1
|
Pan X, Sun Y, Liu J, Chen R, Zhang Z, Li C, Yao H, Ma J. A bacterial RING ubiquitin ligase triggering stepwise degradation of BRISC via TOLLIP-mediated selective autophagy manipulates host inflammatory response. Autophagy 2025; 21:1353-1372. [PMID: 40013521 DOI: 10.1080/15548627.2025.2468140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 02/06/2025] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
Numerous bacterial pathogens have evolved tactics to interfere with the host ubiquitination network to evade clearance by the innate immune system. Nevertheless, the subtle antagonism between a bacterial ubiquitinase and a host deubiquitinase, through which they modify their respective targets within a multifaceted network, has yet to be characterized. BRCC3 isopeptidase complex (BRISC) is a newly identified K63-specific deubiquitinase complex that plays a crucial role in cellular signaling pathways such as inflammation. NleG, a type III secretion system (T3SS) effector, contains a conserved RING E3 ubiquitin ligase domain that interacts with host ubiquitination machinery, along with a distinct substrate-recognition domain that targets host proteins. Here, one particular variant, NleG6, was identified as mediating K27- and K29-linked polyubiquitination at residues K89 and K114 of ABRAXAS2/FAM175B, a scaffolding protein within the BRISC complex, leading to its degradation through TOLLIP (toll interacting protein)-mediated selective autophagy. Further investigations elucidated that ABRAXAS2 degradation triggered the subsequent degradation of adjacent BRCC3, which in turn, hindered TNIP1/ABIN1 degradation, ultimately inhibiting NFKB/NF-κB (nuclear factor kappa B)-mediated inflammatory responses. This chain of events offers valuable insights into the NFKB activation by the K63-specific deubiquitinating role of BRISC, unveiling how bacteria manipulate ubiquitin regulation and selective autophagy within the BRISC network to inhibit the host's inflammatory response and thus dominate a pathogen-host tug-of-war.Abbreviations: 3-MA: 3-methyladenine; A/E: attaching and effacing; ATG7: autophagy related 7; BafA1: bafilomycin A1; BNIP3L/Nix: BCL2 interacting protein 3 like; BRISC: BRCC3 isopeptidase complex; Cas9: CRISPR-associated system 9; co-IP: co-immunoprecipitation; CQ: chloroquine; CRISPR: clustered regulatory interspaced short palindromic repeat; DAPI: 4',6-diamidino2-phenylindole; DMSO: dimethyl sulfoxide; DUB: deubiquitinating enzyme; E. coli: Escherichia coli; EHEC: enterohemorrhagic Escherichia coli; EPEC: enteropathogenic Escherichia coli; GFP: green fluorescent protein; LEE: locus of enterocyte effacement; MAP1LC3B/LC3: microtubule associated protein 1 light chain 3 beta; MG132: cbz-leu-leu-leucinal; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; NC: negative control; NFKB/NF-κB: nuclear factor kappa B; NH4Cl: ammonium chloride; OPTN: optineurin; SQSTM1/p62: sequestosome 1; sgRNAs: small guide RNAs; T3SS: type III secretion system; TNF: tumor necrosis factor; TOLLIP: toll interacting protein; TRAF: TNF receptor associated factor; TUBB: tubulin beta class I; WCL: whole cell lysate; WT: wide type.
Collapse
Affiliation(s)
- Xinming Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Bacterial Pathogenesis Research Group, Nanjing, China
| | - Yangyang Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
| | - Jianan Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Bacterial Pathogenesis Research Group, Nanjing, China
| | - Rong Chen
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Bacterial Pathogenesis Research Group, Nanjing, China
| | - Zhen Zhang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Bacterial Pathogenesis Research Group, Nanjing, China
| | - Caiying Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Bacterial Pathogenesis Research Group, Nanjing, China
| | - Huochun Yao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Bacterial Pathogenesis Research Group, Nanjing, China
| | - Jiale Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing, China
- WOAH Reference Lab for Swine Streptococcosis, Bacterial Pathogenesis Research Group, Nanjing, China
| |
Collapse
|
2
|
Cai JL, Zhang Y, Gao H, Wang Q, Huang W, Cai YJ, Jia WX, Wang JJ, Chen X, Sun HY. Molecular characterization, expression pattern and the function of TRAF2 from blood parrot Amphilophus citrinellus ×Vieja melanura response to LPS stimulation. FISH & SHELLFISH IMMUNOLOGY 2025; 163:110362. [PMID: 40280260 DOI: 10.1016/j.fsi.2025.110362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
Tumor necrosis factor receptor-associated factor (TRAF) family is a critical signal transduction protein, and plays important roles in cell growth, apoptosis, and immune response, etc. In this study, molecular characteristics, expression patterns, and the role of TRAF2 in blood parrot Vieja synspila ♀ × Amphilophus citrinellus ♂, an important ornamental fish, were explored response to lipopolysaccharide (LPS) challenge. The full length of blood parrot TRAF2 was 2725 bp, with an open reading frame (ORF) of 1551 bp encoding 516 amino acids, and a molecular weight of 58.58 kDa. Blood parrot TRAF2 contained four conserved domains: RING, TRAF-type zinc finger, TRAF_BIRC3_bd, and MATH (Meprin and TRAF-C homology). Analysis of phylogenetic relationships showed that TRAF2 were conserved in different species, indicating that its role might be similar. Blood parrot TRAF2 mRNA could be detected in all of the tissues examined, and was distributed in both the cytoplasm and nucleus. The expression of blood parrot TRAF2 was up-regulated during LPS challenge. Overexpression of TRAF2 could significantly inhibit the activities of nuclear factor κB (NF-κB) and activated protein 1 (AP-1), and reduce the ratio of Bax/Bcl-2. This study indicated that the TRAF2 might play important roles in organisms during pathogen infection.
Collapse
Affiliation(s)
- Jie-Li Cai
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yue Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hui Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qi Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wei Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yi-Jie Cai
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wei-Xin Jia
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jun-Jie Wang
- School of Life Sciences, South China Normal University, Guangzhou, Guangdong, China.
| | - Xiao Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Hong-Yan Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Guryanova SV. Bacteria and Allergic Diseases. Int J Mol Sci 2024; 25:10298. [PMID: 39408628 PMCID: PMC11477026 DOI: 10.3390/ijms251910298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Microorganisms colonize all barrier tissues and are present on the skin and all mucous membranes from birth. Bacteria have many ways of influencing the host organism, including activation of innate immunity receptors by pathogen-associated molecular patterns and synthesis of various chemical compounds, such as vitamins, short-chain fatty acids, bacteriocins, toxins. Bacteria, using extracellular vesicles, can also introduce high-molecular compounds, such as proteins and nucleic acids, into the cell, regulating the metabolic pathways of the host cells. Epithelial cells and immune cells recognize bacterial bioregulators and, depending on the microenvironment and context, determine the direction and intensity of the immune response. A large number of factors influence the maintenance of symbiotic microflora, the diversity of which protects hosts against pathogen colonization. Reduced bacterial diversity is associated with pathogen dominance and allergic diseases of the skin, gastrointestinal tract, and upper and lower respiratory tract, as seen in atopic dermatitis, allergic rhinitis, chronic rhinosinusitis, food allergies, and asthma. Understanding the multifactorial influence of microflora on maintaining health and disease determines the effectiveness of therapy and disease prevention and changes our food preferences and lifestyle to maintain health and active longevity.
Collapse
Affiliation(s)
- Svetlana V. Guryanova
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; ; Tel.: +7-(915)3150073
- Medical Institute, Peoples’ Friendship University of Russia, 117198 Moscow, Russia
| |
Collapse
|
4
|
Embry A, Baggett NS, Heisler DB, White A, de Jong MF, Kocsis BL, Tomchick DR, Alto NM, Gammon DB. Exploiting bacterial effector proteins to uncover evolutionarily conserved antiviral host machinery. PLoS Pathog 2024; 20:e1012010. [PMID: 38753575 PMCID: PMC11098378 DOI: 10.1371/journal.ppat.1012010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/11/2024] [Indexed: 05/18/2024] Open
Abstract
Arboviruses are a diverse group of insect-transmitted pathogens that pose global public health challenges. Identifying evolutionarily conserved host factors that combat arbovirus replication in disparate eukaryotic hosts is important as they may tip the balance between productive and abortive viral replication, and thus determine virus host range. Here, we exploit naturally abortive arbovirus infections that we identified in lepidopteran cells and use bacterial effector proteins to uncover host factors restricting arbovirus replication. Bacterial effectors are proteins secreted by pathogenic bacteria into eukaryotic hosts cells that can inhibit antimicrobial defenses. Since bacteria and viruses can encounter common host defenses, we hypothesized that some bacterial effectors may inhibit host factors that restrict arbovirus replication in lepidopteran cells. Thus, we used bacterial effectors as molecular tools to identify host factors that restrict four distinct arboviruses in lepidopteran cells. By screening 210 effectors encoded by seven different bacterial pathogens, we identify several effectors that individually rescue the replication of all four arboviruses. We show that these effectors encode diverse enzymatic activities that are required to break arbovirus restriction. We further characterize Shigella flexneri-encoded IpaH4 as an E3 ubiquitin ligase that directly ubiquitinates two evolutionarily conserved proteins, SHOC2 and PSMC1, promoting their degradation in insect and human cells. We show that depletion of either SHOC2 or PSMC1 in insect or human cells promotes arbovirus replication, indicating that these are ancient virus restriction factors conserved across invertebrate and vertebrate hosts. Collectively, our study reveals a novel pathogen-guided approach to identify conserved antimicrobial machinery, new effector functions, and conserved roles for SHOC2 and PSMC1 in virus restriction.
Collapse
Affiliation(s)
- Aaron Embry
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United State of America
| | - Nina S. Baggett
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United State of America
| | - David B. Heisler
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United State of America
| | - Addison White
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United State of America
| | - Maarten F. de Jong
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United State of America
| | - Benjamin L. Kocsis
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United State of America
| | - Diana R. Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, United State of America
| | - Neal M. Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United State of America
| | - Don B. Gammon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United State of America
| |
Collapse
|
5
|
Deng Q, Yang S, Huang K, Zhu Y, Sun L, Cao Y, Dong K, Li Y, Wu S, Huang R. NLRP6 induces RIP1 kinase-dependent necroptosis via TAK1-mediated p38 MAPK/MK2 phosphorylation in S. typhimurium infection. iScience 2024; 27:109339. [PMID: 38500819 PMCID: PMC10945251 DOI: 10.1016/j.isci.2024.109339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 11/16/2023] [Accepted: 02/22/2024] [Indexed: 03/20/2024] Open
Abstract
Programmed cell death (PCD) is tightly orchestrated by molecularly defined executors and signaling pathways. NLRP6, a member of cytoplasmic pattern recognition receptors, has a multifaceted role in host resistance to bacterial infection. However, whether and how NLRP6 may contribute to regulate host PCD during Gram-negative bacterial infection remain to be illuminated. Here, we report that NLRP6 promotes RIP1 kinase-mediated necroptosis, a form of lytic PCD, in both an in vitro and in vivo model of Salmonella typhimurium infection. By downregulating TAK1-mediated p38MAPK/MK2 phosphorylation, NLRP6 decreased RIP1 phosphorylation at residue S321 and subsequently increased RIP1 kinase-dependent MLKL phosphorylation. Suppression of p38MAPK/MK2 cascade not only reduced the number of dead cells caused by NLRP6 but also decreased the systemic dissemination of S. typhimurium resulting from NLRP6. Taken together, our findings provide new insights into the role and regulatory mechanism of NLRP6-associated antimicrobial responses by revealing a function for NLRP6 in regulating necroptosis.
Collapse
Affiliation(s)
- Qifeng Deng
- Department of Medical Microbiology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong 510275, P.R. China
| | - Sidi Yang
- Guangzhou National Laboratory, Guangzhou International Bio Island, Guangzhou, Guangdong 510005, P.R. China
| | - Kai Huang
- Orthopaedic Institute, Wuxi 9th People’s Hospital Affiliated to Soochow University, Wuxi, Jiangsu 214062, P.R. China
| | - Yuan Zhu
- Department of Medical Microbiology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
- Department of Laboratory Medicine, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Lanqing Sun
- Department of Medical Microbiology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214000, P.R. China
| | - Yu Cao
- Department of Medical Microbiology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Kedi Dong
- Department of Medical Microbiology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
- Department of Blood Transfusion, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang 315010, P.R. China
| | - Yuanyuan Li
- Experimental Center, Suzhou Medical College of Soochow University, No. 199, Ren Ai Road, Suzhou, Jiangsu 215123, P.R. China
| | - Shuyan Wu
- Department of Medical Microbiology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| | - Rui Huang
- Department of Medical Microbiology, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, P.R. China
| |
Collapse
|
6
|
Byerly CD, Zhu B, Warwick PA, Patterson LL, Pittner NA, McBride JW. Ehrlichia chaffeensis TRP120 ubiquitinates tumor suppressor APC to modulate Hippo and Wnt signaling. Front Cell Dev Biol 2024; 12:1327418. [PMID: 38562145 PMCID: PMC10982408 DOI: 10.3389/fcell.2024.1327418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Ehrlichia chaffeensis: TRP120 is a multifunctional effector that acts as a ligand mimic to activate evolutionary conserved eukaryotic signaling pathways Notch, Wnt, Hedgehog and Hippo. In addition, TRP120 is also a HECT E3 ubiquitin ligase known to ubiquitinate several host cell regulatory proteins (FBW7, PCGF5 and ENO-1) for degradation. We previously determined that TRP120 ubiquitinates the Notch negative regulator, FBW7, to maintain Notch signaling and promote infection. In this study, we investigated a potential mechanism used by Ehrlichia chaffeensis to maintain Hippo and Wnt signaling by ubiquitinating the tumor suppressor, adenomatous polyposis coli (APC), a negative regulator of Wnt and Hippo signaling. We determined that APC was rapidly degraded during E. chaffeensis infection despite increased APC transcription. Moreover, RNAi knockdown of APC significantly increased E. chaffeensis infection and coincided with increased active Yap and β-catenin in the nucleus. We observed strong nuclear colocalization between TRP120 and APC in E. chaffeensis-infected THP-1 cells and after ectopic expression of TRP120 in HeLa cells. Additionally, TRP120 interacted with both APC full length and truncated isoforms via co-immunoprecipitation. Further, TRP120 ubiquitination of APC was demonstrated in vitro and confirmed by ectopic expression of a TRP120 HECT Ub ligase catalytic site mutant. This study identifies APC as a TRP120 HECT E3 Ub ligase substrate and demonstrates that TRP120 ligase activity promotes ehrlichial infection by degrading tumor suppressor APC to positively regulate Hippo and Wnt signaling.
Collapse
Affiliation(s)
| | | | | | | | | | - Jere W. McBride
- Departments of Pathology, Microbiology and Immunology, Center for Biodefense and Emerging Infectious Diseases, Sealy Institute for Vaccine Sciences and Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
7
|
Embry A, Baggett NS, Heisler DB, White A, de Jong MF, Kocsis BL, Tomchick DR, Alto NM, Gammon DB. Exploiting Bacterial Effector Proteins to Uncover Evolutionarily Conserved Antiviral Host Machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577891. [PMID: 38352400 PMCID: PMC10862796 DOI: 10.1101/2024.01.29.577891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Arboviruses are a diverse group of insect-transmitted pathogens that pose global public health challenges. Identifying evolutionarily conserved host factors that combat arbovirus replication in disparate eukaryotic hosts is important as they may tip the balance between productive and abortive viral replication, and thus determine virus host range. Here, we exploit naturally abortive arbovirus infections that we identified in lepidopteran cells and use bacterial effector proteins to uncover host factors restricting arbovirus replication. Bacterial effectors are proteins secreted by pathogenic bacteria into eukaryotic hosts cells that can inhibit antimicrobial defenses. Since bacteria and viruses can encounter common host defenses, we hypothesized that some bacterial effectors may inhibit host factors that restrict arbovirus replication in lepidopteran cells. Thus, we used bacterial effectors as molecular tools to identify host factors that restrict four distinct arboviruses in lepidopteran cells. By screening 210 effectors encoded by seven different bacterial pathogens, we identify six effectors that individually rescue the replication of all four arboviruses. We show that these effectors encode diverse enzymatic activities that are required to break arbovirus restriction. We further characterize Shigella flexneri-encoded IpaH4 as an E3 ubiquitin ligase that directly ubiquitinates two evolutionarily conserved proteins, SHOC2 and PSMC1, promoting their degradation in insect and human cells. We show that depletion of either SHOC2 or PSMC1 in insect or human cells promotes arbovirus replication, indicating that these are ancient virus restriction factors conserved across invertebrate and vertebrate hosts. Collectively, our study reveals a novel pathogen-guided approach to identify conserved antimicrobial machinery, new effector functions, and conserved roles for SHOC2 and PSMC1 in virus restriction.
Collapse
Affiliation(s)
- Aaron Embry
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nina S. Baggett
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David B. Heisler
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Addison White
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Maarten F. de Jong
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Benjamin L. Kocsis
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Diana R. Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Neal M. Alto
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Don B. Gammon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Bialek W, Collawn JF, Bartoszewski R. Ubiquitin-Dependent and Independent Proteasomal Degradation in Host-Pathogen Interactions. Molecules 2023; 28:6740. [PMID: 37764516 PMCID: PMC10536765 DOI: 10.3390/molecules28186740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Ubiquitin, a small protein, is well known for tagging target proteins through a cascade of enzymatic reactions that lead to protein degradation. The ubiquitin tag, apart from its signaling role, is paramount in destabilizing the modified protein. Here, we explore the complex role of ubiquitin-mediated protein destabilization in the intricate proteolysis process by the 26S proteasome. In addition, the significance of the so-called ubiquitin-independent pathway and the role of the 20S proteasome are considered. Next, we discuss the ubiquitin-proteasome system's interplay with pathogenic microorganisms and how the microorganisms manipulate this system to establish infection by a range of elaborate pathways to evade or counteract host responses. Finally, we focus on the mechanisms that rely either on (i) hijacking the host and on delivering pathogenic E3 ligases and deubiquitinases that promote the degradation of host proteins, or (ii) counteracting host responses through the stabilization of pathogenic effector proteins.
Collapse
Affiliation(s)
- Wojciech Bialek
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, 50-383 Wrocław, Poland
| | - James F. Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Rafal Bartoszewski
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| |
Collapse
|
9
|
Roberts CG, Franklin TG, Pruneda JN. Ubiquitin-targeted bacterial effectors: rule breakers of the ubiquitin system. EMBO J 2023; 42:e114318. [PMID: 37555693 PMCID: PMC10505922 DOI: 10.15252/embj.2023114318] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/10/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Regulation through post-translational ubiquitin signaling underlies a large portion of eukaryotic biology. This has not gone unnoticed by invading pathogens, many of which have evolved mechanisms to manipulate or subvert the host ubiquitin system. Bacteria are particularly adept at this and rely heavily upon ubiquitin-targeted virulence factors for invasion and replication. Despite lacking a conventional ubiquitin system of their own, many bacterial ubiquitin regulators loosely follow the structural and mechanistic rules established by eukaryotic ubiquitin machinery. Others completely break these rules and have evolved novel structural folds, exhibit distinct mechanisms of regulation, or catalyze foreign ubiquitin modifications. Studying these interactions can not only reveal important aspects of bacterial pathogenesis but also shed light on unexplored areas of ubiquitin signaling and regulation. In this review, we discuss the methods by which bacteria manipulate host ubiquitin and highlight aspects that follow or break the rules of ubiquitination.
Collapse
Affiliation(s)
- Cameron G Roberts
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Tyler G Franklin
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| | - Jonathan N Pruneda
- Department of Molecular Microbiology & ImmunologyOregon Health & Science UniversityPortlandORUSA
| |
Collapse
|
10
|
Roncaioli JL, Babirye JP, Chavez RA, Liu FL, Turcotte EA, Lee AY, Lesser CF, Vance RE. A hierarchy of cell death pathways confers layered resistance to shigellosis in mice. eLife 2023; 12:e83639. [PMID: 36645406 PMCID: PMC9876568 DOI: 10.7554/elife.83639] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/15/2023] [Indexed: 01/17/2023] Open
Abstract
Bacteria of the genus Shigella cause shigellosis, a severe gastrointestinal disease driven by bacterial colonization of colonic intestinal epithelial cells. Vertebrates have evolved programmed cell death pathways that sense invasive enteric pathogens and eliminate their intracellular niche. Previously we reported that genetic removal of one such pathway, the NAIP-NLRC4 inflammasome, is sufficient to convert mice from resistant to susceptible to oral Shigella flexneri challenge (Mitchell et al., 2020). Here, we investigate the protective role of additional cell death pathways during oral mouse Shigella infection. We find that the Caspase-11 inflammasome, which senses Shigella LPS, restricts Shigella colonization of the intestinal epithelium in the absence of NAIP-NLRC4. However, this protection is limited when Shigella expresses OspC3, an effector that antagonizes Caspase-11 activity. TNFα, a cytokine that activates Caspase-8-dependent apoptosis, also provides potent protection from Shigella colonization of the intestinal epithelium when mice lack both NAIP-NLRC4 and Caspase-11. The combined genetic removal of Caspases-1, -11, and -8 renders mice hyper-susceptible to oral Shigella infection. Our findings uncover a layered hierarchy of cell death pathways that limit the ability of an invasive gastrointestinal pathogen to cause disease.
Collapse
Affiliation(s)
- Justin L Roncaioli
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Janet Peace Babirye
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Roberto A Chavez
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Fitty L Liu
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Elizabeth A Turcotte
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Angus Y Lee
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
| | - Cammie F Lesser
- Department of Microbiology, Harvard Medical SchoolBostonUnited States
- Broad Institute of Harvard and MITCambridgeUnited States
- Department of Medicine, Division of Infectious Diseases, Massachusetts General HospitalBostonUnited States
| | - Russell E Vance
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, BerkeleyBerkeleyUnited States
- Cancer Research Laboratory, University of California, BerkeleyBerkeleyUnited States
- Immunotherapeutics and Vaccine Research Initiative, University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
11
|
Abstract
The major function of the mammalian immune system is to prevent and control infections caused by enteropathogens that collectively have altered human destiny. In fact, as the gastrointestinal tissues are the major interface of mammals with the environment, up to 70% of the human immune system is dedicated to patrolling them The defenses are multi-tiered and include the endogenous microflora that mediate colonization resistance as well as physical barriers intended to compartmentalize infections. The gastrointestinal tract and associated lymphoid tissue are also protected by sophisticated interleaved arrays of active innate and adaptive immune defenses. Remarkably, some bacterial enteropathogens have acquired an arsenal of virulence factors with which they neutralize all these formidable barriers to infection, causing disease ranging from mild self-limiting gastroenteritis to in some cases devastating human disease.
Collapse
Affiliation(s)
- Micah J. Worley
- Department of Biology, University of Louisville, Louisville, Kentucky, USA,CONTACT Micah J. Worley Department of Biology, University of Louisville, 139 Life Sciences Bldg, Louisville, Kentucky, USA
| |
Collapse
|
12
|
Bullones-Bolaños A, Bernal-Bayard J, Ramos-Morales F. The NEL Family of Bacterial E3 Ubiquitin Ligases. Int J Mol Sci 2022; 23:7725. [PMID: 35887072 PMCID: PMC9320238 DOI: 10.3390/ijms23147725] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 12/16/2022] Open
Abstract
Some pathogenic or symbiotic Gram-negative bacteria can manipulate the ubiquitination system of the eukaryotic host cell using a variety of strategies. Members of the genera Salmonella, Shigella, Sinorhizobium, and Ralstonia, among others, express E3 ubiquitin ligases that belong to the NEL family. These bacteria use type III secretion systems to translocate these proteins into host cells, where they will find their targets. In this review, we first introduce type III secretion systems and the ubiquitination process and consider the various ways bacteria use to alter the ubiquitin ligation machinery. We then focus on the members of the NEL family, their expression, translocation, and subcellular localization in the host cell, and we review what is known about the structure of these proteins, their function in virulence or symbiosis, and their specific targets.
Collapse
Affiliation(s)
| | | | - Francisco Ramos-Morales
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain; (A.B.-B.); (J.B.-B.)
| |
Collapse
|
13
|
Stévenin V, Neefjes J. Control of host PTMs by intracellular bacteria: An opportunity toward novel anti-infective agents. Cell Chem Biol 2022; 29:741-756. [PMID: 35512694 DOI: 10.1016/j.chembiol.2022.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/15/2022] [Accepted: 04/15/2022] [Indexed: 02/08/2023]
Abstract
Intracellular bacteria have developed a multitude of mechanisms to influence the post-translational modifications (PTMs) of host proteins to pathogen advantages. The recent explosion of insights into the diversity and sophistication of host PTMs and their manipulation by infectious agents challenges us to formulate a comprehensive vision of this complex and dynamic facet of the host-pathogen interaction landscape. As new discoveries continue to shed light on the central roles of PTMs in infectious diseases, technological advances foster our capacity to detect old and new PTMs and investigate their control and impact during pathogenesis, opening new possibilities for chemical intervention and infection treatment. Here, we present a comprehensive overview of these pathogenic mechanisms and offer perspectives on how these insights may contribute to the development of a new class of therapeutics that are urgently needed to face rising antibiotic resistances.
Collapse
Affiliation(s)
- Virginie Stévenin
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center (LUMC), Leiden 2333 ZC, the Netherlands.
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, Oncode Institute, Leiden University Medical Center (LUMC), Leiden 2333 ZC, the Netherlands
| |
Collapse
|
14
|
Tripathi-Giesgen I, Behrends C, Alpi AF. The ubiquitin ligation machinery in the defense against bacterial pathogens. EMBO Rep 2021; 22:e52864. [PMID: 34515402 PMCID: PMC8567218 DOI: 10.15252/embr.202152864] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/21/2021] [Accepted: 08/27/2021] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin system is an important part of the host cellular defense program during bacterial infection. This is in particular evident for a number of bacteria including Salmonella Typhimurium and Mycobacterium tuberculosis which—inventively as part of their invasion strategy or accidentally upon rupture of seized host endomembranes—become exposed to the host cytosol. Ubiquitylation is involved in the detection and clearance of these bacteria as well as in the activation of innate immune and inflammatory signaling. Remarkably, all these defense responses seem to emanate from a dense layer of ubiquitin which coats the invading pathogens. In this review, we focus on the diverse group of host cell E3 ubiquitin ligases that help to tailor this ubiquitin coat. In particular, we address how the divergent ubiquitin conjugation mechanisms of these ligases contribute to the complexity of the anti‐bacterial coating and the recruitment of different ubiquitin‐binding effectors. We also discuss the activation and coordination of the different E3 ligases and which strategies bacteria evolved to evade the activities of the host ubiquitin system.
Collapse
Affiliation(s)
- Ishita Tripathi-Giesgen
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology (SyNergy), Medical Faculty, Ludwig-Maximilians-University München, München, Germany
| | - Arno F Alpi
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
15
|
Affiliation(s)
- Tyler G. Franklin
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Jonathan N. Pruneda
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
16
|
Hajialibeigi A, Amani J, Gargari SLM. Identification and evaluation of novel vaccine candidates against Shigella flexneri through reverse vaccinology approach. Appl Microbiol Biotechnol 2021; 105:1159-1173. [PMID: 33452891 PMCID: PMC7811352 DOI: 10.1007/s00253-020-11054-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/29/2020] [Accepted: 12/09/2020] [Indexed: 02/08/2023]
Abstract
Shigellosis is a significant type of diarrhea that causes 160,000 deaths annually in a global scale. The mortality occurs mainly in children less than 5 years of age. No licensed vaccine is available, and conventional efforts for developing an effective and safe vaccine against shigellosis have not been succeeded yet. The reverse vaccinology is a novel promising method that screens genome or proteome of an organism for finding new vaccine candidates. In this study, through reverse vaccinology approach, new vaccine candidates against Shigella flexneri were identified and experimentally evaluated. Proteomes of S. flexneri were obtained from UniProt, and then outer membrane and extracellular proteins were predicted and selected for the evaluation of transmembrane domains, protein conservation, host homology, antigenicity, and solubility. From 103 proteins, 7 high-scored proteins were introduced as novel vaccine candidates, and after B- and T-cell epitope prediction, the best protein was selected for experimental studies. Recombinant protein was expressed, purified, and injected to BALB/c mice. The adhesion inhibitory effect of sera was also studied. The immunized mice demonstrated full protection against the lethal dose challenge. The sera remarkably inhibited S. flexneri adhesion to Caco-2 epithelial cells. The results indicate that identified antigen can serve for vaccine development against shigellosis and support reverse vaccinology for discovering novel effective antigens. KEY POINTS: • Seven Shigella new antigens were identified by reverse vaccinology (RV) approach. • The best antigen experimented demonstrated full protection against lethal dose. • In vivo results verified RV analyses and suggest FimG as a new potent vaccine candidate.
Collapse
Affiliation(s)
- Abolfazl Hajialibeigi
- Faculty of Basic Sciences, Department of Cell Biology, Shahed University, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
17
|
Berglund J, Gjondrekaj R, Verney E, Maupin-Furlow JA, Edelmann MJ. Modification of the host ubiquitome by bacterial enzymes. Microbiol Res 2020; 235:126429. [PMID: 32109687 PMCID: PMC7369425 DOI: 10.1016/j.micres.2020.126429] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 12/14/2022]
Abstract
Attachment of ubiquitin molecules to protein substrates is a reversible post-translational modification (PTM), which occurs ubiquitously in eukaryotic cells and controls most cellular processes. As a consequence, ubiquitination is an attractive target of pathogen-encoded virulence factors. Pathogenic bacteria have evolved multiple mechanisms to hijack the host's ubiquitin system to their advantage. In this review, we discuss the bacteria-encoded E3 ligases and deubiquitinases translocated to the host for an addition or removal of eukaryotic ubiquitin modification, effectively hijacking the host's ubiquitination processes. We review bacterial enzymes homologous to host proteins in sequence and functions, as well as enzymes with novel mechanisms in ubiquitination, which have significant structural differences in comparison to the mammalian E3 ligases. Finally, we will also discuss examples of molecular "counter-weapons" - eukaryotic proteins, which counteract pathogen-encoded E3 ligases. The many examples of the pathogen effector molecules that catalyze eukaryotic ubiquitin modification bring to light the intricate pathways involved in the pathogenesis of some of the most virulent bacterial infections with human pathogens. The role of these effector molecules remains an essential determinant of bacterial virulence in terms of infection, invasion, and replication. A comprehensive understanding of the mechanisms dictating the mimicry employed by bacterial pathogens is of vital importance in developing new strategies for therapeutic approaches.
Collapse
Affiliation(s)
- Jennifer Berglund
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA
| | - Rafaela Gjondrekaj
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA
| | - Ellen Verney
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA
| | - Julie A Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA
| | - Mariola J Edelmann
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 1355 Museum Drive, Gainesville, 32611-0700, FL USA.
| |
Collapse
|
18
|
Mukhopadhyay S, Ganguli S, Chakrabarti S. <em>Shigella</em> pathogenesis: molecular and computational insights. AIMS MOLECULAR SCIENCE 2020. [DOI: 10.3934/molsci.2020007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
19
|
|
20
|
Ubiquitination-Mediated Inflammasome Activation during Bacterial Infection. Int J Mol Sci 2019; 20:ijms20092110. [PMID: 31035661 PMCID: PMC6539186 DOI: 10.3390/ijms20092110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023] Open
Abstract
Inflammasome activation is essential for host immune responses during pathogenic infection and sterile signals insult, whereas excessive activation is injurious. Thus, inflammasome activation is tightly regulated at multiple layers. Ubiquitination is an important post-translational modification for orchestrating inflammatory immune responses during pathogenic infection, and a major target hijacked by pathogenic bacteria for promoting their survival and proliferation. This review summarizes recent insights into distinct mechanisms of the inflammasome activation and ubiquitination process triggered by bacterial infection. We discuss the complex regulatory of inflammasome activation mediated by ubiquitination machinery during bacterial infection, and provide therapeutic approaches for specifically targeting aberrant inflammasome activation.
Collapse
|
21
|
Schnupf P, Sansonetti PJ. Shigella Pathogenesis: New Insights through Advanced Methodologies. Microbiol Spectr 2019; 7:10.1128/microbiolspec.bai-0023-2019. [PMID: 30953429 PMCID: PMC11588159 DOI: 10.1128/microbiolspec.bai-0023-2019] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Indexed: 02/07/2023] Open
Abstract
Shigella is a genus of Gram-negative enteropathogens that have long been, and continue to be, an important public health concern worldwide. Over the past several decades, Shigella spp. have also served as model pathogens in the study of bacterial pathogenesis, and Shigella flexneri has become one of the best-studied pathogens on a molecular, cellular, and tissue level. In the arms race between Shigella and the host immune system, Shigella has developed highly sophisticated mechanisms to subvert host cell processes in order to promote infection, escape immune detection, and prevent bacterial clearance. Here, we give an overview of Shigella pathogenesis while highlighting innovative techniques and methods whose application has significantly advanced our understanding of Shigella pathogenesis in recent years.
Collapse
Affiliation(s)
- Pamela Schnupf
- Institut Imagine, Laboratory of Intestinal Immunity, INSERM UMR1163; Institut Necker Enfants Malades, Laboratory of Host-Microbiota Interaction, INSERM U1151; and Université Paris Descartes-Sorbonne, 75006 Paris, France
| | - Philippe J Sansonetti
- Institut Pasteur, Unité de Pathogénie Microbienne Moléculaire, INSERM U1202, and College de France, Paris, France
| |
Collapse
|
22
|
Otsubo R, Mimuro H, Ashida H, Hamazaki J, Murata S, Sasakawa C. Shigella effector IpaH4.5 targets 19S regulatory particle subunit RPN13 in the 26S proteasome to dampen cytotoxic T lymphocyte activation. Cell Microbiol 2018; 21:e12974. [PMID: 30414351 DOI: 10.1111/cmi.12974] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 12/20/2022]
Abstract
Subversion of antigen-specific immune responses by intracellular pathogens is pivotal for successful colonisation. Bacterial pathogens, including Shigella, deliver effectors into host cells via the type III secretion system (T3SS) in order to manipulate host innate and adaptive immune responses, thereby promoting infection. However, the strategy for subverting antigen-specific immunity is not well understood. Here, we show that Shigella flexneri invasion plasmid antigen H (IpaH) 4.5, a member of the E3 ubiquitin ligase effector family, targets the proteasome regulatory particle non-ATPase 13 (RPN13) and induces its degradation via the ubiquitin-proteasome system (UPS). IpaH4.5-mediated RPN13 degradation causes dysfunction of the 19S regulatory particle (RP) in the 26S proteasome, inhibiting guidance of ubiquitinated proteins to the proteolytically active 20S core particle (CP) of 26S proteasome and thereby suppressing proteasome-catalysed peptide splicing. This, in turn, reduces antigen cross-presentation to CD8+ T cells via major histocompatibility complex (MHC) class I in vitro. In RPN13 knockout mouse embryonic fibroblasts (MEFs), loss of RPN13 suppressed CD8+ T cell priming during Shigella infection. Our results uncover the unique tactics employed by Shigella to dampen the antigen-specific cytotoxic T lymphocyte (CTL) response.
Collapse
Affiliation(s)
- Ryota Otsubo
- Department of infection Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan
| | - Hitomi Mimuro
- Department of infection Microbiology, Research Institute for Microbial Diseases, Osaka University, Suita City, Osaka, Japan.,Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for infectious Diseases, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Ashida
- Department of Bacterial pathogenesis, Infection and Host Response, Graduate of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jun Hamazaki
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeo Murata
- Laboratory of Protein Metabolism, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Chihiro Sasakawa
- Research Department, Nippon Institute for Biological Science, Tokyo, Japan.,Medical Mycology Research Center, Chiba University, Chiba, Japan
| |
Collapse
|
23
|
Revisiting Bacterial Ubiquitin Ligase Effectors: Weapons for Host Exploitation. Int J Mol Sci 2018; 19:ijms19113576. [PMID: 30428531 PMCID: PMC6274744 DOI: 10.3390/ijms19113576] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 01/14/2023] Open
Abstract
Protein ubiquitylation plays a central role in eukaryotic cell physiology. It is involved in several regulatory processes, ranging from protein folding or degradation, subcellular localization of proteins, vesicular trafficking and endocytosis to DNA repair, cell cycle, innate immunity, autophagy, and apoptosis. As such, it is reasonable that pathogens have developed a way to exploit such a crucial system to enhance their virulence against the host. Hence, bacteria have evolved a wide range of effectors capable of mimicking the main players of the eukaryotic ubiquitin system, in particular ubiquitin ligases, by interfering with host physiology. Here, we give an overview of this topic and, in particular, we detail and discuss the mechanisms developed by pathogenic bacteria to hijack the host ubiquitination system for their own benefit.
Collapse
|
24
|
Norkowski S, Schmidt MA, Rüter C. The species-spanning family of LPX-motif harbouring effector proteins. Cell Microbiol 2018; 20:e12945. [PMID: 30137651 DOI: 10.1111/cmi.12945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/09/2018] [Accepted: 08/14/2018] [Indexed: 12/13/2022]
Abstract
The delivery of effector proteins into infected eukaryotic cells represents a key virulence feature of many microbial pathogens in order to derail essential cellular processes and effectively counter the host defence system. Although bacterial effectors are truly numerous and exhibit a wide range of biochemical activities, commonalities in terms of protein structure and function shared by many bacterial pathogens exist. Recent progress has shed light on a species-spanning family of bacterial effectors containing an LPX repeat motif as a subtype of the leucine-rich repeat superfamily, partially combined with a novel E3 ubiquitin ligase domain. This review highlights the immunomodulatory effects of LPX effector proteins, with particular emphasis on the exploitation of the host ubiquitin system.
Collapse
Affiliation(s)
- Stefanie Norkowski
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - M Alexander Schmidt
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| | - Christian Rüter
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Münster, Germany
| |
Collapse
|
25
|
Ubiquitin, SUMO, and NEDD8: Key Targets of Bacterial Pathogens. Trends Cell Biol 2018; 28:926-940. [PMID: 30107971 DOI: 10.1016/j.tcb.2018.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/13/2018] [Accepted: 07/17/2018] [Indexed: 01/09/2023]
Abstract
Manipulation of host protein post-translational modifications (PTMs) is used by various pathogens to interfere with host cell functions. Among these modifications, ubiquitin (UBI) and ubiquitin-like proteins (UBLs) constitute key targets because they are regulators of pathways essential for the host cell. In particular, these PTM modifiers control pathways that have been described as crucial for infection such as pathogen entry, replication, propagation, or detection by the host. Although bacterial pathogens lack eucaryotic-like UBI or UBL systems, many of them produce proteins that specifically interfere with these host PTMs during infection. In this review we discuss the different mechanisms used by bacteria to interfere with host UBI and the two UBLs, SUMO and NEDD8.
Collapse
|
26
|
Grishin AM, Barber KR, Gu RX, Tieleman DP, Shaw GS, Cygler M. Regulation of Shigella Effector Kinase OspG through Modulation of Its Dynamic Properties. J Mol Biol 2018; 430:2096-2112. [DOI: 10.1016/j.jmb.2018.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 01/01/2023]
|
27
|
Synthetic bottom-up approach reveals the complex interplay of Shigella effectors in regulation of epithelial cell death. Proc Natl Acad Sci U S A 2018; 115:6452-6457. [PMID: 29866849 DOI: 10.1073/pnas.1801310115] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Over the course of an infection, many Gram-negative bacterial pathogens use complex nanomachines to directly inject tens to hundreds of proteins (effectors) into the cytosol of infected host cells. These effectors rewire processes to promote bacterial replication and spread. The roles of effectors in pathogenesis have traditionally been investigated by screening for phenotypes associated with their absence, a top-down approach that can be limited, as effectors often act in a functionally redundant or additive manner. Here we describe a synthetic Escherichia coli-based bottom-up platform to conduct gain-of-function screens for roles of individual Shigella effectors in pathogenesis. As proof of concept, we screened for Shigella effectors that limit cell death induced on cytosolic entry of bacteria into epithelial cells. Using this platform, in addition to OspC3, an effector known to inhibit cell death via pyroptosis, we have identified OspD2 and IpaH1.4 as cell death inhibitors. In contrast to almost all type III effectors, OspD2 does not target a host cell process, but rather regulates the activity of the Shigella type III secretion apparatus limiting the cytosolic delivery (translocation) of effectors during an infection. Remarkably, by limiting the translocation of a single effector, VirA, OspD2 controls the timing of epithelial cell death via calpain-mediated necrosis. Together, these studies provide insight into the intricate manner by which Shigella effectors interact to establish a productive intracytoplasmic replication niche before the death of infected epithelial cells.
Collapse
|
28
|
Norkowski S, Körner B, Greune L, Stolle AS, Lubos ML, Hardwidge PR, Schmidt MA, Rüter C. Bacterial LPX motif-harboring virulence factors constitute a species-spanning family of cell-penetrating effectors. Cell Mol Life Sci 2018; 75:2273-2289. [PMID: 29285573 PMCID: PMC11105228 DOI: 10.1007/s00018-017-2733-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 11/22/2017] [Accepted: 12/18/2017] [Indexed: 12/22/2022]
Abstract
Effector proteins are key virulence factors of pathogenic bacteria that target and subvert the functions of essential host defense mechanisms. Typically, these proteins are delivered into infected host cells via the type III secretion system (T3SS). Recently, however, several effector proteins have been found to enter host cells in a T3SS-independent manner thereby widening the potential range of these virulence factors. Prototypes of such bacteria-derived cell-penetrating effectors (CPEs) are the Yersinia enterocolitica-derived YopM as well as the Salmonella typhimurium effector SspH1. Here, we investigated specifically the group of bacterial LPX effector proteins comprising the Shigella IpaH proteins, which constitute a subtype of the leucine-rich repeat protein family and share significant homologies in sequence and structure. With particular emphasis on the Shigella-effector IpaH9.8, uptake into eukaryotic cell lines was shown. Recombinant IpaH9.8 (rIpaH9.8) is internalized via endocytic mechanisms and follows the endo-lysosomal pathway before escaping into the cytosol. The N-terminal alpha-helical domain of IpaH9.8 was identified as the protein transduction domain required for its CPE ability as well as for being able to deliver other proteinaceous cargo. rIpaH9.8 is functional as an ubiquitin E3 ligase and targets NEMO for poly-ubiquitination upon cell penetration. Strikingly, we could also detect other recombinant LPX effector proteins from Shigella and Salmonella intracellularly when applied to eukaryotic cells. In this study, we provide further evidence for the general concept of T3SS-independent translocation by identifying novel cell-penetrating features of these LPX effectors revealing an abundant species-spanning family of CPE.
Collapse
Affiliation(s)
- Stefanie Norkowski
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Britta Körner
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Lilo Greune
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Anne-Sophie Stolle
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Marie-Luise Lubos
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, 1710 Denison Ave, 101 Trotter Hall, Manhattan, KS, 66506-5600, USA
| | - M Alexander Schmidt
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
| | - Christian Rüter
- Institute of Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany.
| |
Collapse
|
29
|
Pinaud L, Sansonetti PJ, Phalipon A. Host Cell Targeting by Enteropathogenic Bacteria T3SS Effectors. Trends Microbiol 2018; 26:266-283. [DOI: 10.1016/j.tim.2018.01.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/29/2018] [Accepted: 01/29/2018] [Indexed: 12/23/2022]
|
30
|
Nakano M, Oda K, Mukaihara T. Ralstonia solanacearum novel E3 ubiquitin ligase (NEL) effectors RipAW and RipAR suppress pattern-triggered immunity in plants. MICROBIOLOGY (READING, ENGLAND) 2017; 163:992-1002. [PMID: 28708051 DOI: 10.1099/mic.0.000495] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Ralstonia solanacearum is the causal agent of bacterial wilt in solanaceous crops. This pathogen injects more than 70 effector proteins into host plant cells via the Hrp type III secretion system to cause a successful infection. However, the function of these effectors in plant cells, especially in the suppression of plant immunity, remains largely unknown. In this study, we characterized two Ralstonia solanacearum effectors, RipAW and RipAR, which share homology with the IpaH family of effectors from animal and plant pathogenic bacteria, that have a novel E3 ubiquitin ligase (NEL) domain. Recombinant RipAW and RipAR show E3 ubiquitin ligase activity in vitro. RipAW and RipAR localized to the cytoplasm of plant cells and significantly suppressed pattern-triggered immunity (PTI) responses such as the production of reactive oxygen species and the expression of defence-related genes when expressed in leaves of Nicotiana benthamiana. Mutation in the conserved cysteine residue in the NEL domain of RipAW completely abolished the E3 ubiquitin ligase activity in vitro and the ability to suppress PTI responses in plant leaves. These results indicate that RipAW suppresses plant PTI responses through the E3 ubiquitin ligase activity. Unlike other members of the IpaH family of effectors, RipAW and RipAR had no leucine-rich repeat motifs in their amino acid sequences. A conserved C-terminal region of RipAW is indispensable for PTI suppression. Transgenic Arabidopsis plants expressing RipAW and RipAR showed increased disease susceptibility, suggesting that RipAW and RipAR contribute to bacterial virulence in plants.
Collapse
Affiliation(s)
- Masahito Nakano
- Research Institute for Biological Sciences, Okayama (RIBS), 7549-1 Yoshikawa, Kibichuo-cho, Okayama 716-1241, Japan
| | - Kenji Oda
- Research Institute for Biological Sciences, Okayama (RIBS), 7549-1 Yoshikawa, Kibichuo-cho, Okayama 716-1241, Japan
| | - Takafumi Mukaihara
- Research Institute for Biological Sciences, Okayama (RIBS), 7549-1 Yoshikawa, Kibichuo-cho, Okayama 716-1241, Japan
| |
Collapse
|
31
|
Lin YH, Machner MP. Exploitation of the host cell ubiquitin machinery by microbial effector proteins. J Cell Sci 2017; 130:1985-1996. [PMID: 28476939 PMCID: PMC5482977 DOI: 10.1242/jcs.188482] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Pathogenic bacteria are in a constant battle for survival with their host. In order to gain a competitive edge, they employ a variety of sophisticated strategies that allow them to modify conserved host cell processes in ways that favor bacterial survival and growth. Ubiquitylation, the covalent attachment of the small modifier ubiquitin to target proteins, is such a pathway. Ubiquitylation profoundly alters the fate of a myriad of cellular proteins by inducing changes in their stability or function, subcellular localization or interaction with other proteins. Given the importance of ubiquitylation in cell development, protein homeostasis and innate immunity, it is not surprising that this post-translational modification is exploited by a variety of effector proteins from microbial pathogens. Here, we highlight recent advances in our understanding of the many ways microbes take advantage of host ubiquitylation, along with some surprising deviations from the canonical theme. The lessons learned from the in-depth analyses of these host-pathogen interactions provide a fresh perspective on an ancient post-translational modification that we thought was well understood.This article is part of a Minifocus on Ubiquitin Regulation and Function. For further reading, please see related articles: 'Mechanisms of regulation and diversification of deubiquitylating enzyme function' by Pawel Leznicki and Yogesh Kulathu (J. Cell Sci.130, 1997-2006). 'Cell scientist to watch - Mads Gyrd-Hansen' (J. Cell Sci.130, 1981-1983).
Collapse
Affiliation(s)
- Yi-Han Lin
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthias P Machner
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Mattock E, Blocker AJ. How Do the Virulence Factors of Shigella Work Together to Cause Disease? Front Cell Infect Microbiol 2017; 7:64. [PMID: 28393050 PMCID: PMC5364150 DOI: 10.3389/fcimb.2017.00064] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/21/2017] [Indexed: 01/01/2023] Open
Abstract
Shigella is the major cause of bacillary dysentery world-wide. It is divided into four species, named S. flexneri, S. sonnei, S. dysenteriae, and S. boydii, which are distinct genomically and in their ability to cause disease. Shigellosis, the clinical presentation of Shigella infection, is characterized by watery diarrhea, abdominal cramps, and fever. Shigella's ability to cause disease has been attributed to virulence factors, which are encoded on chromosomal pathogenicity islands and the virulence plasmid. However, information on these virulence factors is not often brought together to create a detailed picture of infection, and how this translates into shigellosis symptoms. Firstly, Shigella secretes virulence factors that induce severe inflammation and mediate enterotoxic effects on the colon, producing the classic watery diarrhea seen early in infection. Secondly, Shigella injects virulence effectors into epithelial cells via its Type III Secretion System to subvert the host cell structure and function. This allows invasion of epithelial cells, establishing a replicative niche, and causes erratic destruction of the colonic epithelium. Thirdly, Shigella produces effectors to down-regulate inflammation and the innate immune response. This promotes infection and limits the adaptive immune response, causing the host to remain partially susceptible to re-infection. Combinations of these virulence factors may contribute to the different symptoms and infection capabilities of the diverse Shigella species, in addition to distinct transmission patterns. Further investigation of the dominant species causing disease, using whole-genome sequencing and genotyping, will allow comparison and identification of crucial virulence factors and may contribute to the production of a pan-Shigella vaccine.
Collapse
Affiliation(s)
- Emily Mattock
- Faculty of Biomedical Sciences, Schools of Cellular and Molecular Medicine and Biochemistry, University of Bristol Bristol, UK
| | - Ariel J Blocker
- Faculty of Biomedical Sciences, Schools of Cellular and Molecular Medicine and Biochemistry, University of Bristol Bristol, UK
| |
Collapse
|
33
|
Friedrich A, Pechstein J, Berens C, Lührmann A. Modulation of host cell apoptotic pathways by intracellular pathogens. Curr Opin Microbiol 2017; 35:88-99. [DOI: 10.1016/j.mib.2017.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/03/2016] [Accepted: 03/01/2017] [Indexed: 12/13/2022]
|
34
|
Ashida H, Sasakawa C. Bacterial E3 ligase effectors exploit host ubiquitin systems. Curr Opin Microbiol 2016; 35:16-22. [PMID: 27907841 DOI: 10.1016/j.mib.2016.11.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 12/31/2022]
Abstract
Ubiquitination is a crucial post-translational protein modification involved in regulation of various cellular processes in eukaryotes. In particular, ubiquitination is involved in multiple aspects of bacterial infection and host defense mechanisms. In parallel with the identification of ubiquitination as a component of host defense systems, recently accumulated evidence shows that many bacterial pathogens exploit host ubiquitin systems to achieve successful infection. Here, we highlight the strategies by which bacteria subvert host ubiquitin systems by mimicking E3 ubiquitin ligase activity.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Division of Bacterial Infection Immunology, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan.
| | - Chihiro Sasakawa
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, 198-0024, Tokyo, Japan; Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, 260-8673, Chiba, Japan
| |
Collapse
|
35
|
Li J, Chai QY, Liu CH. The ubiquitin system: a critical regulator of innate immunity and pathogen-host interactions. Cell Mol Immunol 2016; 13:560-76. [PMID: 27524111 DOI: 10.1038/cmi.2016.40] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 05/30/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin system comprises enzymes that are responsible for ubiquitination and deubiquitination, as well as ubiquitin receptors that are capable of recognizing and deciphering the ubiquitin code, which act in coordination to regulate almost all host cellular processes, including host-pathogen interactions. In response to pathogen infection, the host innate immune system launches an array of distinct antimicrobial activities encompassing inflammatory signaling, phagosomal maturation, autophagy and apoptosis, all of which are fine-tuned by the ubiquitin system to eradicate the invading pathogens and to reduce concomitant host damage. By contrast, pathogens have evolved a cohort of exquisite strategies to evade host innate immunity by usurping the ubiquitin system for their own benefits. Here, we present recent advances regarding the ubiquitin system-mediated modulation of host-pathogen interplay, with a specific focus on host innate immune defenses and bacterial pathogen immune evasion.
Collapse
Affiliation(s)
- Jie Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi-Yao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
36
|
Rosenshine I. Bacterial pathogenesis: Cooperative immunomodulation. Nat Microbiol 2016; 1:16099. [PMID: 27572979 DOI: 10.1038/nmicrobiol.2016.99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, 9112102 Israel
| |
Collapse
|
37
|
Du L, Liu Y, Du Y, Wang H, Zhang M, Du Y, Feng WH. Porcine reproductive and respiratory syndrome virus (PRRSV) up-regulates IL-15 through PKCβ1-TAK1-NF-κB signaling pathway. Virology 2016; 496:166-174. [PMID: 27318153 DOI: 10.1016/j.virol.2016.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/04/2016] [Accepted: 06/10/2016] [Indexed: 12/13/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) caused by PRRS virus (PRRSV) is one of the most important infectious diseases in swine industry. IL-15 is a pleiotropic cytokine and has been shown to be essential to transform NKs, CD8 T cells, and other cells of the immune systems into functional effectors. Here, we demonstrated that the broad-spectrum or conventional PKC inhibitors repressed PRRSV-induced IL-15 expression and NF-κB activation. Subsequently, we found that the PKCβ specific inhibitor inhibited PRRSV-induced IL-15 production, which was also confirmed by knock-down of PKCβ1, suggesting that PKCβ1 is involved in the PRRSV-induced IL-15 expression. In addition, we demonstrated that PRRSV activated NF-κB through PKCβ1-induced TAK1 activation. Finally, we demonstrated that PRRSV activated PKCβ1 dependent on the participation of TRIF and MAVS. These data indicate that PRRSV up-regulates IL-15 through TRIF/MAVS-PKCβ1-TAK1-NF-κB signaling pathway. These findings will provide new insights into the molecular mechanisms of IL-15 production induced by PRRSV.
Collapse
Affiliation(s)
- Li Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yihao Liu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yinping Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Honglei Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Meijie Zhang
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China
| | - Yijun Du
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Sangyuan Road No. 8, Jinan 250100, China.
| | - Wen-Hai Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
38
|
Otsubo R, Kim M, Lee J, Sasakawa C. Midori-ishi Cyan/monomeric Kusabira-Orange-based fluorescence resonance energy transfer assay for characterization of various E3 ligases. Genes Cells 2016; 21:608-23. [PMID: 27091465 DOI: 10.1111/gtc.12369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/14/2016] [Indexed: 01/26/2023]
Abstract
Many bacterial pathogens hijack the host ubiquitin system for their own benefit by delivering effectors with ubiquitin ligase (E3) into host cells via the type III secretion system. Therefore, screening for small compounds that selectively inhibit bacterial but not mammalian E3 ligases is a promising strategy for identifying molecules that could substitute for antibiotics. To facilitate high-throughput screening for bacterial E3 ligase inhibitors, we developed a MiCy/mKO (Midori-ishi Cyan/monomeric Kusabira-Orange)-based FRET (fluorescence resonance energy transfer) assay and validated it on Shigella IpaH E3 ligase effectors. We showed the feasibility of using the MiCy/mKO-based FRET assay to identify the most appropriate ubiquitin-conjugating enzymes (E2s) and determine the lysine specificity of a given E3, both hallmarks of E3 activity. Furthermore, we showed the usefulness of the FRET assay in characterizing mammalian E3 ligases, such as TNF receptor-associated factor 6 (TRAF6) and mouse double minute 2 homologue (MDM2). In addition, we confirmed the feasibility of determining the efficiency of inhibition of E3 ligase activity using inhibitors of E1 ubiquitin-activating enzymes, such as UBE1-41, by measuring the IC50 . Based on these results, we concluded that the MiCy/mKO-based FRET assay is useful for characterizing E3 enzyme activity, as well as for high-throughput E3 inhibitor screening.
Collapse
Affiliation(s)
- Ryota Otsubo
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Minsoo Kim
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
- The Hakubi Center for Advanced Research, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto-shi, Kyoto, 606-8501, Japan
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto-shi, Kyoto, 606-8501, Japan
| | - Jihye Lee
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Chihiro Sasakawa
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, Japan
- Nippon Institute for Biological Science, 9-2221-1 Shinmachi, Ome, Tokyo, Japan
- Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8673, Japan
| |
Collapse
|
39
|
Shigella flexneri suppresses NF-κB activation by inhibiting linear ubiquitin chain ligation. Nat Microbiol 2016; 1:16084. [PMID: 27572974 PMCID: PMC5010086 DOI: 10.1038/nmicrobiol.2016.84] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/29/2016] [Indexed: 12/13/2022]
Abstract
The linear ubiquitin chain assembly complex (LUBAC) is a multimeric E3 ligase that catalyses M1 or linear ubiquitination of activated immune receptor signalling complexes (RSCs). Mutations that disrupt linear ubiquitin assembly lead to complex disease pathologies including immunodeficiency and autoinflammation in both humans and mice, but microbial toxins that target LUBAC function have not yet been discovered. Here, we report the identification of two homologous Shigella flexneri type III secretion system effector E3 ligases IpaH1.4 and IpaH2.5, which directly interact with LUBAC subunit Heme-oxidized IRP2 ubiquitin ligase-1 (HOIL-1L) and conjugate K48-linked ubiquitin chains to the catalytic RING-between-RING domain of HOIL-1-interacting protein (HOIP). Proteasomal degradation of HOIP leads to irreversible inactivation of linear ubiquitination and blunting of NF-κB nuclear translocation in response to tumour-necrosis factor (TNF), IL-1β and pathogen-associated molecular patterns. Loss of function studies in mammallian cells in combination with bacterial genetics explains how Shigella evades a broad spectrum of immune surveillance systems by cooperative inhibition of receptor ubiquitination and reveals the critical importance of LUBAC in host defence against pathogens.
Collapse
|
40
|
Killackey SA, Sorbara MT, Girardin SE. Cellular Aspects of Shigella Pathogenesis: Focus on the Manipulation of Host Cell Processes. Front Cell Infect Microbiol 2016; 6:38. [PMID: 27066460 PMCID: PMC4814626 DOI: 10.3389/fcimb.2016.00038] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/17/2016] [Indexed: 01/11/2023] Open
Abstract
Shigella is a Gram-negative bacterium that is responsible for shigellosis. Over the years, the study of Shigella has provided a greater understanding of how the host responds to bacterial infection, and how bacteria have evolved to effectively counter the host defenses. In this review, we provide an update on some of the most recent advances in our understanding of pivotal processes associated with Shigella infection, including the invasion into host cells, the metabolic changes that occur within the bacterium and the infected cell, cell-to-cell spread mechanisms, autophagy and membrane trafficking, inflammatory signaling and cell death. This recent progress sheds a new light into the mechanisms underlying Shigella pathogenesis, and also more generally provides deeper understanding of the complex interplay between host cells and bacterial pathogens in general.
Collapse
Affiliation(s)
- Samuel A Killackey
- Department of Laboratory Medicine and Pathobiology, University of Toronto Toronto, ON, Canada
| | | | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of TorontoToronto, ON, Canada; Department of Immunology, University of TorontoToronto, ON, Canada
| |
Collapse
|
41
|
Abstract
Eukaryotic cells utilize the ubiquitin (Ub) system for maintaining a balanced functioning of cellular pathways. Although the Ub system is exclusive to eukaryotes, prokaryotic bacteria have developed an armory of Ub ligase enzymes that are capable of employing the Ub systems of various hosts, ranging from plant to animal cells. These enzymes have been acquired through the evolution and can be classified into three main classes, RING (really interesting new gene), HECT (homologous to the E6-AP carboxyl terminus) and NEL (novel E3 ligases). In this review we describe the roles played by different classes of bacterial Ub ligases in infection and pathogenicity. We also provide an overview of the different mechanisms by which bacteria mimic specific components of the host Ub system and outline the gaps in our current understanding of their functions. Additionally, we discuss approaches and experimental tools for validating this class of enzymes as potential novel antibacterial therapy targets.
Collapse
|
42
|
Campbell-Valois FX, Pontier SM. Implications of Spatiotemporal Regulation of Shigella flexneri Type Three Secretion Activity on Effector Functions: Think Globally, Act Locally. Front Cell Infect Microbiol 2016; 6:28. [PMID: 27014638 PMCID: PMC4783576 DOI: 10.3389/fcimb.2016.00028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/23/2016] [Indexed: 11/13/2022] Open
Abstract
Shigella spp. are Gram-negative bacterial pathogens that infect human colonic epithelia and cause bacterial dysentery. These bacteria express multiple copies of a syringe-like protein complex, the Type Three Secretion apparatus (T3SA), which is instrumental in the etiology of the disease. The T3SA triggers the plasma membrane (PM) engulfment of the bacteria by host cells during the initial entry process. It then enables bacteria to escape the resulting phagocytic-like vacuole. Freed bacteria form actin comets to move in the cytoplasm, which provokes bacterial collision with the inner leaflet of the PM. This phenomenon culminates in T3SA-dependent secondary uptake and vacuolar rupture in neighboring cells in a process akin to what is observed during entry and named cell-to-cell spread. The activity of the T3SA of Shigella flexneri was recently demonstrated to display an on/off regulation during the infection. While the T3SA is active when bacteria are in contact with PM-derived compartments, it switches to an inactive state when bacteria are released within the cytosol. These observations indicate that effector proteins transiting through the T3SA are therefore translocated in a highly time and space constrained fashion, likely impacting on their cellular distribution. Herein, we present what is currently known about the composition, the assembly and the regulation of the T3SA activity and discuss the consequences of the on/off regulation of T3SA on Shigella effector properties and functions during the infection. Specific examples that will be developed include the role of effectors IcsB and VirA in the escape from LC3/ATG8-positive vacuoles formed during cell-to-cell spread and of IpaJ protease activity against N-miristoylated proteins. The conservation of a similar regulation of T3SA activity in other pathogens such as Salmonella or Enteropathogenic Escherichia coli will also be briefly discussed.
Collapse
Affiliation(s)
- F-X Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa, ON, Canada
| | | |
Collapse
|
43
|
Bonnet M, Tran Van Nhieu G. How Shigella Utilizes Ca(2+) Jagged Edge Signals during Invasion of Epithelial Cells. Front Cell Infect Microbiol 2016; 6:16. [PMID: 26904514 PMCID: PMC4748038 DOI: 10.3389/fcimb.2016.00016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/25/2016] [Indexed: 12/20/2022] Open
Abstract
Shigella, the causative agent of bacillary dysentery invades intestinal epithelial cells using a type III secretion system (T3SS). Through the injection of type III effectors, Shigella manipulates the actin cytoskeleton to induce its internalization in epithelial cells. At early invasion stages, Shigella induces atypical Ca(2+) responses confined at entry sites allowing local cytoskeletal remodeling for bacteria engulfment. Global Ca(2+) increase in the cell triggers the opening of connexin hemichannels at the plasma membrane that releases ATP in the extracellular milieu, favoring Shigella invasion and spreading through purinergic receptor signaling. During intracellular replication, Shigella regulates inflammatory and death pathways to disseminate within the epithelium. At later stages of infection, Shigella downregulates hemichannel opening and the release of extracellular ATP to dampen inflammatory signals. To avoid premature cell death, Shigella activates cell survival by upregulating the PI3K/Akt pathway and downregulating the levels of p53. Furthermore, Shigella interferes with pro-apoptotic caspases, and orients infected cells toward a slow necrotic cell death linked to mitochondrial Ca(2+) overload. In this review, we will focus on the role of Ca(2+) responses and their regulation by Shigella during the different stages of bacterial infection.
Collapse
Affiliation(s)
- Mariette Bonnet
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie, Collège de FranceParis, France; Institut National de la Santé et de la Recherche Médicale U1050Paris, France; Centre National de la Recherche Scientifique, UMR7241Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science LettreParis, France
| | - Guy Tran Van Nhieu
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie, Collège de FranceParis, France; Institut National de la Santé et de la Recherche Médicale U1050Paris, France; Centre National de la Recherche Scientifique, UMR7241Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science LettreParis, France
| |
Collapse
|
44
|
Vonaesch P, Campbell-Valois FX, Dufour A, Sansonetti PJ, Schnupf P. Shigella flexneri modulates stress granule composition and inhibits stress granule aggregation. Cell Microbiol 2016; 18:982-97. [PMID: 27282465 DOI: 10.1111/cmi.12561] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 02/07/2023]
Abstract
Invasion and multiplication of the facultative, cytosolic, enteropathogen Shigella flexneri within the colonic epithelial lining leads to an acute inflammatory response, fever and diarrhea. During the inflammatory process, infected cells are subjected to numerous stresses including heat, oxidative stress and genotoxic stress. The evolutionarily conserved pathway of cellular stress management is the formation of stress granules that store translationally inactive cellular mRNAs and interfere with cellular signalling pathways by sequestering signalling components. In this study, we investigated the ability of S. flexneri-infected cells to form stress granules in response to exogenous stresses. We found that S. flexneri infection inhibits movement of the stress granule markers eIF3 and eIF4B into stress granules and prevents the aggregation of G3BP1 and eIF4G-containing stress granules. This inhibition occurred only with invasive, but not with non-invasive bacteria and occurred in response to stresses that induce translational arrest through the phosphorylation of eIF2α and by treating cells with pateamine A, a drug that induces stress granules by inhibiting the eIF4A helicase. The S. flexneri-mediated stress granule inhibition could be largely phenocopied by the microtubule-destabilizing drug nocodazole and while S. flexneri infection did not lead to microtubule depolymerization, infection greatly enhanced acetylation of alpha-tubulin. Our data suggest that qualitative differences in the microtubule network or subversion of the microtubule-transport machinery by S. flexneri may be involved in preventing the full execution of this cellular stress response.
Collapse
Affiliation(s)
- Pascale Vonaesch
- Unité de Pathogénie Microbienne Moléculaire (INSERM U786), France
| | | | - Alexandre Dufour
- Unité d'Analyse d'Images Biologiques, CNRS UMR 3691, Institut Pasteur, 25-28 Rue du Dr Roux, 75724, Paris Cedex 15, France
| | - Philippe J Sansonetti
- Unité de Pathogénie Microbienne Moléculaire (INSERM U786), France.,Microbiologie et Maladies Infectieuses, Collège de France, 11 Place Marcelin Berthelot, 75005, Paris, France
| | - Pamela Schnupf
- Unité de Pathogénie Microbienne Moléculaire (INSERM U786), France
| |
Collapse
|
45
|
Ashida H, Sasakawa C. Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria. Front Cell Infect Microbiol 2016; 5:100. [PMID: 26779450 PMCID: PMC4701945 DOI: 10.3389/fcimb.2015.00100] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/14/2015] [Indexed: 02/03/2023] Open
Abstract
Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis). Via the type III secretion system (T3SS), Shigella deliver a subset of virulence proteins (effectors) that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC). Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo Tokyo, Japan
| | - Chihiro Sasakawa
- Division of Bacterial Infection Biology, Institute of Medical Science, University of TokyoTokyo, Japan; Nippon Institute for Biological ScienceTokyo, Japan; Medical Mycology Research Center, Chiba UniversityChiba, Japan
| |
Collapse
|
46
|
Lei L, Wang W, Xia C, Liu F. Salmonella Virulence Factor SsrAB Regulated Factor Modulates Inflammatory Responses by Enhancing the Activation of NF-κB Signaling Pathway. THE JOURNAL OF IMMUNOLOGY 2015; 196:792-802. [PMID: 26673132 DOI: 10.4049/jimmunol.1500679] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 11/14/2015] [Indexed: 12/20/2022]
Abstract
Effector proteins encoded by Salmonella pathogenicity islands play a key role in promoting bacterial intracellular survival, colonization, and pathogenesis. In this study, we investigated the function of the virulence-associated effector SrfA (SsrAB regulated factor) both in macrophages in vitro and in infected mice in vivo. SrfA was secreted into the cytoplasm during S. Typhimurium infection and disassociated IL-1R-associated kinase-1 (IRAK-1) from the IRAK-1-Toll interacting protein (Tollip) complex by interacting with Tollip. The released IRAK-1 was phosphorylated and subsequently activated the NF-κB signaling pathway, which enhanced the LPS-induced expression of inflammatory cytokines, such as IL-8, IL-1β, and TNF-α. The coupling of ubiquitin to endoplasmic reticulum degradation aa 183-219 domain of Tollip is the binding region for SrfA, and both the MDaa207-226 and CTaa357-377 regions of SrfA mediate binding to Tollip and NF-κB signaling activation. Deletion of SrfA in S. Typhimurium had no notable effects on its replication but impaired the induction of NF-κB activation in infected macrophages. The mice infected with srfA-deficient bacteria exhibited a decreased inflammatory response and an increased survival rate compared with those infected with wild-type S. Typhimurium. We conclude that SrfA is a novel Salmonella virulence effector that helps modulate host inflammatory responses by promoting NF-κB signaling activation.
Collapse
Affiliation(s)
- Lei Lei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; and
| | - Wenbiao Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; and
| | - Chuan Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; and
| | - Fenyong Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China; and Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
47
|
McGuire VA, Arthur JSC. Subverting Toll-Like Receptor Signaling by Bacterial Pathogens. Front Immunol 2015; 6:607. [PMID: 26648936 PMCID: PMC4664646 DOI: 10.3389/fimmu.2015.00607] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/13/2015] [Indexed: 12/26/2022] Open
Abstract
Pathogenic bacteria are detected by pattern-recognition receptors (PRRs) expressed on innate immune cells, which activate intracellular signal transduction pathways to elicit an immune response. Toll-like receptors are, perhaps, the most studied of the PRRs and can activate the mitogen-activated protein kinase (MAPK) and Nuclear Factor-κB (NF-κB) pathways. These pathways are critical for mounting an effective immune response. In order to evade detection and promote virulence, many pathogens subvert the host immune response by targeting components of these signal transduction pathways. This mini-review highlights the diverse mechanisms that bacterial pathogens have evolved to manipulate the innate immune response, with a particular focus on those that target MAPK and NF-κB signaling pathways. Understanding the elaborate strategies that pathogens employ to subvert the immune response not only highlights the importance of these proteins in mounting effective immune responses, but may also identify novel approaches for treatment or prevention of infection.
Collapse
Affiliation(s)
- Victoria A McGuire
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee , Dundee , UK
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee , Dundee , UK
| |
Collapse
|
48
|
Ashida H, Mimuro H, Sasakawa C. Shigella manipulates host immune responses by delivering effector proteins with specific roles. Front Immunol 2015; 6:219. [PMID: 25999954 PMCID: PMC4423471 DOI: 10.3389/fimmu.2015.00219] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/22/2015] [Indexed: 11/30/2022] Open
Abstract
The intestinal epithelium deploys multiple defense systems against microbial infection to sense bacterial components and danger alarms, as well as to induce intracellular signal transduction cascades that trigger both the innate and the adaptive immune systems, which are pivotal for bacterial elimination. However, many enteric bacterial pathogens, including Shigella, deliver a subset of virulence proteins (effectors) via the type III secretion system (T3SS) that enable bacterial evasion from host immune systems; consequently, these pathogens are able to efficiently colonize the intestinal epithelium. In this review, we present and select recently discovered examples of interactions between Shigella and host immune responses, with particular emphasis on strategies that bacteria use to manipulate inflammatory outputs of host-cell responses such as cell death, membrane trafficking, and innate and adaptive immune responses.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo , Tokyo , Japan
| | - Hitomi Mimuro
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo , Tokyo , Japan
| | - Chihiro Sasakawa
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo , Tokyo , Japan ; Nippon Institute for Biological Science , Tokyo , Japan ; Medical Mycology Research Center, Chiba University , Chiba , Japan
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW Shigella spp. are important etiologic agents of diarrhea worldwide. This review summarizes the recent findings on the epidemiology, diagnosis, virulence genes, and pathobiology of Shigella infection. RECENT FINDINGS Shigella flexneri and Shigella sonnei have been identified as the main serogroups circulating in developing and developed countries, respectively. However, a shift in the dominant species from S. flexneri to S. sonnei has been observed in countries that have experienced recent improvements in socioeconomic conditions. Despite the increasing usage of molecular methods in the diagnosis and virulence characterization of Shigella strains, researchers have been unsuccessful in finding a specific target gene for this bacillus. New research has demonstrated the role of proteins whose expressions are temperature-regulated, as well as genes involved in the processes of adhesion, invasion, dissemination, and inflammation, aiding in the clarification of the complex pathobiology of shigellosis. SUMMARY Knowledge about the epidemiologic profile of circulating serogroups of Shigella and an understanding of its pathobiology as well as of the virulence genes is important for the development of preventive measures and interventions to reduce the worldwide spread of shigellosis.
Collapse
|
50
|
Tanner K, Brzovic P, Rohde JR. The bacterial pathogen-ubiquitin interface: lessons learned from Shigella. Cell Microbiol 2014; 17:35-44. [PMID: 25355173 DOI: 10.1111/cmi.12390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 02/06/2023]
Abstract
Shigella species are the aetiological agents of shigellosis, a severe diarrhoeal disease that is a significant cause of morbidity and mortality worldwide. Shigellosis causes massive colonic destruction, high fever and bloody diarrhoea. Shigella pathogenesis is tightly linked to the ability of the bacterium to invade and replicate intracellularly within the colonic epithelium. Shigella uses a type 3 secretion system to deliver its effector proteins into the cytosol of infected cells. Among the repertoire of Shigella effectors, many are known to target components of the actin cytoskeleton to promote bacterial entry. An emerging alternate theme for effector function is the targeting of the host ubiquitin system. Ubiquitination is a post-translational modification restricted to eukaryotes and is involved in many essential host processes. By virtue of sheer number of ubiquitin-modulating effector proteins, it is clear that Shigella has invested heavily into subversion of the ubiquitin system. Understanding these host-pathogen interactions will inform us about the strategies used by successful pathogens and may also provide avenues for novel antimicrobial strategies.
Collapse
Affiliation(s)
- Kaitlyn Tanner
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|