1
|
Altadill M, Álvarez I, Ataya M, Heredia G, Alari‐Pahissa E, Muntasell A, Llano M, Fuchs J, Vilches C, Hengel H, Halenius A, López‐Botet M. Human Cytomegalovirus Antigen Presentation by HLA-G in Infected Cells. HLA 2025; 105:e70089. [PMID: 40347012 PMCID: PMC12065092 DOI: 10.1111/tan.70089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/17/2025] [Accepted: 02/08/2025] [Indexed: 05/12/2025]
Abstract
HLA-E and -G class Ib molecules were considered unrelated to viral antigen presentation. HLA-E binds nonamers from the leader sequences of other HLA-I molecules and the human cytomegalovirus (HCMV) UL40 protein, interacting with CD94/NKG2 NK cell receptors. Yet, evidence that HLA-E may present some pathogen-derived peptides to CD8+ T lymphocytes has been reported. By contrast, HLA-G binds a broad spectrum of endogenous sequences but its role in antigen presentation is unknown. An experimental approach was set up to search for HCMV antigens displayed by HLA-G in infected cells. Among the analysed peptidome, 22 sequences corresponding to 16 HCMV molecules were identified; 17 peptides were confirmed to interact in vitro with HLA-G of which 10 displayed characteristic anchor residues. As compared to the response in short-term (6 h) assays to immunodominant IE-1 and pp65 antigens, none of the HLA-G-binding peptides stimulated cytokine production by CD8+ T cells from HCMV-seropositive blood donors (n = 15). Following a 14-day peptide stimulation of PBMC and expansion with IL-2, CD8+ T cells specifically responding to a subset of these viral antigens were detected in some individuals, yet were not restricted by HLA-G in functional assays. A subset of viral peptides did bind to both HLA-G and -E but were not recognised by CD94/NKG2 NK cell receptors. Our results provide the first evidence that HLA-G may display potentially immunogenic viral peptides in HCMV-infected cells, yet do not support their ability to promote HLA-G-restricted CD8+ T cell responses nor to modulate NK cell functions.
Collapse
Affiliation(s)
- Mireia Altadill
- Department of Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain
| | - Iñaki Álvarez
- Department of Cell BiologyPhysiology and Immunology, Institute of Biotechnology and Biomedicine, Autonomous University of BarcelonaBellaterraSpain
| | - Michelle Ataya
- Department of Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain
| | - Gemma Heredia
- Department of Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain
| | | | - Aura Muntasell
- Department of Cell BiologyPhysiology and Immunology, Institute of Biotechnology and Biomedicine, Autonomous University of BarcelonaBellaterraSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| | - Manuel Llano
- Biological Sciences DepartmentThe University of Texas at El PasoEl PasoUSA
| | - Jonas Fuchs
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Carlos Vilches
- Immunogenetics and Histocompatibility Lab, Instituto de Investigación Sanitaria Puerta de Hierro ‐ Segovia de AranaMadridSpain
- Organización Nacional de Trasplantes, Ministerio de SanidadMadridSpain
| | - Hartmut Hengel
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Anne Halenius
- Institute of Virology, Medical Center University of FreiburgFreiburgGermany
- Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Miguel López‐Botet
- Department of Medicine and Life SciencesUniversity Pompeu FabraBarcelonaSpain
- Hospital del Mar Research InstituteBarcelonaSpain
| |
Collapse
|
2
|
Santamorena MM, Tischer-Zimmermann S, Bonifacius A, Mireisz CNM, Costa B, Khan F, Kulkarni U, Lauruschkat CD, Sampaio KL, Stripecke R, Blasczyk R, Maecker-Kolhoff B, Kraus S, Schlosser A, Cicin-Sain L, Kalinke U, Eiz-Vesper B. Engineered HCMV-infected APCs enable the identification of new immunodominant HLA-restricted epitopes of anti-HCMV T-cell immunity. HLA 2024; 103:e15541. [PMID: 38923358 DOI: 10.1111/tan.15541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 04/24/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024]
Abstract
Complications due to HCMV infection or reactivation remain a challenging clinical problem in immunocompromised patients, mainly due to insufficient or absent T-cell functionality. Knowledge of viral targets is crucial to improve monitoring of high-risk patients and optimise antiviral T-cell therapy. To expand the epitope spectrum, genetically-engineered dendritic cells (DCs) and fibroblasts were designed to secrete soluble (s)HLA-A*11:01 and infected with an HCMV mutant lacking immune evasion molecules (US2-6 + 11). More than 700 HLA-A*11:01-restricted epitopes, including more than 50 epitopes derived from a broad range of HCMV open-reading-frames (ORFs) were identified by mass spectrometry and screened for HLA-A*11:01-binding using established prediction tools. The immunogenicity of the 24 highest scoring new candidates was evaluated in vitro in healthy HLA-A*11:01+/HCMV+ donors. Thus, four subdominant epitopes and one immunodominant epitope, derived from the anti-apoptotic protein UL36 and ORFL101C (A11SAL), were identified. Their HLA-A*11:01 complex stability was verified in vitro. In depth analyses revealed highly proliferative and cytotoxic memory T-cell responses against A11SAL, with T-cell responses comparable to the immunodominant HLA-A*02:01-restricted HCMVpp65NLV epitope. A11SAL-specific T cells were also detectable in vivo in immunosuppressed transplant patients and shown to be effective in an in vitro HCMV-infection model, suggesting their crucial role in inhibiting viral replication and improvement of patient's outcome. The developed in vitro pipeline is the first to utilise genetically-engineered DCs to identify naturally presented immunodominant HCMV-derived epitopes. It therefore offers advantages over in silico predictions, is transferable to other HLA alleles, and will significantly expand the repertoire of viral targets to improve therapeutic options.
Collapse
Affiliation(s)
- Maria Michela Santamorena
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Sabine Tischer-Zimmermann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Agnes Bonifacius
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| | - Chiara Noemi-Marie Mireisz
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Fawad Khan
- Immune Ageing and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Upasana Kulkarni
- Immune Ageing and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | - Renata Stripecke
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, Center for Molecular Medicine Cologne (CMMC), Institute of Translational Immuno-oncology, Cologne, Germany
- German Center for Infections Research (DZIF) Bonn-Cologne, Cologne, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
| | - Britta Maecker-Kolhoff
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
- German Center for Infections Research (DZIF) Bonn-Cologne, Cologne, Germany
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Sabrina Kraus
- Department of Internal Medicine II, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Wuerzburg, Wuerzburg, Germany
| | - Luka Cicin-Sain
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
- Immune Ageing and Chronic Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
- Cluster of Excellence - Resolving Infection Susceptibility (RESIST, EXC 2155), Hannover Medical School, Hannover, Germany
| | - Britta Eiz-Vesper
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School (MHH), Hannover, Germany
- German Center for Infection Research (DZIF), Site Hannover-Braunschweig, Hannover, Germany
| |
Collapse
|
3
|
Lee H, Kang H, Yun S, Ryu JH, Bae H, Chung BH, Yang CW, Oh EJ. The influence of HLA A, B, C, DR alleles and HLA haplotypes on cytomegalovirus-specific cell mediated immunity in seropositive Korean kidney transplant candidates. HLA 2023; 102:590-598. [PMID: 37158113 DOI: 10.1111/tan.15089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
We evaluated the effect of specific HLA alleles and haplotypes on cytomegalovirus (CMV)-specific cell mediated immunity (CMI) in kidney transplant (KT) candidates. CMV-specific ELISPOT against pp65 and IE-1 antigens (hereafter referred to as pp65 and IE-1, respectively) was performed in 229 seropositive KT candidates. We analyzed the results related to 44 selected HLA alleles (9 HLA-A, 15 HLA-B, 9 HLA-C, and 11 HLA-DR) and 13 HLA haplotypes commonly found in study participants. The pp65 and IE-1 results in 229 seropositive candidates were 227.5 (114.5-471.5) and 41.0 (8.8-185.8) (median [interquartile range]) spots/2 × 105 PBMCs, respectively. The pp65 and IE-1 results showed significant differences between candidates with different HLA alleles (A*02 vs. A*26 [p = 0.016], A*24 vs. A*30 [p = 0.031], B*07 vs. B*46 [p = 0.005], B*54 vs. B*35 [p = 0.041], B*54 vs. B*44 [p = 0.018], B*54 vs. B*51 [p = 0.025], and C*06 vs. C*14 [p = 0.034]). HLA-A*02 and B*54 were associated with increased pp65 and IE-1 results, respectively (p = 0.005 and p < 0.001, respectively). In contrast, the HLA-A*26 and B*46 alleles were associated with a decreased pp65 response, whereas the A*30 allele was associated with a decreased IE-1 response (p < 0.05). The pp65 results correlated with the HLA-A allele frequencies (R = 0.7546, p = 0.019) and the IE-1 results correlated with the HLA-C allele frequencies of the study participants (R = 0.7882, p = 0.012). Among 13 haplotypes, HLA-A*30 ~ B*13 ~ C*06 ~ DRB1*07 showed decreased CMV-CMIs compared to the other HLA haplotypes, probably due to a combination of HLA alleles associated with lower CMV-CMIs. Our results demonstrated that CMV-specific CMIs may be influenced by the HLA allele as well as the HLA haplotype. To better predict CMV reactivation, it is important to estimate risk in the context of HLA allele and haplotype information.
Collapse
Affiliation(s)
- Hyeyoung Lee
- Department of Laboratory Medicine, Catholic Kwandong University International St. Mary's Hospital, Incheon, Republic of Korea
| | - Hyunhye Kang
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Research and Development Institute for In Vitro Diagnostic Medical Devices of Catholic University of Korea, Seoul, Republic of Korea
| | - Sojeong Yun
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Republic of Korea
| | - Ji Hyeong Ryu
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyunjoo Bae
- Department of Biomedicine and Health Sciences, Graduate School, The Catholic University of Korea, Republic of Korea
| | - Byung Ha Chung
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Woo Yang
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun-Jee Oh
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Research and Development Institute for In Vitro Diagnostic Medical Devices of Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
4
|
Gerbitz A, Gary R, Aigner M, Moosmann A, Kremer A, Schmid C, Hirschbuehl K, Wagner E, Hauptrock B, Teschner D, Roesler W, Spriewald B, Tischer J, Moi S, Balzer H, Schaffer S, Bausenwein J, Wagner A, Schmidt F, Brestrich J, Ullrich B, Maas S, Herold S, Strobel J, Zimmermann R, Weisbach V, Hansmann L, Lammoglia-Cobo F, Remberger M, Stelljes M, Ayuk F, Zeiser R, Mackensen A. Prevention of CMV/EBV reactivation by double-specific T cells in patients after allogeneic stem cell transplantation: results from the randomized phase I/IIa MULTIVIR-01 study. Front Immunol 2023; 14:1251593. [PMID: 37965339 PMCID: PMC10642256 DOI: 10.3389/fimmu.2023.1251593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Allogeneic stem cell transplantation is used to cure hematologic malignancies or deficiencies of the hematopoietic system. It is associated with severe immunodeficiency of the host early after transplant and therefore early reactivation of latent herpesviruses such as CMV and EBV within the first 100 days are frequent. Small studies and case series indicated that application of herpes virus specific T cells can control and prevent disease in this patient population. Methods We report the results of a randomized controlled multi centre phase I/IIa study (MULTIVIR-01) using a newly developed T cell product with specificity for CMV and EBV derived from the allogeneic stem cell grafts used for transplantation. The study aimed at prevention and preemptive treatment of both viruses in patients after allogeneic stem cell transplantation targeting first infusion on day +30. Primary endpoints were acute transfusion reaction and acute-graft versus-host-disease after infusion of activated T cells. Results Thirty-three patients were screened and 9 patients were treated with a total of 25 doses of the T cell product. We show that central manufacturing can be achieved successfully under study conditions and the product can be applied without major side effects. Overall survival, transplant related mortality, cumulative incidence of graft versus host disease and number of severe adverse events were not different between treatment and control groups. Expansion of CMV/EBV specific T cells was observed in a fraction of patients, but overall there was no difference in virus reactivation. Discussion Our study results indicate peptide stimulated epitope specific T cells derived from stem cell grafts can be administered safely for prevention and preemptive treatment of reactivation without evidence for induction of acute graft versus host disease. Clinical trial registration https://clinicaltrials.gov, identifier NCT02227641.
Collapse
Affiliation(s)
- Armin Gerbitz
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
- Princess Margaret Cancer Centre, Division of Medical Oncology/Hematology, Toronto, ON, Canada
| | - Regina Gary
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Michael Aigner
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Andreas Moosmann
- Department of Medicine 3, LMU University Hospital, Munich, Germany
- Helmholtz Center Munich, Institute of Virology, Munich, Germany
- Deutsches Zentrum für Infektionsforschung (DZIF) – German Center for Infection Research, Munich, Germany
| | - Anita Kremer
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Christoph Schmid
- Department of Medicine 2, University Hospital Augsburg, Augsburg, Germany
| | - Klaus Hirschbuehl
- Department of Medicine 2, University Hospital Augsburg, Augsburg, Germany
| | - Eva Wagner
- Department of Medicine 3, University Hospital Mainz, Mainz, Germany
| | - Beate Hauptrock
- Department of Medicine 3, University Hospital Mainz, Mainz, Germany
| | - Daniel Teschner
- Department of Medicine 3, University Hospital Mainz, Mainz, Germany
| | - Wolf Roesler
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Bernd Spriewald
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Johanna Tischer
- Department of Medicine 3, LMU University Hospital, Munich, Germany
| | - Stephanie Moi
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Heidi Balzer
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Stefanie Schaffer
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Judith Bausenwein
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Anja Wagner
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Franziska Schmidt
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Jens Brestrich
- Department of Hematology, Oncology and Tumor Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Barbara Ullrich
- Medical Center for Information and Communication Technology, University Hospital Erlangen, Erlangen, Germany
| | - Stefanie Maas
- Center for Clinical Studies (CCS), University Hospital Erlangen, Erlangen, Germany
| | - Susanne Herold
- Center for Clinical Studies (CCS), University Hospital Erlangen, Erlangen, Germany
| | - Julian Strobel
- Department of Transfusion Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Robert Zimmermann
- Department of Transfusion Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Volker Weisbach
- Department of Transfusion Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Leo Hansmann
- Department of Hematology, Oncology and Tumor Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Fernanda Lammoglia-Cobo
- Department of Hematology, Oncology and Tumor Immunology, Charite University Hospital Berlin, Berlin, Germany
| | - Mats Remberger
- Department of Medical Sciences, Uppsala University and Clinical Research and Development Unit (KFUE), Uppsala University Hospital, Uppsala, Sweden
| | - Matthias Stelljes
- Department of Hematology/Oncology, University Hospital Muenster, Muenster, Germany
| | - Francis Ayuk
- Department of Stem Cell Transplantation, University Hospital Eppendorf, Hamburg, Germany
| | - Robert Zeiser
- Department of Medicine 1, University Hospital Freiburg, Freiburg, Germany
| | - Andreas Mackensen
- Department of Medicine 5 Hematology/Oncology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
5
|
Beltrami S, Rizzo S, Schiuma G, Speltri G, Di Luca D, Rizzo R, Bortolotti D. Gestational Viral Infections: Role of Host Immune System. Microorganisms 2023; 11:1637. [PMID: 37512810 PMCID: PMC10383666 DOI: 10.3390/microorganisms11071637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Viral infections in pregnancy are major causes of maternal and fetal morbidity and mortality. Infections can develop in the neonate transplacentally, perinatally, or postnatally (from breast milk or other sources) and lead to different clinical manifestations, depending on the viral agent and the gestational age at exposure. Viewing the peculiar tolerogenic status which characterizes pregnancy, viruses could exploit this peculiar immunological status to spread or affect the maternal immune system, adopting several evasion strategies. In fact, both DNA and RNA virus might have a deep impact on both innate and acquired immune systems. For this reason, investigating the interaction with these pathogens and the host's immune system during pregnancy is crucial not only for the development of most effective therapies and diagnosis but mostly for prevention. In this review, we will analyze some of the most important DNA and RNA viruses related to gestational infections.
Collapse
Affiliation(s)
- Silvia Beltrami
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Sabrina Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Giovanna Schiuma
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgia Speltri
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Dario Di Luca
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Roberta Rizzo
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| | - Daria Bortolotti
- Department of Chemical, Pharmaceutical and Agricultural Science, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
6
|
Huntley D, Giménez E, Vázquez L, Pascual MJ, Amat P, Remigia MJ, Hernández-Boluda JC, García M, Gago B, Torres I, de la Asunción CS, Hernani R, Pérez A, Albert E, Piñana JL, Solano C, Navarro D. Impact of cytomegalovirus immunodominant HLA-I donor-recipient matching on the incidence and features of virus DNAemia and virus-specific T-cell immune reconstitution in unmanipulated haploidentical hematopoietic stem cell transplantation. Transpl Infect Dis 2023:e14065. [PMID: 37120821 DOI: 10.1111/tid.14065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND We investigated whether donor-recipient mismatch involving one or more cytomegalovirus (CMV) immunodominant (ID) human leukocyte antigen (HLA)-I alleles may impact on the degree of CMV pp65/immediate-early 1 (IE-1) T-cell reconstitution and the incidence of CMV DNAemia in patients undergoing unmanipulated haploidentical hematopoietic stem cell transplantation with high-dose posttransplant cyclophosphamide (PT/Cy-haplo). METHODS Multicenter observational study including 106 consecutive adult PT/Cy-haplo patients (34 CMV ID HLA-I matched and 72 mismatched). A real-time PCR was used for plasma CMV DNA load monitoring. Enumeration of CMV-specific (pp65/IE-1) interferon (IFN)-γ-producing T cells from several patients was performed by flow cytometry by days +30, +60, +90 and +180 after transplantation. RESULTS The cumulative incidence of CMV DNAemia, clinically significant CMV DNAemia episodes (cs-CMVi), and recurrent CMV DNAemia was comparable across CMV ID HLA-I matched and mismatched patients (71.8% vs. 80.9%, p = .95; 40.7% vs. 44.2%, p = .85; 16.4% vs. 28.1%; p = .43, respectively). The percentage of patients exhibiting detectable CMV-specific IFN-γ-producing T-cell responses (either CD8+ or CD4+ ) was similar across groups; nevertheless, significantly higher CMV-specific CD8+ T-cell counts were enumerated in the CMV ID HLA-I matched compared to mismatched patients by day +60 (p = .04) and +180 (p = .016) after transplantation. CONCLUSION CMV ID HLA-I matching may impact on the magnitude of CMV-pp65/IE-1-specific CD8+ T-cell reconstitution; yet, this effect seemed not to have an impact on the incidence of initial, recurrent CMV DNAemia, or cs-CMVi.
Collapse
Affiliation(s)
- Dixie Huntley
- Microbiology Service, INCLIVA Research Institute, Hospital Clínico Universitario, Valencia, Spain
| | - Estela Giménez
- Microbiology Service, INCLIVA Research Institute, Hospital Clínico Universitario, Valencia, Spain
| | - Lourdes Vázquez
- Hematology Service, Hospital Clínico Universitario, Salamanca, Spain
| | | | - Paula Amat
- Hematology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
- Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - María José Remigia
- Hematology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
| | - Juan Carlos Hernández-Boluda
- Hematology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
- Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - Magdalena García
- Hematology Service, Hospital Clínico Universitario, Salamanca, Spain
| | - Beatriz Gago
- Hematology Service, Hospital Regional Universitario, Málaga, Spain
| | - Ignacio Torres
- Microbiology Service, INCLIVA Research Institute, Hospital Clínico Universitario, Valencia, Spain
| | | | - Rafael Hernani
- Hematology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
| | - Ariadna Pérez
- Hematology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
| | - Eliseo Albert
- Microbiology Service, INCLIVA Research Institute, Hospital Clínico Universitario, Valencia, Spain
| | - José Luis Piñana
- Hematology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
| | - Carlos Solano
- Hematology Service, Hospital Clínico Universitario, INCLIVA Research Institute, Valencia, Spain
- Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - David Navarro
- Microbiology Service, INCLIVA Research Institute, Hospital Clínico Universitario, Valencia, Spain
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
7
|
Khatamzas E, Antwerpen MH, Rehn A, Graf A, Hellmuth JC, Hollaus A, Mohr AW, Gaitzsch E, Weiglein T, Georgi E, Scherer C, Stecher SS, Gruetzner S, Blum H, Krebs S, Reischer A, Leutbecher A, Subklewe M, Dick A, Zange S, Girl P, Müller K, Weigert O, Hopfner KP, Stemmler HJ, von Bergwelt-Baildon M, Keppler OT, Wölfel R, Muenchhoff M, Moosmann A. Accumulation of mutations in antibody and CD8 T cell epitopes in a B cell depleted lymphoma patient with chronic SARS-CoV-2 infection. Nat Commun 2022; 13:5586. [PMID: 36151076 PMCID: PMC9508331 DOI: 10.1038/s41467-022-32772-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 08/15/2022] [Indexed: 11/29/2022] Open
Abstract
Antibodies against the spike protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) can drive adaptive evolution in immunocompromised patients with chronic infection. Here we longitudinally analyze SARS-CoV-2 sequences in a B cell-depleted, lymphoma patient with chronic, ultimately fatal infection, and identify three mutations in the spike protein that dampen convalescent plasma-mediated neutralization of SARS-CoV-2. Additionally, four mutations emerge in non-spike regions encoding three CD8 T cell epitopes, including one nucleoprotein epitope affected by two mutations. Recognition of each mutant peptide by CD8 T cells from convalescent donors is reduced compared to its ancestral peptide, with additive effects resulting from double mutations. Querying public SARS-CoV-2 sequences shows that these mutations have independently emerged as homoplasies in circulating lineages. Our data thus suggest that potential impacts of CD8 T cells on SARS-CoV-2 mutations, at least in those with humoral immunodeficiency, warrant further investigation to inform on vaccine design.
Collapse
Affiliation(s)
- Elham Khatamzas
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany.
- Division of Infectious Diseases and Tropical Medicine, Center for Infectious Diseases, Heidelberg Hospital, Heidelberg, Germany.
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany.
| | - Markus H Antwerpen
- Bundeswehr, Institute of Microbiology Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Alexandra Rehn
- Bundeswehr, Institute of Microbiology Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Alexander Graf
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Johannes Christian Hellmuth
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Alexandra Hollaus
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Anne-Wiebe Mohr
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Erik Gaitzsch
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Tobias Weiglein
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Enrico Georgi
- Bundeswehr, Institute of Microbiology Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Clemens Scherer
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- Department of Medicine I, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Stephanie-Susanne Stecher
- Department of Medicine II, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Stefanie Gruetzner
- Institute for Transfusion Medicine and Haemostasis, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig-Maximilians University Munich, Munich, Germany
| | - Anna Reischer
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Alexandra Leutbecher
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Marion Subklewe
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Andrea Dick
- Laboratory for Immunogenetics, University of Munich, LMU, Munich, Germany
| | - Sabine Zange
- Bundeswehr, Institute of Microbiology Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Philipp Girl
- Bundeswehr, Institute of Microbiology Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Katharina Müller
- Bundeswehr, Institute of Microbiology Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Oliver Weigert
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hans-Joachim Stemmler
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Oliver T Keppler
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany
| | - Roman Wölfel
- Bundeswehr, Institute of Microbiology Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Maximilian Muenchhoff
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Max von Pettenkofer Institute & Gene Center, Virology, Faculty of Medicine, Ludwig-Maximilians University, Munich, Germany
| | - Andreas Moosmann
- Department of Medicine III, University Hospital, Ludwig-Maximilians University Munich, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| |
Collapse
|
8
|
Prem S, Remberger M, Alotaibi A, Lam W, Law AD, Kim DDH, Michelis FV, Al-Shaibani Z, Lipton JH, Mattsson J, Viswabandya A, Kumar R, Ellison C. Relationship between certain HLA alleles and the risk of cytomegalovirus reactivation following allogeneic hematopoietic stem cell transplantation. Transpl Infect Dis 2022; 24:e13879. [PMID: 35706108 DOI: 10.1111/tid.13879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/20/2022] [Accepted: 05/31/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Evidence is emerging to support an association between certain HLA alleles and the risk of cytomegalovirus (CMV) reactivation following allogeneic HSCT (allo-HSCT). The primary aim of this study was to identify HLA alleles associated with resistance or susceptibility to CMV reactivation. METHODS We studied 586 adults who underwent allo-HSCT for high-risk hematological malignancies. High resolution HLA typing data was available for recipient and donor. HLA Class I and II alleles observed at a frequency of > 5% in our population, were included in the analysis. A CMV viremia level of more than 200 IU/ml on weekly monitoring was considered to be indicative of CMV reactivation. RESULTS The median follow-up time in surviving patients was 21 months (range 4-74 months). The cumulative incidence of CMV reactivation at 6 months in the entire cohort was 55% (95% CI 50.8%-59.2%). Mismatched donor, increasing recipient age, occurrence of AGVHD and recipient CMV seropositivity were associated with increased risk of CMV reactivation. HLA B*07:02 (HR 0.59, 95% CI 0.40-0.83) was associated with decreased risk of CMV reactivation. Patients who developed CMV reactivation had a lower incidence of relapse, higher transplant related mortality (TRM) and lower overall survival (OS) compared to those without CMV reactivation. There was an adverse correlation of OS and TRM with increasing numbers of CMV reactivations. CONCLUSION We observed that HLA B*07:02 was associated with decreased risk of CMV reactivation. CMV reactivation was associated with lower relapse post-transplant, but this did not translate into a survival benefit due to higher transplant related mortality. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shruti Prem
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mats Remberger
- Department of Medical Sciences, Uppsala University and KFUE, Uppsala University Hospital, Uppsala, Sweden
| | - Ahmad Alotaibi
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Wilson Lam
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Arjun Datt Law
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Dennis Dong Hwan Kim
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Fotios V Michelis
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Zeyad Al-Shaibani
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jeffrey Howard Lipton
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jonas Mattsson
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Auro Viswabandya
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Rajat Kumar
- University of Toronto, Department of Medicine, Section of Medical Oncology and Hematology.,Hans Messner Allogeneic Blood and Marrow Transplantation Program, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Cynthia Ellison
- HLA Laboratory, Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Vollmers S, Lobermeyer A, Körner C. The New Kid on the Block: HLA-C, a Key Regulator of Natural Killer Cells in Viral Immunity. Cells 2021; 10:cells10113108. [PMID: 34831331 PMCID: PMC8620871 DOI: 10.3390/cells10113108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 11/01/2022] Open
Abstract
The human leukocyte antigen system (HLA) is a cluster of highly polymorphic genes essential for the proper function of the immune system, and it has been associated with a wide range of diseases. HLA class I molecules present intracellular host- and pathogen-derived peptides to effector cells of the immune system, inducing immune tolerance in healthy conditions or triggering effective immune responses in pathological situations. HLA-C is the most recently evolved HLA class I molecule, only present in humans and great apes. Differentiating from its older siblings, HLA-A and HLA-B, HLA-C exhibits distinctive features in its expression and interaction partners. HLA-C serves as a natural ligand for multiple members of the killer-cell immunoglobulin-like receptor (KIR) family, which are predominately expressed by natural killer (NK) cells. NK cells are crucial for the early control of viral infections and accumulating evidence indicates that interactions between HLA-C and its respective KIR receptors determine the outcome and progression of viral infections. In this review, we focus on the unique role of HLA-C in regulating NK cell functions and its consequences in the setting of viral infections.
Collapse
|
10
|
Bitar M, Boettcher M, Boldt A, Hauck F, Köhl U, Liebert UG, Magg T, Schulz MS, Sack U. Flow cytometric measurement of STAT5 phosphorylation in cytomegalovirus-stimulated T cells. Cytometry A 2020; 99:774-783. [PMID: 33280233 DOI: 10.1002/cyto.a.24286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 11/11/2022]
Abstract
Cytomegalovirus (CMV)-specific T cells expand with CMV reactivation and are probably prerequisite for control and protection. Given the critical role STAT5A phosphorylation (pSTAT5A) in T cell proliferation, this study presents a simple and sensitive flow cytometric-based pSTAT5A assay to quickly identify CMV-specific T cell proliferation. We determined pSTAT5A in T cells treated with CMV-specific peptide mix (pp65 + IE1 peptides) from 20 healthy adult subjects and three immunodeficient patients with CARMIL-2 mutation. After stimulation, the percentage of pSTAT5A+ T cells in CMV-seropositive (CMV+ ) subjects significantly increased from 3.0% ± 1.9% (unstimulated) to 11.4% ± 5.9% (stimulated) for 24 h. After 7 days of stimulation, the percentage of expanded T cells amounted to 26% ± 17.2%. Conversely, the percentage of pSTAT5A+ T cells and T cell proliferation from CMV-seronegative (CMV- ) subjects hardly changed (from 3.0% ± 1.3% to 3.7% ± 1.8% and from 4.3% ± 2.1% to 5.7% ± 1.7%, respectively). We analyzed the correlation between the percentage of pSTAT5A+ T cells versus (1) CMV-IgG concentrations versus (2) the percentage of expanded T cells and versus (3) the percentage of initial CMV-specific T cells. In immunodeficient patients with CARMIL-2 mutation, CMV-specific pSTAT5A and T cell proliferation were completely deficient. In conclusion, flow cytometric-based pSTAT5A assay represents an appropriate tool to quickly identify CMV-specific T cell proliferation and helps to understand dysfunctions in controlling other pathogens. Flow cytometric-based pSTAT5A assay may be a useful test in clinical practice and merits further validation in large studies.
Collapse
Affiliation(s)
- Michael Bitar
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Marcus Boettcher
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Andreas Boldt
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany.,German Centre for Infection Research (DZIF), Munich, Germany
| | - Ulrike Köhl
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany.,Institute of Cellular Therapeutics, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Immunology and Cell Therapy (IZI), Leipzig, Germany
| | - Uwe G Liebert
- Institute of Virology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Thomas Magg
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Marian S Schulz
- Department of Women and Child Health, Hospital for Children and Adolescents, Hospitals University of Leipzig, Leipzig, Germany
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
11
|
Gabor F, Jahn G, Sedmak DD, Sinzger C. In vivo Downregulation of MHC Class I Molecules by HCMV Occurs During All Phases of Viral Replication but Is Not Always Complete. Front Cell Infect Microbiol 2020; 10:283. [PMID: 32596168 PMCID: PMC7304332 DOI: 10.3389/fcimb.2020.00283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/12/2020] [Indexed: 11/17/2022] Open
Abstract
Based on cell culture data, MHC class I downregulation by HCMV on infected cells has been suggested as a means of immune evasion by this virus. In order to address this issue in vivo, an immunohistochemical analysis of tissue sections from biopsy and autopsy materials of HCMV infected organs was performed. HCMV antigens from the immediate early, early, and late phase of viral replication, and cellular MHC class I molecules were detected simultaneously or in serial sections by immuno-peroxidase and immuno-alkaline phosphatase techniques. Investigated organs included lung, gastrointestinal tract, and placenta. Colocalization of MHC molecules with sites of viral replication as well as MHC expression in individual infected cells were analyzed. To detect immune effector cells at sites of viral replication, leukocytes, CD8+ lymphocytes, and HCMV antigens were stained in serial sections. While strong MHC class I expression was detected in the cells surrounding infected cells, it appeared downregulated in the majority of infected cells themselves, particularly in the late replication phase. Despite significantly reduced MHC class I signals on infected cells, sites of infection were infiltrated by inflammatory cells that consisted predominantly of CD8+ lymphocytes. The extent of inflammatory infiltrates was negatively correlated with the extent of HCMV infected cells. Taken together, our findings indicate that HCMV can downmodulate MHC class I expression in vivo, whereas cytokines originating from infiltrating immune effector cells probably up regulates MHC class I expression in noninfected bystander cells. The presence of cytotoxic lymphocytes in close contact to infected cells may reflect control of viral spread by these cells despite MHC class I downmodulation.
Collapse
Affiliation(s)
- Florin Gabor
- Institute of Medical Virology, University of Tübingen, Tübingen, Germany
| | - Gerhard Jahn
- Institute of Medical Virology, University of Tübingen, Tübingen, Germany
| | - Daniel D Sedmak
- Institute of Pathology, The Ohio State University, Columbus, OH, United States
| | | |
Collapse
|
12
|
Papúchová H, Meissner TB, Li Q, Strominger JL, Tilburgs T. The Dual Role of HLA-C in Tolerance and Immunity at the Maternal-Fetal Interface. Front Immunol 2019; 10:2730. [PMID: 31921098 PMCID: PMC6913657 DOI: 10.3389/fimmu.2019.02730] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/07/2019] [Indexed: 12/20/2022] Open
Abstract
To establish a healthy pregnancy, maternal immune cells must tolerate fetal allo-antigens and remain competent to respond to infections both systemically and in placental tissues. Extravillous trophoblasts (EVT) are the most invasive cells of extra-embryonic origin to invade uterine tissues and express polymorphic Human Leucocyte Antigen-C (HLA-C) of both maternal and paternal origin. Thus, HLA-C is a key molecule that can elicit allogeneic immune responses by maternal T and NK cells and for which maternal-fetal immune tolerance needs to be established. HLA-C is also the only classical MHC molecule expressed by EVT that can present a wide variety of peptides to maternal memory T cells and establish protective immunity. The expression of paternal HLA-C by EVT provides a target for maternal NK and T cells, whereas HLA-C expression levels may influence how this response is shaped. This dual function of HLA-C requires tight transcriptional regulation of its expression to balance induction of tolerance and immunity. Here, we critically review new insights into: (i) the mechanisms controlling expression of HLA-C by EVT, (ii) the mechanisms by which decidual NK cells, effector T cells and regulatory T cells recognize HLA-C allo-antigens, and (iii) immune recognition of pathogen derived antigens in context of HLA-C.
Collapse
Affiliation(s)
- Henrieta Papúchová
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Torsten B Meissner
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States.,Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - Qin Li
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Jack L Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States
| | - Tamara Tilburgs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, United States.,Division of Immunobiology, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
13
|
Pugh J, Nemat-Gorgani N, Djaoud Z, Guethlein LA, Norman PJ, Parham P. In vitro education of human natural killer cells by KIR3DL1. Life Sci Alliance 2019; 2:2/6/e201900434. [PMID: 31723004 PMCID: PMC6856763 DOI: 10.26508/lsa.201900434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022] Open
Abstract
Using NK cells isolated from individuals who lack the Bw4 epitope on HLA-B, Pugh et al reveal that KIR3DL1+ NK cells can be educated in vitro by co-culturing them with target cells that display the missing epitope. During development, NK cells are “educated” to respond aggressively to cells with low surface expression of HLA class I, a hallmark of malignant and infected cells. The mechanism of education involves interactions between inhibitory killer immunoglobulin–like receptors (KIRs) and specific HLA epitopes, but the details of this process are unknown. Because of the genetic diversity of HLA class I genes, most people have NK cells that are incompletely educated, representing an untapped source of human immunity. We demonstrate how mature peripheral KIR3DL1+ human NK cells can be educated in vitro. To accomplish this, we trained NK cells expressing the inhibitory KIR3DL1 receptor by co-culturing them with target cells that expressed its ligand, Bw4+HLA-B. After this training, KIR3DL1+ NK cells increased their inflammatory and lytic responses toward target cells lacking Bw4+HLA-B, as though they had been educated in vivo. By varying the conditions of this basic protocol, we provide mechanistic and translational insights into the process NK cell education.
Collapse
Affiliation(s)
- Jason Pugh
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Neda Nemat-Gorgani
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Zakia Djaoud
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisbeth A Guethlein
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, Department of Immunology, School of Medicine, University of Colorado Denver, Denver, CO, USA
| | - Peter Parham
- Departments of Structural Biology and Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
14
|
Faist B, Schlott F, Stemberger C, Dennehy KM, Krackhardt A, Verbeek M, Grigoleit GU, Schiemann M, Hoffmann D, Dick A, Martin K, Hildebrandt M, Busch DH, Neuenhahn M. Targeted in-vitro-stimulation reveals highly proliferative multi-virus-specific human central memory T cells as candidates for prophylactic T cell therapy. PLoS One 2019; 14:e0223258. [PMID: 31568490 PMCID: PMC6768573 DOI: 10.1371/journal.pone.0223258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/17/2019] [Indexed: 01/16/2023] Open
Abstract
Adoptive T cell therapy (ACT) has become a treatment option for viral reactivations in patients undergoing allogeneic hematopoietic stem cell transplantation (alloHSCT). Animal models have shown that pathogen-specific central memory T cells (TCM) are protective even at low numbers and show long-term survival, extensive proliferation and high plasticity after adoptive transfer. Concomitantly, our own recent clinical data demonstrate that minimal doses of purified (not in-vitro- expanded) human CMV epitope-specific T cells can be sufficient to clear viremia. However, it remains to be determined if human virus-specific TCM show the same promising features for ACT as their murine counterparts. Using a peptide specific proliferation assay (PSPA) we studied the human Adenovirus- (AdV), Cytomegalovirus- (CMV) and Epstein-Barr virus- (EBV) specific TCM repertoires and determined their functional and proliferative capacities in vitro. TCM products were generated from buffy coats, as well as from non-mobilized and mobilized apheresis products either by flow cytometry-based cell sorting or magnetic cell enrichment using reversible Fab-Streptamers. Adjusted to virus serology and human leukocyte antigen (HLA)-typing, donor samples were analyzed with MHC multimer- and intracellular cytokine staining (ICS) before and after PSPA. TCM cultures showed strong proliferation of a plethora of functional virus-specific T cells. Using PSPA, we could unveil tiniest virus epitope-specific TCM populations, which had remained undetectable in conventional ex-vivo-staining. Furthermore, we could confirm these characteristics for mobilized apheresis- and GMP-grade Fab-Streptamer-purified TCM products. Consequently, we conclude that TCM bare high potential for prophylactic low-dose ACT. In addition, use of Fab-Streptamer-purified TCM allows circumventing regulatory restrictions typically found in conventional ACT product generation. These GMP-compatible TCM can now be used as a broad-spectrum antiviral T cell prophylaxis in alloHSCT patients and PSPA is going to be an indispensable tool for advanced TCM characterization during concomitant immune monitoring.
Collapse
Affiliation(s)
- Benjamin Faist
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Fabian Schlott
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | | | - Kevin M. Dennehy
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Institute for Medical Virology, University Hospital Tübingen, Tübingen, Germany
| | - Angela Krackhardt
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Mareike Verbeek
- Department of Medicine III, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Götz U. Grigoleit
- Department of Internal Medicine II, University of Würzburg, Wuerzburg, Germany
| | - Matthias Schiemann
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Dieter Hoffmann
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- Institute for Virology, Technische Universität München, Munich, Germany
| | - Andrea Dick
- Department of Transfusion Medicine and Haemostaseology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Klaus Martin
- Institute of Anaesthesiology, Deutsches Herzzentrum München, Klinik an der Technischen Universität München, Munich, Germany
| | - Martin Hildebrandt
- TUM Cells Interdisciplinary Center for Cellular Therapies, Munich, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Michael Neuenhahn
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
- TUM Cells Interdisciplinary Center for Cellular Therapies, Munich, Germany
- * E-mail:
| |
Collapse
|
15
|
Grosso D, Leiby B, Carabasi M, Filicko-O'Hara J, Gaballa S, O'Hara W, Wagner JL, Flomenberg N. The Presence of a CMV Immunodominant Allele in the Recipient Is Associated With Increased Survival in CMV Positive Patients Undergoing Haploidentical Hematopoietic Stem Cell Transplantation. Front Oncol 2019; 9:888. [PMID: 31608225 PMCID: PMC6758597 DOI: 10.3389/fonc.2019.00888] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/27/2019] [Indexed: 12/26/2022] Open
Abstract
Specific major histocompatibility (MHC) class I alleles dominate anti-CMV responses in a hierarchal manner. These CMV immunodominant (IMD) alleles are associated with a higher magnitude and frequency of cytotoxic lymphocyte responses as compared to other human leukocyte antigen (HLA) alleles. CMV reactivation has been associated with an increased incidence of graft-vs.-host disease and non-relapse mortality, as well as protection from relapse in HLA-matched HSCT settings. Less is known about the impact of CMV reactivation on these major outcomes after haploidentical (HI) HSCT, an increasingly applied therapeutic option. In HI HSCT, the efficiency of the immune response is decreased due to the immune suppression required to cross the MHC barrier as well as MHC mismatch between presenting and responding cells. We hypothesized that the presence of a CMV IMD allele would increase the efficiency of CMV responses after HI HSCT potentially impacting CMV-related outcomes. In this retrospective, multivariable review of 216 HI HSCT patients, we found that CMV+ recipients possessing at least 1 of 5 identified CMV IMD alleles had a lower hazard of death (HR = 0.40, p = 0.003) compared to CMV+ recipients not possessing a CMV IMD allele, and an overall survival rate similar to their CMV- counterparts. The analysis delineated subgroups within the CMV+ population at greater risk for death due to CMV reactivation.
Collapse
Affiliation(s)
- Dolores Grosso
- Blood and Marrow Transplant Program, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - Benjamin Leiby
- Pharmacology and Experimental Therapeutics, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - Matthew Carabasi
- Blood and Marrow Transplant Program, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - Joanne Filicko-O'Hara
- Blood and Marrow Transplant Program, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - Sameh Gaballa
- Blood and Marrow Transplant Program, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - William O'Hara
- Blood and Marrow Transplant Program, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - John L. Wagner
- Blood and Marrow Transplant Program, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| | - Neal Flomenberg
- Blood and Marrow Transplant Program, The Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
16
|
Zimmermann C, Kowalewski D, Bauersfeld L, Hildenbrand A, Gerke C, Schwarzmüller M, Le-Trilling VTK, Stevanovic S, Hengel H, Momburg F, Halenius A. HLA-B locus products resist degradation by the human cytomegalovirus immunoevasin US11. PLoS Pathog 2019; 15:e1008040. [PMID: 31527904 PMCID: PMC6764698 DOI: 10.1371/journal.ppat.1008040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 09/27/2019] [Accepted: 08/22/2019] [Indexed: 12/27/2022] Open
Abstract
To escape CD8+ T-cell immunity, human cytomegalovirus (HCMV) US11 redirects MHC-I for rapid ER-associated proteolytic degradation (ERAD). In humans, classical MHC-I molecules are encoded by the highly polymorphic HLA-A, -B and -C gene loci. While HLA-C resists US11 degradation, the specificity for HLA-A and HLA-B products has not been systematically studied. In this study we analyzed the MHC-I peptide ligands in HCMV-infected cells. A US11-dependent loss of HLA-A ligands was observed, but not of HLA-B. We revealed a general ability of HLA-B to assemble with β2m and exit from the ER in the presence of US11. Surprisingly, a low-complexity region between the signal peptide sequence and the Ig-like domain of US11, was necessary to form a stable interaction with assembled MHC-I and, moreover, this region was also responsible for changing the pool of HLA-B ligands. Our data suggest a two-pronged strategy by US11 to escape CD8+ T-cell immunity, firstly, by degrading HLA-A molecules, and secondly, by manipulating the HLA-B ligandome. The human immune system can cover the presentation of a wide array of pathogen derived antigens owing to the three extraordinary polymorphic MHC class I (MHC-I) gene loci, called HLA-A, -B and -C in humans. Studying the HLA peptide ligands of human cytomegalovirus (HCMV) infected cells, we realized that the HCMV encoded glycoprotein US11 targeted different HLA gene products in distinct manners. More than 20 years ago the first HCMV encoded MHC-I inhibitors were identified, including US11, targeting MHC-I for proteasomal degradation. Here, we describe that the prime target for US11-mediated degradation is HLA-A, whereas HLA-B can resist degradation. Our further mechanistic analysis revealed that US11 uses various domains for distinct functions. Remarkably, the ability of US11 to interact with assembled MHC-I and modify peptide loading of degradation-resistant HLA-B was dependent on a low-complexity region (LCR) located between the signal peptide and the immunoglobulin-like domain of US11. To redirect MHC-I for proteasomal degradation the LCR was dispensable. These findings now raise the intriguing question why US11 has evolved to target HLA-A and -B differentially. Possibly, HLA-B molecules are spared in order to dampen NK cell attack against infected cells.
Collapse
Affiliation(s)
- Cosima Zimmermann
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Daniel Kowalewski
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Liane Bauersfeld
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Hildenbrand
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Carolin Gerke
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Magdalena Schwarzmüller
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Stefan Stevanovic
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Hartmut Hengel
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Frank Momburg
- Clinical Cooperation Unit Applied Tumor Immunity, Antigen Presentation and T/NK Cell Activation Group, German Cancer Research Center, Heidelberg, Germany
| | - Anne Halenius
- Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
17
|
Manser AR, Scherenschlich N, Thöns C, Hengel H, Timm J, Uhrberg M. KIR Polymorphism Modulates the Size of the Adaptive NK Cell Pool in Human Cytomegalovirus-Infected Individuals. THE JOURNAL OF IMMUNOLOGY 2019; 203:2301-2309. [PMID: 31519864 DOI: 10.4049/jimmunol.1900423] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
Abstract
Acute infection with human CMV (HCMV) induces the development of adaptive NKG2C+ NK cells. In some cases, large expansions of this subset, characterized by coexpression of HLA-C-specific KIR, are stably maintained during the life-long latent phase of infection. The factors that control these unusual expansions in vivo are currently unknown. In this study, the role of KIR polymorphism and expression in this process was analyzed. It is shown that strong NKG2C+ NK cell expansions are dominated by single KIR clones, whereas moderate expansions are frequently polyclonal (p < 0.0001). Importantly, the choice of KIR was not arbitrary but biased toward usage of HLA-C-specific KIR encoded by the centromeric part of group A (cenA) haplotypes. Consideration of KIR allelic variation and gene copy number revealed that the cenA effect was predominantly due to the HLA-C2-specific KIR2DL1 receptor; presence of KIR2DL1 on NKG2C+ NK cells led to significantly larger clonal expansions than the cenB-encoded KIR2DL2 (p = 0.002). Expansion of NKG2C+KIR2DL1+ NK cells was always accompanied by the cognate ligand HLA-C2. Moreover, in these donors the frequency of NKG2C+ NK cells correlated with the concentration of anti-HCMV IgG (r = 0.62, p = 0.008), suggesting direct relevance of NKG2C+KIR2DL1+ NK cells for virus control. Altogether, the study suggests that the homeostasis of NKG2C+ NK cells in HCMV infection is at least partly controlled by coexpression of cognate inhibitory KIR. In particular, the strong interaction of KIR2DL1 and HLA-C2 ligands seems to promote large and stable expansion of adaptive NK cells in HCMV infection.
Collapse
Affiliation(s)
- Angela R Manser
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Nadine Scherenschlich
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Christine Thöns
- Institute of Virology, Heinrich Heine University, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Hartmut Hengel
- Institute of Virology, University Medical Center, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; and.,Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Jörg Timm
- Institute of Virology, Heinrich Heine University, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany
| | - Markus Uhrberg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University, University Hospital of Düsseldorf, 40225 Düsseldorf, Germany;
| |
Collapse
|
18
|
Miles DJC, Shumba F, Pachnio A, Begum J, Corbett EL, Heyderman RS, Moss P. Early T Cell Differentiation with Well-Maintained Function across the Adult Life Course in Sub-Saharan Africa. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 203:1160-1171. [PMID: 31358657 PMCID: PMC6778523 DOI: 10.4049/jimmunol.1800866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 06/21/2019] [Indexed: 11/19/2022]
Abstract
Immune senescence is a significant contributor to health problems in the developed world and may be accelerated by chronic viral infections. To date, there have been few studies of immune function in healthy older people in sub-Saharan Africa. We assessed T cell and B cell phenotypes and immune responses to CMV, EBV, and influenza virus in Malawians aged 20-69 y. Notably, the proportion of naive (CCR7+CD45RA+) CD4 and CD8 T cells was only 14% of the lymphoid repertoire even in donors aged under 30 y but did not decrease further with age. A small increase in the late differentiated (CD27-CD28-) CD8 T cell subpopulation was observed in older donors but the CD4/CD8 T cell ratio remained stable in all age groups. Interestingly, the regulatory (CD25hiFOXP3hi) T cell subpopulation was small in all age groups, and we observed no age-associated accumulation of cells expressing the senescence- and exhaustion-associated markers CD57 and PD-1. We assessed functional T cell responses to mitogenic and viral antigenic stimulation by the expression of CD154, IFN-γ, TNF-α, IL-2, and IL-17 and proliferation. All responses were robust across the life course, although we observed an age-associated shift from IFN-γ to TNF-α in the response to EBV. In summary, we found the naive T cell subpopulation of young adult Malawians was smaller than in their contemporaries in high-income settings but remains stable thereafter and that lymphocyte function is retained across the life course. These observations indicate that studies of the genetic and environmental factors influencing immune function in different environments may provide insights into minimizing immune ageing.
Collapse
Affiliation(s)
- David J C Miles
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Chichiri, Blantyre 3, Malawi; and
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham Health Partners, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| | - Florence Shumba
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Chichiri, Blantyre 3, Malawi; and
| | - Annette Pachnio
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham Health Partners, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| | - Jusnara Begum
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham Health Partners, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| | - Elizabeth L Corbett
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Chichiri, Blantyre 3, Malawi; and
| | - Robert S Heyderman
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Chichiri, Blantyre 3, Malawi; and
| | - Paul Moss
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, Birmingham Health Partners, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| |
Collapse
|
19
|
Pump WC, Schulz R, Huyton T, Kunze-Schumacher H, Martens J, Hò GGT, Blasczyk R, Bade-Doeding C. Releasing the concept of HLA-allele specific peptide anchors in viral infections: A non-canonical naturally presented human cytomegalovirus-derived HLA-A*24:02 restricted peptide drives exquisite immunogenicity. HLA 2019; 94:25-38. [PMID: 30912293 PMCID: PMC6593758 DOI: 10.1111/tan.13537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 03/18/2019] [Accepted: 03/23/2019] [Indexed: 11/30/2022]
Abstract
T‐cell receptors possess the unique ability to survey and respond to their permanently modified ligands, self HLA‐I molecules bound to non‐self peptides of various origin. This highly specific immune function is impaired following hematopoietic stem cell transplantation (HSCT) for a timespan of several months needed for the maturation of T‐cells. Especially, the progression of HCMV disease in immunocompromised patients induces life‐threatening situations. Therefore, the need for a new immune system that delivers vital and potent CD8+ T‐cells carrying TCRs that recognize even one human cytomegalovirus (HCMV) peptide/HLA molecule and clear the viral infection long term becomes obvious. The transcription and translation of HCMV proteins in the lytic cycle is a precisely regulated cascade of processes, therefore, it is a highly sensitive challenge to adjust the exact time point of HCMV‐peptide recruitment over self‐peptides. We utilized soluble HLA technology in HCMV‐infected fibroblasts and sequenced naturally sHLA‐A*24:02 presented HCMV‐derived peptides. One peptide of 14 AAs length derived from the IE2 antigen induced the strongest T‐cell responses; this peptide can be detected with a low ranking score in general peptide prediction databanks. These results highlight the need for elaborate and HLA‐allele specific peptide selection.
Collapse
Affiliation(s)
- Wiebke C Pump
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Rebecca Schulz
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Trevor Huyton
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Jörg Martens
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Gia-Gia T Hò
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | - Rainer Blasczyk
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany
| | | |
Collapse
|
20
|
Huth A, Liang X, Krebs S, Blum H, Moosmann A. Antigen-Specific TCR Signatures of Cytomegalovirus Infection. THE JOURNAL OF IMMUNOLOGY 2018; 202:979-990. [PMID: 30587531 DOI: 10.4049/jimmunol.1801401] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 11/19/2018] [Indexed: 11/19/2022]
Abstract
CMV is a prevalent human pathogen. The virus cannot be eliminated from the body, but is kept in check by CMV-specific T cells. Patients with an insufficient T cell response, such as transplant recipients, are at high risk of developing CMV disease. However, the CMV-specific T cell repertoire is complex, and it is not yet clear which T cells protect best against virus reactivation and disease. In this study, we present a highly resolved characterization of CMV-specific human CD8+ T cells based on enrichment by specific peptide stimulation and mRNA sequencing of their TCR β-chains (TCRβ). Our analysis included recently identified T cell epitopes restricted through HLA-C, whose presentation is resistant to viral immunomodulation, and well-studied HLA-B-restricted epitopes. In eight healthy virus carriers, we identified a total of 1052 CMV-specific TCRβ sequences. HLA-C-restricted, CMV-specific TCRβ clonotypes dominated the ex vivo T cell response and contributed the highest-frequency clonotype of the entire repertoire in two of eight donors. We analyzed sharing and similarity of CMV-specific TCRβ sequences and identified 63 public or related sequences belonging to 17 public TCRβ families. In our cohort, and in an independent cohort of 352 donors, the cumulative frequency of these public TCRβ family members was a highly discriminatory indicator of carrying both CMV infection and the relevant HLA type. Based on these findings, we propose CMV-specific TCRβ signatures as a biomarker for an antiviral T cell response to identify patients in need of treatment and to guide future development of immunotherapy.
Collapse
Affiliation(s)
- Alina Huth
- German Center for Infection Research Group Host Control of Viral Latency and Reactivation, Research Unit Gene Vectors, Helmholtz Center Munich, 81377 Munich, Germany.,Deutsches Zentrum für Infektionsforschung, 81377 Munich, Germany; and
| | - Xiaoling Liang
- German Center for Infection Research Group Host Control of Viral Latency and Reactivation, Research Unit Gene Vectors, Helmholtz Center Munich, 81377 Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis, Gene Center, Ludwig Maximilian University of Munich, 81377 Munich, Germany
| | - Andreas Moosmann
- German Center for Infection Research Group Host Control of Viral Latency and Reactivation, Research Unit Gene Vectors, Helmholtz Center Munich, 81377 Munich, Germany; .,Deutsches Zentrum für Infektionsforschung, 81377 Munich, Germany; and
| |
Collapse
|
21
|
van der Zwan A, van der Meer-Prins EMW, van Miert PPMC, van den Heuvel H, Anholts JDH, Roelen DL, Claas FHJ, Heidt S. Cross-Reactivity of Virus-Specific CD8+ T Cells Against Allogeneic HLA-C: Possible Implications for Pregnancy Outcome. Front Immunol 2018; 9:2880. [PMID: 30574149 PMCID: PMC6291497 DOI: 10.3389/fimmu.2018.02880] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/23/2018] [Indexed: 01/22/2023] Open
Abstract
Heterologous immunity of virus-specific T cells poses a potential barrier to transplantation tolerance. Cross-reactivity to HLA-A and -B molecules has broadly been described, whereas responses to allo-HLA-C have remained ill defined. In contrast to the transplant setting, HLA-C is the only polymorphic HLA molecule expressed by extravillous trophoblasts at the maternal-fetal interface during pregnancy. Uncontrolled placental viral infections, accompanied by a pro-inflammatory milieu, can alter the activation status and stability of effector T cells. Potential cross-reactivity of maternal decidual virus-specific T cells to fetal allo-HLA-C may thereby have detrimental consequences for the success of pregnancy. To explore the presence of cross-reactivity to HLA-C and the other non-classical HLA antigens expressed by trophoblasts, HLA-A and -B-restricted CD8+ T cells specific for Epstein-Barr virus, Cytomegalovirus, Varicella-Zoster virus, and Influenza virus were tested against target cells expressing HLA-C, -E, and -G molecules. An HLA-B*08:01-restricted EBV-specific T cell clone displayed cross-reactivity against HLA-C*01:02. Furthermore, cross-reactivity of HLA-C-restricted virus-specific CD8+ T cells was observed for HCMV HLA-C*06:02/TRA CD8+ T cell lines and clones against HLA-C*03:02. Collectively, these results demonstrate that cross-reactivity against HLA-C can occur and thereby may affect pregnancy outcome.
Collapse
Affiliation(s)
- Anita van der Zwan
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | | | - Paula P M C van Miert
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Heleen van den Heuvel
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Jacqueline D H Anholts
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Dave L Roelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Sebastiaan Heidt
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
22
|
Gary R, Aigner M, Moi S, Schaffer S, Gottmann A, Maas S, Zimmermann R, Zingsem J, Strobel J, Mackensen A, Mautner J, Moosmann A, Gerbitz A. Clinical-grade generation of peptide-stimulated CMV/EBV-specific T cells from G-CSF mobilized stem cell grafts. J Transl Med 2018; 16:124. [PMID: 29743075 PMCID: PMC5941463 DOI: 10.1186/s12967-018-1498-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/30/2018] [Indexed: 11/22/2022] Open
Abstract
Background A major complication after allogeneic hematopoietic stem cell transplantation (aSCT) is the reactivation of herpesviruses such as cytomegalovirus (CMV) and Epstein–Barr virus (EBV). Both viruses cause significant mortality and compromise quality of life after aSCT. Preventive transfer of virus-specific T cells can suppress reactivation by re-establishing functional antiviral immune responses in immunocompromised hosts. Methods We have developed a good manufacturing practice protocol to generate CMV/EBV-peptide-stimulated T cells from leukapheresis products of G-CSF mobilized and non-mobilized donors. Our procedure selectively expands virus-specific CD8+ und CD4+ T cells over 9 days using a generic pool of 34 CMV and EBV peptides that represent well-defined dominant T-cell epitopes with various HLA restrictions. For HLA class I, this set of peptides covers at least 80% of the European population. Results CMV/EBV-specific T cells were successfully expanded from leukapheresis material of both G-CSF mobilized and non-mobilized donors. The protocol allows administration shortly after stem cell transplantation (d30+), storage over liquid nitrogen for iterated applications, and protection of the stem cell donor by avoiding a second leukapheresis. Conclusion Our protocol allows for rapid and cost-efficient production of T cells for early transfusion after aSCT as a preventive approach. It is currently evaluated in a phase I/IIa clinical trial. Electronic supplementary material The online version of this article (10.1186/s12967-018-1498-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Regina Gary
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany.
| | - Michael Aigner
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Stephanie Moi
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Stefanie Schaffer
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Anja Gottmann
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Stefanie Maas
- Center for Clinical Studies CCS, University Hospital of Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Robert Zimmermann
- Department of Transfusion Medicine and Hemostaseology, University Hospital of Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Jürgen Zingsem
- Department of Transfusion Medicine and Hemostaseology, University Hospital of Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Julian Strobel
- Department of Transfusion Medicine and Hemostaseology, University Hospital of Erlangen, Krankenhausstr. 12, 91054, Erlangen, Germany
| | - Andreas Mackensen
- Dept. of Hematology/Oncology, University Hospital of Erlangen, Ulmenweg 18, 91054, Erlangen, Germany
| | - Josef Mautner
- Clinical Cooperation Group Pediatric Tumor Immunology, Helmholtz Zentrum München, and Technical University of Munich, Marchioninistr. 25, 81377, Munich, Germany
| | - Andreas Moosmann
- DZIF Research Group Host Control of Viral Latency and Reactivation (HOCOVLAR), Helmholtz Zentrum München, Marchioninistr. 25, 81377, Munich, Germany
| | - Armin Gerbitz
- Department of Hematology, Oncology and Tumorimmunology, Charité Berlin, Berlin, Germany
| |
Collapse
|
23
|
Martin LK, Hollaus A, Stahuber A, Hübener C, Fraccaroli A, Tischer J, Schub A, Moosmann A. Cross-sectional analysis of CD8 T cell immunity to human herpesvirus 6B. PLoS Pathog 2018; 14:e1006991. [PMID: 29698478 PMCID: PMC5919459 DOI: 10.1371/journal.ppat.1006991] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/26/2018] [Indexed: 12/15/2022] Open
Abstract
Human herpesvirus 6 (HHV-6) is prevalent in healthy persons, causes disease in immunosuppressed carriers, and may be involved in autoimmune disease. Cytotoxic CD8 T cells are probably important for effective control of infection. However, the HHV-6-specific CD8 T cell repertoire is largely uncharacterized. Therefore, we undertook a virus-wide analysis of CD8 T cell responses to HHV-6. We used a simple anchor motif-based algorithm (SAMBA) to identify 299 epitope candidates potentially presented by the HLA class I molecule B*08:01. Candidates were found in 77 of 98 unique HHV-6B proteins. From peptide-expanded T cell lines, we obtained CD8 T cell clones against 20 candidates. We tested whether T cell clones recognized HHV-6-infected cells. This was the case for 16 epitopes derived from 12 proteins from all phases of the viral replication cycle. Epitopes were enriched in certain amino acids flanking the peptide. Ex vivo analysis of eight healthy donors with HLA-peptide multimers showed that the strongest responses were directed against an epitope from IE-2, with a median frequency of 0.09% of CD8 T cells. Reconstitution of T cells specific for this and other HHV-6 epitopes was also observed after allogeneic hematopoietic stem cell transplantation. We conclude that HHV-6 induces CD8 T cell responses against multiple antigens of diverse functional classes. Most antigens against which CD8 T cells can be raised are presented by infected cells. Ex vivo multimer staining can directly identify HHV-6-specific T cells. These results will advance development of immune monitoring, adoptive T cell therapy, and vaccines. This paper deals with the immune response to a very common virus, called human herpesvirus 6 (HHV-6). Most people catch HHV-6 in early childhood, which often leads to a disease known as three-day fever. Later in life, the virus stays in the body, and an active immune response is needed to prevent the virus from multiplying and causing damage. It is suspected that HHV-6 contributes to autoimmune diseases and chronic fatigue. Moreover, patients with severely weakened immune responses, for example after some forms of transplantation, clearly have difficulties controlling HHV-6, which puts them at risk of severe disease and shortens their survival. This can potentially be prevented by giving them HHV-6-specific "killer" CD8 T cells, which are cells of the immune system that destroy body cells harboring the virus. However, little is known so far about such T cells. Here, we describe 16 new structures that CD8 T cells can use to recognize and kill HHV-6-infected cells. We show that very different viral proteins can furnish such structures. We also observe that such T cells are regularly present in healthy people and in transplant patients who control the virus. Our results will help develop therapies of disease due to HHV-6.
Collapse
MESH Headings
- Adult
- Anemia, Aplastic/immunology
- Anemia, Aplastic/therapy
- Antigens, Viral/immunology
- CD8-Positive T-Lymphocytes/immunology
- Case-Control Studies
- Cells, Cultured
- Cross-Sectional Studies
- Epitopes, T-Lymphocyte/immunology
- HLA Antigens/immunology
- Hematopoietic Stem Cell Transplantation
- Herpesvirus 6, Human/immunology
- Humans
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/therapy
- Roseolovirus Infections/immunology
- Roseolovirus Infections/virology
- T-Lymphocytes, Cytotoxic
- Transplantation, Homologous
Collapse
Affiliation(s)
- Larissa K. Martin
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Alexandra Hollaus
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Anna Stahuber
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Christoph Hübener
- Department of Obstetrics and Gynecology, University Hospital, LMU Munich, Munich, Germany
| | - Alessia Fraccaroli
- Internal Medicine III, Hematopoietic Stem Cell Transplantation, Klinikum der Universität München (LMU), Grosshadern, Munich, Germany
| | - Johanna Tischer
- Internal Medicine III, Hematopoietic Stem Cell Transplantation, Klinikum der Universität München (LMU), Grosshadern, Munich, Germany
| | - Andrea Schub
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Andreas Moosmann
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
- German Center for Infection Research (DZIF–Deutsches Zentrum für Infektionsforschung), Munich, Germany
- * E-mail:
| |
Collapse
|
24
|
Schlott F, Steubl D, Ameres S, Moosmann A, Dreher S, Heemann U, Hösel V, Busch DH, Neuenhahn M. Characterization and clinical enrichment of HLA-C*07:02-restricted Cytomegalovirus-specific CD8+ T cells. PLoS One 2018; 13:e0193554. [PMID: 29489900 PMCID: PMC5831000 DOI: 10.1371/journal.pone.0193554] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
Human Cytomegalovirus (CMV) reactivation remains a major source of morbidity in patients after solid organ and hematopoietic stem cell transplantation (HSCT). Adoptive T cell therapy (ACT) with CMV-specific T cells is a promising therapeutic approach for HSCT recipients, but might be counteracted by CMV’s immune evasion strategies. HLA-C*07:02 is less susceptible to viral immune evasion suggesting HLA-C*07:02-restricted viral epitopes as promising targets for ACT. For a better understanding of HLA-C*07:02-restricted CMV-specific T cells we used recently generated reversible HLA-C*07:02/IE-1 multimers (Streptamers) recognizing a CMV-derived Immediate-Early-1 (IE-1) epitope and analyzed phenotypic and functional T cell characteristics. Initially, we detected very high frequencies of HLA-C*07:02/IE-1 multimer+ T cells (median = 11.35%), as well as robust functional responses after stimulation with IE-1 peptide (IFNγ+; median = 5.02%) in healthy individuals. However, MHC-multimer+ and IFNγ-secreting T cell frequencies showed a relatively weak correlation (r2 = 0.77), which could be attributed to an unexpected contribution of CMV-epitope-independent KIR2DL2/3-binding of HLA-C*07:02/IE-1 multimers. Therefore, we developed a MHC-multimer double-staining approach against a cancer epitope-specific HLA-C*07:02 multimer to identify truly HLA-C*07:02/IE-1 epitope-specific T cells. The frequencies of these truly HLA-C*07:02/IE-1 multimer+ T cells were still high (median = 6.86%) and correlated now strongly (r2 = 0.96) with IFNγ-secretion. Interestingly, HLA-C*07:02/IE-1-restricted T cells contain substantial numbers with a central memory T cell phenotype, indicating high expansion potential e.g. for ACT. In line with that, we developed a clinical enrichment protocol avoiding epitope-independent KIR-binding to make HLA-C*07:02/IE-1-restricted T cells available for ACT. Initial depletion of KIR-expressing CD8+ T cells followed by HLA-C*07:02/IE-1 Streptamer positive selection using paramagnetic labeling techniques allowed to enrich successfully HLA-C*07:02/IE-1-restricted T cells. Such specifically enriched populations of functional HLA-C*07:02/IE-1-restricted T cells with significant central memory T cell content could become a potent source for ACT.
Collapse
Affiliation(s)
- Fabian Schlott
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- DZIF—National Centre for Infection Research, Munich, Germany
| | - Dominik Steubl
- Department of Nephrology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefanie Ameres
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Andreas Moosmann
- DZIF—National Centre for Infection Research, Munich, Germany
- DZIF Research Group "Host Control of Viral Latency and Reactivation" (HOCOVLAR), Research Unit Gene Vectors, Helmholtz Zentrum München, Munich, Germany
| | - Stefan Dreher
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Uwe Heemann
- DZIF—National Centre for Infection Research, Munich, Germany
- Department of Nephrology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Volker Hösel
- Technical University Munich, Chair of Biomathematics, Garching, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- DZIF—National Centre for Infection Research, Munich, Germany
| | - Michael Neuenhahn
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
- DZIF—National Centre for Infection Research, Munich, Germany
- * E-mail:
| |
Collapse
|
25
|
Asian Elephant T Cell Responses to Elephant Endotheliotropic Herpesvirus. J Virol 2018; 92:JVI.01951-17. [PMID: 29263271 PMCID: PMC5827410 DOI: 10.1128/jvi.01951-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 12/14/2017] [Indexed: 12/20/2022] Open
Abstract
Elephant endotheliotropic herpesvirus (EEHV) can cause lethal hemorrhagic disease in juvenile Asian elephants, an endangered species. One hypothesis to explain this vulnerability of some juvenile elephants is that they fail to mount an effective T cell response to the virus. To our knowledge, there have been no studies of Asian elephant T cell responses to EEHV. To address this deficiency, we validated the gamma interferon (IFN-γ) enzyme-linked immunospot assay for tracking antigen-directed T cell activity by monitoring rabies-specific responses in vaccinated elephants. In addition, we generated monoclonal antibodies to Asian elephant CD4 and CD8 to facilitate phenotypic T cell profiling. Using these tools, we screened healthy elephants with a history of EEHV infection for reactivity against nine EEHV proteins whose counterparts in other herpesviruses are known to induce T cell responses in their natural hosts. We identified glycoprotein B (gB) and the putative regulatory protein E40 as the most immunogenic T cell targets (IFN-γ responses in five of seven elephants), followed by the major capsid protein (IFN-γ responses in three of seven elephants). We also observed that IFN-γ responses were largely from CD4+ T cells. We detected no activity against the predicted major immediate early (E44) and large tegument (E34) proteins, both immunodominant T cell targets in humans latently infected with cytomegalovirus. These studies identified EEHV-specific T cells in Asian elephants for the first time, lending insight into the T cell priming that might be required to protect against EEHV disease, and will guide the design of effective vaccine strategies. IMPORTANCE Endangered Asian elephants are facing many threats, including lethal hemorrhagic disease from elephant endotheliotropic herpesvirus (EEHV). EEHV usually establishes chronic, benign infections in mature Asian elephants but can be lethal to juvenile elephants in captivity and the wild. It is the leading cause of death in captive Asian elephants in North America and Europe. Despite the availability of sensitive tests and protocols for treating EEHV-associated illness, these measures are not always effective. The best line of defense would be a preventative vaccine. We interrogated normal healthy elephants previously infected with EEHV for T cell responses to nine EEHV proteins predicted to induce cellular immune responses. Three proteins elicited IFN-γ responses, suggesting their potential usefulness as vaccine candidates. Our work is the first to describe T cell responses to a member of the proposed fourth subfamily of mammalian herpesviruses, the Deltaherpesvirinae, within a host species in the clade Afrotheria. An EEHV vaccine would greatly contribute to the health care of Asian and African elephants that are also susceptible to this disease.
Collapse
|
26
|
Rovito R, Claas FHJ, Haasnoot GW, Roelen DL, Kroes ACM, Eikmans M, Vossen ACTM. Congenital Cytomegalovirus Infection: Maternal-Child HLA-C, HLA-E, and HLA-G Affect Clinical Outcome. Front Immunol 2018; 8:1904. [PMID: 29354123 PMCID: PMC5760553 DOI: 10.3389/fimmu.2017.01904] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/13/2017] [Indexed: 01/02/2023] Open
Abstract
Congenital CMV infection (cCMV) is the most common congenital infection causing permanent long-term impairments (LTI). cCMV immunopathogenesis is largely unknown due to the complex interplay between viral, maternal, placental, and child factors. In this study, a large retrospective nationwide cohort of children with cCMV and their mothers was used. HLA-C, HLA-E, and HLA-G were assessed in 96 mother–child pairs in relation to symptoms at birth and LTI at 6 years of age. The mothers were additionally typed for killer cell immunoglobulin-like receptors. The maternal HLA-G 14 bp deletion/deletion polymorphism was associated with a worse outcome, as the immunomodulation effect of higher protein levels may induce less CMV control, with a direct impact on placenta and fetus. The absence of maternal HLA-C belonging to the C2 group was associated with symptoms at birth, as activating signals on decidual NK may override inhibitory signals, contributing to a placental pro-inflammatory environment. Here, the increased HLA-E*0101 and HLA-C mismatches, which were associated with symptoms at birth, may enhance maternal allo-reactivity to fetal Ags, and cause suboptimal viral clearance. Finally, HLA-C non-inherited maternal antigens (NIMAs) were associated with LTI. The tolerance induced in the fetus toward NIMAs may indirectly induce a suboptimal CMV antiviral response throughout childhood. In light of our findings, the potential role of maternal–child HLA in controlling CMV infection and cCMV-related disease, and the clinical value as predictor for long-term outcome certainly deserve further evaluation.
Collapse
Affiliation(s)
- Roberta Rovito
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Frans H J Claas
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Geert W Haasnoot
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Dave L Roelen
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Aloys C M Kroes
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Michael Eikmans
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Ann C T M Vossen
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
27
|
Abstract
Characterization of human cytomegalovirus-specific T cells (CMV-T) is of critical importance for their potential use in adoptive immunotherapy after allogeneic hematopoietic stem cell transplantation. Background frequencies of CMV-T in peripheral blood mononuclear cells (PBMCs) of CMV-seropositive healthy subjects are usually very low, hence the requirement for prolonged culture time and multiple stimulations to expand them. The evaluation of the end-culture specificity and composition has sometimes been neglected or difficult to assess in these settings. We explored the identity and the functionality of pp65-specific and IE1-specific T cells, enriched in short-term cultures from PBMCs. Antigen-specific T cells were further isolated by IFN-γ capture system and/or CD154 microbeads. Frequency of IE1-specific cytotoxic T cells in PBMCs secreting IFN-γ was higher compared with the pp65-specific one, whereas the latter cell types showed a higher median CD107a degranulation. Cell viability, rate of CMV-T increase, and multicytokine secretion profile after epitope-specific short-term cultures were heterogenous. T cells were mainly of late effector stages but they significantly dropped off upon CMV rechallenge with peptide pools. In parallel, CMV-T expansion was accompanied by a significant increase of cytotoxic naive/memory stem cells (CTLs), whereas the CD4 counterpart significantly increased only upon stimulation with IE1. Outcome was variable and showed donor and epitope dependency. Differences in human leukocyte antigen and epitope dominance and variability in the relative number of CD3 effector cells and IFN-γ/CD154 expression among healthy donors could reflect the observed individual CMV-specific cellular immunity. This heterogeneity raises points to be considered when approaching adoptive immunotherapy.
Collapse
|
28
|
Malik A, Adland E, Laker L, Kløverpris H, Fardoos R, Roider J, Severinsen MC, Chen F, Riddell L, Edwards A, Buus S, Jooste P, Matthews PC, Goulder PJR. Immunodominant cytomegalovirus-specific CD8+ T-cell responses in sub-Saharan African populations. PLoS One 2017; 12:e0189612. [PMID: 29232408 PMCID: PMC5726643 DOI: 10.1371/journal.pone.0189612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 11/29/2017] [Indexed: 01/14/2023] Open
Abstract
More than 90% of children in Africa are infected with cytomegalovirus (CMV) by the age of 12 months. However, the high-frequency, immunodominant CD8+ T-cell responses that control CMV infection have not been well studied in African populations. We therefore sought to define the immunodominant CMV-specific CD8+ T-cell responses within sub-Saharan African study subjects. Among 257 subjects, we determined the CD8+ T-cell responses to overlapping peptides spanning three of the most immunogenic CMV proteins, pp65, IE-1 and IE-2, using IFN-γ ELISpot assays. A bioinformatics tool was used to predict optimal epitopes within overlapping peptides whose recognition was statistically associated with expression of particular HLA class I molecules. Using this approach, we identified 16 predicted novel CMV-specific epitopes within CMV-pp65, IE-1 and IE-2. The immunodominant pp65-specific, IE-1, IE-2 responses were all either previously well characterised or were confirmed using peptide-MHC tetramers. The novel epitopes identified included an IE-2-specific epitope restricted by HLA*B*44:03 that induced high-frequency CD8+ T-cell responses (mean 3.4% of CD8+ T-cells) in 95% of HLA-B*44:03-positive subjects tested, in one individual accounting for 18.8% of all CD8+ T-cells. These predicted novel CMV-specific CD8+ T-cell epitopes identified in an African cohort will facilitate future analyses of immune responses in African populations where CMV infection is almost universal during infancy.
Collapse
Affiliation(s)
- Amna Malik
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Emily Adland
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Leana Laker
- Kimberley General Hospital, Kimberley, South Africa
| | - Henrik Kløverpris
- Africa Health Research Institute, AHRI, Durban, South Africa
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- University College London, Department of Infection and Immunity, London, United Kingdom
| | - Rabiah Fardoos
- Africa Health Research Institute, AHRI, Durban, South Africa
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Julia Roider
- Africa Health Research Institute, AHRI, Durban, South Africa
| | - Mai C. Severinsen
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fabian Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading, United Kingdom
| | - Lynn Riddell
- Department of Genitourinary Medicine, Northamptonshire Healthcare NHS Trust, Northampton General Hospital, Northampton, United Kingdom
| | - Anne Edwards
- Oxford Department of Genitourinary Medicine, the Churchill Hospital, Oxford, United Kingdom
| | - Søren Buus
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Philip J. R. Goulder
- Department of Paediatrics, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
29
|
Hosie L, Pachnio A, Zuo J, Pearce H, Riddell S, Moss P. Cytomegalovirus-Specific T Cells Restricted by HLA-Cw*0702 Increase Markedly with Age and Dominate the CD8 + T-Cell Repertoire in Older People. Front Immunol 2017; 8:1776. [PMID: 29312307 PMCID: PMC5732243 DOI: 10.3389/fimmu.2017.01776] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/28/2017] [Indexed: 11/18/2022] Open
Abstract
Cytomegalovirus (CMV) infection elicits a strong T-cell immune response, which increases further during aging in a process termed "memory inflation." CMV downregulates the expression of HLA-A and HLA-B on the surface of infected cells to limit presentation of viral peptides to T-cells although HLA-C is relatively spared as it also engages with inhibitory killer immunoglobulin receptor receptors and therefore reduces lysis by natural killer cells. We investigated the magnitude and functional properties of CMV-specific CD8+ T-cells specific for 10 peptides restricted by HLA-C in a cohort of 53 donors between the age of 23 and 91 years. This was achieved via peptide stimulation of PBMCs followed by multicolor flow cytometry. Three peptides, derived from proteins generated in the immediate-early period of viral replication and restricted by HLA-Cw*0702, elicited strong immune responses, which increased substantially with age such that the average aggregate response represented 37% of the CD8+ T-cell pool within donors above 70 years of age. Remarkably, a single response represented 70% of the total CD8+ T-cell pool within a 91-year-old donor. HLA-Cw*0702-restricted CD8+ T-cell responses were immunodominant over HLA-A and HLA-B-restricted CMV-specific responses and did not show features of exhaustion such as PD-1 or CD39 expression. Indeed, such CTL exhibit a polyfunctional cytokine profile with co-expression of IFN-γ and TNF-α and a strong cytotoxic phenotype with intracellular expression of perforin and granzymeB. Functionally, HLA-Cw*0702-restricted CTL show exceptionally high avidity for cognate peptide-HLA and demonstrate very early and efficient recognition of virally infected cells. These observations indicate that CD8+ T-cells restricted by HLA-C play an important role in the control of persistent CMV infection and could represent a novel opportunity for CD8+ T-cell therapy of viral infection within immunosuppressed patients. In addition, the findings provide further evidence for the importance of HLA-C-restricted T-cells in the control of chronic viral infection.
Collapse
Affiliation(s)
- Louise Hosie
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Birmingham Health Partners, University of Birmingham, Birmingham, United Kingdom
| | - Annette Pachnio
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Birmingham Health Partners, University of Birmingham, Birmingham, United Kingdom
| | - Jianmin Zuo
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Birmingham Health Partners, University of Birmingham, Birmingham, United Kingdom
| | - Hayden Pearce
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Birmingham Health Partners, University of Birmingham, Birmingham, United Kingdom
| | - Stanley Riddell
- Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - Paul Moss
- College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, Birmingham Health Partners, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
30
|
van der Ploeg K, Chang C, Ivarsson MA, Moffett A, Wills MR, Trowsdale J. Modulation of Human Leukocyte Antigen-C by Human Cytomegalovirus Stimulates KIR2DS1 Recognition by Natural Killer Cells. Front Immunol 2017; 8:298. [PMID: 28424684 PMCID: PMC5372792 DOI: 10.3389/fimmu.2017.00298] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/03/2017] [Indexed: 02/02/2023] Open
Abstract
The interaction of inhibitory killer cell Ig-like receptors (KIRs) with human leukocyte antigen (HLA) class I molecules has been characterized in detail. By contrast, activating members of the KIR family, although closely related to inhibitory KIRs, appear to interact weakly, if at all, with HLA class I. KIR2DS1 is the best studied activating KIR and it interacts with C2 group HLA-C (C2-HLA-C) in some assays, but not as strongly as KIR2DL1. We used a mouse 2B4 cell reporter system, which carries NFAT-green fluorescent protein with KIR2DS1 and a modified DAP12 adaptor protein. KIR2DS1 reporter cells were not activated upon coculture with 721.221 cells transfected with different HLA-C molecules, or with interferon-γ stimulated primary dermal fibroblasts. However, KIR2DS1 reporter cells and KIR2DS1+ primary natural killer (NK) cells were activated by C2-HLA-C homozygous human fetal foreskin fibroblasts (HFFFs) but only after infection with specific clones of a clinical strain of human cytomegalovirus (HCMV). Active viral gene expression was required for activation of both cell types. Primary NKG2A-KIR2DS1+ NK cell subsets degranulated after coculture with HCMV-infected HFFFs. The W6/32 antibody to HLA class I blocked the KIR2DS1 reporter cell interaction with its ligand on HCMV-infected HFFFs but did not block interaction with KIR2DL1. This implies a differential recognition of HLA-C by KIR2DL1 and KIR2DS1. The data suggest that modulation of HLA-C by HCMV is required for a potent KIR2DS1-mediated NK cell activation.
Collapse
Affiliation(s)
| | - Chiwen Chang
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Mark R. Wills
- Department of Medicine, University of Cambridge, Cambridge, UK,*Correspondence: Mark R. Wills, ; John Trowsdale,
| | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK,*Correspondence: Mark R. Wills, ; John Trowsdale,
| |
Collapse
|
31
|
Crespo ÂC, van der Zwan A, Ramalho-Santos J, Strominger JL, Tilburgs T. Cytotoxic potential of decidual NK cells and CD8+ T cells awakened by infections. J Reprod Immunol 2017; 119:85-90. [PMID: 27523927 PMCID: PMC5290261 DOI: 10.1016/j.jri.2016.08.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/18/2016] [Accepted: 08/01/2016] [Indexed: 11/19/2022]
Abstract
To establish a healthy pregnancy the maternal immune system must tolerate fetal allo-antigens, yet remain competent to respond to infections. The ability of decidual NK cells (dNK) to promote migration of fetal extravillous trophoblasts (EVT) and placental growth as well as the capacity of EVT to promote immune tolerance are topics of high interest and extensive research. However, the problem of how dNK and decidual CD8+ T cells (CD8+ dT) provide immunity to infections of the placenta and the mechanisms that regulate their cytolytic function has thus far largely been ignored. Fetal EVT are the most invasive cells of the placenta and directly interact with maternal decidual immune cells at this maternal-fetal interface. Besides the expression of non-polymorphic HLA-E and HLA-G molecules that are associated with immune tolerance, EVT also express highly polymorphic HLA-C molecules that can serve as targets for maternal dNK and CD8+ dT responses. HLA-C expression by EVT has a dual role as the main molecule to which immune tolerance needs to be established and as the only molecule that can present pathogen-derived peptides and provide protective immunity when EVT are infected. The focus of this review is to address the regulation of cytotoxicity of dNK and CD8+ dT, which is essential for maternal-fetal immune tolerance as well as recent evidence that both cell types can provide immunity to infections at the maternal-fetal interface. A particular emphasis is given to the role of HLA-C expressed by EVT and its capacity to elicit dNK and CD8+ dT responses.
Collapse
Affiliation(s)
- Ângela C Crespo
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; PhD Program in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | - Anita van der Zwan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - João Ramalho-Santos
- Center for Neuroscience and Cell Biology and Department of Life Sciences, University of Coimbra, Portugal
| | - Jack L Strominger
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Tamara Tilburgs
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
32
|
Keib A, Günther PS, Faist B, Halenius A, Busch DH, Neuenhahn M, Jahn G, Dennehy KM. Presentation of a Conserved Adenoviral Epitope on HLA-C*0702 Allows Evasion of Natural Killer but Not T Cell Responses. Viral Immunol 2017; 30:149-156. [PMID: 28085643 DOI: 10.1089/vim.2016.0145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Infection with adenovirus is a major cause of infectious mortality in children following hematopoietic stem-cell transplantation. While adoptive transfer of epitope-specific T cells is a particularly effective therapeutic approach, there are few suitable adenoviral peptide epitopes described to date. Here, we describe the adenoviral peptide epitope FRKDVNMVL from hexon protein, and its variant FRKDVNMIL, that is restricted by human leukocyte antigen (HLA)-C*0702. Since HLA-C*0702 can be recognized by both T cells and natural killer (NK) cells, we characterized responses by both cell types. T cells specific for FRKDVNMVL were detected in peripheral blood mononuclear cells expanded from eight of ten healthy HLA-typed donors by peptide-HLA multimer staining, and could also be detected by cultured interferon γ ELISpot assays. Surprisingly, HLA-C*0702 was not downregulated during infection, in contrast to the marked downregulation of HLA-A*0201, suggesting that adenovirus cannot evade T cell responses to HLA-C*0702-restricted peptide epitopes. By contrast, NK responses were inhibited following adenoviral peptide presentation. Notably, presentation of the FRKDVNMVL peptide enhanced binding of HLA-C*0702 to the inhibitory receptor KIR2DL3 and decreased NK cytotoxic responses, suggesting that adenoviruses may use this peptide to evade NK responses. Given the immunodominance of FRKDVNMVL-specific T cell responses, apparent lack of HLA-C*0702 downregulation during infection, and the high frequency of this allotype, this peptide epitope may be particularly useful for adoptive T cell transfer therapy of adenovirus infection.
Collapse
Affiliation(s)
- Anna Keib
- 1 Institute for Medical Virology, University Hospital Tübingen , Tübingen, Germany
| | - Patrick S Günther
- 1 Institute for Medical Virology, University Hospital Tübingen , Tübingen, Germany
| | - Benjamin Faist
- 2 Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich , Munich, Germany
| | - Anne Halenius
- 3 Institute of Virology, University Hospital Freiburg , Freiburg, Germany
| | - Dirk H Busch
- 2 Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich , Munich, Germany .,4 German Center for Infection Research (DZIF) , Partner Sites Tübingen and Munich, Germany
| | - Michael Neuenhahn
- 2 Institute for Medical Microbiology, Immunology and Hygiene, Technical University Munich , Munich, Germany .,4 German Center for Infection Research (DZIF) , Partner Sites Tübingen and Munich, Germany
| | - Gerhard Jahn
- 1 Institute for Medical Virology, University Hospital Tübingen , Tübingen, Germany
| | - Kevin M Dennehy
- 1 Institute for Medical Virology, University Hospital Tübingen , Tübingen, Germany .,4 German Center for Infection Research (DZIF) , Partner Sites Tübingen and Munich, Germany
| |
Collapse
|
33
|
Proff J, Walterskirchen C, Brey C, Geyeregger R, Full F, Ensser A, Lehner M, Holter W. Cytomegalovirus-Infected Cells Resist T Cell Mediated Killing in an HLA-Recognition Independent Manner. Front Microbiol 2016; 7:844. [PMID: 27375569 PMCID: PMC4899442 DOI: 10.3389/fmicb.2016.00844] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/22/2016] [Indexed: 01/13/2023] Open
Abstract
In order to explore the potential of HLA-independent T cell therapy for human cytomegalovirus (HCMV) infections, we developed a chimeric antigen receptor (CAR) directed against the HCMV encoded glycoprotein B (gB), which is expressed at high levels on the surface of infected cells. T cells engineered with this anti-gB CAR recognized HCMV-infected cells and released cytokines and cytotoxic granules. Unexpectedly, and in contrast to analogous approaches for HIV, Hepatitis B or Hepatitis C virus, we found that HCMV-infected cells were resistant to killing by the CAR-modified T cells. In order to elucidate whether this phenomenon was restricted to the use of CARs, we extended our experiments to T cell receptor (TCR)-mediated recognition of infected cells. To this end we infected fibroblasts with HCMV-strains deficient in viral inhibitors of antigenic peptide presentation and targeted these HLA-class I expressing peptide-loaded infected cells with peptide-specific cytotoxic T cells (CTLs). Despite strong degranulation and cytokine production by the T cells, we again found significant inhibition of lysis of HCMV-infected cells. Impairment of cell lysis became detectable 1 day after HCMV infection and gradually increased during the following 3 days. We thus postulate that viral anti-apoptotic factors, known to inhibit suicide of infected host cells, have evolved additional functions to directly abrogate T cell cytotoxicity. In line with this hypothesis, CAR-T cell cytotoxicity was strongly inhibited in non-infected fibroblasts by expression of the HCMV-protein UL37x1, and even more so by additional expression of UL36. Our data extend the current knowledge on Betaherpesviral evasion from T cell immunity and show for the first time that, beyond impaired antigen presentation, infected cells are efficiently protected by direct blockade of cytotoxic effector functions through viral proteins.
Collapse
Affiliation(s)
- Julia Proff
- Children's Cancer Research Institute, St. Anna KinderkrebsforschungVienna, Austria; Children's University Hospital, Universitätsklinikum ErlangenErlangen, Germany
| | | | - Charlotte Brey
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung Vienna, Austria
| | - Rene Geyeregger
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung Vienna, Austria
| | - Florian Full
- Institute for Clinical and Molecular Virology, Universitätsklinikum ErlangenErlangen, Germany; Department of Microbiology, The University of ChicagoChicago, IL, USA
| | - Armin Ensser
- Institute for Clinical and Molecular Virology, Universitätsklinikum Erlangen Erlangen, Germany
| | - Manfred Lehner
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung Vienna, Austria
| | - Wolfgang Holter
- Children's Cancer Research Institute, St. Anna KinderkrebsforschungVienna, Austria; Department of Pediatrics, St. Anna Kinderspital, Medical University of ViennaVienna, Austria
| |
Collapse
|
34
|
Kaabinejadian S, McMurtrey CP, Kim S, Jain R, Bardet W, Schafer FB, Davenport JL, Martin AD, Diamond MS, Weidanz JA, Hansen TH, Hildebrand WH. Immunodominant West Nile Virus T Cell Epitopes Are Fewer in Number and Fashionably Late. THE JOURNAL OF IMMUNOLOGY 2016; 196:4263-73. [PMID: 27183642 DOI: 10.4049/jimmunol.1501821] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 03/20/2016] [Indexed: 12/23/2022]
Abstract
Class I HLA molecules mark infected cells for immune targeting by presenting pathogen-encoded peptides on the cell surface. Characterization of viral peptides unique to infected cells is important for understanding CD8(+) T cell responses and for the development of T cell-based immunotherapies. Having previously reported a series of West Nile virus (WNV) epitopes that are naturally presented by HLA-A*02:01, in this study we generated TCR mimic (TCRm) mAbs to three of these peptide/HLA complexes-the immunodominant SVG9 (E protein), the subdominant SLF9 (NS4B protein), and the immunorecessive YTM9 (NS3 protein)-and used these TCRm mAbs to stain WNV-infected cell lines and primary APCs. TCRm staining of WNV-infected cells demonstrated that the immunorecessive YTM9 appeared several hours earlier and at 5- to 10-fold greater density than the more immunogenic SLF9 and SVG9 ligands, respectively. Moreover, staining following inhibition of the TAP demonstrated that all three viral ligands were presented in a TAP-dependent manner despite originating from different cellular compartments. To our knowledge, this study represents the first use of TCRm mAbs to define the kinetics and magnitude of HLA presentation for a series of epitopes encoded by one virus, and the results depict a pattern whereby individual epitopes differ considerably in abundance and availability. The observations that immunodominant ligands can be found at lower levels and at later time points after infection suggest that a reevaluation of the factors that combine to shape T cell reactivity may be warranted.
Collapse
Affiliation(s)
- Saghar Kaabinejadian
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Curtis P McMurtrey
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Sojung Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110
| | - Rinki Jain
- Center for Immunotherapeutic Research, Texas Tech University Health Sciences Center School of Pharmacy, Abilene, TX 79601; Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center School of Pharmacy, Abilene, TX 79601; Receptor Logic, Inc., Abilene, TX 79601
| | - Wilfried Bardet
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Fredda B Schafer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | | | | | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110; Department of Medicine, Washington University School of Medicine, St Louis, MO 63110; and Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO 63110
| | - Jon A Weidanz
- Center for Immunotherapeutic Research, Texas Tech University Health Sciences Center School of Pharmacy, Abilene, TX 79601; Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center School of Pharmacy, Abilene, TX 79601; Receptor Logic, Inc., Abilene, TX 79601
| | - Ted H Hansen
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110
| | - William H Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104;
| |
Collapse
|
35
|
Schuren AB, Costa AI, Wiertz EJ. Recent advances in viral evasion of the MHC Class I processing pathway. Curr Opin Immunol 2016; 40:43-50. [PMID: 27065088 DOI: 10.1016/j.coi.2016.02.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/12/2016] [Accepted: 02/22/2016] [Indexed: 11/17/2022]
Abstract
T-cell mediated adaptive immunity against viruses relies on recognition of virus-derived peptides by CD4(+) and CD8(+) T cells. Detection of pathogen-derived peptide-MHC-I complexes triggers CD8(+) T cells to eliminate the infected cells. Viruses have evolved several mechanisms to avoid recognition, many of which target the MHC-I antigen-processing pathway. While many immune evasion strategies have been described in the context of herpesvirus infections, it is becoming clear that this 'disguise' ability is more widespread. Here, we address recent findings in viral evasion of the MHC-I antigen presentation pathway and the impact on CD8(+) T cell responses.
Collapse
Affiliation(s)
- Anouk Bc Schuren
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Ana I Costa
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel Jhj Wiertz
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
36
|
Ameres S, Liang X, Wiesner M, Mautner J, Moosmann A. A Diverse Repertoire of CD4 T Cells Targets the Immediate-Early 1 Protein of Human Cytomegalovirus. Front Immunol 2015; 6:598. [PMID: 26635812 PMCID: PMC4658442 DOI: 10.3389/fimmu.2015.00598] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/09/2015] [Indexed: 11/13/2022] Open
Abstract
T-cell responses to the immediate-early 1 (IE-1) protein of human cytomegalovirus (HCMV) are associated with protection from viral disease. Thus, IE-1 is a promising target for immunotherapy. CD8 T-cell responses to IE-1 are generally strong. In contrast, CD4 T-cell responses to IE-1 were described to be comparatively infrequent or undetectable in HCMV carriers, and information on their target epitopes and their function has been limited. To analyze the repertoire of IE-1-specific CD4 T cells, we expanded them from healthy donors with autologous IE-1-expressing mini-Epstein–Barr virus-transformed B-cell lines and established IE-1-specific CD4 T-cell clones. Clones from seven out of seven HCMV-positive donors recognized endogenously processed IE-1 epitopes restricted through HLA-DR, DQ, or DP. Three to seven IE-1 epitopes were recognized per donor. Cumulatively, about 27 different HLA/peptide class II complexes were recognized by 117 IE-1-specific clones. Our results suggest that a highly diversified repertoire of IE-1-specific CD4 T cells targeting multiple epitopes is usually present in healthy HCMV carriers. Therefore, multiepitope approaches to immunomonitoring and immunotherapy will make optimal use of this potentially important class of HCMV-specific effector cells.
Collapse
Affiliation(s)
- Stefanie Ameres
- Clinical Cooperation Group Immunooncology, Helmholtz Zentrum München and Ludwig-Maximilians-Universität , Munich , Germany
| | - Xiaoling Liang
- Clinical Cooperation Group Immunooncology, Helmholtz Zentrum München and Ludwig-Maximilians-Universität , Munich , Germany ; Research Group Host Control of Viral Latency and Reactivation, Helmholtz Zentrum München , Munich , Germany ; German Research Center for Infection Research (DZIF) , Munich , Germany
| | - Martina Wiesner
- Clinical Cooperation Group Immunooncology, Helmholtz Zentrum München and Ludwig-Maximilians-Universität , Munich , Germany
| | - Josef Mautner
- German Research Center for Infection Research (DZIF) , Munich , Germany ; Clinical Cooperation Group Pediatric Tumor Immunology, Helmholtz Zentrum München and Technische Universität München , Munich , Germany
| | - Andreas Moosmann
- Clinical Cooperation Group Immunooncology, Helmholtz Zentrum München and Ludwig-Maximilians-Universität , Munich , Germany ; Research Group Host Control of Viral Latency and Reactivation, Helmholtz Zentrum München , Munich , Germany ; German Research Center for Infection Research (DZIF) , Munich , Germany
| |
Collapse
|
37
|
Christiaansen A, Varga SM, Spencer JV. Viral manipulation of the host immune response. Curr Opin Immunol 2015; 36:54-60. [PMID: 26177523 DOI: 10.1016/j.coi.2015.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/01/2022]
Abstract
Viruses are obligate intracellular parasites that require a host for essential machinery to replicate and ultimately be transmitted to new susceptible hosts. At the same time, the immune system has evolved to protect the human body from invasion by viruses and other pathogens. To counter this, viruses have developed an arsenal of strategies to not only avoid immune detection but to actively manipulate host immune responses to create an environment more favorable for infection. Here, we describe recent advances uncovering novel mechanisms by which viruses skew host immune responses through modulation of cytokine and chemokine signaling networks, interference with antigen presentation and T cell responses, and preventing antibody production.
Collapse
Affiliation(s)
- Allison Christiaansen
- Department of Microbiology, The University of Iowa, 51 Newton Road, 3-532 Bowen Science Building, Iowa City, IA 52242, USA
| | - Steven M Varga
- Department of Microbiology, The University of Iowa, 51 Newton Road, 3-532 Bowen Science Building, Iowa City, IA 52242, USA; Department of Pathology, The University of Iowa, 51 Newton Road, 3-532 Bowen Science Building, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, The University of Iowa, 51 Newton Road, 3-532 Bowen Science Building, Iowa City, IA 52242, USA
| | - Juliet V Spencer
- Department of Biology, University of San Francisco, Harney Science Center, 2130 Fulton Street, San Francisco, CA 94117, USA.
| |
Collapse
|
38
|
Latent Membrane Protein LMP2A Impairs Recognition of EBV-Infected Cells by CD8+ T Cells. PLoS Pathog 2015; 11:e1004906. [PMID: 26067064 PMCID: PMC4465838 DOI: 10.1371/journal.ppat.1004906] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 04/22/2015] [Indexed: 01/04/2023] Open
Abstract
The common pathogen Epstein-Barr virus (EBV) transforms normal human B cells and can cause cancer. Latent membrane protein 2A (LMP2A) of EBV supports activation and proliferation of infected B cells and is expressed in many types of EBV-associated cancer. It is not clear how latent EBV infection and cancer escape elimination by host immunity, and it is unknown whether LMP2A can influence the interaction of EBV-infected cells with the immune system. We infected primary B cells with EBV deleted for LMP2A, and established lymphoblastoid cell lines (LCLs). We found that CD8+ T cell clones showed higher reactivity against LMP2A-deficient LCLs compared to LCLs infected with complete EBV. We identified several potential mediators of this immunomodulatory effect. In the absence of LMP2A, expression of some EBV latent antigens was elevated, and cell surface expression of MHC class I was marginally increased. LMP2A-deficient LCLs produced lower amounts of IL-10, although this did not directly affect CD8+ T cell recognition. Deletion of LMP2A led to several changes in the cell surface immunophenotype of LCLs. Specifically, the agonistic NKG2D ligands MICA and ULBP4 were increased. Blocking experiments showed that NKG2D activation contributed to LCL recognition by CD8+ T cell clones. Our results demonstrate that LMP2A reduces the reactivity of CD8+ T cells against EBV-infected cells, and we identify several relevant mechanisms. Epstein-Barr virus (EBV) is carried by most humans. It can cause several types of cancer. In healthy infected people, EBV persists for life in a "latent" state in white blood cells called B cells. For infected persons to remain healthy, it is crucial that they harbor CD8-positive "killer" T cells that recognize and destroy precancerous EBV-infected cells. However, this protection is imperfect, because the virus is not eliminated from the body, and the danger of EBV-associated cancer remains. How does the virus counteract CD8+ T cell control? Here we study the effects of latent membrane protein 2A (LMP2A), which is an important viral molecule because it is present in several types of EBV-associated cancers, and in latently infected cells in healthy people. We show that LMP2A counteracts the recognition of EBV-infected B cells by antiviral killer cells. We found a number of mechanisms that are relevant to this effect. Notably, LMP2A disturbs expression of molecules on B cells that interact with NKG2D, a molecule on the surface of CD8+ T cells that aids their activation. In this way, LMP2A weakens important immune responses against EBV. Similar mechanisms may operate in different types of LMP2A-expressing cancers caused by EBV.
Collapse
|
39
|
Xu J, Wu R, Xiang F, Kong Q, Hong J, Kang X. Diversified phenotype of antigen specific CD8+ T cells responding to the immunodominant epitopes of IE and pp65 antigens of human cytomegalovirus. Cell Immunol 2015; 295:105-11. [PMID: 25880101 DOI: 10.1016/j.cellimm.2015.03.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 03/21/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
To study the cytomegalovirus (CMV)-specific CD8+ T cells in individuals with HLA A*1101, A*0201 and A*2402, our findings showed that peptide SK-10-2, KI-10 and KV-10 of CMV IE and pp65 antigens were immunodominant in 198 individuals with HLA A*1101, A*0201 and A*2402, the most frequent genotypes in Chinese. Interestingly, SK-10-2 induced the strongest T cell response to produce IFN-γ whereas the others did not induce prominent IFN-γ production despite they all induced remarkable T cell proliferation. The peptides induced different phenotypes including IFN-γ(high)TNF-α(low) and TNF-α(low)Foxp3(low). It suggests that only some of CMV-reactive CD8+ T cells are real protective IFN-γ(high) cytotoxic T cells.
Collapse
Affiliation(s)
- Jian Xu
- Department of Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rong Wu
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fenfen Xiang
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qianqian Kong
- Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Hong
- Department of Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; LifeTek, Co. Ltd., Suzhou, China
| | - Xiangdong Kang
- Department of Central Laboratory, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Laboratory Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
40
|
Costa-Garcia M, Vera A, Moraru M, Vilches C, López-Botet M, Muntasell A. Antibody-mediated response of NKG2Cbright NK cells against human cytomegalovirus. THE JOURNAL OF IMMUNOLOGY 2015; 194:2715-24. [PMID: 25667418 DOI: 10.4049/jimmunol.1402281] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Human CMV (HCMV) infection promotes a variable and persistent expansion of functionally mature NKG2C(bright) NK cells. We analyzed NKG2C(bright) NK cell responses triggered by Abs from HCMV(+) sera against HCMV-infected MRC5 fibroblasts. Specific Abs promoted the degranulation (i.e., CD107a expression) and the production of cytokines (TNF-α and IFN-γ) by a significant fraction of NK cells, exceeding the low natural cytotoxicity against HCMV-infected targets. NK cell-mediated Ab-dependent cell-mediated cytotoxicity was limited by viral Ag availability and HLA class I expression on infected cells early postinfection and increased at late stages, overcoming viral immunoevasion strategies. Moreover, the presence of specific IgG triggered the activation of NK cells against Ab-opsonized cell-free HCMV virions. As compared with NKG2A(+) NK cells, a significant proportion of NKG2C(bright) NK cells was FcεR γ-chain defective and highly responsive to Ab-driven activation, being particularly efficient in the production of antiviral cytokines, mainly TNF-α. Remarkably, the expansion of NKG2C(bright) NK cells in HCMV(+) subjects was related to the overall magnitude of TNF-α and IFN-γ cytokine secretion upon Ab-dependent and -independent activation. We show the power and sensitivity of the anti-HCMV response resulting from the cooperation between specific Abs and the NKG2C(bright) NK-cell subset. Furthermore, we disclose the proinflammatory potential of NKG2C(bright) NK cells, a variable that could influence the individual responses to other pathogens and tumors.
Collapse
Affiliation(s)
| | - Andrea Vera
- Universitat Pompeu Fabra, 08002 Barcelona, Spain
| | - Manuela Moraru
- Instituto de Investigación Sanitaria Puerta de Hierro, 28222 Majadahonda, Spain; and
| | - Carlos Vilches
- Instituto de Investigación Sanitaria Puerta de Hierro, 28222 Majadahonda, Spain; and
| | - Miguel López-Botet
- Universitat Pompeu Fabra, 08002 Barcelona, Spain; Institut Hospital del Mar d'Investigacions Mèdiques, 08003 Barcelona, Spain
| | - Aura Muntasell
- Institut Hospital del Mar d'Investigacions Mèdiques, 08003 Barcelona, Spain
| |
Collapse
|
41
|
Gabaev I, Elbasani E, Ameres S, Steinbrück L, Stanton R, Döring M, Lenac Rovis T, Kalinke U, Jonjic S, Moosmann A, Messerle M. Expression of the human cytomegalovirus UL11 glycoprotein in viral infection and evaluation of its effect on virus-specific CD8 T cells. J Virol 2014; 88:14326-39. [PMID: 25275132 PMCID: PMC4249143 DOI: 10.1128/jvi.01691-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/25/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The human cytomegalovirus (CMV) UL11 open reading frame (ORF) encodes a putative type I transmembrane glycoprotein which displays remarkable amino acid sequence variability among different CMV isolates, suggesting that it represents an important virulence factor. In a previous study, we have shown that UL11 can interact with the cellular receptor tyrosine phosphatase CD45, which has a central role for signal transduction in T cells, and treatment of T cells with large amounts of a soluble UL11 protein inhibited their proliferation. In order to analyze UL11 expression in CMV-infected cells, we constructed CMV recombinants whose genomes either encode tagged UL11 versions or carry a stop mutation in the UL11 ORF. Moreover, we examined whether UL11 affects the function of virus-specific cytotoxic T lymphocytes (CTLs). We found that the UL11 ORF gives rise to several proteins due to both posttranslational modification and alternative translation initiation sites. Biotin labeling of surface proteins on infected cells indicated that only highly glycosylated UL11 forms are present at the plasma membrane, whereas less glycosylated UL11 forms were found in the endoplasmic reticulum. We did not find evidence of UL11 cleavage or secretion of a soluble UL11 version. Cocultivation of CTLs recognizing different CMV epitopes with fibroblasts infected with a UL11 deletion mutant or the parental strain revealed that under the conditions applied UL11 did not influence the activation of CMV-specific CD8 T cells. For further studies, we propose to investigate the interaction of UL11 with CD45 and the functional consequences in other immune cells expressing CD45. IMPORTANCE Human cytomegalovirus (CMV) belongs to those viruses that extensively interfere with the host immune response, yet the precise function of many putative immunomodulatory CMV proteins remains elusive. Previously, we have shown that the CMV UL11 protein interacts with the leukocyte common antigen CD45, a cellular receptor tyrosine phosphatase with a central role for signal transduction in T cells. Here, we examined the proteins expressed by the UL11 gene in CMV-infected cells and found that at least one form of UL11 is present at the cell surface, enabling it to interact with CD45 on immune cells. Surprisingly, CMV-expressed UL11 did not affect the activity of virus-specific CD8 T cells. This finding warrants investigation of the impact of UL11 on CD45 functions in other leukocyte subpopulations.
Collapse
Affiliation(s)
- Ildar Gabaev
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Endrit Elbasani
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Stefanie Ameres
- Clinical Cooperation Group Immunooncology, Helmholtz Centre Munich, Munich, Germany
| | - Lars Steinbrück
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Richard Stanton
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Marius Döring
- Centre for Experimental and Clinical Infection Research, Twincore, Hannover, Germany
| | - Tihana Lenac Rovis
- Department of Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ulrich Kalinke
- Centre for Experimental and Clinical Infection Research, Twincore, Hannover, Germany
| | - Stipan Jonjic
- Department of Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Andreas Moosmann
- Clinical Cooperation Group Immunooncology, Helmholtz Centre Munich, Munich, Germany German Center for Infection Research (DZIF), partner sites, Hannover and Munich, Germany
| | - Martin Messerle
- Department of Virology, Hannover Medical School, Hannover, Germany German Center for Infection Research (DZIF), partner sites, Hannover and Munich, Germany
| |
Collapse
|
42
|
Classical and non-classical MHC I molecule manipulation by human cytomegalovirus: so many targets—but how many arrows in the quiver? Cell Mol Immunol 2014; 12:139-53. [PMID: 25418469 PMCID: PMC4654289 DOI: 10.1038/cmi.2014.105] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/26/2014] [Accepted: 09/26/2014] [Indexed: 02/07/2023] Open
Abstract
Major mechanisms for the recognition of pathogens by immune cells have evolved to employ classical and non-classical major histocompatibility complex class I (MHC I) molecules. Classical MHC I molecules present antigenic peptide ligands on infected cells to CD8+ T cells, whereas a key function for non-classical MHC I molecules is to mediate inhibitory or activating stimuli in natural killer (NK) cells. The structural diversity of MHC I puts immense pressure on persisting viruses, including cytomegaloviruses. The very large coding capacity of the human cytomegalovirus allows it to express a whole arsenal of immunoevasive factors assigned to individual MHC class I targets. This review summarizes achievements from more than two decades of intense research on how human cytomegalovirus manipulates MHC I molecules and escapes elimination by the immune system.
Collapse
|
43
|
Kaposi's sarcoma-associated herpesvirus K3 and K5 ubiquitin E3 ligases have stage-specific immune evasion roles during lytic replication. J Virol 2014; 88:9335-49. [PMID: 24899205 DOI: 10.1128/jvi.00873-14] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
UNLABELLED The downregulation of immune synapse components such as major histocompatibility complex class I (MHC-I) and ICAM-1 is a common viral immune evasion strategy that protects infected cells from targeted elimination by cytolytic effector functions of the immune system. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes two membrane-bound ubiquitin E3 ligases, called K3 and K5, which share the ability to induce internalization and degradation of MHC-I molecules. Although individual functions of K3 and K5 outside the viral genome are well characterized, their roles during the KSHV life cycle are still unclear. In this study, we individually introduced the amino acid-coding sequences of K3 or K5 into a ΔK3 ΔK5 recombinant virus, at either original or interchanged genomic positions. Recombinants harboring coding sequences within the K5 locus showed higher K3 and K5 protein expression levels and more rapid surface receptor downregulation than cognate recombinants in which coding sequences were introduced into the K3 locus. To identify infected cells undergoing K3-mediated downregulation of MHC-I, we employed a novel reporter virus, called red-green-blue-BAC16 (RGB-BAC16), which was engineered to harbor three fluorescent protein expression cassettes: EF1α-monomeric red fluorescent protein 1 (mRFP1), polyadenylated nuclear RNA promoter (pPAN)-enhanced green fluorescent protein (EGFP), and pK8.1-monomeric blue fluorescent protein (tagBFP), marking latent, immediate early, and late viral gene expression, respectively. Analysis of RGB-derived K3 and K5 deletion mutants showed that while the K5-mediated downregulation of MHC-I was concomitant with pPAN induction, the reduction of MHC-I surface expression by K3 was evident in cells that were enriched for pPAN-driven EGFP(high) and pK8.1-driven blue fluorescent protein-positive (BFP(+)) populations. These data support the notion that immunoreceptor downregulation occurs by a sequential process wherein K5 is critical during the immediately early phase and K3 plays a significant role during later stages. IMPORTANCE Although the roles of K3 and K5 outside the viral genome are well characterized, the function of these proteins in the context of the KSHV life cycle has remained unclear, particularly in the case of K3. This study examined the relative contributions of K3 and K5 to the downregulation of MHC-I during the lytic replication of KSHV. We show that while K5 acts immediately upon entry into the lytic phase, K3-mediated downregulation of MHC-I was evident during later stages of lytic replication. The identification of distinctly timed K3 and K5 activities significantly advances our understanding of KSHV-mediated immune evasion. Crucial to this study was the development of a novel recombinant KSHV, called RGB-BAC16, which facilitated the delineation of stage-specific phenotypes.
Collapse
|
44
|
Ameres S, Besold K, Plachter B, Moosmann A. CD8 T cell-evasive functions of human cytomegalovirus display pervasive MHC allele specificity, complementarity, and cooperativity. THE JOURNAL OF IMMUNOLOGY 2014; 192:5894-905. [PMID: 24808364 DOI: 10.4049/jimmunol.1302281] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunoevasive proteins ("evasins") of human CMV (HCMV) modulate stability and localization of MHC class I (MHC I) molecules, and their supply of antigenic peptides. However, it is largely unknown to what extent these evasins interfere with recognition by virus-specific CD8 T cells. We analyzed the recognition of HCMV-infected cells by a panel of CD8 T cells restricted through one of nine different MHC I allotypes. We employed a set of HCMV mutants deleted for three or all four of the MHC I modulatory genes US2, US3, US6, and US11. We found that different HCMV evasins exhibited different allotype-specific patterns of interference with CD8 T cell recognition of infected cells. In contrast, recognition of different epitopes presented by the same given MHC I allotype was uniformly reduced. For some allotypes, single evasins largely abolished T cell recognition; for others, a concerted action of evasins was required to abrogate recognition. In infected cells whose Ag presentation efficiency had been enhanced by IFN-γ pretreatment, HCMV evasins cooperatively impared T cell recognition for several different MHC I allotypes. T cell recognition and MHC I surface expression under influence of evasins were only partially congruent, underscoring the necessity to probe HCMV immunomodulation using specific T cells. We conclude that the CD8 T cell evasins of HCMV display MHC I allotype specificity, complementarity, and cooperativity.
Collapse
Affiliation(s)
- Stefanie Ameres
- Klinische Kooperationsgruppe Immunonkologie, Medizinische Klinik III, Klinikum der Universität München, 81377 Munich, Germany; Abteilung Genvektoren, Helmholtz Zentrum München, 81377 Munich, Germany; German Center for Infection Research, 81675 Munich, Germany; and
| | - Katrin Besold
- Institut für Virologie, Universitätsmedizin der Johannes-Gutenberg-Universität Mainz, 55131 Mainz, Germany
| | - Bodo Plachter
- Institut für Virologie, Universitätsmedizin der Johannes-Gutenberg-Universität Mainz, 55131 Mainz, Germany
| | - Andreas Moosmann
- Klinische Kooperationsgruppe Immunonkologie, Medizinische Klinik III, Klinikum der Universität München, 81377 Munich, Germany; Abteilung Genvektoren, Helmholtz Zentrum München, 81377 Munich, Germany; German Center for Infection Research, 81675 Munich, Germany; and
| |
Collapse
|
45
|
Pretransplant CD8 T-Cell Response to IE-1 Discriminates Seropositive Kidney Recipients at Risk of Developing CMV Infection Posttransplant. Transplantation 2014; 97:839-45. [DOI: 10.1097/01.tp.0000438025.96334.eb] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Braendstrup P, Mortensen BK, Justesen S, Østerby T, Rasmussen M, Hansen AM, Christiansen CB, Hansen MB, Nielsen M, Vindeløv L, Buus S, Stryhn A. Identification and HLA-tetramer-validation of human CD4+ and CD8+ T cell responses against HCMV proteins IE1 and IE2. PLoS One 2014; 9:e94892. [PMID: 24760079 PMCID: PMC3997423 DOI: 10.1371/journal.pone.0094892] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/20/2014] [Indexed: 01/26/2023] Open
Abstract
Human cytomegalovirus (HCMV) is an important human pathogen. It is a leading cause of congenital infection and a leading infectious threat to recipients of solid organ transplants as well as of allogeneic hematopoietic cell transplants. Moreover, it has recently been suggested that HCMV may promote tumor development. Both CD4+ and CD8+ T cell responses are important for long-term control of the virus, and adoptive transfer of HCMV-specific T cells has led to protection from reactivation and HCMV disease. Identification of HCMV-specific T cell epitopes has primarily focused on CD8+ T cell responses against the pp65 phosphoprotein. In this study, we have focused on CD4+ and CD8+ T cell responses against the immediate early 1 and 2 proteins (IE1 and IE2). Using overlapping peptides spanning the entire IE1 and IE2 sequences, peripheral blood mononuclear cells from 16 healthy, HLA-typed, donors were screened by ex vivo IFN-γ ELISpot and in vitro intracellular cytokine secretion assays. The specificities of CD4+ and CD8+ T cell responses were identified and validated by HLA class II and I tetramers, respectively. Eighty-one CD4+ and 44 CD8+ T cell responses were identified representing at least seven different CD4 epitopes and 14 CD8 epitopes restricted by seven and 11 different HLA class II and I molecules, respectively, in total covering 91 and 98% of the Caucasian population, respectively. Presented in the context of several different HLA class II molecules, two epitope areas in IE1 and IE2 were recognized in about half of the analyzed donors. These data may be used to design a versatile anti-HCMV vaccine and/or immunotherapy strategy.
Collapse
Affiliation(s)
- Peter Braendstrup
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Allogeneic Hematopoietic Cell Transplantation Laboratory, Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Bo Kok Mortensen
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- The Allogeneic Hematopoietic Cell Transplantation Laboratory, Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sune Justesen
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Østerby
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Rasmussen
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Martin Hansen
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Claus Bohn Christiansen
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Bagge Hansen
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Morten Nielsen
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, Lyngby, Denmark and Instituto de Investigaciones Biotecnológicas, Universidad de San Martín, San Martín, Buenos Aires, Argentina
| | - Lars Vindeløv
- The Allogeneic Hematopoietic Cell Transplantation Laboratory, Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Søren Buus
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anette Stryhn
- Laboratory of Experimental Immunology, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
47
|
López-Botet M, Muntasell A, Vilches C. The CD94/NKG2C+ NK-cell subset on the edge of innate and adaptive immunity to human cytomegalovirus infection. Semin Immunol 2014; 26:145-51. [DOI: 10.1016/j.smim.2014.03.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/12/2014] [Accepted: 03/03/2014] [Indexed: 11/16/2022]
|
48
|
Sukdolak C, Tischer S, Dieks D, Figueiredo C, Goudeva L, Heuft HG, Verboom M, Immenschuh S, Heim A, Borchers S, Mischak-Weissinger E, Blasczyk R, Maecker-Kolhoff B, Eiz-Vesper B. CMV-, EBV- and ADV-specific T cell immunity: screening and monitoring of potential third-party donors to improve post-transplantation outcome. Biol Blood Marrow Transplant 2013; 19:1480-92. [PMID: 23891747 DOI: 10.1016/j.bbmt.2013.07.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 07/15/2013] [Indexed: 11/25/2022]
Abstract
Adoptive immunotherapy with virus-specific T lymphocytes can efficiently reconstitute antiviral immunity against cytomegalovirus (CMV), Epstein-Barr virus (EBV), and adenovirus (ADV) without causing acute toxicity or increasing the risk of graft-versus-host disease. To gain insight into antiviral T cell repertoires and to identify the most efficient antigens for immunotherapy, the frequencies of CMV-, EBV- and ADV-specific T cells in 204 HLA-typed healthy donors were assessed using viral peptides and peptide pools. Confirmatory testing for CMV serology by Western blot technique revealed 19 of 143 (13%) false-positive results. We observed highly significant individual and overall differences in T cell frequencies against CMV, EBV, and ADV antigens, whereas antigen-specific T cells were detected in 100% of CMV- seropositive donors, 73% of EBV- seropositive donors, and 73% of ADV-seropositive donors. At least 124 (61%) potential T cell donors were identified for each virus. Among the tested antigens, frequencies for CMVpp65 and EBVBZLF1 peptide pools were highest. Short-term in vitro peptide stimulation revealed that a donor response to a certain ADV- and EBV-derived peptide may not be determined without prior stimulation. A modified granzyme B ELISpot was used to detect T cell specificity and alloreactivity. Treatment with allogeneic virus-specific cytotoxic T lymphocytes from seropositive third-party donors may be a feasible therapeutic option for infections following cord-blood stem cell transplantation or hematopoietic stem cell transplantation from virus-seronegative donors.
Collapse
Affiliation(s)
- Cinja Sukdolak
- Institute for Transfusion Medicine, Hannover Medical School, Hannover, Germany; Integrated Research and Treatment Center (IFB-Tx), Hannover Medical School, Hannover, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|