
A recent study reported the discovery of an endogenous reptilian foamy virus (FV), termed ERV-Spuma-Spu, found in the genome of tuatara. Here, we report two novel reptilian foamy viruses also identified as endogenous FVs (EFVs) in the genomes of panther gecko (ERV-Spuma-Ppi) and Schlegel’s Japanese gecko (ERV-Spuma-Gja). Their presence indicates that FVs are capable of infecting reptiles in addition to mammals, amphibians, and fish. Numerous copies of full length ERV-Spuma-Spu elements were found in the tuatara genome littered with in-frame stop codons and transposable elements, suggesting that they are indeed endogenous and are not functional. ERV-Spuma-Ppi and ERV-Spuma-Gja, on the other hand, consist solely of a foamy virus-like env gene. Examination of host flanking sequences revealed that they are orthologous, and despite being more than 96 million years old, their env reading frames are fully coding competent with evidence for strong purifying selection to maintain expression and for them likely being transcriptionally active. These make them the oldest EFVs discovered thus far and the first documented EFVs that may have been co-opted for potential cellular functions. Phylogenetic analyses revealed a complex virus–host co-evolutionary history and cross-species transmission routes of ancient FVs.
Collapse
Affiliation(s)
- Pakorn Aiewsakun
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, South Parks Road, Oxford OX1 3SY, UK
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3SY, UK.
| |
Collapse
|
10
|
Wöhrl BM. Structural and Functional Aspects of Foamy Virus Protease-Reverse Transcriptase. Viruses 2019; 11:v11070598. [PMID: 31269675 PMCID: PMC6669543 DOI: 10.3390/v11070598] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 12/15/2022] Open
Abstract
Reverse transcription describes the process of the transformation of single-stranded RNA into double-stranded DNA via an RNA/DNA duplex intermediate, and is catalyzed by the viral enzyme reverse transcriptase (RT). This event is a pivotal step in the life cycle of all retroviruses. In contrast to orthoretroviruses, the domain structure of the mature RT of foamy viruses is different, i.e., it harbors the protease (PR) domain at its N-terminus, thus being a PR-RT. This structural feature has consequences on PR activation, since the enzyme is monomeric in solution and retroviral PRs are only active as dimers. This review focuses on the structural and functional aspects of simian and prototype foamy virus reverse transcription and reverse transcriptase, as well as special features of reverse transcription that deviate from orthoretroviral processes, e.g., PR activation.
Collapse
Affiliation(s)
- Birgitta M Wöhrl
- Lehrstuhl Biopolymere, Universität Bayreuth, D-95440 Bayreuth, Germany.
| |
Collapse
|
11
|
Twelfth International Foamy Virus Conference-Meeting Report. Viruses 2019; 11:v11020134. [PMID: 30717288 PMCID: PMC6409691 DOI: 10.3390/v11020134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 01/06/2023] Open
Abstract
The 12th International Foamy Virus Conference took place on 30–31 August 2018 at the Technische Universität Dresden, Dresden, Germany. The meeting included presentations on current research on non-human primate and non-primate foamy viruses (FVs; also called spumaretroviruses) as well as keynote talks on related research areas in retroviruses. The taxonomy of foamy viruses was updated earlier this year to create five new genera in the subfamily, Spumaretrovirinae, based on their animal hosts. Research on viruses from different genera was presented on topics of potential relevance to human health, such as natural infections and cross-species transmission, replication, and viral-host interactions in particular with the immune system, dual retrovirus infections, virus structure and biology, and viral vectors for gene therapy. This article provides an overview of the current state-of-the-field, summarizes the meeting highlights, and presents some important questions that need to be addressed in the future.
Collapse
|
12
|
Paris J, Tobaly-Tapiero J, Giron ML, Burlaud-Gaillard J, Buseyne F, Roingeard P, Lesage P, Zamborlini A, Saïb A. The invariant arginine within the chromatin-binding motif regulates both nucleolar localization and chromatin binding of Foamy virus Gag. Retrovirology 2018; 15:48. [PMID: 29996845 PMCID: PMC6042332 DOI: 10.1186/s12977-018-0428-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 06/25/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Nuclear localization of Gag is a property shared by many retroviruses and retrotransposons. The importance of this stage for retroviral replication is still unknown, but studies on the Rous Sarcoma virus indicate that Gag might select the viral RNA genome for packaging in the nucleus. In the case of Foamy viruses, genome encapsidation is mediated by Gag C-terminal domain (CTD), which harbors three clusters of glycine and arginine residues named GR boxes (GRI-III). In this study we investigated how PFV Gag subnuclear distribution might be regulated. RESULTS We show that the isolated GRI and GRIII boxes act as nucleolar localization signals. In contrast, both the entire Gag CTD and the isolated GRII box, which contains the chromatin-binding motif, target the nucleolus exclusively upon mutation of the evolutionary conserved arginine residue at position 540 (R540), which is a key determinant of FV Gag chromatin tethering. We also provide evidence that Gag localizes in the nucleolus during FV replication and uncovered that the viral protein interacts with and is methylated by Protein Arginine Methyltransferase 1 (PRMT1) in a manner that depends on the R540 residue. Finally, we show that PRMT1 depletion by RNA interference induces the concentration of Gag C-terminus in nucleoli. CONCLUSION Altogether, our findings suggest that methylation by PRMT1 might finely tune the subnuclear distribution of Gag depending on the stage of the FV replication cycle. The role of this step for viral replication remains an open question.
Collapse
Affiliation(s)
- Joris Paris
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Joëlle Tobaly-Tapiero
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Marie-Lou Giron
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Julien Burlaud-Gaillard
- Plateforme IBiSA de Microscopie Electronique, Université François Rabelais and CHRU de Tours, Tours, France
- INSERM U1259, Université François Rabelais and CHRU de Tours, Tours, France
| | - Florence Buseyne
- Institut Pasteur, Unité d’Epidémiologie et Physiopathologie des Virus Oncogènes, Paris, France
- CNRS UMR3569, Insitut Pasteur, Paris, France
| | - Philippe Roingeard
- Plateforme IBiSA de Microscopie Electronique, Université François Rabelais and CHRU de Tours, Tours, France
- INSERM U1259, Université François Rabelais and CHRU de Tours, Tours, France
| | - Pascale Lesage
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alessia Zamborlini
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Laboratoire PVM, Conservatoire National des Arts et Métiers (Cnam), Paris, France
| | - Ali Saïb
- CNRS UMR7212, Hôpital St Louis, Inserm U944, Institut Universitaire d’Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
13
|
Arkhipova IR, Yushenova IA, Rodriguez F. Giant Reverse Transcriptase-Encoding Transposable Elements at Telomeres. Mol Biol Evol 2017; 34:2245-2257. [PMID: 28575409 PMCID: PMC5850863 DOI: 10.1093/molbev/msx159] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transposable elements are omnipresent in eukaryotic genomes and have a profound impact on chromosome structure, function and evolution. Their structural and functional diversity is thought to be reasonably well-understood, especially in retroelements, which transpose via an RNA intermediate copied into cDNA by the element-encoded reverse transcriptase, and are characterized by a compact structure. Here, we report a novel type of expandable eukaryotic retroelements, which we call Terminons. These elements can attach to G-rich telomeric repeat overhangs at the chromosome ends, in a process apparently facilitated by complementary C-rich repeats at the 3′-end of the RNA template immediately adjacent to a hammerhead ribozyme motif. Terminon units, which can exceed 40 kb in length, display an unusually complex and diverse structure, and can form very long chains, with host genes often captured between units. As the principal polymerizing component, Terminons contain Athena reverse transcriptases previously described in bdelloid rotifers and belonging to the enigmatic group of Penelope-like elements, but can additionally accumulate multiple cooriented ORFs, including DEDDy 3′-exonucleases, GDSL esterases/lipases, GIY-YIG-like endonucleases, rolling-circle replication initiator (Rep) proteins, and putatively structural ORFs with coiled-coil motifs and transmembrane domains. The extraordinary length and complexity of Terminons and the high degree of interfamily variability in their ORF content challenge the current views on the structural organization of eukaryotic retroelements, and highlight their possible connections with the viral world and the implications for the elevated frequency of gene transfer.
Collapse
Affiliation(s)
- Irina R Arkhipova
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA
| | - Irina A Yushenova
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA
| | - Fernando Rodriguez
- Marine Biological Laboratory, Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Woods Hole, MA
| |
Collapse
|
14
|
Taylor WR, Stoye JP, Taylor IA. A comparative analysis of the foamy and ortho virus capsid structures reveals an ancient domain duplication. BMC STRUCTURAL BIOLOGY 2017; 17:3. [PMID: 28372592 PMCID: PMC5379526 DOI: 10.1186/s12900-017-0073-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/10/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND The Spumaretrovirinae (foamy viruses) and the Orthoretrovirinae (e.g. HIV) share many similarities both in genome structure and the sequences of the core viral encoded proteins, such as the aspartyl protease and reverse transcriptase. Similarity in the gag region of the genome is less obvious at the sequence level but has been illuminated by the recent solution of the foamy virus capsid (CA) structure. This revealed a clear structural similarity to the orthoretrovirus capsids but with marked differences that left uncertainty in the relationship between the two domains that comprise the structure. METHODS We have applied protein structure comparison methods in order to try and resolve this ambiguous relationship. These included both the DALI method and the SAP method, with rigorous statistical tests applied to the results of both methods. For this, we employed collections of artificial fold 'decoys' (generated from the pair of native structures being compared) to provide a customised background distribution for each comparison, thus allowing significance levels to be estimated. RESULTS We have shown that the relationship of the two domains conforms to a simple linear correspondence rather than a domain transposition. These similarities suggest that the origin of both viral capsids was a common ancestor with a double domain structure. In addition, we show that there is also a significant structural similarity between the amino and carboxy domains in both the foamy and ortho viruses. CONCLUSIONS These results indicate that, as well as the duplication of the double domain capsid, there may have been an even more ancient gene-duplication that preceded the double domain structure. In addition, our structure comparison methodology demonstrates a general approach to problems where the components have a high intrinsic level of similarity.
Collapse
Affiliation(s)
- William R. Taylor
- Computational Cell and Molecular Biology Laboratory, Francis Crick Institute, Midland Road, London, NW1 1AT UK
| | - Jonathan P. Stoye
- Retrovirus-Host Interactions Laboratory, Francis Crick Institute, Midland Road, London, NW1 1AT UK
| | - Ian A. Taylor
- Macromolecular Structure Laboratory, Francis Crick Institute, Midland Road, London, NW1 1AT UK
| |
Collapse
|
15
|
Buseyne F, Gessain A, Soares MA, Santos AF, Materniak-Kornas M, Lesage P, Zamborlini A, Löchelt M, Qiao W, Lindemann D, Wöhrl BM, Stoye JP, Taylor IA, Khan AS. Eleventh International Foamy Virus Conference-Meeting Report. Viruses 2016; 8:v8110318. [PMID: 27886074 PMCID: PMC5127032 DOI: 10.3390/v8110318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 11/08/2016] [Accepted: 11/10/2016] [Indexed: 12/11/2022] Open
Abstract
The Eleventh International Foamy Virus Conference took place on 9–10 June 2016 at the Institut Pasteur, Paris, France. The meeting reviewed progress on foamy virus (FV) research, as well as related current topics in retrovirology. FVs are complex retroviruses that are widespread in several animal species. Several research topics on these viruses are relevant to human health: cross-species transmission and viral emergence, vectors for gene therapy, development of antiretroviral drugs, retroviral evolution and its influence on the human genome. In this article, we review the conference presentations on these viruses and highlight the major questions to be answered.
Collapse
Affiliation(s)
- Florence Buseyne
- Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, 75015 Paris, France.
- Centre National de la Recherche Scientifique (CNRS), UMR3569, 75015 Paris, France.
| | - Antoine Gessain
- Unité d'Épidémiologie et Physiopathologie des Virus Oncogènes, Institut Pasteur, 75015 Paris, France.
- Centre National de la Recherche Scientifique (CNRS), UMR3569, 75015 Paris, France.
| | - Marcelo A Soares
- Department of Genetics, Universidade Federal do Rio de Janeiro, 21949-570 Rio de Janeiro, Brazil.
- Oncovirology Program, Instituto Nacional de Câncer, 20231-050 Rio de Janeiro, Brazil.
| | - André F Santos
- Department of Genetics, Universidade Federal do Rio de Janeiro, 21949-570 Rio de Janeiro, Brazil.
| | | | - Pascale Lesage
- Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Université Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR 7212, 75010 Paris, France.
| | - Alessia Zamborlini
- Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Université Paris Diderot, Sorbonne Paris Cité, INSERM U944, CNRS UMR 7212, 75010 Paris, France.
- Conservatoire National des Arts et Métiers, Laboratoire de Pathologie et Virologie Moléculaire, 75003 Paris, France.
| | - Martin Löchelt
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, 69120 Heidelberg, Germany.
| | - Wentao Qiao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, 01307 Dresden, Germany.
| | - Birgitta M Wöhrl
- University of Bayreuth, Department of Biopolymers, 95447 Bayreuth, Germany.
| | | | | | - Arifa S Khan
- Laboratory of Retroviruses, Division of Viral Products, OVRR, CBER, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.
| |
Collapse
|
16
|
Ball NJ, Nicastro G, Dutta M, Pollard DJ, Goldstone DC, Sanz-Ramos M, Ramos A, Müllers E, Stirnnagel K, Stanke N, Lindemann D, Stoye JP, Taylor WR, Rosenthal PB, Taylor IA. Structure of a Spumaretrovirus Gag Central Domain Reveals an Ancient Retroviral Capsid. PLoS Pathog 2016; 12:e1005981. [PMID: 27829070 PMCID: PMC5102385 DOI: 10.1371/journal.ppat.1005981] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/06/2016] [Indexed: 12/26/2022] Open
Abstract
The Spumaretrovirinae, or foamy viruses (FVs) are complex retroviruses that infect many species of monkey and ape. Despite little sequence homology, FV and orthoretroviral Gag proteins perform equivalent functions, including genome packaging, virion assembly, trafficking and membrane targeting. However, there is a paucity of structural information for FVs and it is unclear how disparate FV and orthoretroviral Gag molecules share the same function. To probe the functional overlap of FV and orthoretroviral Gag we have determined the structure of a central region of Gag from the Prototype FV (PFV). The structure comprises two all α-helical domains NtDCEN and CtDCEN that although they have no sequence similarity, we show they share the same core fold as the N- (NtDCA) and C-terminal domains (CtDCA) of archetypal orthoretroviral capsid protein (CA). Moreover, structural comparisons with orthoretroviral CA align PFV NtDCEN and CtDCEN with NtDCA and CtDCA respectively. Further in vitro and functional virological assays reveal that residues making inter-domain NtDCEN-CtDCEN interactions are required for PFV capsid assembly and that intact capsid is required for PFV reverse transcription. These data provide the first information that relates the Gag proteins of Spuma and Orthoretrovirinae and suggests a common ancestor for both lineages containing an ancient CA fold.
Collapse
Affiliation(s)
- Neil J. Ball
- Macromolecular Structure Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Giuseppe Nicastro
- Macromolecular Structure Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Moumita Dutta
- Structural Biology of Cells and Viruses, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Dominic J. Pollard
- Macromolecular Structure Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - David C. Goldstone
- Macromolecular Structure Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Marta Sanz-Ramos
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Andres Ramos
- Macromolecular Structure Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Erik Müllers
- Institute of Virology, Technische Universität Dresden, Dresden, DE
| | | | - Nicole Stanke
- Institute of Virology, Technische Universität Dresden, Dresden, DE
| | - Dirk Lindemann
- Institute of Virology, Technische Universität Dresden, Dresden, DE
| | - Jonathan P. Stoye
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - William R. Taylor
- Computational Cell and Molecular Biology Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Peter B. Rosenthal
- Structural Biology of Cells and Viruses, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| | - Ian A. Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, Mill Hill Laboratory, London, United Kingdom
| |
Collapse
|
17
|
Correlation between the number of Pro-Ala repeats in the EmrA homologue of Acinetobacter baumannii and resistance to netilmicin, tobramycin, imipenem and ceftazidime. J Glob Antimicrob Resist 2016; 7:145-149. [PMID: 27835840 DOI: 10.1016/j.jgar.2016.09.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/30/2016] [Accepted: 09/12/2016] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii coccobacilli are dangerous to patients in intensive care units because of their multidrug resistance to antibiotics, developed mainly in the past decade. This study aimed to examine whether there is a significant correlation between the number of Pro-Ala repeats in the CAP01997 protein, the EmrA homologue of A. baumannii, and resistance to antibiotics. A total of 79 multidrug-resistant A. baumannii strains isolated from patients were analysed. Resistance to antibiotics was determined on Mueller-Hinton agar plates using the Kirby-Bauer disk diffusion method. The number of CCTGCA repeats encoding Pro-Ala repeats in CAP01997 was determined by PCR and capillary electrophoresis. The 3D models of CAP01997 containing Pro-Ala repeats were initially generated using RaptorX Structure Prediction server and were assembled with EasyModeller 4.0. The models were embedded in a model bacterial membrane based on structural information from homologous proteins and were refined using 100-ns molecular dynamics simulations. The results of this research show significant correlation between susceptibility to netilmicin, tobramycin and imipenem and the number of repeated Pro-Ala sequences in the CAP01997 protein, a homologue of the Escherichia coli transporter EmrA. Predicted structures suggest potential mechanisms that confer drug resistance by reshaping the cytoplasmic interface between CAP01997 protein and the critical component of the multidrug efflux pump homologous to EmrB. Based on these results, we can conclude that the CAP01997 protein, an EmrA homologue of A. baumannii, confers resistance to netilmicin, tobramycin and imipenem, depending on the number of Pro-Ala repeats.
Collapse
|
18
|
Interactions of Prototype Foamy Virus Capsids with Host Cell Polo-Like Kinases Are Important for Efficient Viral DNA Integration. PLoS Pathog 2016; 12:e1005860. [PMID: 27579920 PMCID: PMC5006980 DOI: 10.1371/journal.ppat.1005860] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 08/11/2016] [Indexed: 01/31/2023] Open
Abstract
Unlike for other retroviruses, only a few host cell factors that aid the replication of foamy viruses (FVs) via interaction with viral structural components are known. Using a yeast-two-hybrid (Y2H) screen with prototype FV (PFV) Gag protein as bait we identified human polo-like kinase 2 (hPLK2), a member of cell cycle regulatory kinases, as a new interactor of PFV capsids. Further Y2H studies confirmed interaction of PFV Gag with several PLKs of both human and rat origin. A consensus Ser-Thr/Ser-Pro (S-T/S-P) motif in Gag, which is conserved among primate FVs and phosphorylated in PFV virions, was essential for recognition by PLKs. In the case of rat PLK2, functional kinase and polo-box domains were required for interaction with PFV Gag. Fluorescently-tagged PFV Gag, through its chromatin tethering function, selectively relocalized ectopically expressed eGFP-tagged PLK proteins to mitotic chromosomes in a Gag STP motif-dependent manner, confirming a specific and dominant nature of the Gag-PLK interaction in mammalian cells. The functional relevance of the Gag-PLK interaction was examined in the context of replication-competent FVs and single-round PFV vectors. Although STP motif mutated viruses displayed wild type (wt) particle release, RNA packaging and intra-particle reverse transcription, their replication capacity was decreased 3-fold in single-cycle infections, and up to 20-fold in spreading infections over an extended time period. Strikingly similar defects were observed when cells infected with single-round wt Gag PFV vectors were treated with a pan PLK inhibitor. Analysis of entry kinetics of the mutant viruses indicated a post-fusion defect resulting in delayed and reduced integration, which was accompanied with an enhanced preference to integrate into heterochromatin. We conclude that interaction between PFV Gag and cellular PLK proteins is important for early replication steps of PFV within host cells. Viruses are masters at exploiting host cell machineries for their replication. For human immunodeficiency virus type 1 (HIV-1), the best-studied representative of the Orthoretrovirinae subfamily from the genus lentiviruses, numerous important virus-host interactions have been described. In contrast, only a few cellular proteins are known to influence the replication of foamy viruses (FVs, also known as spumaviruses), an intriguing type of complex retrovirus of the Spumaretrovirinae subfamily that combines features of both retroviruses and hepadnaviruses in its replication strategy. Given the increasing interest in FVs as gene transfer tools and their unique status within the retrovirus family, this discrepancy urged the identification of novel host cell interaction partners of FV structural components. This study focused on prototype FV (PFV), the best-characterized member of FVs, and its capsid protein, Gag, as the central player of viral replication. Members of the mitosis-regulatory, polo-like kinase (PLK) family were identified as novel Gag binding partners. The Gag interaction with PLK1 (and possibly also PLK2) facilitated efficient PFV genome integration into host chromatin, ensuring successful replication and viral spread in infected target cell cultures. Collectively, our results elucidate the first link between cell cycle regulatory networks and the mitosis-dependent PFV integration process.
Collapse
|
19
|
Distinct Particle Morphologies Revealed through Comparative Parallel Analyses of Retrovirus-Like Particles. J Virol 2016; 90:8074-84. [PMID: 27356903 DOI: 10.1128/jvi.00666-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 06/21/2016] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED The Gag protein is the main retroviral structural protein, and its expression alone is usually sufficient for production of virus-like particles (VLPs). In this study, we sought to investigate-in parallel comparative analyses-Gag cellular distribution, VLP size, and basic morphological features using Gag expression constructs (Gag or Gag-YFP, where YFP is yellow fluorescent protein) created from all representative retroviral genera: Alpharetrovirus, Betaretrovirus, Deltaretrovirus, Epsilonretrovirus, Gammaretrovirus, Lentivirus, and Spumavirus. We analyzed Gag cellular distribution by confocal microscopy, VLP budding by thin-section transmission electron microscopy (TEM), and general morphological features of the VLPs by cryogenic transmission electron microscopy (cryo-TEM). Punctate Gag was observed near the plasma membrane for all Gag constructs tested except for the representative Beta- and Epsilonretrovirus Gag proteins. This is the first report of Epsilonretrovirus Gag localizing to the nucleus of HeLa cells. While VLPs were not produced by the representative Beta- and Epsilonretrovirus Gag proteins, the other Gag proteins produced VLPs as confirmed by TEM, and morphological differences were observed by cryo-TEM. In particular, we observed Deltaretrovirus-like particles with flat regions of electron density that did not follow viral membrane curvature, Lentivirus-like particles with a narrow range and consistent electron density, suggesting a tightly packed Gag lattice, and Spumavirus-like particles with large envelope protein spikes and no visible electron density associated with a Gag lattice. Taken together, these parallel comparative analyses demonstrate for the first time the distinct morphological features that exist among retrovirus-like particles. Investigation of these differences will provide greater insights into the retroviral assembly pathway. IMPORTANCE Comparative analysis among retroviruses has been critically important in enhancing our understanding of retroviral replication and pathogenesis, including that of important human pathogens such as human T-cell leukemia virus type 1 (HTLV-1) and HIV-1. In this study, parallel comparative analyses have been used to study Gag expression and virus-like particle morphology among representative retroviruses in the known retroviral genera. Distinct differences were observed, which enhances current knowledge of the retroviral assembly pathway.
Collapse
|
20
|
Liu Y, Betts MJ, Lei J, Wei G, Bao Q, Kehl T, Russell RB, Löchelt M. Mutagenesis of N-terminal residues of feline foamy virus Gag reveals entirely distinct functions during capsid formation, particle assembly, Gag processing and budding. Retrovirology 2016; 13:57. [PMID: 27549192 PMCID: PMC4994201 DOI: 10.1186/s12977-016-0291-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Foamy viruses (FVs) of the Spumaretrovirinae subfamily are distinct retroviruses, with many features of their molecular biology and replication strategy clearly different from those of the Orthoretroviruses, such as human immunodeficiency, murine leukemia, and human T cell lymphotropic viruses. The FV Gag N-terminal region is responsible for capsid formation and particle budding via interaction with Env. However, the critical residues or motifs in this region and their functional interaction are currently ill-defined, especially in non-primate FVs. RESULTS Mutagenesis of N-terminal Gag residues of feline FV (FFV) reveals key residues essential for either capsid assembly and/or viral budding via interaction with the FFV Env leader protein (Elp). In an in vitro Gag-Elp interaction screen, Gag mutations abolishing particle assembly also interfered with Elp binding, indicating that Gag assembly is a prerequisite for this highly specific interaction. Gradient sedimentation analyses of cytosolic proteins indicate that wild-type Gag is mostly assembled into virus capsids. Moreover, proteolytic processing of Gag correlates with capsid assembly and is mostly, if not completely, independent from particle budding. In addition, Gag processing correlates with the presence of packaging-competent FFV genomic RNA suggesting that Pol encapsidation via genomic RNA is a prerequisite for Gag processing. Though an appended heterogeneous myristoylation signal rescues Gag particle budding of mutants unable to form capsids or defective in interacting with Elp, it fails to generate infectious particles that co-package Pol, as evidenced by a lack of Gag processing. CONCLUSIONS Changes in proteolytic Gag processing, intracellular capsid assembly, particle budding and infectivity of defined N-terminal Gag mutants highlight their essential, distinct and only partially overlapping roles during viral assembly and budding. Discussion of these findings will be based on a recent model developed for Gag-Elp interactions in prototype FV.
Collapse
Affiliation(s)
- Yang Liu
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Matthew J Betts
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Janet Lei
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Department of Oncology, University of Oxford, Oxford, UK
| | - Guochao Wei
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Qiuying Bao
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.,Biology Department, East China Normal University, Shanghai, China
| | - Timo Kehl
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany
| | - Robert B Russell
- CellNetworks, Bioquant, University of Heidelberg, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Martin Löchelt
- Department of Molecular Diagnostics of Oncogenic Infections, Research Program Infection and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 242, 69120, Heidelberg, Germany.
| |
Collapse
|
21
|
Cryo-electron Microscopy Structure of the Native Prototype Foamy Virus Glycoprotein and Virus Architecture. PLoS Pathog 2016; 12:e1005721. [PMID: 27399201 PMCID: PMC4939959 DOI: 10.1371/journal.ppat.1005721] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/02/2016] [Indexed: 12/11/2022] Open
Abstract
Foamy viruses (FV) belong to the genus Spumavirus, which forms a distinct lineage in the Retroviridae family. Although the infection in natural hosts and zoonotic transmission to humans is asymptomatic, FVs can replicate well in human cells making it an attractive gene therapy vector candidate. Here we present cryo-electron microscopy and (cryo-)electron tomography ultrastructural data on purified prototype FV (PFV) and PFV infected cells. Mature PFV particles have a distinct morphology with a capsid of constant dimension as well as a less ordered shell of density between the capsid and the membrane likely formed by the Gag N-terminal domain and the cytoplasmic part of the Env leader peptide gp18LP. The viral membrane contains trimeric Env glycoproteins partly arranged in interlocked hexagonal assemblies. In situ 3D reconstruction by subtomogram averaging of wild type Env and of a Env gp48TM- gp80SU cleavage site mutant showed a similar spike architecture as well as stabilization of the hexagonal lattice by clear connections between lower densities of neighboring trimers. Cryo-EM was employed to obtain a 9 Å resolution map of the glycoprotein in its pre-fusion state, which revealed extensive trimer interactions by the receptor binding subunit gp80SU at the top of the spike and three central helices derived from the fusion protein subunit gp48TM. The lower part of Env, presumably composed of interlaced parts of gp48TM, gp80SU and gp18LP anchors the spike at the membrane. We propose that the gp48TM density continues into three central transmembrane helices, which interact with three outer transmembrane helices derived from gp18LP. Our ultrastructural data and 9 Å resolution glycoprotein structure provide important new insights into the molecular architecture of PFV and its distinct evolutionary relationship with other members of the Retroviridae. Foamy viruses (FVs), which belong to the retroviral genus Spumavirus, are endemic to non-human primates and can be transmitted to humans. They are considered as potential vectors for gene therapy due to their broad cell tropism and their apparent apathogenicity in natural hosts and humans. In order to gain more insight into the ultrastructure of the prototype FV (PFV) we performed (cryo-)electron tomography and microscopy of infected cells and of isolated virions. We find that PFV contains a nucleocapsid of constant dimensions at its center, an intermediate shell of protein positioned between the core capsid and the viral membrane and glycoprotein that arranges into regular hexagonal lattices on the virus membrane. Structural analysis of the glycoprotein was performed in situ to a resolution of 9Å, which shows regular helical features such as a trimeric coiled coil of the fusion protein subunit, a hallmark of class I fusion proteins, spacer arms between the glycoprotein trimers and the arrangement of six transmembrane helices, a characteristic feature of the PFV Env glycoprotein. We discuss our results in light of the evolutionary relationship of PFV with other retroviruses as well as the role of the unique glycoprotein architecture on the virus life cycle.
Collapse
|
22
|
Mony BM, Matthews KR. Assembling the components of the quorum sensing pathway in African trypanosomes. Mol Microbiol 2015; 96:220-32. [PMID: 25630552 PMCID: PMC4403954 DOI: 10.1111/mmi.12949] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2015] [Indexed: 12/14/2022]
Abstract
African trypanosomes, parasites that cause human sleeping sickness, undergo a density-dependent differentiation in the bloodstream of their mammalian hosts. This process is driven by a released parasite-derived factor that causes parasites to accumulate in G1 and become quiescent. This is accompanied by morphological transformation to 'stumpy' forms that are adapted to survival and further development when taken up in the blood meal of tsetse flies, the vector for trypanosomiasis. Although the soluble signal driving differentiation to stumpy forms is unidentified, a recent genome-wide RNAi screen identified many of the intracellular signalling and effector molecules required for the response to this signal. These resemble components of nutritional starvation and quiescence pathways in other eukaryotes, suggesting that parasite development shares similarities with the adaptive quiescence of organisms such as yeasts and Dictyostelium in response to nutritional starvation and stress. Here, the trypanosome signalling pathway is discussed in the context of these conserved pathways and the possible contributions of opposing 'slender retainer' and 'stumpy inducer' arms described. As evolutionarily highly divergent eukaryotes, the organisation and conservation of this developmental pathway can provide insight into the developmental cycle of other protozoan parasites, as well as the adaptive and programmed developmental responses of all eukaryotic cells.
Collapse
Affiliation(s)
- Binny M Mony
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghCharlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Keith R Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of EdinburghCharlotte Auerbach Road, Edinburgh, EH9 3FL, UK
- *For correspondence. E-mail ; Tel. (+44) 131 651 3639; Fax (+44) 131 651 3670
| |
Collapse
|
23
|
Hamann MV, Müllers E, Reh J, Stanke N, Effantin G, Weissenhorn W, Lindemann D. The cooperative function of arginine residues in the Prototype Foamy Virus Gag C-terminus mediates viral and cellular RNA encapsidation. Retrovirology 2014; 11:87. [PMID: 25292281 PMCID: PMC4198681 DOI: 10.1186/s12977-014-0087-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/23/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND One unique feature of the foamy virus (FV) capsid protein Gag is the absence of Cys-His motifs, which in orthoretroviruses are irreplaceable for multitude functions including viral RNA genome recognition and packaging. Instead, FV Gag contains glycine-arginine-rich (GR) sequences at its C-terminus. In case of prototype FV (PFV) these are historically grouped in three boxes, which have been shown to play essential functions in genome reverse transcription, virion infectivity and particle morphogenesis. Additional functions for RNA packaging and Pol encapsidation were suggested, but have not been conclusively addressed. RESULTS Here we show that released wild type PFV particles, like orthoretroviruses, contain various cellular RNAs in addition to viral genome. Unlike orthoretroviruses, the content of selected cellular RNAs in capsids of PFV vector particles was not altered by viral genome encapsidation. Deletion of individual GR boxes had only minor negative effects (2 to 4-fold) on viral and cellular RNA encapsidation over a wide range of cellular Gag to viral genome ratios examined. Only the concurrent deletion of all three PFV Gag GR boxes, or the substitution of multiple arginine residues residing in the C-terminal GR box region by alanine, abolished both viral and cellular RNA encapsidation (>50 to >3,000-fold reduced), independent of the viral production system used. Consequently, those mutants also lacked detectable amounts of encapsidated Pol and were non-infectious. In contrast, particle release was reduced to a much lower extent (3 to 20-fold). CONCLUSIONS Taken together, our data provides the first identification of a full-length PFV Gag mutant devoid in genome packaging and the first report of cellular RNA encapsidation into PFV particles. Our results suggest that the cooperative action of C-terminal clustered positively charged residues, present in all FV Gag proteins, is the main viral protein determinant for viral and cellular RNA encapsidation. The viral genome independent efficiency of cellular RNA encapsidation suggests differential packaging mechanisms for both types of RNAs. Finally, this study indicates that analogous to orthoretroviruses, Gag - nucleic acid interactions are required for FV capsid assembly and efficient particle release.
Collapse
Affiliation(s)
- Martin V Hamann
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany. .,CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany.
| | - Erik Müllers
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany. .,CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany. .,Present address: Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden.
| | - Juliane Reh
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany. .,CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany.
| | - Nicole Stanke
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany. .,CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany.
| | - Gregory Effantin
- Univ. Grenoble Alpes, UVHCI, F-38000, Grenoble, France. .,CNRS, UVHCI, F-38000, Grenoble, France.
| | - Winfried Weissenhorn
- Univ. Grenoble Alpes, UVHCI, F-38000, Grenoble, France. .,CNRS, UVHCI, F-38000, Grenoble, France.
| | - Dirk Lindemann
- Institute of Virology, Medical Faculty "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany. .,CRTD/DFG-Center for Regenerative Therapies Dresden - Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany.
| |
Collapse
|
24
|
Dick RA, Vogt VM. Membrane interaction of retroviral Gag proteins. Front Microbiol 2014; 5:187. [PMID: 24808894 PMCID: PMC4010771 DOI: 10.3389/fmicb.2014.00187] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 04/05/2014] [Indexed: 11/13/2022] Open
Abstract
Assembly of an infectious retroviral particle relies on multimerization of the Gag polyprotein at the inner leaflet of the plasma membrane. The three domains of Gag common to all retroviruses - MA, CA, and NC - provide the signals for membrane binding, assembly, and viral RNA packaging, respectively. These signals do not function independently of one another. For example, Gag multimerization enhances membrane binding and is more efficient when NC is interacting with RNA. MA binding to the plasma membrane is governed by several principles, including electrostatics, recognition of specific lipid head groups, hydrophobic interactions, and membrane order. HIV-1 uses many of these principles while Rous sarcoma virus (RSV) appears to use fewer. This review describes the principles that govern Gag interactions with membranes, focusing on RSV and HIV-1 Gag. The review also defines lipid and membrane behavior, and discusses the complexities in determining how lipid and membrane behavior impact Gag membrane binding.
Collapse
Affiliation(s)
- Robert A Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca NY, USA
| | - Volker M Vogt
- Department of Molecular Biology and Genetics, Cornell University, Ithaca NY, USA
| |
Collapse
|
25
|
Yap MW, Colbeck E, Ellis SA, Stoye JP. Evolution of the retroviral restriction gene Fv1: inhibition of non-MLV retroviruses. PLoS Pathog 2014; 10:e1003968. [PMID: 24603659 PMCID: PMC3948346 DOI: 10.1371/journal.ppat.1003968] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 01/16/2014] [Indexed: 11/18/2022] Open
Abstract
Fv1 is the prototypic restriction factor that protects against infection by the murine leukemia virus (MLV). It was first identified in cells that were derived from laboratory mice and was found to be homologous to the gag gene of an endogenous retrovirus (ERV). To understand the evolution of the host restriction gene from its retroviral origins, Fv1s from wild mice were isolated and characterized. Most of these possess intact open reading frames but not all restricted N-, B-, NR-or NB-tropic MLVs, suggesting that other viruses could have played a role in the selection of the gene. The Fv1s from Mus spretus and Mus caroli were found to restrict equine infectious anemia virus (EIAV) and feline foamy virus (FFV) respectively, indicating that Fv1 could have a broader target range than previously thought, including activity against lentiviruses and spumaviruses. Analyses of the Fv1 sequences revealed a number of residues in the C-terminal region that had evolved under positive selection. Four of these selected residues were found to be involved in the novel restriction by mapping studies. These results strengthen the similarities between the two capsid binding restriction factors, Fv1 and TRIM5α, which support the hypothesis that Fv1 defended mice against waves of retroviral infection possibly including non-MLVs as well as MLVs. We have followed the evolution of the retroviral restriction gene, Fv1, by functional analysis. We show that Fv1 can recognize and restrict a wider range of retroviruses than previously thought including examples from the gammaretrovirus, lentivirus and foamy virus genera. Nearly every Fv1 tested showed a different pattern of restriction activity. We also identify several hypervariable regions in the coding sequence containing positively selected amino acids that we show to be directly involved in determining restriction specificity. Our results strengthen the analogy between Fv1 and another capsid-binding, retrovirus restriction factor, TRIM5α. Although they share no sequence identity they appear to share a similar design and appear likely to recognise different targets by a mechanism involving multiple weak interactions between a virus-binding domain containing several variable regions and the surface of the viral capsid. We also describe a pattern of constant genetic change, implying that different species of Mus have evolved in the face of ever-changing retroviral threats by viruses of different kinds.
Collapse
Affiliation(s)
- Melvyn W. Yap
- Division of Virology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Emily Colbeck
- Division of Virology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Scott A. Ellis
- Division of Virology, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Jonathan P. Stoye
- Division of Virology, National Institute for Medical Research, Mill Hill, London, United Kingdom
- Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Rethwilm A, Bodem J. Evolution of foamy viruses: the most ancient of all retroviruses. Viruses 2013; 5:2349-74. [PMID: 24072062 PMCID: PMC3814592 DOI: 10.3390/v5102349] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 08/27/2013] [Accepted: 09/18/2013] [Indexed: 12/24/2022] Open
Abstract
Recent evidence indicates that foamy viruses (FVs) are the oldest retroviruses (RVs) that we know and coevolved with their hosts for several hundred million years. This coevolution may have contributed to the non-pathogenicity of FVs, an important factor in development of foamy viral vectors in gene therapy. However, various questions on the molecular evolution of FVs remain still unanswered. The analysis of the spectrum of animal species infected by exogenous FVs or harboring endogenous FV elements in their genome is pivotal. Furthermore, animal studies might reveal important issues, such as the identification of the FV in vivo target cells, which than require a detailed characterization, to resolve the molecular basis of the accuracy with which FVs copy their genome. The issues of the extent of FV viremia and of the nature of the virion genome (RNA vs. DNA) also need to be experimentally addressed.
Collapse
Affiliation(s)
- Axel Rethwilm
- Universität Würzburg, Institut für Virologie und Immunbiologie, Versbacher Str.7, Würzburg 97078, Germany.
| | | |
Collapse
|
27
|
Yap MW, Stoye JP. Apparent effect of rabbit endogenous lentivirus type K acquisition on retrovirus restriction by lagomorph Trim5αs. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120498. [PMID: 23938750 PMCID: PMC3758185 DOI: 10.1098/rstb.2012.0498] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To test the hypothesis that rabbit endogenous lentivirus type K (RELIK) could play a role in shaping the evolution of TRIM5α, the susceptibility of viruses containing the RELIK capsid (CA) to TRIM5 restriction was evaluated. RELIK CA-containing viruses were susceptible to the TRIM5αs from Old World monkeys but were unaffected by most ape or New World monkey factors. TRIM5αs from various lagomorph species were also isolated and tested for anti-retroviral activity. The TRIM5αs from both cottontail rabbit and pika restrict a range of retroviruses, including HIV-1, HIV-2, FIV, EIAV and N-MLV. TRIM5αs from the European and cottontail rabbit, which have previously been found to contain RELIK, also restricted RELIK CA-containing viruses, whereas a weaker restriction was observed with chimeric TRIM5α containing the B30.2 domain from the pika, which lacks RELIK. Taken together, these results could suggest that the pika had not been exposed to exogenous RELIK and that endogenized RELIK might exert a selective pressure on lagomorph TRIM5α.
Collapse
Affiliation(s)
| | - Jonathan P. Stoye
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| |
Collapse
|
28
|
Sanz-Ramos M, Stoye JP. Capsid-binding retrovirus restriction factors: discovery, restriction specificity and implications for the development of novel therapeutics. J Gen Virol 2013; 94:2587-2598. [PMID: 24026671 DOI: 10.1099/vir.0.058180-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of drugs against human immunodeficiency virus type 1 infection has been highly successful, and numerous combinational treatments are currently available. However, the risk of the emergence of resistance and the toxic effects associated with prolonged use of antiretroviral therapies have emphasized the need to consider alternative approaches. One possible area of investigation is provided by the properties of restriction factors, cellular proteins that protect organisms against retroviral infection. Many show potent viral inhibition. Here, we describe the discovery, properties and possible therapeutic uses of the group of restriction factors known to interact with the capsid core of incoming retroviruses. This group comprises Fv1, TRIM5α and TRIMCypA: proteins that all act shortly after virus entry into the target cell and block virus replication at different stages prior to integration of viral DNA into the host chromosome. They have different origins and specificities, but share general structural features required for restriction, with an N-terminal multimerization domain and a C-terminal capsid-binding domain. Their overall efficacy makes it reasonable to ask whether they might provide a framework for developing novel antiretroviral strategies.
Collapse
Affiliation(s)
- Marta Sanz-Ramos
- Division of Virology, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | - Jonathan P Stoye
- Department of Medicine, Imperial College London, London W2 1PG, UK.,Division of Virology, MRC National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| |
Collapse
|
29
|
Reh J, Stange A, Götz A, Rönitz M, Große A, Lindemann D. An N-terminal domain helical motif of Prototype Foamy Virus Gag with dual functions essential for particle egress and viral infectivity. Retrovirology 2013; 10:45. [PMID: 23618494 PMCID: PMC3667135 DOI: 10.1186/1742-4690-10-45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 04/19/2013] [Indexed: 12/16/2022] Open
Abstract
Background Foamy viruses (FVs) have developed a unique budding strategy within the retrovirus family. FV release requires co-expression and a highly specific interaction between capsid (Gag) and glycoprotein (Env), which cannot be complemented by heterologous Env proteins. The interaction domain in FV Env has been mapped in greater detail and resides mainly in the N-terminal tip of the cytoplasmic domain of the Env leader peptide subunit. In contrast, the corresponding domain within Gag is less well defined. Previous investigations suggest that it is located within the N-terminal part of the protein. Results Here we characterized additional Gag interaction determinants of the prototype FV (PFV) isolate using a combination of particle release, GST pull-down and single cycle infectivity analysis assays. Our results demonstrate that a minimal PFV Gag protein comprising the N-terminal 129 aa was released into the supernatant, whereas proteins lacking this domain failed to do so. Fine mapping of domains within the N-terminus of PFV Gag revealed that the N-terminal 10 aa of PFV Gag were dispensable for viral replication. In contrast, larger deletions or structurally deleterious point mutations in C-terminally adjacent sequences predicted to harbor a helical region abolished particle egress and Gag – Env protein interaction. Pull-down assays, using proteins of mammalian and prokaryotic origin, support the previous hypothesis of a direct interaction of both PFV proteins without requirement for cellular cofactors and suggest a potential direct contact of Env through this N-terminal Gag domain. Furthermore, analysis of point mutants within this domain in context of PFV vector particles indicates additional particle release-independent functions for this structure in viral replication by directly affecting virion infectivity. Conclusions Thus, our results demonstrate not only a critical function of an N-terminal PFV Gag motif for the essential capsid - glycoprotein interaction required for virus budding but also point out additional functions that affect virion infectivity.
Collapse
Affiliation(s)
- Juliane Reh
- Institut für Virologie, Medizinische Fakultät "Carl Gustav Carus", Technische Universität Dresden, Fetscherstr, 74, 01307, Dresden, Germany
| | | | | | | | | | | |
Collapse
|