1
|
Galili-Kostin B, Rajan KS, Ida Ashkenazi Y, Freedman A, Doniger T, Cohen-Chalamish S, Waldman Ben-Asher H, Unger R, Roditi I, Tschudi C, Michaeli S. TblncRNA-23, a long non-coding RNA transcribed by RNA polymerase I, regulates developmental changes in Trypanosoma brucei. Nat Commun 2025; 16:3697. [PMID: 40251171 PMCID: PMC12008373 DOI: 10.1038/s41467-025-58979-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
The protozoan parasite Trypanosoma brucei undergoes a complex life cycle, moving between its mammalian host and the blood-feeding tsetse fly vector. The two major surface proteins expressed by procyclic forms in the insect midgut, EP and GPEET procyclin, are transcribed from a polycistronic transcription unit by RNA polymerase I. Here we identify a long non-coding RNA, TblncRNA-23, that is encoded between the two procyclin genes. TblncRNA-23 localizes to the nucleolus and also associates with polysomes. Overexpression of TblncRNA-23 and its down regulation by RNAi or knockout (KO) identify EP and GPEET mRNAs as targets, among other mRNAs that changed abundance in the transition from early to late procyclic forms and from procylic to the metacylic forms, suggesting its role in regulating gene expression which accomapines or dictates of the parasite transitions within in its insect host. TblncRNA-23 interacts with its substrates via base-pairing using different domains. Purification of TblncRNA-23-associated proteins by RaPID identifies hundreds of proteins, including proteins translated from its target mRNAs, suggesting its association with translating ribosomes. Early and late procyclic forms differ in their social motility (SoMo) capabilities, which is essential for migration away from the insect midgut to enable parasite transmission. Overexpression of TblncRNA-23 results in hypermotility, whereas KO compromises this capacity, suggesting a regulatory role in SoMo. Moreover, silencing of the RNA abrogates the ability of the parasite to transform from procylic to the metacyclic forms affecting the parasite's potential to cycle between its hosts.
Collapse
Affiliation(s)
- Beathrice Galili-Kostin
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Yuval Ida Ashkenazi
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Almog Freedman
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Hiba Waldman Ben-Asher
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | | | - Christian Tschudi
- Yale School of Public Health, Department of Epidemiology and Microbial Diseases, New Haven, CT, 06536, USA
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, 52900, Israel.
| |
Collapse
|
2
|
Rojas-Sánchez S, Kolev NG, Tschudi C. Deep mutational scanning of the Trypanosoma brucei developmental regulator RBP6 reveals an essential disordered region influenced by positive residues. Nat Commun 2025; 16:1168. [PMID: 39885181 PMCID: PMC11782513 DOI: 10.1038/s41467-025-56553-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 01/22/2025] [Indexed: 02/01/2025] Open
Abstract
To regain infectivity, Trypanosoma brucei, the pathogen causing Human and Animal African trypanosomiasis, undergoes a complex developmental program within the tsetse fly known as metacyclogenesis. RNA-binding protein 6 (RBP6) is a potent orchestrator of this process, however, an understanding of its functionally important domains and their mutational constraints is lacking. Here, we perform deep mutational scanning of the entire RBP6 primary structure. Expression of libraries containing all single-point variants of RBP6 in non-infectious procyclic forms and subsequent purification of infectious metacyclics supports the existence of an RNA-recognition motif (RRM) and reveal an N-terminal intrinsically disordered region (N-IDR). In contrast to the RRM, the N-IDR is more tolerant to substitutions; however, a handful of positions contain a third of all deleterious mutations found in the N-IDR. Introduction of positively charged residues in the N-IDR dramatically alters the normal metacyclogenesis pattern. Our results reveal an essential N-IDR, possibly playing a regulatory role, and an RRM likely involved in protein-RNA interactions.
Collapse
Affiliation(s)
- Saúl Rojas-Sánchez
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06536, USA.
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, 06520, USA.
| | - Nikolay G Kolev
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06536, USA
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, 06536, USA.
| |
Collapse
|
3
|
Mondragón-Rosas F, Florencio-Martínez LE, Villa-Delavequia GS, Manning-Cela RG, Carrero JC, Nepomuceno-Mejía T, Martínez-Calvillo S. Characterization of Tau95 led to the identification of a four-subunit TFIIIC complex in trypanosomatid parasites. Appl Microbiol Biotechnol 2024; 108:109. [PMID: 38204130 PMCID: PMC10781861 DOI: 10.1007/s00253-023-12903-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 01/12/2024]
Abstract
RNA polymerase III (RNAP III) synthetizes small essential non-coding RNA molecules such as tRNAs and 5S rRNA. In yeast and vertebrates, RNAP III needs general transcription factors TFIIIA, TFIIIB, and TFIIIC to initiate transcription. TFIIIC, composed of six subunits, binds to internal promoter elements in RNAP III-dependent genes. Limited information is available about RNAP III transcription in the trypanosomatid protozoa Trypanosoma brucei and Leishmania major, which diverged early from the eukaryotic lineage. Analyses of the first published draft of the trypanosomatid genome sequences failed to recognize orthologs of any of the TFIIIC subunits, suggesting that this transcription factor is absent in these parasites. However, a putative TFIIIC subunit was recently annotated in the databases. Here we characterize this subunit in T. brucei and L. major and demonstrate that it corresponds to Tau95. In silico analyses showed that both proteins possess the typical Tau95 sequences: the DNA binding region and the dimerization domain. As anticipated for a transcription factor, Tau95 localized to the nucleus in insect forms of both parasites. Chromatin immunoprecipitation (ChIP) assays demonstrated that Tau95 binds to tRNA and U2 snRNA genes in T. brucei. Remarkably, by performing tandem affinity purifications we identified orthologs of TFIIIC subunits Tau55, Tau131, and Tau138 in T. brucei and L. major. Thus, contrary to what was assumed, trypanosomatid parasites do possess a TFIIIC complex. Other putative interacting partners of Tau95 were identified in T. brucei and L. major. KEY POINTS: • A four-subunit TFIIIC complex is present in T. brucei and L. major • TbTau95 associates with tRNA and U2 snRNA genes • Putative interacting partners of Tau95 might include some RNAP II regulators.
Collapse
Affiliation(s)
- Fabiola Mondragón-Rosas
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Luis E Florencio-Martínez
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Gino S Villa-Delavequia
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Rebeca G Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Ciudad de Mexico, CP 07360, México
| | - Julio C Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de Mexico, 04510, México
| | - Tomás Nepomuceno-Mejía
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Santiago Martínez-Calvillo
- Facultad de Estudios Superiores Iztacala, Unidad de Biomedicina, Universidad Nacional Autónoma de México, Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México.
| |
Collapse
|
4
|
Chame DF, Laet-Souza DDE, Vieira HGS, Tahara EB, Macedo AM, Machado CR, Franco GR. Trypanosoma cruzi RNA-binding protein DRBD3: perinuclear foci formation during benznidazole exposure. AN ACAD BRAS CIENC 2024; 96:e20240321. [PMID: 39607128 DOI: 10.1590/0001-3765202420240321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/12/2024] [Indexed: 11/29/2024] Open
Abstract
Benznidazole (BZ) is the trypanocidal compound of choice for Chagas disease, a neglected tropical disease in the Americas. However, this drug often fails to cure the infection. The regulation of gene expression in Trypanosoma cruzi, the causative agent of Chagas disease, is based on post-transcriptional mechanisms. When environmental changes cause translational arrest, RNA-binding proteins, and their target mRNAs assemble into cytoplasmic bodies, known as RNA granules, which act as RNA sorting centers. We have characterized the T. cruzi RNA-binding protein DRBD3, which has two RRMs domains, and a C-terminal low-complexity sequence rich in proline and glutamines. Using a tagged form of TcDRBD3 (rTcDRBD3), we showed that this protein resides in the cytoplasm, but localizes into perinuclear cytoplasmic foci after BZ exposure. RNA staining after BZ also showed that this molecule accumulates into perinuclear cytoplasmic foci. Moreover, BZ and puromycin treatment enhanced the colocalization of rTcDRBD3 and RNA, suggesting that TcDRBD3 granules repertoire harbors RNAs released from polysomes. Under starvation, rTcDRBD3 granules localized throughout the cytoplasm and also increased in number in the presence of puromycin. Our results suggest that TcDRBD3 accumulates into perinuclear granules that harbor RNA and also that its localization varies according to the type of stress.
Collapse
Affiliation(s)
- Daniela F Chame
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Daniela DE Laet-Souza
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Helaine G S Vieira
- Garvan Institute of Medical Research, 384 Victoria Street, 2010 Sydney, NSW, Australia
| | - Erich B Tahara
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Andrea Mara Macedo
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Carlos Renato Machado
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Glória Regina Franco
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Bioquímica e Imunologia, Avenida Antônio Carlos, 6627, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
5
|
Rajan KS, Aryal S, Hiregange DG, Bashan A, Madmoni H, Olami M, Doniger T, Cohen-Chalamish S, Pescher P, Taoka M, Nobe Y, Fedorenko A, Bose T, Zimermann E, Prina E, Aharon-Hefetz N, Pilpel Y, Isobe T, Unger R, Späth GF, Yonath A, Michaeli S. Structural and mechanistic insights into the function of Leishmania ribosome lacking a single pseudouridine modification. Cell Rep 2024; 43:114203. [PMID: 38722744 PMCID: PMC11156624 DOI: 10.1016/j.celrep.2024.114203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 03/21/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Leishmania is the causative agent of cutaneous and visceral diseases affecting millions of individuals worldwide. Pseudouridine (Ψ), the most abundant modification on rRNA, changes during the parasite life cycle. Alterations in the level of a specific Ψ in helix 69 (H69) affected ribosome function. To decipher the molecular mechanism of this phenotype, we determine the structure of ribosomes lacking the single Ψ and its parental strain at ∼2.4-3 Å resolution using cryo-EM. Our findings demonstrate the significance of a single Ψ on H69 to its structure and the importance for its interactions with helix 44 and specific tRNAs. Our study suggests that rRNA modification affects translation of mRNAs carrying codon bias due to selective accommodation of tRNAs by the ribosome. Based on the high-resolution structures, we propose a mechanism explaining how the ribosome selects specific tRNAs.
Collapse
Affiliation(s)
- K Shanmugha Rajan
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel; The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Saurav Aryal
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Disha-Gajanan Hiregange
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Anat Bashan
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Hava Madmoni
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Mika Olami
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Pascal Pescher
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Aliza Fedorenko
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Tanaya Bose
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Ella Zimermann
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Eric Prina
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Noa Aharon-Hefetz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Toshiaki Isobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo 192-0397, Japan
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Gerald F Späth
- Institut Pasteur, Université Paris Cité, INSERM U1201, Unité de Parasitologie moléculaire et Signalisation, Paris, France
| | - Ada Yonath
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 76100001, Israel
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel.
| |
Collapse
|
6
|
Borges FS, Quilles JC, Lorenzon LB, Espada CR, Freitas-Castro F, Defina TPA, Holetz FB, Cruz AK. Leishmania Ribosomal Protein (RP) paralogous genes compensate each other's expression maintaining protein native levels. PLoS One 2024; 19:e0292152. [PMID: 38753846 PMCID: PMC11098316 DOI: 10.1371/journal.pone.0292152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
In the protozoan parasite Leishmania, most genes encoding for ribosomal proteins (RPs) are present as two or more copies in the genome. However, their untranslated regions (UTRs) are predominantly divergent and might be associated with a distinct regulation of the expression of paralogous genes. Herein, we investigated the expression profiles of two RPs (S16 and L13a) encoded by duplicated genes in Leishmania major. The genes encoding for the S16 protein possess identical coding sequences (CDSs) and divergent UTRs, whereas the CDSs of L13a diverge by two amino acids and by their UTRs. Using CRISPR/Cas9 genome editing, we generated knockout (Δ) and endogenously tagged transfectants for each paralog of L13a and S16 genes. Combining tagged and Δ cell lines we found evidence of differential expression of both RPS16 and RPL13a isoforms throughout parasite development, with one isoform consistently more abundant than its respective copy. In addition, compensatory expression was observed for each paralog upon deletion of the corresponding isoform, suggesting functional conservation between these proteins. This differential expression pattern relates to post-translational processes, given compensation occurs at the level of the protein, with no alterations detected at transcript level. Ribosomal profiles for RPL13a indicate a standard behavior for these paralogues suggestive of interaction with heavy RNA-protein complexes, as already reported for other RPs in trypanosomatids. We identified paralog-specific bound to their 3'UTRs which may be influential in regulating paralog expression. In support, we identified conserved cis-elements within the 3'UTRs of RPS16 and RPL13a; cis-elements exclusive to the UTR of the more abundant paralog or to the less abundant ones were identified.
Collapse
Affiliation(s)
- Francisca S. Borges
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP–University of São Paulo, São Paulo, Brazil
| | - José C. Quilles
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP–University of São Paulo, São Paulo, Brazil
| | - Lucas B. Lorenzon
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP–University of São Paulo, São Paulo, Brazil
| | - Caroline R. Espada
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP–University of São Paulo, São Paulo, Brazil
| | - Felipe Freitas-Castro
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP–University of São Paulo, São Paulo, Brazil
| | - Tânia P. A. Defina
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP–University of São Paulo, São Paulo, Brazil
| | - Fabíola B. Holetz
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Paraná, Brazil
| | - Angela K. Cruz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, FMRP/USP–University of São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Reuter C, Hauf L, Imdahl F, Sen R, Vafadarnejad E, Fey P, Finger T, Jones NG, Walles H, Barquist L, Saliba AE, Groeber-Becker F, Engstler M. Vector-borne Trypanosoma brucei parasites develop in artificial human skin and persist as skin tissue forms. Nat Commun 2023; 14:7660. [PMID: 37996412 PMCID: PMC10667367 DOI: 10.1038/s41467-023-43437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Transmission of Trypanosoma brucei by tsetse flies involves the deposition of the cell cycle-arrested metacyclic life cycle stage into mammalian skin at the site of the fly's bite. We introduce an advanced human skin equivalent and use tsetse flies to naturally infect the skin with trypanosomes. We detail the chronological order of the parasites' development in the skin by single-cell RNA sequencing and find a rapid activation of metacyclic trypanosomes and differentiation to proliferative parasites. Here we show that after the establishment of a proliferative population, the parasites enter a reversible quiescent state characterized by slow replication and a strongly reduced metabolism. We term these quiescent trypanosomes skin tissue forms, a parasite population that may play an important role in maintaining the infection over long time periods and in asymptomatic infected individuals.
Collapse
Affiliation(s)
- Christian Reuter
- Department of Cell and Developmental Biology, Biocenter, Julius-Maximilians-Universitaet of Wuerzburg, Wuerzburg, Germany
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, Wuerzburg, Germany
| | - Laura Hauf
- Department of Cell and Developmental Biology, Biocenter, Julius-Maximilians-Universitaet of Wuerzburg, Wuerzburg, Germany
| | - Fabian Imdahl
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Wuerzburg, Germany
- Core Unit Systems Medicine, Julius-Maximilians-Universitaet of Wuerzburg, Wuerzburg, Germany
| | - Rituparno Sen
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Wuerzburg, Germany
| | - Ehsan Vafadarnejad
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Wuerzburg, Germany
| | - Philipp Fey
- Translational Center Regenerative Therapies, Fraunhofer ISC, Wuerzburg, Germany
| | - Tamara Finger
- Translational Center Regenerative Therapies, Fraunhofer ISC, Wuerzburg, Germany
| | - Nicola G Jones
- Department of Cell and Developmental Biology, Biocenter, Julius-Maximilians-Universitaet of Wuerzburg, Wuerzburg, Germany
| | - Heike Walles
- Translational Center Regenerative Therapies, Fraunhofer ISC, Wuerzburg, Germany
- Core Facility Tissue Engineering, Otto-von-Guericke University, Magdeburg, Germany
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Wuerzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Wuerzburg, Germany
- Institute of Molecular Infection Biology (IMIB), Faculty of Medicine, Julius-Maximilians-Universitaet of Wuerzburg, Wuerzburg, Germany
| | - Florian Groeber-Becker
- Department of Tissue Engineering and Regenerative Medicine (TERM), University Hospital Wuerzburg, Wuerzburg, Germany
- Translational Center Regenerative Therapies, Fraunhofer ISC, Wuerzburg, Germany
| | - Markus Engstler
- Department of Cell and Developmental Biology, Biocenter, Julius-Maximilians-Universitaet of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
8
|
Miller G, Rollosson LM, Saada C, Wade SJ, Schulz D. Adaptation of CUT&RUN for use in African trypanosomes. PLoS One 2023; 18:e0292784. [PMID: 37988382 PMCID: PMC10662711 DOI: 10.1371/journal.pone.0292784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/28/2023] [Indexed: 11/23/2023] Open
Abstract
This Cleavage Under Targets and Release Using Nuclease (CUT&RUN) protocol produces genomic occupancy data for a protein of interest in the protozoan parasite Trypanosoma brucei. The data produced is analyzed in a similar way as that produced by ChIP-seq. While we describe the protocol for parasites carrying an epitope tag for the protein of interest, antibodies against the native protein could be used for the same purpose.
Collapse
Affiliation(s)
- Geneva Miller
- Harvey Mudd College, Claremont, CA, United States of America
| | | | - Carrie Saada
- Harvey Mudd College, Claremont, CA, United States of America
| | | | - Danae Schulz
- Harvey Mudd College, Claremont, CA, United States of America
| |
Collapse
|
9
|
Ashby EC, Havens JL, Rollosson LM, Hardin J, Schulz D. Chemical Inhibition of Bromodomain Proteins in Insect-Stage African Trypanosomes Perturbs Silencing of the Variant Surface Glycoprotein Repertoire and Results in Widespread Changes in the Transcriptome. Microbiol Spectr 2023; 11:e0014723. [PMID: 37097159 PMCID: PMC10269879 DOI: 10.1128/spectrum.00147-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
The eukaryotic protozoan parasite Trypanosoma brucei is transmitted by the tsetse fly to both humans and animals, where it causes a fatal disease called African trypanosomiasis. While the parasite lacks canonical DNA sequence-specific transcription factors, it does possess histones, histone modifications, and proteins that write, erase, and read histone marks. Chemical inhibition of chromatin-interacting bromodomain proteins has previously been shown to perturb bloodstream specific trypanosome processes, including silencing of the variant surface glycoprotein (VSG) genes and immune evasion. Transcriptomic changes that occur in bromodomain-inhibited bloodstream parasites mirror many of the changes that occur as parasites developmentally progress from the bloodstream to the insect stage. We performed transcriptome sequencing (RNA-seq) time courses to determine the effects of chemical bromodomain inhibition in insect-stage parasites using the compound I-BET151. We found that treatment with I-BET151 causes large changes in the transcriptome of insect-stage parasites and also perturbs silencing of VSG genes. The transcriptomes of bromodomain-inhibited parasites share some features with early metacyclic-stage parasites in the fly salivary gland, implicating bromodomain proteins as important for regulating transcript levels for developmentally relevant genes. However, the downregulation of surface procyclin protein that typically accompanies developmental progression is absent in bromodomain-inhibited insect-stage parasites. We conclude that chemical modulation of bromodomain proteins causes widespread transcriptomic changes in multiple trypanosome life cycle stages. Understanding the gene-regulatory processes that facilitate transcriptome remodeling in this highly diverged eukaryote may shed light on how these mechanisms evolved. IMPORTANCE The disease African trypanosomiasis imposes a severe human and economic burden for communities in sub-Saharan Africa. The parasite that causes the disease is transmitted to the bloodstream of a human or ungulate via the tsetse fly. Because the environments of the fly and the bloodstream differ, the parasite modulates the expression of its genes to accommodate two different lifestyles in these disparate niches. Perturbation of bromodomain proteins that interact with histone proteins around which DNA is wrapped (chromatin) causes profound changes in gene expression in bloodstream-stage parasites. This paper reports that gene expression is also affected by chemical bromodomain inhibition in insect-stage parasites but that the genes affected differ depending on life cycle stage. Because trypanosomes diverged early from model eukaryotes, an understanding of how trypanosomes regulate gene expression may lend insight into how gene-regulatory mechanisms evolved. This could also be leveraged to generate new therapeutic strategies.
Collapse
Affiliation(s)
- Ethan C. Ashby
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| | | | | | - Johanna Hardin
- Department of Mathematics and Statistics, Pomona College, Claremont, California, USA
| | - Danae Schulz
- Department of Biology, Harvey Mudd College, Claremont, California, USA
| |
Collapse
|
10
|
Ceballos-Pérez G, Rico-Jiménez M, Gómez-Liñán C, Estévez AM. Role of the RNA-binding protein ZC3H41 in the regulation of ribosomal protein messenger RNAs in trypanosomes. Parasit Vectors 2023; 16:118. [PMID: 37004055 PMCID: PMC10064699 DOI: 10.1186/s13071-023-05728-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/03/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Trypanosomes are single-celled eukaryotes that rely heavily on post-transcriptional mechanisms to regulate gene expression. RNA-binding proteins play essential roles in regulating the fate, abundance and translation of messenger RNAs (mRNAs). Among these, zinc finger proteins of the cysteine3histidine (CCCH) class have been shown to be key players in cellular processes as diverse as differentiation, regulation of the cell cycle and translation. ZC3H41 is an essential zinc finger protein that has been described as a component of spliced leader RNA granules and nutritional stress granules, but its role in RNA metabolism is unknown. METHODS Cell cycle analysis in ZC3H41- and Z41AP-depleted cells was carried out using 4',6-diamidino-2-phenylindole staining, microscopic examination and flow cytometry. The identification of ZC3H41 protein partners was done using tandem affinity purification and mass spectrometry. Next-generation sequencing was used to evaluate the effect of ZC3H41 depletion on the transcriptome of procyclic Trypanosoma brucei cells, and also to identify the cohort of mRNAs associated with the ZC3H41/Z41AP complex. Levels of 5S ribosomal RNA (rRNA) species in ZC3H41- and Z41AP-depleted cells were assessed by quantitative reverse transcription-polymerase chain reaction. Surface sensing of translation assays were used to monitor global translation. RESULTS We showed that depletion of the zinc finger protein ZC3H41 resulted in marked cell cycle defects and abnormal cell morphologies. ZC3H41 was found associated with an essential protein, which we named Z41AP, forming a stable heterodimer, and also with proteins of the poly(A)-binding protein 1 complex. The identification of mRNAs associated with the ZC3H41/Z41AP complex revealed that it is primarily composed of ribosomal protein mRNAs, and that binding to target transcripts is diminished upon nutritional stress. In addition, we observed that mRNAs encoding several proteins involved in the maturation of 5S rRNA are also associated with the ZC3H41/Z41AP complex. Finally, we showed that depletion of either ZC3H41 or Z41AP led to the accumulation of 5S rRNA precursors and a decrease of protein translation. CONCLUSIONS We propose that ZC3H41 and Z41AP play important roles in controlling the fate of ribosomal components in response to environmental cues.
Collapse
Affiliation(s)
- Gloria Ceballos-Pérez
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain
| | - Miriam Rico-Jiménez
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain
- Estación Experimental del Zaidín (EEZ), CSIC, Prof. Albareda 1, 18008, Granada, Spain
| | - Claudia Gómez-Liñán
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain
| | - Antonio M Estévez
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain.
| |
Collapse
|
11
|
Oliveira C, Holetz FB, Alves LR, Ávila AR. Modulation of Virulence Factors during Trypanosoma cruzi Differentiation. Pathogens 2022; 12:pathogens12010032. [PMID: 36678380 PMCID: PMC9865030 DOI: 10.3390/pathogens12010032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Chagas disease is a neglected tropical disease caused by Trypanosoma cruzi. This protozoan developed several mechanisms to infect, propagate, and survive in different hosts. The specific expression of proteins is responsible for morphological and metabolic changes in different parasite stages along the parasite life cycle. The virulence strategies at the cellular and molecular levels consist of molecules responsible for mediating resistance mechanisms to oxidative damage, cellular invasion, and immune evasion, performed mainly by surface proteins. Since parasite surface coat remodeling is crucial to invasion and infectivity, surface proteins are essential virulence elements. Understanding the factors involved in these processes improves the knowledge of parasite pathogenesis. Genome sequencing has opened the door to high-throughput technologies, allowing us to obtain a deeper understanding of gene reprogramming along the parasite life cycle and identify critical molecules for survival. This review therefore focuses on proteins regulated during differentiation into infective forms considered virulence factors and addresses the current known mechanisms acting in the modulation of gene expression, emphasizing mRNA signals, regulatory factors, and protein complexes.
Collapse
Affiliation(s)
- Camila Oliveira
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
- Centre de Recherche CERVO, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Fabíola Barbieri Holetz
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
| | - Lysangela Ronalte Alves
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
- Research Center in Infectious Diseases, Division of Infectious Disease and Immunity CHU de Quebec Research Center, University Laval, Québec City, QC G1V 4G2, Canada
| | - Andréa Rodrigues Ávila
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fiocruz Paraná, Curitiba 81350-010, Brazil
- Correspondence: ; Tel.: +55-41-33163230
| |
Collapse
|
12
|
Sending the message: specialized RNA export mechanisms in trypanosomes. Trends Parasitol 2022; 38:854-867. [PMID: 36028415 PMCID: PMC9894534 DOI: 10.1016/j.pt.2022.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 02/04/2023]
Abstract
Export of RNA from the nucleus is essential for all eukaryotic cells and has emerged as a major step in the control of gene expression. mRNA molecules are required to complete a complex series of processing events and pass a quality control system to protect the cytoplasm from the translation of aberrant proteins. Many of these events are highly conserved across eukaryotes, reflecting their ancient origin, but significant deviation from a canonical pathway as described from animals and fungi has emerged in the trypanosomatids. With significant implications for the mechanisms that control gene expression and hence differentiation, responses to altered environments and fitness as a parasite, these deviations may also reveal additional, previously unsuspected, mRNA export pathways.
Collapse
|
13
|
Rajan KS, Adler K, Doniger T, Cohen-Chalamish S, Aharon-Hefetz N, Aryal S, Pilpel Y, Tschudi C, Unger R, Michaeli S. Identification and functional implications of pseudouridine RNA modification on small noncoding RNAs in the mammalian pathogen Trypanosoma brucei. J Biol Chem 2022; 298:102141. [PMID: 35714765 PMCID: PMC9283944 DOI: 10.1016/j.jbc.2022.102141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 01/11/2023] Open
Abstract
Trypanosoma brucei, the parasite that causes sleeping sickness, cycles between an insect and a mammalian host. However, the effect of RNA modifications such as pseudouridinylation on its ability to survive in these two different host environments is unclear. Here, two genome-wide approaches were applied for mapping pseudouridinylation sites (Ψs) on small nucleolar RNA (snoRNA), 7SL RNA, vault RNA, and tRNAs from T. brucei. We show using HydraPsiSeq and RiboMeth-seq that the Ψ on C/D snoRNA guiding 2'-O-methylation increased the efficiency of the guided modification on its target, rRNA. We found differential levels of Ψs on these noncoding RNAs in the two life stages (insect host and mammalian host) of the parasite. Furthermore, tRNA isoform abundance and Ψ modifications were characterized in these two life stages demonstrating stage-specific regulation. We conclude that the differential Ψ modifications identified here may contribute to modulating the function of noncoding RNAs involved in rRNA processing, rRNA modification, protein synthesis, and protein translocation during cycling of the parasite between its two hosts.
Collapse
Affiliation(s)
- K. Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Katerina Adler
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Noa Aharon-Hefetz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Saurav Aryal
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Christian Tschudi
- Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, USA
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel,For correspondence: Shulamit Michaeli
| |
Collapse
|
14
|
Bilodeau DY, Sheridan RM, Balan B, Jex AR, Rissland OS. Precise gene models using long-read sequencing reveal a unique poly(A) signal in Giardia lamblia. RNA (NEW YORK, N.Y.) 2022; 28:668-682. [PMID: 35110372 PMCID: PMC9014877 DOI: 10.1261/rna.078793.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
During pre-mRNA processing, the poly(A) signal is recognized by a protein complex that ensures precise cleavage and polyadenylation of the nascent transcript. The location of this cleavage event establishes the length and sequence of the 3' UTR of an mRNA, thus determining much of its post-transcriptional fate. Using long-read sequencing, we characterize the polyadenylation signal and related sequences surrounding Giardia lamblia cleavage sites for over 2600 genes. We find that G. lamblia uses an AGURAA poly(A) signal, which differs from the mammalian AAUAAA. We also describe how G. lamblia lacks common auxiliary elements found in other eukaryotes, along with the proteins that recognize them. Further, we identify 133 genes with evidence of alternative polyadenylation. These results suggest that despite pared-down cleavage and polyadenylation machinery, 3' end formation still appears to be an important regulatory step for gene expression in G. lamblia.
Collapse
Affiliation(s)
- Danielle Y Bilodeau
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Ryan M Sheridan
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | - Balu Balan
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC 3052, Australia
| | - Aaron R Jex
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Melbourne, VIC 3052, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Olivia S Rissland
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| |
Collapse
|
15
|
Assis LA, Santos Filho MVC, da Cruz Silva JR, Bezerra MJR, de Aquino IRPUC, Merlo KC, Holetz FB, Probst CM, Rezende AM, Papadopoulou B, da Costa Lima TDC, de Melo Neto OP. Identification of novel proteins and mRNAs differentially bound to the Leishmania Poly(A) Binding Proteins reveals a direct association between PABP1, the RNA-binding protein RBP23 and mRNAs encoding ribosomal proteins. PLoS Negl Trop Dis 2021; 15:e0009899. [PMID: 34705820 PMCID: PMC8575317 DOI: 10.1371/journal.pntd.0009899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/08/2021] [Accepted: 10/11/2021] [Indexed: 12/13/2022] Open
Abstract
Poly(A) Binding Proteins (PABPs) are major eukaryotic RNA-binding proteins (RBPs) with multiple roles associated with mRNA stability and translation and characterized mainly from multicellular organisms and yeasts. A variable number of PABP homologues are seen in different organisms however the biological reasons for multiple PABPs are generally not well understood. In the unicellular Leishmania, dependent on post-transcriptional mechanisms for the control of its gene expression, three distinct PABPs are found, with yet undefined functional distinctions. Here, using RNA-immunoprecipitation sequencing analysis we show that the Leishmania PABP1 preferentially associates with mRNAs encoding ribosomal proteins, while PABP2 and PABP3 bind to an overlapping set of mRNAs distinct to those enriched in PABP1. Immunoprecipitation studies combined to mass-spectrometry analysis identified RBPs differentially associated with PABP1 or PABP2, including RBP23 and DRBD2, respectively, that were investigated further. Both RBP23 and DRBD2 bind directly to the three PABPs in vitro, but reciprocal experiments confirmed preferential co-immunoprecipitation of PABP1, as well as the EIF4E4/EIF4G3 based translation initiation complex, with RBP23. Other RBP23 binding partners also imply a direct role in translation. DRBD2, in contrast, co-immunoprecipitated with PABP2, PABP3 and with RBPs unrelated to translation. Over 90% of the RBP23-bound mRNAs code for ribosomal proteins, mainly absent from the transcripts co-precipitated with DRBD2. These experiments suggest a novel and specific route for translation of the ribosomal protein mRNAs, mediated by RBP23, PABP1 and the associated EIF4E4/EIF4G3 complex. They also highlight the unique roles that different PABP homologues may have in eukaryotic cells associated with mRNA translation.
Collapse
Affiliation(s)
- Ludmila A. Assis
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Moezio V. C. Santos Filho
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
- Department of Genetics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Joao R. da Cruz Silva
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Maria J. R. Bezerra
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | | | - Kleison C. Merlo
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Fabiola B. Holetz
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Paraná, Brazil
| | - Christian M. Probst
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, Oswaldo Cruz Foundation, Curitiba, Paraná, Brazil
| | - Antonio M. Rezende
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| | - Barbara Papadopoulou
- CHU de Quebec Research Center and Department of Microbiology-Infectious Disease and Immunology, Laval University, Quebec, Quebec, Canada
| | | | - Osvaldo P. de Melo Neto
- Department of Microbiology, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, Brazil
| |
Collapse
|
16
|
Rajan KS, Adler K, Madmoni H, Peleg-Chen D, Cohen-Chalamish S, Doniger T, Galili B, Gerber D, Unger R, Tschudi C, Michaeli S. Pseudouridines on Trypanosoma brucei mRNAs are developmentally regulated: Implications to mRNA stability and protein binding. Mol Microbiol 2021; 116:808-826. [PMID: 34165831 DOI: 10.1111/mmi.14774] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/11/2021] [Accepted: 06/17/2021] [Indexed: 11/30/2022]
Abstract
The parasite Trypanosoma brucei cycles between an insect and a mammalian host and is the causative agent of sleeping sickness. Here, we performed high-throughput mapping of pseudouridines (Ψs) on mRNA from two life stages of the parasite. The analysis revealed ~273 Ψs, including developmentally regulated Ψs that are guided by homologs of pseudouridine synthases (PUS1, 3, 5, and 7). Mutating the U that undergoes pseudouridylation in the 3' UTR of valyl-tRNA synthetase destabilized the mRNA level. To investigate the mechanism by which Ψ affects the stability of this mRNA, proteins that bind to the 3' UTR were identified, including the RNA binding protein RBSR1. The binding of RBSR1 protein to the 3' UTR was stronger when lacking Ψ compared to transcripts carrying the modification, suggesting that Ψ can inhibit the binding of proteins to their target and thus affect the stability of mRNAs. Consequently, Ψ modification on mRNA adds an additional level of regulation to the dominant post-transcriptional control in these parasites.
Collapse
Affiliation(s)
- K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Katerina Adler
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Hava Madmoni
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Dana Peleg-Chen
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Beathrice Galili
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Doron Gerber
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
17
|
Campagnaro GD, Nay E, Plevin MJ, Cruz AK, Walrad PB. Arginine Methyltransferases as Regulators of RNA-Binding Protein Activities in Pathogenic Kinetoplastids. Front Mol Biosci 2021; 8:692668. [PMID: 34179098 PMCID: PMC8226133 DOI: 10.3389/fmolb.2021.692668] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
A large number of eukaryotic proteins are processed by single or combinatorial post-translational covalent modifications that may alter their activity, interactions and fate. The set of modifications of each protein may be considered a "regulatory code". Among the PTMs, arginine methylation, catalyzed by protein arginine methyltransferases (PRMTs), can affect how a protein interacts with other macromolecules such as nucleic acids or other proteins. In fact, many RNA-binding (RBPs) proteins are targets of PRMTs. The methylation status of RBPs may affect the expression of their bound RNAs and impact a diverse range of physiological and pathological cellular processes. Unlike most eukaryotes, Kinetoplastids have overwhelmingly intronless genes that are arranged within polycistronic units from which mature mRNAs are generated by trans-splicing. Gene expression in these organisms is thus highly dependent on post-transcriptional control, and therefore on the action of RBPs. These genetic features make trypanosomatids excellent models for the study of post-transcriptional regulation of gene expression. The roles of PRMTs in controlling the activity of RBPs in pathogenic kinetoplastids have now been studied for close to 2 decades with important advances achieved in recent years. These include the finding that about 10% of the Trypanosoma brucei proteome carries arginine methylation and that arginine methylation controls Leishmania:host interaction. Herein, we review how trypanosomatid PRMTs regulate the activity of RBPs, including by modulating interactions with RNA and/or protein complex formation, and discuss how this impacts cellular and biological processes. We further highlight unique structural features of trypanosomatid PRMTs and how it contributes to their singular functionality.
Collapse
Affiliation(s)
- Gustavo D. Campagnaro
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Edward Nay
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Michael J. Plevin
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom
| | - Angela K. Cruz
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Pegine B. Walrad
- York Biomedical Research Institute, Department of Biology, University of York, York, United Kingdom,*Correspondence: Pegine B. Walrad,
| |
Collapse
|
18
|
Characterization of the RNA-Binding Protein TcSgn1 in Trypanosoma cruzi. Microorganisms 2021; 9:microorganisms9050986. [PMID: 34063193 PMCID: PMC8147501 DOI: 10.3390/microorganisms9050986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 11/24/2022] Open
Abstract
RNA-binding proteins (RBPs) participate in several steps of post-transcriptional regulation of gene expression, such as splicing, messenger RNA transport, mRNA localization, and translation. Gene-expression regulation in trypanosomatids occurs primarily at the post-transcriptional level, and RBPs play important roles in the process. Here, we characterized the RBP TcSgn1, which contains one RNA recognition motif (RRM). TcSgn1 is a close ortholog of yeast Saccharomyces cerevisiae protein ScSgn1, which plays a role in translational regulation in the cytoplasm. We found that TcSgn1 in Trypanosoma cruzi is localized in the nucleus in exponentially growing epimastigotes. By performing immunoprecipitation assays of TcSgn1, we identified hundreds of mRNAs associated with the protein, a significant fraction of them coding for nucleic acids binding, transcription, and endocytosis proteins. In addition, we show that TcSgn1 is capable of interacting directly with the poly(A) tail of the mRNAs. The study of parasites under nutritional stress showed that TcSgn1 was localized in cytoplasmic granules in addition to localizing in the nucleus. Similar to ScSgn1, we observed that TcSgn1 also interacts with the PABP1 protein, suggesting that this protein may play a role in regulating gene expression in T. cruzi. Taken together, our results show that RNA-binding protein TcSgn1 is part of ribonucleoprotein complexes associated with nuclear functions, stress response, and RNA metabolism.
Collapse
|
19
|
Participation of TFIIIB Subunit Brf1 in Transcription Regulation in the Human Pathogen Leishmania major. Genes (Basel) 2021; 12:genes12020280. [PMID: 33669344 PMCID: PMC7920299 DOI: 10.3390/genes12020280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022] Open
Abstract
In yeast and higher eukaryotes, transcription factor TFIIIB is required for accurate initiation of transcription by RNA Polymerase III (Pol III), which synthesizes transfer RNAs (tRNAs), 5S ribosomal RNA (rRNA), and other essential RNA molecules. TFIIIB is composed of three subunits: B double prime 1 (Bdp1), TATA-binding protein (TBP), and TFIIB-related factor 1 (Brf1). Here, we report the molecular characterization of Brf1 in Leishmania major (LmBrf1), a parasitic protozoan that shows distinctive transcription characteristics, including the apparent absence of Pol III general transcription factors TFIIIA and TFIIIC. Although single-knockout parasites of LmBrf1 were obtained, attempts to generate LmBrf1-null mutants were unsuccessful, which suggests that LmBrf1 is essential in promastigotes of L. major. Notably, Northern blot analyses showed that the half-lives of the messenger RNAs (mRNAs) from LmBrf1 and other components of the Pol III transcription machinery (Bdp1 and Pol III subunit RPC1) are very similar (~40 min). Stabilization of these transcripts was observed in stationary-phase parasites. Chromatin immunoprecipitation (ChIP) experiments showed that LmBrf1 binds to tRNA, small nuclear RNA (snRNA), and 5S rRNA genes. Unexpectedly, the results also indicated that LmBrf1 associates to the promoter region of the 18S rRNA genes and to three Pol II-dependent regions here analyzed. Tandem affinity purification and mass spectrometry analyses allowed the identification of a putative TFIIIC subunit. Moreover, several proteins involved in transcription by all three RNA polymerases co-purified with the tagged version of LmBrf1.
Collapse
|
20
|
RNA-Binding Proteins and Their Targets in Trypanosoma brucei: Single Nucleotide Resolution Using iCLIP and iCLAP. Methods Mol Biol 2021; 2116:303-323. [PMID: 32221928 DOI: 10.1007/978-1-0716-0294-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
RNA-binding proteins (RBPs) are critical to posttranscriptional gene regulation. Therefore, characterization of the RNA molecules bound by RBPs in vivo represent a key step in elucidating their function. The recently developed iCLIP technique allows single nucleotide resolution of the RNA binding footprints of RBPs. We present the iCLIP technique modified for its application to Trypanosoma brucei and most likely other kinetoplastid flagellates. By using the immuno- or affinity purification approach, it was successfully applied to the analysis of several RBPs. Furthermore, we also provide a detailed description of the iCLIP/iCLAP protocol that shall be particularly suitable for the studies of trypanosome RBPs.
Collapse
|
21
|
Bevkal S, Naguleswaran A, Rehmann R, Kaiser M, Heller M, Roditi I. An Alba-domain protein required for proteome remodelling during trypanosome differentiation and host transition. PLoS Pathog 2021; 17:e1009239. [PMID: 33493187 PMCID: PMC7861527 DOI: 10.1371/journal.ppat.1009239] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/04/2021] [Accepted: 12/10/2020] [Indexed: 11/19/2022] Open
Abstract
The transition between hosts is a challenge for digenetic parasites as it is unpredictable. For Trypanosoma brucei subspecies, which are disseminated by tsetse flies, adaptation to the new host requires differentiation of stumpy forms picked up from mammals to procyclic forms in the fly midgut. Here we show that the Alba-domain protein Alba3 is not essential for mammalian slender forms, nor is it required for differentiation of slender to stumpy forms in culture or in mice. It is crucial, however, for the development of T. brucei procyclic forms during the host transition. While steady state levels of mRNAs in differentiating cells are barely affected by the loss of Alba3, there are major repercussions for the proteome. Mechanistically, Alba3 aids differentiation by rapidly releasing stumpy forms from translational repression and stimulating polysome formation. In its absence, parasites fail to remodel their proteome appropriately, lack components of the mitochondrial respiratory chain and show reduced infection of tsetse. Interestingly, Alba3 and the closely related Alba4 are functionally redundant in slender forms, but Alba4 cannot compensate for the lack of Alba3 during differentiation from the stumpy to the procyclic form. We postulate that Alba-domain proteins play similar roles in regulating translation in other protozoan parasites, in particular during life-cycle and host transitions. Trypanosoma brucei is a unicellular eukaryotic parasite that is responsible for African trypanosomiasis. The parasite needs two hosts, mammals and tsetse flies, in order to complete its life cycle. Throughout its developmental cycle, T. brucei encounters diverse environments to which it has to adapt in order to maintain its transmission and infectivity. Successful adaptation to the new environment and transition to different life-cycle stages are the general challenges faced by many digenetic parasites. In this study we show that the Alba-domain protein Alba3 is essential for differentiation of the mammalian stumpy form (transition form) to the procyclic form in the tsetse host. An Alba3 deletion mutant infects mice and shows characteristic waves of parasitaemia, but is severely compromised in its ability to infect tsetse flies. Stumpy forms are translationally repressed, but are poised to resume protein synthesis during differentiation. We show that Alba3 is key to efficient escape from translation repression; in its absence, there is a delay in the formation of polysomes and resumption of protein synthesis. This impacts the formation of procyclic-specific mitochondrial respiratory complex proteins as well as the repression of some bloodstream-specific proteins. This is the first time that a single protein has been shown to have a major influence on translation as an adaptive response to changing hosts. It is also the first time that a mechanism has been established for Alba-domain proteins in parasites.
Collapse
Affiliation(s)
- Shubha Bevkal
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Science, University of Bern, Bern, Switzerland
| | | | - Ruth Rehmann
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Marcel Kaiser
- Department of Medical and Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
22
|
Mwangi KW, Macharia RW, Bargul JL. Gene co-expression network analysis of Trypanosoma brucei in tsetse fly vector. Parasit Vectors 2021; 14:74. [PMID: 33482903 PMCID: PMC7821691 DOI: 10.1186/s13071-021-04597-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/13/2021] [Indexed: 01/14/2023] Open
Abstract
Background Trypanosoma brucei species are motile protozoan parasites that are cyclically transmitted by tsetse fly (genus Glossina) causing human sleeping sickness and nagana in livestock in sub-Saharan Africa. African trypanosomes display digenetic life cycle stages in the tsetse fly vector and in their mammalian host. Experimental work on insect-stage trypanosomes is challenging because of the difficulty in setting up successful in vitro cultures. Therefore, there is limited knowledge on the trypanosome biology during its development in the tsetse fly. Consequently, this limits the development of new strategies for blocking parasite transmission in the tsetse fly. Methods In this study, RNA-Seq data of insect-stage trypanosomes were used to construct a T. brucei gene co-expression network using the weighted gene co-expression analysis (WGCNA) method. The study identified significant enriched modules for genes that play key roles during the parasite’s development in tsetse fly. Furthermore, potential 3′ untranslated region (UTR) regulatory elements for genes that clustered in the same module were identified using the Finding Informative Regulatory Elements (FIRE) tool. Results A fraction of gene modules (12 out of 27 modules) in the constructed network were found to be enriched in functional roles associated with the cell division, protein biosynthesis, mitochondrion, and cell surface. Additionally, 12 hub genes encoding proteins such as RNA-binding protein 6 (RBP6), arginine kinase 1 (AK1), brucei alanine-rich protein (BARP), among others, were identified for the 12 significantly enriched gene modules. In addition, the potential regulatory elements located in the 3′ untranslated regions of genes within the same module were predicted. Conclusions The constructed gene co-expression network provides a useful resource for network-based data mining to identify candidate genes for functional studies. This will enhance understanding of the molecular mechanisms that underlie important biological processes during parasite’s development in tsetse fly. Ultimately, these findings will be key in the identification of potential molecular targets for disease control.![]()
Collapse
Affiliation(s)
- Kennedy W Mwangi
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya. .,Jomo Kenyatta University of Agriculture and Technology, P.O. BOX 62000-00200, Nairobi, Kenya.
| | | | - Joel L Bargul
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya.,Jomo Kenyatta University of Agriculture and Technology, P.O. BOX 62000-00200, Nairobi, Kenya
| |
Collapse
|
23
|
Rajan KS, Doniger T, Cohen-Chalamish S, Rengaraj P, Galili B, Aryal S, Unger R, Tschudi C, Michaeli S. Developmentally Regulated Novel Non-coding Anti-sense Regulators of mRNA Translation in Trypanosoma b rucei. iScience 2020; 23:101780. [PMID: 33294788 PMCID: PMC7683347 DOI: 10.1016/j.isci.2020.101780] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/14/2020] [Accepted: 11/03/2020] [Indexed: 01/19/2023] Open
Abstract
The parasite Trypanosoma brucei is the causative agent of sleeping sickness and cycles between insect and mammalian hosts. The parasite appears to lack conventional transcriptional regulation of protein coding genes, and mRNAs are processed from polycistronic transcripts by the concerted action of trans-splicing and polyadenylation. Regulation of mRNA function is mediated mainly by RNA binding proteins affecting mRNA stability and translation. In this study, we describe the identification of 62 non-coding (nc) RNAs that are developmentally regulated and/or respond to stress. We characterized two novel anti-sense RNA regulators (TBsRNA-33 and 37) that originate from the rRNA loci, associate with ribosomes and polyribosomes, and interact in vivo with distinct mRNA species to regulate translation. Thus, this study suggests for the first-time anti-sense RNA regulators as an additional layer for controlling gene expression in these parasites. Trypanosome non-coding RNAs (ncRNAs) are developmentally regulated during cycling between two hosts ncRNAs originate from rRNA locus and associate with the ribosome en route to cytoplasm In vivo cross-linking enable identification of target RNA species regulated by ncRNAs Trypanosomes possess anti-sense ncRNAs that regulate translation
Collapse
Affiliation(s)
- K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Praveenkumar Rengaraj
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Beathrice Galili
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Saurav Aryal
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06536, USA
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
24
|
Cestari I, Stuart K. The phosphoinositide regulatory network in Trypanosoma brucei: Implications for cell-wide regulation in eukaryotes. PLoS Negl Trop Dis 2020; 14:e0008689. [PMID: 33119588 PMCID: PMC7595295 DOI: 10.1371/journal.pntd.0008689] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The unicellular eukaryote Trypanosoma brucei undergoes extensive cellular and developmental changes during its life cycle. These include regulation of mammalian stage surface antigen variation and surface composition changes between life stages; switching between glycolysis and oxidative phosphorylation; differential mRNA editing; and changes in posttranscriptional gene expression, protein trafficking, organellar function, and cell morphology. These diverse events are coordinated and controlled throughout parasite development, maintained in homeostasis at each life stage, and are essential for parasite survival in both the host and insect vector. Described herein are the enzymes and metabolites of the phosphatidylinositol (PI) cellular regulatory network, its integration with other cellular regulatory systems that collectively control and coordinate these numerous cellular processes, including cell development and differentiation and the many associated complex processes in multiple subcellular compartments. We conclude that this regulation is the product of the organization of these enzymes within the cellular architecture, their activities, metabolite fluxes, and responses to environmental changes via signal transduction and other processes. We describe a paradigm for how these enzymes and metabolites could function to control and coordinate multiple cellular functions. The significance of the PI system's regulatory functions in single-celled eukaryotes to metazoans and their potential as chemotherapeutic targets are indicated.
Collapse
Affiliation(s)
- Igor Cestari
- Institute of Parasitology, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- * E-mail: (IC); (KS)
| | - Kenneth Stuart
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail: (IC); (KS)
| |
Collapse
|
25
|
Jung H, Han S, Lee Y. Transcriptome analysis of alternative splicing in the pathogen life cycle in human foreskin fibroblasts infected with Trypanosoma cruzi. Sci Rep 2020; 10:17481. [PMID: 33060827 PMCID: PMC7566602 DOI: 10.1038/s41598-020-74540-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
Trypanosoma cruzi is an intracellular protozoan parasite that causes Chagas disease as a zoonotic pathogen. The parasite has been shown to remodel expression in the host transcriptome under different conditions. Although alternative splicing (AS) is involved in virtually every biological function in eukaryotes, including cellular differentiation and responses to immune reactions, host AS events that occur as a result of T. cruzi infection have yet to be explored. In this study, we bioinformatically investigated the transcriptome AS dynamics of T. cruzi (Y strain) infected human foreskin fibroblasts using RNA-Seq data captured over four timepoints (4, 24, 48, and 72 h post infection (hpi)). We identified 1768, 399, 250, and 299 differentially expressed exons (AS exons) at 4, 24, 48, and 72 hpi, respectively, showing that host AS mechanism may have a significant role in the intracellular life cycle of the parasite. We present an exon skipping event in HDAC7, which is a candidate gene that is important in the parasite’s cell cycle. To sum up, this bioinformatics analysis of transcriptome may provide new potential insight into AS regulation in human foreskin fibroblast (HFF) cells infected by T. cruzi and into its implication to the parasite life cycle. Moreover, identified AS genes may provide new potential molecular candidates for improving treatment.
Collapse
Affiliation(s)
- Hyeim Jung
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Seonggyun Han
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA
| | - Younghee Lee
- Department of Biomedical Informatics, University of Utah School of Medicine, Salt Lake City, UT, 84108, USA.
| |
Collapse
|
26
|
Herreros-Cabello A, Callejas-Hernández F, Gironès N, Fresno M. Trypanosoma Cruzi Genome: Organization, Multi-Gene Families, Transcription, and Biological Implications. Genes (Basel) 2020; 11:E1196. [PMID: 33066599 PMCID: PMC7602482 DOI: 10.3390/genes11101196] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 01/20/2023] Open
Abstract
Chagas disease caused by the parasite Trypanosoma cruzi affects millions of people. Although its first genome dates from 2005, its complexity hindered a complete assembly and annotation. However, the new sequencing methods have improved genome annotation of some strains elucidating the broad genetic diversity and complexity of this parasite. Here, we reviewed the genomic structure and regulation, the genetic diversity, and the analysis of the principal multi-gene families of the recent genomes for several strains. The telomeric and sub-telomeric regions are sites with high recombination events, the genome displays two different compartments, the core and the disruptive, and the genome plasticity seems to play a key role in the survival and the infection process. Trypanosoma cruzi (T. cruzi) genome is composed mainly of multi-gene families as the trans-sialidases, mucins, and mucin-associated surface proteins. Trans-sialidases are the most abundant genes in the genome and show an important role in the effectiveness of the infection and the parasite survival. Mucins and MASPs are also important glycosylated proteins of the surface of the parasite that play a major biological role in both insect and mammal-dwelling stages. Altogether, these studies confirm the complexity of T. cruzi genome revealing relevant concepts to better understand Chagas disease.
Collapse
Affiliation(s)
- Alfonso Herreros-Cabello
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
| | - Francisco Callejas-Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| |
Collapse
|
27
|
Sharma J, Rodriguez P, Roy P, Guiton PS. Transcriptional ups and downs: patterns of gene expression in the life cycle of Toxoplasma gondii. Microbes Infect 2020; 22:525-533. [PMID: 32931908 DOI: 10.1016/j.micinf.2020.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022]
Abstract
Toxoplasma gondii reproduces sexually in felines and asexually in virtually all warm-blooded animals, including humans. This obligate intracellular parasite alternates between biologically distinct developmental stages throughout its complex life cycle. Stage conversion is crucial for T. gondii transmission, persistence, and the maintenance of genetic diversity within the species. Genome-wide comparative transcriptomic studies have contributed invaluable insights into the regulatory gene networks underlying T. gondii development.
Collapse
Affiliation(s)
- Janak Sharma
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA
| | - Paula Rodriguez
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA
| | - Proyasha Roy
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA
| | - Pascale S Guiton
- Department of Biological Sciences, California State University East Bay, Hayward, CA, USA.
| |
Collapse
|
28
|
Tupperwar N, Meleppattu S, Shrivastava R, Baron N, Gilad A, Wagner G, Léger-Abraham M, Shapira M. A newly identified Leishmania IF4E-interacting protein, Leish4E-IP2, modulates the activity of cap-binding protein paralogs. Nucleic Acids Res 2020; 48:4405-4417. [PMID: 32232353 PMCID: PMC7192595 DOI: 10.1093/nar/gkaa173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/04/2020] [Accepted: 03/16/2020] [Indexed: 01/06/2023] Open
Abstract
Translation of most cellular mRNAs in eukaryotes proceeds through a cap-dependent pathway, whereby the cap-binding complex, eIF4F, anchors the preinitiation complex at the 5′ end of mRNAs and regulates translation initiation. The requirement of Leishmania to survive in changing environments can explain why they encode multiple eIF4E (LeishIF4Es) and eIF4G (LeishIF4Gs) paralogs, as each could be assigned a discrete role during their life cycle. Here we show that the expression and activity of different LeishIF4Es change during the growth of cultured promastigotes, urging a search for regulatory proteins. We describe a novel LeishIF4E-interacting protein, Leish4E-IP2, which contains a conserved Y(X)4LΦ IF4E-binding-motif. Despite its capacity to bind several LeishIF4Es, Leish4E-IP2 was not detected in m7GTP-eluted cap-binding complexes, suggesting that it could inhibit the cap-binding activity of LeishIF4Es. Using a functional assay, we show that a recombinant form of Leish4E-IP2 inhibits the cap-binding activity of LeishIF4E-1 and LeishIF4E-3. Furthermore, we show that transgenic parasites expressing a tagged version of Leish4E-IP2 also display reduced cap-binding activities of tested LeishIF4Es, and decreased global translation. Given its ability to bind more than a single LeishIF4E, we suggest that Leish4E-IP2 could serve as a broad-range repressor of Leishmania protein synthesis.
Collapse
Affiliation(s)
- Nitin Tupperwar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Shimi Meleppattu
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02138, USA
| | - Rohit Shrivastava
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Nofar Baron
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ayelet Gilad
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA 02138, USA
| | - Mélissa Léger-Abraham
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Michal Shapira
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
29
|
Ooi CP, Benz C, Urbaniak MD. Phosphoproteomic analysis of mammalian infective Trypanosoma brucei subjected to heat shock suggests atypical mechanisms for thermotolerance. J Proteomics 2020; 219:103735. [PMID: 32198071 DOI: 10.1016/j.jprot.2020.103735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/11/2020] [Accepted: 03/10/2020] [Indexed: 10/24/2022]
Abstract
The symptoms of African sleeping sickness, caused by the parasite Trypanosoma brucei, can include periods of fever as high as 41 °C which triggers a heat shock response in the parasite. To capture events involved in sensing and responding to heat shock in the mammalian infective form we have conducted a SILAC-based quantitative proteomic and phosphoproteomic analysis of T. brucei cells treated at 41 °C for 1h. Our analysis identified 193 heat shock responsive phosphorylation sites with an average of 5-fold change in abundance, but only 20 heat shock responsive proteins with average of 1.5-fold change. These data indicate that protein abundance does not rapidly respond (≤1 h) to heat shock, and that the changes observed in phosphorylation site abundance are larger and more widespread. The heat shock responsive phosphorylation sites showed enrichment of RNA binding proteins with putative roles in heat shock response included P-body / stress granules and the eukaryotic translation initiation 4F complex. The ZC3H11-MKT1 complex, which stabilises mRNAs of thermotolerance proteins, appears to represent a key signal integration node in the heat shock response. SIGNIFICANCE: We report the first quantitative study of changes in protein and phosphorylation site abundance in response to heat shock in the clinically relevant form of the human parasite Trypanosoma brucei. The identification of heat shock responsive phosphorylation sites on proteins with putative roles in thermotolerance including the ZC3H11-MKT1 complex provides evidence of the role dynamic phosphorylation of RNA binding proteins in co-ordinating heat shock. Temperature changes in the host are a major physiological challenge to parasites and factors conferring tolerance to heat shock constitute overlooked virulence factors. A better understanding of these virulence factors will pave the way for the development of novel drug therapies which selectively target T. brucei.
Collapse
Affiliation(s)
- Cher P Ooi
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, South Kensington, London SW7 2AZ, UK.
| | - Corinna Benz
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Michael D Urbaniak
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK.
| |
Collapse
|
30
|
Regulation of Translation in the Protozoan Parasite Leishmania. Int J Mol Sci 2020; 21:ijms21082981. [PMID: 32340274 PMCID: PMC7215931 DOI: 10.3390/ijms21082981] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 01/31/2023] Open
Abstract
Leishmaniasis represents a serious health problem worldwide and drug resistance is a growing concern. Leishmania parasites use unusual mechanisms to control their gene expression. In contrast to many other species, they do not have transcriptional regulation. The lack of transcriptional control is mainly compensated by post-transcriptional mechanisms, including tight translational control and regulation of mRNA stability/translatability by RNA-binding proteins. Modulation of translation plays a major role in parasite survival and adaptation to dramatically different environments during change of host; however, our knowledge of fine molecular mechanisms of translation in Leishmania remains limited. Here, we review the current progress in our understanding of how changes in the translational machinery promote parasite differentiation during transmission from a sand fly to a mammalian host, and discuss how translational reprogramming can contribute to the development of drug resistance.
Collapse
|
31
|
Mugo E, Erben ED. The Tethering Assay: A Simple Method for the Characterization of mRNA-Fate Regulators. Methods Mol Biol 2020; 2116:295-301. [PMID: 32221927 DOI: 10.1007/978-1-0716-0294-2_18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In trypanosomatids, posttranscriptional controls are very important in regulation of individual gene expression. These are achieved through combinatorial sets of RNA-binding proteins (RBPs) which recognize RNA regulatory motifs or regions of secondary structure within RNAs. To analyze the potential functional impact of an RBP on their mRNA targets, we have applied a robust technique called tethering assay. In this method, the protein under study is attached to an mRNA reporter through an artificial RNA-protein interaction. Therefore, the functional activity of a protein can be analyzed independently of its intrinsic ability to bind to RNA. By making use of a cell line expressing a chloramphenicol acetyltransferase (CAT) reporter mRNA, we have characterized dozens of novel mRNA-fate regulators in cultured Trypanosoma brucei. After induction of the candidate fusion protein, the effect on the reporter expression is determined by a rapid CAT assay. The protocol is simple and typically takes one working day for analysis of a single protein and controls. In this chapter, we provide a description of materials and methods for the tethering method and should allow the assay to be successfully deployed in any laboratory with minimal user training.
Collapse
Affiliation(s)
- Elisha Mugo
- Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, South Africa
| | - Esteban D Erben
- German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
32
|
Benz C, Urbaniak MD. Organising the cell cycle in the absence of transcriptional control: Dynamic phosphorylation co-ordinates the Trypanosoma brucei cell cycle post-transcriptionally. PLoS Pathog 2019; 15:e1008129. [PMID: 31830130 PMCID: PMC6907760 DOI: 10.1371/journal.ppat.1008129] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/07/2019] [Indexed: 11/18/2022] Open
Abstract
The cell division cycle of the unicellular eukaryote Trypanosome brucei is tightly regulated despite the paucity of transcriptional control that results from the arrangement of genes in polycistronic units and lack of dynamically regulated transcription factors. To identify the contribution of dynamic phosphorylation to T. brucei cell cycle control we have combined cell cycle synchronisation by centrifugal elutriation with quantitative phosphoproteomic analysis. Cell cycle regulated changes in phosphorylation site abundance (917 sites, average 5-fold change) were more widespread and of a larger magnitude than changes in protein abundance (443 proteins, average 2-fold change) and were mostly independent of each other. Hierarchical clustering of co-regulated phosphorylation sites according to their cell cycle profile revealed that a bulk increase in phosphorylation occurs across the cell cycle, with a significant enrichment of known cell cycle regulators and RNA binding proteins (RBPs) within the largest clusters. Cell cycle regulated changes in essential cell cycle kinases are temporally co-ordinated with differential phosphorylation of components of the kinetochore and eukaryotic initiation factors, along with many RBPs not previously linked to the cell cycle such as eight PSP1-C terminal domain containing proteins. The temporal profiles demonstrate the importance of dynamic phosphorylation in co-ordinating progression through the cell cycle, and provide evidence that RBPs play a central role in post-transcriptional regulation of the T. brucei cell cycle. Data are available via ProteomeXchange with identifier PXD013488.
Collapse
Affiliation(s)
- Corinna Benz
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Michael D. Urbaniak
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
33
|
Callejas-Hernández F, Gutierrez-Nogues Á, Rastrojo A, Gironès N, Fresno M. Analysis of mRNA processing at whole transcriptome level, transcriptomic profile and genome sequence refinement of Trypanosoma cruzi. Sci Rep 2019; 9:17376. [PMID: 31758058 PMCID: PMC6874640 DOI: 10.1038/s41598-019-53924-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 11/07/2019] [Indexed: 12/16/2022] Open
Abstract
The genomic sequence of Trypanosoma cruzi, the protozoan causative of Chagas disease was published more than a decade ago. However, due to their complexity, its complete haploid predicted sequence and therefore its genetic repertoire remains unconfirmed. In this work, we have used RNAseq data to improve the previous genome assembly of Sylvio X10 strain and to define the complete transcriptome at trypomastigote stage (mammalian stage). A total of 22,977 transcripts were identified, of which more than half could be considered novel as they did not match previously annotated genes. Moreover, for the first time in T. cruzi, we are providing their relative abundance levels. We have identified that Sylvio X10 trypomastigotes exhibit a predominance of surface protein genes, specifically those encoding trans-sialidase and mucin-like proteins. On the other hand, detailed analysis of the pre-mRNA processing sites revealed some similarities but also some differences in the spliced leader and different polyadenylation addition sites compared to close related kinetoplastid parasites. Our results also confirm that transcription is bidirectional as occur in other kinetoplastids and the proportion of forward-sense and reverse-sense transcripts is almost equivalent, demonstrating that a strand-specificity does not exist.
Collapse
Affiliation(s)
- Francisco Callejas-Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Ángel Gutierrez-Nogues
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Alberto Rastrojo
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
- Instituto Sanitario de Investigación Princesa, Madrid, Spain.
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain.
- Instituto Sanitario de Investigación Princesa, Madrid, Spain.
| |
Collapse
|
34
|
Tinti M, Güther MLS, Crozier TWM, Lamond AI, Ferguson MAJ. Proteome turnover in the bloodstream and procyclic forms of Trypanosoma brucei measured by quantitative proteomics. Wellcome Open Res 2019; 4:152. [PMID: 31681858 PMCID: PMC6816455 DOI: 10.12688/wellcomeopenres.15421.1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2019] [Indexed: 12/20/2022] Open
Abstract
Background: Cellular proteins vary significantly in both abundance and turnover rates. These parameters depend upon their rates of synthesis and degradation and it is useful to have access to data on protein turnover rates when, for example, designing genetic knock-down experiments or assessing the potential usefulness of covalent enzyme inhibitors. Little is known about the nature and regulation of protein turnover in Trypanosoma brucei, the etiological agent of human and animal African trypanosomiasis. Methods: To establish baseline data on T. brucei proteome turnover, a Stable Isotope Labelling with Amino acids in Cell culture (SILAC)-based mass spectrometry analysis was performed to reveal the synthesis and degradation profiles for thousands of proteins in the bloodstream and procyclic forms of this parasite. Results: This analysis revealed a slower average turnover rate of the procyclic form proteome relative to the bloodstream proteome. As expected, many of the proteins with the fastest turnover rates have functions in the cell cycle and in the regulation of cytokinesis in both bloodstream and procyclic forms. Moreover, the cellular localization of T. brucei proteins correlates with their turnover, with mitochondrial and glycosomal proteins exhibiting slower than average turnover rates. Conclusions: The intention of this study is to provide the trypanosome research community with a resource for protein turnover data for any protein or group of proteins. To this end, bioinformatic analyses of these data are made available via an open-access web resource with data visualization functions.
Collapse
Affiliation(s)
- Michele Tinti
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | - Maria Lucia S Güther
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| | - Thomas W M Crozier
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK.,Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK.,Department of Medicine, Cambridge Institute for Medical Research, Cambridge, UK
| | - Angus I Lamond
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Michael A J Ferguson
- The Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
35
|
Reis H, Schwebs M, Dietz S, Janzen CJ, Butter F. TelAP1 links telomere complexes with developmental expression site silencing in African trypanosomes. Nucleic Acids Res 2019; 46:2820-2833. [PMID: 29385523 PMCID: PMC5888660 DOI: 10.1093/nar/gky028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 01/25/2018] [Indexed: 11/14/2022] Open
Abstract
During its life cycle, Trypanosoma brucei shuttles between a mammalian host and the tsetse fly vector. In the mammalian host, immune evasion of T. brucei bloodstream form (BSF) cells relies on antigenic variation, which includes monoallelic expression and periodic switching of variant surface glycoprotein (VSG) genes. The active VSG is transcribed from only 1 of the 15 subtelomeric expression sites (ESs). During differentiation from BSF to the insect-resident procyclic form (PCF), the active ES is transcriptionally silenced. We used mass spectrometry-based interactomics to determine the composition of telomere protein complexes in T. brucei BSF and PCF stages to learn more about the structure and functions of telomeres in trypanosomes. Our data suggest a different telomere complex composition in the two forms of the parasite. One of the novel telomere-associated proteins, TelAP1, forms a complex with telomeric proteins TbTRF, TbRAP1 and TbTIF2 and influences ES silencing kinetics during developmental differentiation.
Collapse
Affiliation(s)
- Helena Reis
- Department of Cell & Developmental Biology, Biocenter University of Würzburg, Würzburg 97074, Germany
| | - Marie Schwebs
- Department of Cell & Developmental Biology, Biocenter University of Würzburg, Würzburg 97074, Germany
| | - Sabrina Dietz
- Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz 55128, Germany
| | - Christian J Janzen
- Department of Cell & Developmental Biology, Biocenter University of Würzburg, Würzburg 97074, Germany
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz 55128, Germany
| |
Collapse
|
36
|
Wippel HH, Malgarin JS, Inoue AH, Leprevost FDV, Carvalho PC, Goldenberg S, Alves LR. Unveiling the partners of the DRBD2-mRNP complex, an RBP in Trypanosoma cruzi and ortholog to the yeast SR-protein Gbp2. BMC Microbiol 2019; 19:128. [PMID: 31185899 PMCID: PMC6560856 DOI: 10.1186/s12866-019-1505-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Background RNA-binding proteins (RBPs) are well known as key factors in gene expression regulation in eukaryotes. These proteins associate with mRNAs and other proteins to form mRNP complexes that ultimately determine the fate of target transcripts in the cell. This association is usually mediated by an RNA-recognition motif (RRM). In the case of trypanosomatids, these proteins play a paramount role, as gene expression regulation is mostly posttranscriptional. Despite their relevance in the life cycle of Trypanosoma cruzi, the causative agent of Chagas’ disease, to date, few RBPs have been characterized in this parasite. Results We investigated the role of DRBD2 in T. cruzi, an RBP with two RRM domains that is associated with cytoplasmic translational complexes. We show that DRBD2 is an ortholog of the Gbp2 in yeast, an SR-rich protein involved in mRNA quality control and export. We used an immunoprecipitation assay followed by shotgun proteomics and RNA-seq to assess the interaction partners of the DRBD2-mRNP complex in epimastigotes. The analysis identified mostly proteins involved in RNA metabolism and regulation, such as ALBA1, ALBA3, ALBA4, UBP1, UBP2, DRBD3, and PABP2. The RNA-seq results showed that most of the transcripts regulated by the DRBD2 complex mapped to hypothetical proteins related to multiple processes, such as to biosynthetic process, DNA metabolic process, protein modification, and response to stress. Conclusions The identification of regulatory proteins in the DRBD2-mRNP complex corroborates the important role of DRBD2 in gene expression regulation in T. cruzi. We consider these results an important contribution to future studies regarding gene expression regulation in T. cruzi, especially in the field of RNA-binding proteins. Electronic supplementary material The online version of this article (10.1186/s12866-019-1505-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helisa Helena Wippel
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil
| | | | - Alexandre Haruo Inoue
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil.,Molecular Biology Institute-Paraná, Curitiba, Brazil
| | - Felipe da Veiga Leprevost
- Medical Science Unit I, Department of Pathology, University of Michigan, EUA, 1301 Catherine St, Ann Arbor, MI, 48109, USA
| | - Paulo Costa Carvalho
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil
| | - Samuel Goldenberg
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil
| | - Lysangela Ronalte Alves
- Carlos Chagas Institute-Fiocruz, Professor Algacyr Munhoz Mader, 3775, Curitiba, Paraná, Brazil.
| |
Collapse
|
37
|
Cayla M, Rojas F, Silvester E, Venter F, Matthews KR. African trypanosomes. Parasit Vectors 2019; 12:190. [PMID: 31036044 PMCID: PMC6489224 DOI: 10.1186/s13071-019-3355-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 02/26/2019] [Indexed: 12/15/2022] Open
Abstract
African trypanosomes cause human African trypanosomiasis and animal African trypanosomiasis. They are transmitted by tsetse flies in sub-Saharan Africa. Although most famous for their mechanisms of immune evasion by antigenic variation, there have been recent important studies that illuminate important aspects of the biology of these parasites both in their mammalian host and during passage through their tsetse fly vector. This Primer overviews current research themes focused on these parasites and discusses how these biological insights and the development of new technologies to interrogate gene function are being used in the search for new approaches to control the parasite. The new insights into the biology of trypanosomes in their host and vector highlight that we are in a ‘golden age’ of discovery for these fascinating parasites.
Collapse
Affiliation(s)
- Mathieu Cayla
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Federico Rojas
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Eleanor Silvester
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Frank Venter
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
38
|
Román-Carraro FC, Florencio-Martínez LE, Romero-Meza G, Nepomuceno-Mejía T, Carrero JC, Arroyo R, Ortega-López J, Manning-Cela RG, Martínez-Calvillo S. TFIIIB Subunit Bdp1 Participates in RNA Polymerase III Transcription in the Protozoan Parasite Leishmania major. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1425281. [PMID: 31058184 PMCID: PMC6463643 DOI: 10.1155/2019/1425281] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/13/2019] [Indexed: 01/03/2023]
Abstract
Leishmania major, a protozoan parasite that diverged early from the main eukaryotic lineage, exhibits unusual mechanisms of gene expression. Little is known in this organism about the transcription factors involved in the synthesis of tRNA, 5S rRNA, and snRNAs, transcribed by RNA Polymerase III (Pol III). Here we identify and characterize the TFIIIB subunit Bdp1 in L. major (LmBdp1). Bdp1 plays key roles in Pol III transcription initiation in other organisms, as it participates in Pol III recruitment and promoter opening. In silico analysis showed that LmBdp1 contains the typical extended SANT domain as well as other Bdp1 conserved regions. Nevertheless, LmBdp1 also displays distinctive features, including the presence of only one aromatic residue in the N-linker region. We were not able to produce null mutants of LmBdp1 by homologous recombination, as the obtained double replacement cell line contained an extra copy of LmBdp1, indicating that LmBdp1 is essential for the viability of L. major promastigotes. Notably, the mutant cell line showed reduced levels of the LmBdp1 protein, and its growth was significantly decreased in relation to wild-type cells. Nuclear run-on assays demonstrated that Pol III transcription was affected in the mutant cell line, and ChIP experiments showed that LmBdp1 binds to 5S rRNA, tRNA, and snRNA genes. Thus, our results indicate that LmBdp1 is an essential protein required for Pol III transcription in L. major.
Collapse
Affiliation(s)
- Fiordaliso C. Román-Carraro
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de Los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, Mexico
| | - Luis E. Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de Los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, Mexico
| | - Gabriela Romero-Meza
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de Los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, Mexico
| | - Tomás Nepomuceno-Mejía
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de Los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, Mexico
| | - Julio C. Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CP 04510, Mexico
| | - Rossana Arroyo
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Ciudad de México, CP 07360, Mexico
| | - Jaime Ortega-López
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Ciudad de México, CP 07360, Mexico
| | - Rebeca G. Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, Ciudad de México, CP 07360, Mexico
| | - Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Av. de Los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Estado de México, CP 54090, Mexico
| |
Collapse
|
39
|
Nucleoside analogue activators of cyclic AMP-independent protein kinase A of Trypanosoma. Nat Commun 2019; 10:1421. [PMID: 30926779 PMCID: PMC6440977 DOI: 10.1038/s41467-019-09338-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 03/07/2019] [Indexed: 02/08/2023] Open
Abstract
Protein kinase A (PKA), the main effector of cAMP in eukaryotes, is a paradigm for the mechanisms of ligand-dependent and allosteric regulation in signalling. Here we report the orthologous but cAMP-independent PKA of the protozoan Trypanosoma and identify 7-deaza-nucleosides as potent activators (EC50 ≥ 6.5 nM) and high affinity ligands (KD ≥ 8 nM). A co-crystal structure of trypanosome PKA with 7-cyano-7-deazainosine and molecular docking show how substitution of key amino acids in both CNB domains of the regulatory subunit and its unique C-terminal αD helix account for this ligand swap between trypanosome PKA and canonical cAMP-dependent PKAs. We propose nucleoside-related endogenous activators of Trypanosoma brucei PKA (TbPKA). The existence of eukaryotic CNB domains not associated with binding of cyclic nucleotides suggests that orphan CNB domains in other eukaryotes may bind undiscovered signalling molecules. Phosphoproteome analysis validates 7-cyano-7-deazainosine as powerful cell-permeable inducer to explore cAMP-independent PKA signalling in medically important neglected pathogens.
Collapse
|
40
|
Chikne V, Shanmugha Rajan K, Shalev-Benami M, Decker K, Cohen-Chalamish S, Madmoni H, Biswas VK, Kumar Gupta S, Doniger T, Unger R, Tschudi C, Ullu E, Michaeli S. Small nucleolar RNAs controlling rRNA processing in Trypanosoma brucei. Nucleic Acids Res 2019; 47:2609-2629. [PMID: 30605535 PMCID: PMC6411936 DOI: 10.1093/nar/gky1287] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 12/04/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022] Open
Abstract
In trypanosomes, in contrast to most eukaryotes, the large subunit (LSU) ribosomal RNA is fragmented into two large and four small ribosomal RNAs (srRNAs) pieces, and this additional processing likely requires trypanosome-specific factors. Here, we examined the role of 10 abundant small nucleolar RNAs (snoRNAs) involved in rRNA processing. We show that each snoRNA involved in LSU processing associates with factors engaged in either early or late biogenesis steps. Five of these snoRNAs interact with the intervening sequences of rRNA precursor, whereas the others only guide rRNA modifications. The function of the snoRNAs was explored by silencing snoRNAs. The data suggest that the LSU rRNA processing events do not correspond to the order of rRNA transcription, and that srRNAs 2, 4 and 6 which are part of LSU are processed before srRNA1. Interestingly, the 6 snoRNAs that affect srRNA1 processing guide modifications on rRNA positions that span locations from the protein exit tunnel to the srRNA1, suggesting that these modifications may serve as check-points preceding the liberation of srRNA1. This study identifies the highest number of snoRNAs so far described that are involved in rRNA processing and/or rRNA folding and highlights their function in the unique trypanosome rRNA maturation events.
Collapse
Affiliation(s)
- Vaibhav Chikne
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - K Shanmugha Rajan
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Moran Shalev-Benami
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Kathryn Decker
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Smadar Cohen-Chalamish
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Hava Madmoni
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Viplov K Biswas
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Sachin Kumar Gupta
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Tirza Doniger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Ron Unger
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| | - Christian Tschudi
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06536, USA
| | - Elisabetta Ullu
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06536, USA
| | - Shulamit Michaeli
- The Mina and Everard Goodman Faculty of Life Sciences and Advanced Materials and Nanotechnology Institute, Bar-Ilan University, Ramat-Gan 52900 Israel
| |
Collapse
|
41
|
Aresta-Branco F, Erben E, Papavasiliou FN, Stebbins CE. Mechanistic Similarities between Antigenic Variation and Antibody Diversification during Trypanosoma brucei Infection. Trends Parasitol 2019; 35:302-315. [PMID: 30826207 DOI: 10.1016/j.pt.2019.01.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 02/06/2023]
Abstract
Trypanosoma brucei, which causes African trypanosomiasis, avoids immunity by periodically switching its surface composition. The parasite is coated by 10 million identical, monoallelically expressed variant surface glycoprotein (VSG) molecules. Multiple distinct parasites (with respect to their VSG coat) coexist simultaneously during each wave of parasitemia. This substantial antigenic load is countered by B cells whose antigen receptors (antibodies or immunoglobulins) are also monoallelically expressed, and that diversify dynamically to counter each variant antigen. Here we examine parallels between the processes that generate VSGs and antibodies. We also discuss current insights into VSG mRNA regulation that may inform the emerging field of Ig mRNA biology. We conclude by extending the parallels between VSG and Ig to the protein level.
Collapse
Affiliation(s)
- Francisco Aresta-Branco
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany; Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany; These authors contributed equally to this work
| | - Esteban Erben
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany; These authors contributed equally to this work
| | - F Nina Papavasiliou
- Division of Immune Diversity, German Cancer Research Center, Heidelberg, Germany.
| | - C Erec Stebbins
- Division of Structural Biology of Infection and Immunity, German Cancer Research Center, Heidelberg, Germany.
| |
Collapse
|
42
|
Bañuelos CP, Levy GV, Níttolo AG, Roser LG, Tekiel V, Sánchez DO. The Trypanosoma brucei RNA-Binding Protein TbRRM1 is Involved in the Transcription of a Subset of RNA Pol II-Dependent Genes. J Eukaryot Microbiol 2019; 66:719-729. [PMID: 30730083 DOI: 10.1111/jeu.12716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/11/2019] [Accepted: 01/25/2019] [Indexed: 11/30/2022]
Abstract
It has been long thought that RNA Polymerase (Pol) II transcriptional regulation does not operate in trypanosomes. However, recent reports have suggested that these organisms could regulate RNA Pol II transcription by epigenetic mechanisms. In this paper, we investigated the role of TbRRM1 in transcriptional regulation of RNA Pol II-dependent genes by focusing both in genes located in a particular polycistronic transcription unit (PTU) and in the monocistronic units of the SL-RNA genes. We showed that TbRRM1 is recruited throughout the PTU, with a higher presence on genes than intergenic regions. However, its depletion leads both to the decrease of nascent RNA and to chromatin compaction only of regions located distal to the main transcription start site. These findings suggest that TbRRM1 facilitates the RNA Pol II transcriptional elongation step by collaborating to maintain an open chromatin state in particular regions of the genome. Interestingly, the SL-RNA genes do not recruit TbRRM1 and, after TbRRM1 knockdown, nascent SL-RNAs accumulate while the chromatin state of these regions remains unchanged. Although it was previously suggested that TbRRM1 could regulate RNA Pol II-driven genes, we provide here the first experimental evidence which involves TbRRM1 to transcriptional regulation.
Collapse
Affiliation(s)
- Carolina P Bañuelos
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - Gabriela V Levy
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - Analía G Níttolo
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - Leandro G Roser
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - Valeria Tekiel
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| | - Daniel O Sánchez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), 25 de Mayo y Francia, San Martín, Buenos Aires, Argentina
| |
Collapse
|
43
|
Radío S, Fort RS, Garat B, Sotelo-Silveira J, Smircich P. UTRme: A Scoring-Based Tool to Annotate Untranslated Regions in Trypanosomatid Genomes. Front Genet 2018; 9:671. [PMID: 30619487 PMCID: PMC6305552 DOI: 10.3389/fgene.2018.00671] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/04/2018] [Indexed: 11/23/2022] Open
Abstract
Most signals involved in post-transcriptional regulatory networks are located in the untranslated regions (UTRs) of the mRNAs. Therefore, to deepen our understanding of gene expression regulation, delimitation of these regions with high accuracy is needed. The trypanosomatid lineage includes a variety of parasitic protozoans causing a significant worldwide burden on human health. Given their peculiar mechanisms of gene expression, these organisms depend on post-transcriptional regulation as the main level of gene expression control. In this context, the definition of the UTR regions becomes of key importance. We have developed UTR-mini-exon (UTRme), a graphical user interface (GUI) stand-alone application to identify and annotate 5′ and 3′ UTR regions in a highly accurate way. UTRme implements a multiple scoring system tailored to address the issue of false positive UTR assignment that frequently arise because of the characteristics of the intergenic regions. Even though it was developed for trypanosomatids, the tool can be used to predict 3′ sites in any eukaryote and 5′ UTRs in any organism where trans-splicing occurs (such as the model organism C. elegans). UTRme offers a way for non-bioinformaticians to precisely determine UTRs from transcriptomic data. The tool is freely available via the conda and github repositories.
Collapse
Affiliation(s)
- Santiago Radío
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay.,Laboratory of Molecular Interactions, Facultad de Ciencias. Universidad de la República, Montevideo, Uruguay
| | - Rafael Sebastián Fort
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay.,Laboratory of Molecular Interactions, Facultad de Ciencias. Universidad de la República, Montevideo, Uruguay
| | - Beatriz Garat
- Laboratory of Molecular Interactions, Facultad de Ciencias. Universidad de la República, Montevideo, Uruguay
| | - José Sotelo-Silveira
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay.,Department of Cell and Molecular Biology, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Pablo Smircich
- Department of Genomics, Instituto de Investigaciones Biológicas Clemente Estable, MEC, Montevideo, Uruguay.,Laboratory of Molecular Interactions, Facultad de Ciencias. Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
44
|
Chakraborty C, Clayton C. Stress susceptibility in Trypanosoma brucei lacking the RNA-binding protein ZC3H30. PLoS Negl Trop Dis 2018; 12:e0006835. [PMID: 30273340 PMCID: PMC6181440 DOI: 10.1371/journal.pntd.0006835] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 10/11/2018] [Accepted: 09/11/2018] [Indexed: 01/17/2023] Open
Abstract
Trypanosomes rely on post-transcriptional mechanisms and mRNA-binding proteins for control of gene expression. Trypanosoma brucei ZC3H30 is an mRNA-binding protein that is expressed in both the bloodstream form (which grows in mammals) and the procyclic form (which grows in the tsetse fly midgut). Attachment of ZC3H30 to an mRNA causes degradation of that mRNA. Cells lacking ZC3H30 showed no growth defect under normal culture conditions; but they were more susceptible than wild-type cells to heat shock, starvation, and treatment with DTT, arsenite or ethanol. Transcriptomes of procyclic-form trypanosomes lacking ZC3H30 were indistinguishable from those of cells in which ZC3H30 had been re-expressed, but un-stressed bloodstream forms lacking ZC3H30 had about 2-fold more HSP70 mRNA. Results from pull-downs suggested that ZC3H30 mRNA binding may not be very specific. ZC3H30 was found in stress-induced granules and co-purified with another stress granule protein, Tb927.8.3820; but RNAi targeting Tb927.8.3820 did not affect either ZC3H30 granule association or stress resistance. The conservation of the ZC3H30 gene in both monogenetic and digenetic kinetoplastids, combined with the increased stress susceptibility of cells lacking it, suggests that ZC3H30 confers a selective advantage in the wild, where the parasites are subject to temperature fluctuations and immune attack in both the insect and mammalian hosts.
Collapse
Affiliation(s)
| | - Christine Clayton
- Zentrum für Molekular Biologie, Universität Heidelberg, Heidelberg, Germany
- * E-mail:
| |
Collapse
|
45
|
Wippel HH, Inoue AH, Vidal NM, da Costa JF, Marcon BH, Romagnoli BAA, Santos MDM, Carvalho PC, Goldenberg S, Alves LR. Assessing the partners of the RBP9-mRNP complex in Trypanosoma cruzi using shotgun proteomics and RNA-seq. RNA Biol 2018; 15:1106-1118. [PMID: 30146924 PMCID: PMC6161725 DOI: 10.1080/15476286.2018.1509660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/01/2018] [Accepted: 08/01/2018] [Indexed: 02/07/2023] Open
Abstract
Gene expression regulation in trypanosomes differs from other eukaryotes due to absence of transcriptional regulation for most of their genes. RNA-binding proteins (RBPs) associate with mRNAs and other regulatory proteins to form ribonucleoprotein complexes (mRNPs), which play a major role in post-transcriptional regulation. Here, we show that RBP9 is a cytoplasmic RBP in Trypanosoma cruzi with one RNA-recognition motif (RRM). The RBP9 sedimentation profile in a sucrose gradient indicated its presence in cytoplasmic translational complexes, suggesting its involvement in translation regulation. Taking this result as a motivation, we used shotgun proteomics and RNA-seq approaches to assess the core of the RBP9-mRNP complex. In epimastigotes in exponential growth, the complex was composed mostly by RBPs involved in RNA metabolism, such as ZC3H39, UBP1/2, NRBD1, and ALBA3/4. When parasites were subjected to nutritional stress, our analysis identified regulatory RBPs and the translation initiation factors eIF4E5, eIF4G5, eIF4G1, and eIF4G4. The RNA-seq results showed that RBP9-mRNP complex regulates transcripts encoding some RBPs - e.g. RBP5, RBP6, and RBP10 -, and proteins involved in metabolic processes. Therefore, we argue that RBP9 is part of cytoplasmic mRNPs complexes associated with mRNA metabolism and translation regulation in T. cruzi.
Collapse
Affiliation(s)
- Helisa Helena Wippel
- Carlos Chagas Institute, Fundação Oswaldo Cruz, Fiocruz-PR, Curitiba, PR, Brazil
| | - Alexandre Haruo Inoue
- Carlos Chagas Institute, Fundação Oswaldo Cruz, Fiocruz-PR, Curitiba, PR, Brazil
- Molecular Biology Institute of Paraná, IBMP, Curitiba, PR, Brazil
| | | | | | | | | | | | - Paulo Costa Carvalho
- Carlos Chagas Institute, Fundação Oswaldo Cruz, Fiocruz-PR, Curitiba, PR, Brazil
| | - Samuel Goldenberg
- Carlos Chagas Institute, Fundação Oswaldo Cruz, Fiocruz-PR, Curitiba, PR, Brazil
| | | |
Collapse
|
46
|
Romaniuk MA, Frasch AC, Cassola A. Translational repression by an RNA-binding protein promotes differentiation to infective forms in Trypanosoma cruzi. PLoS Pathog 2018; 14:e1007059. [PMID: 29864162 PMCID: PMC6002132 DOI: 10.1371/journal.ppat.1007059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 06/14/2018] [Accepted: 04/25/2018] [Indexed: 01/08/2023] Open
Abstract
Trypanosomes, protozoan parasites of medical importance, essentially rely on post-transcriptional mechanisms to regulate gene expression in insect vectors and vertebrate hosts. RNA binding proteins (RBPs) that associate to the 3'-UTR of mature mRNAs are thought to orchestrate master developmental programs for these processes to happen. Yet, the molecular mechanisms by which differentiation occurs remain largely unexplored in these human pathogens. Here, we show that ectopic inducible expression of the RBP TcUBP1 promotes the beginning of the differentiation process from non-infective epimastigotes to infective metacyclic trypomastigotes in Trypanosoma cruzi. In early-log epimastigotes TcUBP1 promoted a drop-like phenotype, which is characterized by the presence of metacyclogenesis hallmarks, namely repositioning of the kinetoplast, the expression of an infective-stage virulence factor such as trans-sialidase, increased resistance to lysis by human complement and growth arrest. Furthermore, TcUBP1-ectopic expression in non-infective late-log epimastigotes promoted full development into metacyclic trypomastigotes. TcUBP1-derived metacyclic trypomastigotes were infective in cultured cells, and developed normally into amastigotes in the cytoplasm. By artificial in vivo tethering of TcUBP1 to the 3' untranslated region of a reporter mRNA we were able to determine that translation of the reporter was reduced by 8-fold, while its mRNA abundance was not significantly compromised. Inducible ectopic expression of TcUBP1 confirmed its role as a translational repressor, revealing significant reduction in the translation rate of multiple proteins, a reduction of polysomes, and promoting the formation of mRNA granules. Expression of TcUBP1 truncated forms revealed the requirement of both N and C-terminal glutamine-rich low complexity sequences for the development of the drop-like phenotype in early-log epimastigotes. We propose that a rise in TcUBP1 levels, in synchrony with nutritional deficiency, can promote the differentiation of T. cruzi epimastigotes into infective metacyclic trypomastigotes.
Collapse
Affiliation(s)
- Maria Albertina Romaniuk
- Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, San Martín, Provincia de Buenos Aires, Argentina
| | - Alberto Carlos Frasch
- Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, San Martín, Provincia de Buenos Aires, Argentina
| | - Alejandro Cassola
- Instituto de Investigaciones Biotecnológicas, UNSAM-CONICET, San Martín, Provincia de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
47
|
Jojic B, Amodeo S, Bregy I, Ochsenreiter T. Distinct 3' UTRs regulate the life-cycle-specific expression of two TCTP paralogs in Trypanosoma brucei. J Cell Sci 2018; 131:jcs.206417. [PMID: 29661850 PMCID: PMC5992589 DOI: 10.1242/jcs.206417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 03/28/2018] [Indexed: 12/02/2022] Open
Abstract
The translationally controlled tumor protein (TCTP; also known as TPT1 in mammals) is highly conserved and ubiquitously expressed in eukaryotes. It is involved in growth and development, cell cycle progression, protection against cellular stresses and apoptosis, indicating the multifunctional role of the protein. Here, for the first time, we characterize the expression and function of TCTP in the human and animal pathogen, Trypanosoma brucei. We identified two paralogs (TCTP1 and TCTP2) that are differentially expressed in the life cycle of the parasite. The genes have identical 5′ untranslated regions (UTRs) and almost identical open-reading frames. The 3′UTRs differ substantially in sequence and length, and are sufficient for the exclusive expression of TCTP1 in procyclic- and TCTP2 in bloodstream-form parasites. Furthermore, we characterize which parts of the 3′UTR are needed for TCTP2 mRNA stability. RNAi experiments demonstrate that TCTP1 and TCTP2 expression is essential for normal cell growth in procyclic- and bloodstream-form parasites, respectively. Depletion of TCTP1 in the procyclic form cells leads to aberrant cell and mitochondrial organelle morphology, as well as enlarged, and a reduced number of, acidocalcisomes. Summary:T. brucei has two TCTP genes that are differentially expressed during the parasite life cycle owing to their different 3′UTRs. TCTP also has a role in regulating cell growth and morphology.
Collapse
Affiliation(s)
- Borka Jojic
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - Simona Amodeo
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern 3012, Switzerland
| | - Irina Bregy
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | | |
Collapse
|
48
|
Santos CMBD, Ludwig A, Kessler RL, Rampazzo RDCP, Inoue AH, Krieger MA, Pavoni DP, Probst CM. Trypanosoma cruzi transcriptome during axenic epimastigote growth curve. Mem Inst Oswaldo Cruz 2018; 113:e170404. [PMID: 29668769 PMCID: PMC5907844 DOI: 10.1590/0074-02760170404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/29/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi is an important protozoan parasite and the causative agent of Chagas disease. A critical step in understanding T. cruzi biology is the study of cellular and molecular features exhibited during its growth curve. OBJECTIVES We aimed to acquire a global view of the gene expression profile of T. cruzi during epimastigote growth. METHODS RNA-Seq analysis of total and polysomal/granular RNA fractions was performed along the 10 days T. cruzi epimastigote growth curve in vitro, in addition to cell viability and cell cycle analyses. We also analysed the polysome profile and investigated the presence of granular RNA by FISH and western blotting. FINDINGS We identified 1082 differentially expressed genes (DEGs), of which 220 were modulated in both fractions. According to the modulation pattern, DEGs were grouped into 12 clusters and showed enrichment of important gene ontology (GO) terms. Moreover, we showed that by the sixth day of the growth curve, polysomal content declined greatly and the RNA granules content appeared to increase, suggesting that a portion of mRNAs isolated from the sucrose gradient during late growth stages was associated with RNA granules and not only polyribosomes. Furthermore, we discuss several modulated genes possibly involved in T. cruzi growth, mainly during the stationary phase, such as genes related to cell cycle, pathogenesis, metabolic processes and RNA-binding proteins.
Collapse
Affiliation(s)
| | - Adriana Ludwig
- Instituto Carlos Chagas, Fundação Oswaldo Cruz, Curitiba, PR, Brasil
| | | | | | | | | | | | | |
Collapse
|
49
|
Knockout of the CCCH zinc finger protein TcZC3H31 blocks Trypanosoma cruzi differentiation into the infective metacyclic form. Mol Biochem Parasitol 2018; 221:1-9. [DOI: 10.1016/j.molbiopara.2018.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/21/2018] [Accepted: 01/29/2018] [Indexed: 01/23/2023]
|
50
|
Crozier TWM, Tinti M, Wheeler RJ, Ly T, Ferguson MAJ, Lamond AI. Proteomic Analysis of the Cell Cycle of Procylic Form Trypanosoma brucei. Mol Cell Proteomics 2018; 17:1184-1195. [PMID: 29555687 PMCID: PMC5986242 DOI: 10.1074/mcp.ra118.000650] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/01/2018] [Indexed: 12/24/2022] Open
Abstract
We describe a single-step centrifugal elutriation method to produce synchronous Gap1 (G1)-phase procyclic trypanosomes at a scale amenable for proteomic analysis of the cell cycle. Using ten-plex tandem mass tag (TMT) labeling and mass spectrometry (MS)-based proteomics technology, the expression levels of 5325 proteins were quantified across the cell cycle in this parasite. Of these, 384 proteins were classified as cell-cycle regulated and subdivided into nine clusters with distinct temporal regulation. These groups included many known cell cycle regulators in trypanosomes, which validates the approach. In addition, we identify 40 novel cell cycle regulated proteins that are essential for trypanosome survival and thus represent potential future drug targets for the prevention of trypanosomiasis. Through cross-comparison to the TrypTag endogenous tagging microscopy database, we were able to validate the cell-cycle regulated patterns of expression for many of the proteins of unknown function detected in our proteomic analysis. A convenient interface to access and interrogate these data is also presented, providing a useful resource for the scientific community. Data are available via ProteomeXchange with identifier PXD008741 (https://www.ebi.ac.uk/pride/archive/).
Collapse
Affiliation(s)
- Thomas W M Crozier
- From the ‡Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.,§Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Michele Tinti
- From the ‡Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Richard J Wheeler
- ‖Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Tony Ly
- §Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Michael A J Ferguson
- From the ‡Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK;
| | - Angus I Lamond
- §Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK;
| |
Collapse
|