1
|
Price G, Simard A, McGraw BA. Evaluation of Bacterial Communities of Listronotus maculicollis Kirby Reared on Primary and Secondary Host Plants. INSECTS 2025; 16:114. [PMID: 40003744 PMCID: PMC11855628 DOI: 10.3390/insects16020114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025]
Abstract
The annual bluegrass weevil (Listronotus maculicollis Kirby) is a devastating insect pest of annual bluegrass (Poa annua L.) and, to a lesser extent, creeping bentgrass (Agrostis stolonifera L.) on golf courses. Listronotus maculicollis-reared A. stolonifera, a comparatively tolerant host, incurs fitness costs, including longer developmental periods and reduced larval survivorship. This study sought to characterize microbiota diversity in L. maculicollis adults and larvae reared on P. annua and A. stolonifera cultivars (Penncross & A4) to explore whether intrinsic factors, such as microbial community composition, vary across host plants and developmental stages, potentially influencing host suitability. Alpha diversity analyses showed adults feeding on A4 exhibited higher bacterial species richness than their offspring reared on the same cultivar. Beta diversity analysis revealed significant dissimilarities between L. maculicollis adults and offspring regardless of host. Pseudomonas sp. was consistently abundant in larvae across all turfgrasses, indicating a potential association with larval development. Elevated levels of Wolbachia sp., known for insect reproductive manipulation, were observed in adults, but appear to be unrelated to host plant effects. The most prevalent bacterium detected was Candidatus Nardonella, a conserved endosymbiont essential for cuticular hardening in weevils. Given the role of cuticular integrity in insecticide resistance, further investigations into insect-microbe-plant interactions could guide the development of targeted pest management strategies, reducing resistance and improving control measures for L. maculicollis.
Collapse
Affiliation(s)
- Garrett Price
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (G.P.); (A.S.)
| | - Audrey Simard
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA; (G.P.); (A.S.)
| | - Benjamin A. McGraw
- Department of Plant Science, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
2
|
Azarnoosh R, Yarahmadi F, Keshavarz-Tohid V, Rajabpour A. Isolation and identification of rhizospheric pseudomonads with insecticidal effects from various crops in Khuzestan Province, Iran. J Invertebr Pathol 2024; 204:108099. [PMID: 38556196 DOI: 10.1016/j.jip.2024.108099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024]
Abstract
Pseudomonas bacteria include a variety of species with distinct characteristics. Some species within this genus are known for their ability to stimulate plant growth. Recently, the potential of these bacteria in controlling insect pests has been documented. In this study, 58 bacterial isolates were purified from rhizospheres of wheat, broad bean and canola that were collected from different fields of Khuzestan province in south-west of Iran. With biochemical tests 19 non plant pathogenic pseudomonads strains were detected and their lethal effects on the eggs and larvae of Ephestia keuhniella as an important pest that infests stored products, were evaluated under laboratory conditions. For the bioassays, two concentrations of each strain were administered, and the 5th instar larvae and eggs of the pest were subjected to treatment. Mortality rates were recorded after 24 h. The results showed that all isolated Pseudomonad strains of this study had insecticidal effects against eggs and larvae of E. keuhniella. The strains AWI1, AWI2, AWI7, ABI12, ABI15 and ABI16 displayed the highest mortality rate (91.1 %, 86.2 %, 82.3 %, 84.2, 90.5 % and 90.5 %, respectively). Molecular identification and phylogeny tree according to 16 s rRNA sequencing clarified that AWI1, AWI2 belong to P. plecoglossicida, AWI5 belongs to P. lini, ABI12, ABI15 and ABI16 belong to P. taiwanensis. Moreover, the bacterial efficacy at a suspension concentration of 0.5 OD (80 %) was significantly greater than that at a concentration of 0.2 OD (63.33 %). No significant difference was detected in the response of the pest larvae or eggs to the different strains. Furthermore, olfactory trials revealed that the female parasitoid wasp Habrabracon hebetor actively avoided the infection of the treated larvae by the strains. These findings have practical implications for the development of microbiological pest control strategies.
Collapse
Affiliation(s)
- Roghayeh Azarnoosh
- Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Bavi, Khuzestan Province, Iran
| | - Fatemeh Yarahmadi
- Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Bavi, Khuzestan Province, Iran.
| | - Vahid Keshavarz-Tohid
- Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Bavi, Khuzestan Province, Iran.
| | - Ali Rajabpour
- Department of Plant Protection, Faculty of Agriculture, Agricultural Sciences and Natural Resources University of Khuzestan, Bavi, Khuzestan Province, Iran
| |
Collapse
|
3
|
Cailleau G, Hanson BT, Cravero M, Zhioua S, Hilpish P, Ruiz C, Robinson AJ, Kelliher JM, Morales D, Gallegos-Graves LV, Bonito G, Chain PS, Bindschedler S, Junier P. Associated bacterial communities, confrontation studies, and comparative genomics reveal important interactions between Morchella with Pseudomonas spp. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1285531. [PMID: 38155707 PMCID: PMC10753826 DOI: 10.3389/ffunb.2023.1285531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/08/2023] [Indexed: 12/30/2023]
Abstract
Members of the fungal genus Morchella are widely known for their important ecological roles and significant economic value. In this study, we used amplicon and genome sequencing to characterize bacterial communities associated with sexual fruiting bodies from wild specimens, as well as vegetative mycelium and sclerotia obtained from Morchella isolates grown in vitro. These investigations included diverse representatives from both Elata and Esculenta Morchella clades. Unique bacterial community compositions were observed across the various structures examined, both within and across individual Morchella isolates or specimens. However, specific bacterial taxa were frequently detected in association with certain structures, providing support for an associated core bacterial community. Bacteria from the genus Pseudomonas and Ralstonia constituted the core bacterial associates of Morchella mycelia and sclerotia, while other genera (e.g., Pedobacter spp., Deviosa spp., and Bradyrhizobium spp.) constituted the core bacterial community of fruiting bodies. Furthermore, the importance of Pseudomonas as a key member of the bacteriome was supported by the isolation of several Pseudomonas strains from mycelia during in vitro cultivation. Four of the six mycelial-derived Pseudomonas isolates shared 16S rDNA sequence identity with amplicon sequences recovered directly from the examined fungal structures. Distinct interaction phenotypes (antagonistic or neutral) were observed in confrontation assays between these bacteria and various Morchella isolates. Genome sequences obtained from these Pseudomonas isolates revealed intriguing differences in gene content and annotated functions, specifically with respect to toxin-antitoxin systems, cell adhesion, chitinases, and insecticidal toxins. These genetic differences correlated with the interaction phenotypes. This study provides evidence that Pseudomonas spp. are frequently associated with Morchella and these associations may greatly impact fungal physiology.
Collapse
Affiliation(s)
- Guillaume Cailleau
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Buck T. Hanson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Melissa Cravero
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Sami Zhioua
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Patrick Hilpish
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Celia Ruiz
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Aaron J. Robinson
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Julia M. Kelliher
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Demosthenes Morales
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, United States
| | | | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - Patrick S.G. Chain
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | | | - Pilar Junier
- Laboratory of Microbiology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
4
|
El Fakhouri K, Ramdani C, Aasfar A, Boulamtat R, Sijilmassi B, El Bouhssini M, Kadmiri IM. Isolation, identification and pathogenicity of local entomopathogenic bacteria as biological control agents against the wild cochineal Dactylopius opuntiae (Cockerell) on cactus pear in Morocco. Sci Rep 2023; 13:21647. [PMID: 38062128 PMCID: PMC10703873 DOI: 10.1038/s41598-023-48976-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
The Opuntia ficus-indica (L.) cactus, a crucial crop in Morocco, is threatened by the wild cochineal, Dactylopius opuntiae (Cockerell). The aim of this research was to investigate the efficacy of nine bacterial strains against both D. opuntiae nymphs and adults females applied individually or after black soap in the laboratory, greenhouse, and field conditions. Using the partial 16S ribosomal DNA, the bacterial isolates were identified as Pseudomonas koreensis, Pseudomonas sp., Burkholderia sp. and Bacillus sp. Under laboratory conditions, the insecticidal activity of P. koreensis strain 66Ms.04 showed the level mortality (88%) of adult females' at 108 CFU/mL, 7 days after application. At a concentration of 108 CFU/mL, P. koreensis strain 66Ms.04 and Pseudomonas sp. (strains 37 and 5) caused 100% nymphs mortality rate three days after application. Under greenhouse conditions, the use of P. koreensis strain 66Ms.04 at 108 CFU/mL following the application of black soap (60 g/L) demonstrated the maximum levels of females and nymphs' mortalities with 80 and 91.25%, respectively, after 8 days of treatment. In field conditions, the combined application of the P. koreensis strain 66Ms.04 at 108 CFU/mL with black soap at 60 g/L, for an interval of 7 days, significantly increased the mortality of adult females to 93.33% at 7 days after the second application. These findings showed that the combined treatment of P. koreensis strain 66Ms.04 with black soap can be a potent and eco-friendly pesticide against D. opuntiae.
Collapse
Affiliation(s)
- Karim El Fakhouri
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco.
| | - Chaimae Ramdani
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
| | - Abderrahim Aasfar
- Plant and Microbial Biotechnology center, Moroccan Foundation for Advanced Science, Innovation and Rescarch (MAScIR), Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
| | - Rachid Boulamtat
- Entomology Laboratory, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat Institutes, P.O. Box 6299, Rabat, Morocco
| | - Badreddine Sijilmassi
- Rhizobium Laboratory, Genetic Resources Section, International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat Institutes, P.O. Box 6299, Rabat, Morocco
| | - Mustapha El Bouhssini
- AgroBioSciences Program, College of Agriculture and Environmental Science, Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
| | - Issam Meftah Kadmiri
- Plant and Microbial Biotechnology center, Moroccan Foundation for Advanced Science, Innovation and Rescarch (MAScIR), Mohammed VI Polytechnic University, Lot 660, Hay Moulay Rachid, 43150, Benguerir, Morocco
| |
Collapse
|
5
|
Sarkhandia S, Sharma G, Mahajan R, Koundal S, Kumar M, Chadha P, Saini HS, Kaur S. Synergistic and additive interactions of Shewanella sp., Pseudomonas sp. and Thauera sp. with chlorantraniliprole and emamectin benzoate for controlling Spodoptera litura (Fabricius). Sci Rep 2023; 13:14648. [PMID: 37669993 PMCID: PMC10480177 DOI: 10.1038/s41598-023-41641-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
The imprudent use of insecticides causes the development of resistance in insect pest populations, contamination of the environment, biological imbalance and human intoxication. The use of microbial pathogens combined with insecticides has been proposed as an alternative strategy for insect pest management. This IPM approach may offer effective ways to control pests, in addition to lowering the risk of chemical residues in the environment. Spodoptera litura (Fabricius) is a major pest of many crops like cotton, maize, tobacco, cauliflower, cabbage, and fodder crops globally. Here, we evaluated the combined effects of new chemistry insecticides (chlorantraniliprole and emamectin benzoate) and entomopathogenic bacterial strains, Shewanella sp. (SS4), Thauera sp. (M9) and Pseudomonas sp. (EN4) against S. litura larvae inducing additive and synergistic interactions under laboratory conditions. Both insecticides produced higher larval mortality when applied in combination with bacterial isolates having maximum mortality of 98 and 96% with LC50 of chlorantraniliprole and emamectin benzoate in combination with LC50 of Pseudomonas sp. (EN4) respectively. The lower concentration (LC20) of both insecticides also induced synergism when combined with the above bacterial isolates providing a valuable approach for the management of insect pests. The genotoxic effect of both the insecticides was also evaluated by conducting comet assays. The insecticide treatments induced significant DNA damage in larval hemocytes that further increased in combination treatments. Our results indicated that combined treatments could be a successful approach for managing S. litura while reducing the inappropriate overuse of insecticides.
Collapse
Affiliation(s)
- Sunaina Sarkhandia
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Geetika Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Rohit Mahajan
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Satish Koundal
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Manoj Kumar
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Harvinder Singh Saini
- Department of Microbiology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sanehdeep Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
6
|
Sarkhandia S, Devi M, Sharma G, Mahajan R, Chadha P, Saini HS, Kaur S. Larvicidal, growth inhibitory and biochemical effects of soil bacterium, Pseudomonas sp. EN4 against Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). BMC Microbiol 2023; 23:95. [PMID: 37013477 PMCID: PMC10069027 DOI: 10.1186/s12866-023-02841-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) also known as tobacco caterpillar, is one of the most serious polyphagous pests that cause economic losses to a variety of commercially important agricultural crops. Over the past few years, many conventional insecticides have been used to control this pest. However, the indiscriminate use of these chemicals has led to development of insecticide resistant populations of S. litura in addition to harmful effects on environment. Due to these ill effects, the emphasis is being laid on alternative eco-friendly control measures. Microbial control is one of the important components of integrated pest management. Thus, in search for novel biocontrol agents, the current work was carried out with the aim to evaluate the insecticidal potential of soil bacteria against S. litura. RESULTS Among the tested soil bacterial isolates (EN1, EN2, AA5, EN4 and R1), maximum mortality (74%) was exhibited by Pseudomonas sp. (EN4). The larval mortality rate increased in a dose-dependent manner. Bacterial infection also significantly delayed the larval development, reduced adult emergence, and induced morphological deformities in adults of S. litura. Adverse effects were also detected on various nutritional parameters. The infected larvae showed a significant decrease in relative growth and consumption rate as well as efficiency of conversion of ingested and digested food to biomass. Histopathological studies indicated damage to the midgut epithelial layer of larvae due to the consumption of bacteria treated diet. The infected larvae also showed a significantly decreased level of various digestive enzymes. Furthermore, exposure to Pseudomonas sp. also caused DNA damage in the hemocytes of S. litura larvae. CONCLUSION Adverse effects of Pseudomonas sp. EN4 on various biological parameters of S. litura indicate that this soil bacterial strain may be used as an effective biocontrol agent against insect pests.
Collapse
Affiliation(s)
- Sunaina Sarkhandia
- Department of Zoology, Guru Nanak Dev University, Punjab, Amritsar, 143005, India
| | - Meena Devi
- Department of Zoology, Guru Nanak Dev University, Punjab, Amritsar, 143005, India
| | - Geetika Sharma
- Department of Zoology, Guru Nanak Dev University, Punjab, Amritsar, 143005, India
| | - Rohit Mahajan
- Department of Microbiology, Guru Nanak Dev University, Punjab, Amritsar, 143005, India
| | - Pooja Chadha
- Department of Zoology, Guru Nanak Dev University, Punjab, Amritsar, 143005, India
| | - Harvinder Singh Saini
- Department of Microbiology, Guru Nanak Dev University, Punjab, Amritsar, 143005, India
| | - Sanehdeep Kaur
- Department of Zoology, Guru Nanak Dev University, Punjab, Amritsar, 143005, India.
| |
Collapse
|
7
|
Malomane MT, Kondiah K, Serepa-Dlamini MH. Genetic Engineering of Escherichia coli BL21 (DE3) with a codon-optimized insecticidal toxin complex gene tccZ. Access Microbiol 2023; 5:acmi000426. [PMID: 36860507 PMCID: PMC9968953 DOI: 10.1099/acmi.0.000426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023] Open
Abstract
A toxin complex consists of a high-molecular-weight group of toxins that exhibits insecticidal activity against insect pests. These toxins are a promising alternative to Bacillus thuringiensis (Bt) toxins that have been extensively utilized in insect pest control. Herein, a codon-optimized insecticidal gene (tccZ) (381 bp) identified in Pantoea ananatis strain MHSD5 (a bacterial endophyte previously isolated from Pellaea calomelanos) was ligated into the pET SUMO expression vector and expressed in Escherichia coli BL21 (DE3). We report the success of cloning the tccZ gene into the pET SUMO vector and ultimately the transformation into E. coli BL21 (DE3) competent cells. However, despite conducting a time course of expression as well as isopropyl β-d-1-thiogalactopyranoside (IPTG) dosage optimization to determine optimal conditions for expression, TccZ protein expression could not be detected on Stain-Free and Coomassie-stained SDS-PAGE gels.
Collapse
Affiliation(s)
- Mosibudi Thabiki Malomane
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, PO Box 17011, Doornfontein 2028, Johannesburg, South Africa
| | - Kulsum Kondiah
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, PO Box 17011, Doornfontein 2028, Johannesburg, South Africa
- *Correspondence: Kulsum Kondiah,
| | - Mahloro Hope Serepa-Dlamini
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Doornfontein Campus, PO Box 17011, Doornfontein 2028, Johannesburg, South Africa
| |
Collapse
|
8
|
Insecticidal and growth inhibitory activity of gut microbes isolated from adults of Spodoptera litura (Fab.). BMC Microbiol 2022; 22:71. [PMID: 35272633 PMCID: PMC8908599 DOI: 10.1186/s12866-022-02476-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Spodoptera litura (Fab.) (Lepidoptera: Noctuidae) commonly known as tobacco caterpillar is a polyphagous pest that causes significant damage to many agricultural crops. The extensive use of chemical insecticides against S. litura has resulted in development of resistance. In order to find potential biocontrol agents, gut microbes were investigated for insecticidal potential. These microbes live in a diverse relationship with insects that may vary from beneficial to pathogenic. RESULTS Enterococcus casseliflavus, Enterococcus mundtii, Serratia marcescens, Klebsiella pneumoniae, Pseudomonas paralactis and Pantoea brenneri were isolated from adults of S. litura. Screening of these microbial isolates for insecticidal potential against S. litura showed higher larval mortality due to K. pneumoniae and P. paralactis. These bacteria also negatively affected the development of insect along with significant decline in relative growth and consumption rate as well as efficiency of conversion of ingested and digested food of insect. The bacteria significantly decreased the reproductive potential of insect. Perturbations in the composition of gut microbiome and damage to gut epithelium were also observed that might be associated with decreased survival of this insect. CONCLUSIONS Our study reveals the toxic effects of K. pneumoniae and P. paralactis on biology of S. litura. These bacteria may be used as potential candidates for developing ecofriendly strategies to manage this insect pest.
Collapse
|
9
|
Stable-Isotope-Informed, Genome-Resolved Metagenomics Uncovers Potential Cross-Kingdom Interactions in Rhizosphere Soil. mSphere 2021; 6:e0008521. [PMID: 34468166 PMCID: PMC8550312 DOI: 10.1128/msphere.00085-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The functioning, health, and productivity of soil are intimately tied to a complex network of interactions, particularly in plant root-associated rhizosphere soil. We conducted a stable-isotope-informed, genome-resolved metagenomic study to trace carbon from Avena fatua grown in a 13CO2 atmosphere into soil. We collected paired rhizosphere and nonrhizosphere soil at 6 and 9 weeks of plant growth and extracted DNA that was then separated by density using ultracentrifugation. Thirty-two fractions from each of five samples were grouped by density, sequenced, assembled, and binned to generate 55 unique bacterial genomes that were ≥70% complete. We also identified complete 18S rRNA sequences of several 13C-enriched microeukaryotic bacterivores and fungi. We generated 10 circularized bacteriophage (phage) genomes, some of which were the most labeled entities in the rhizosphere, suggesting that phage may be important agents of turnover of plant-derived C in soil. CRISPR locus targeting connected one of these phage to a Burkholderiales host predicted to be a plant pathogen. Another highly labeled phage is predicted to replicate in a Catenulispora sp., a possible plant growth-promoting bacterium. We searched the genome bins for traits known to be used in interactions involving bacteria, microeukaryotes, and plant roots and found DNA from heavily 13C-labeled bacterial genes thought to be involved in modulating plant signaling hormones, plant pathogenicity, and defense against microeukaryote grazing. Stable-isotope-informed, genome-resolved metagenomics indicated that phage can be important agents of turnover of plant-derived carbon in soil. IMPORTANCE Plants grow in intimate association with soil microbial communities; these microbes can facilitate the availability of essential resources to plants. Thus, plant productivity commonly depends on interactions with rhizosphere bacteria, viruses, and eukaryotes. Our work is significant because we identified the organisms that took up plant-derived organic C in rhizosphere soil and determined that many of the active bacteria are plant pathogens or can impact plant growth via hormone modulation. Further, by showing that bacteriophage accumulate CO2-derived carbon, we demonstrated their vital roles in redistribution of plant-derived C into the soil environment through bacterial cell lysis. The use of stable-isotope probing (SIP) to identify consumption (or lack thereof) of root-derived C by key microbial community members within highly complex microbial communities opens the way for assessing manipulations of bacteria and phage with potentially beneficial and detrimental traits, ultimately providing a path to improved plant health and soil carbon storage.
Collapse
|
10
|
Zeng Z, Mou D, Luo L, Zhong W, Duan L, Zou X. Different Cultivation Environments Affect the Yield, Bacterial Community and Metabolites of Cordyceps cicadae. Front Microbiol 2021; 12:669785. [PMID: 34046024 PMCID: PMC8144455 DOI: 10.3389/fmicb.2021.669785] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/08/2021] [Indexed: 02/03/2023] Open
Abstract
Cordyceps cicadae is an entomogenous fungus with important uses in traditional Chinese medicine. However, its wild resources have not met consumers' demand due to excessive harvesting practices. Artificial cultivation is therefore an important alternative, but research on cultivating C. cicadae in natural habitats has not been reported. In this study, we aimed to explore the viability of cultivating C. cicadae in a natural habitat, in the soil of Pinus massoniana forest. We assessed and compared the yield, metabolite contents and bacterial community composition of C. cicadae grown in the Antheraea pernyi pupae at different growth stages, and under different cultivation conditions, in the soil of a natural habitat and in sterile glass bottles. Our results showed that cultivating C. cicadae in a natural habitat is feasible, with up to 95% of pupae producing C. cicadae fruiting bodies. The content of nitrogen compounds (amino acids) in C. cicadae cultivated in a natural habitat was significantly higher than in glass bottles, while the yield and carbon compound (mannitol and polysaccharide) and nucleoside (cordycepin and adenosine) contents were lower. Different bacterial genera were enriched in C. cicadae at different growth stages and cultivation environments, and these bacterial genera were closely related to metabolites contents during growth. This study demonstrated the viability of a novel cultivation method of C. cicadae, which could be used as an alternative to wild stocks of this fungus. These findings provided new insights into the growth mechanism of C. cicadae and its interaction with soil microorganisms.
Collapse
Affiliation(s)
- Zhaoying Zeng
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Lab of Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Dan Mou
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Li Luo
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Wenlin Zhong
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Lin Duan
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China
| | - Xiao Zou
- Institute of Fungal Resources, College of Life Sciences, Guizhou University, Guiyang, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou Key Lab of Agro-Bioengineering, College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
| |
Collapse
|
11
|
Teoh MC, Furusawa G, Veera Singham G. Multifaceted interactions between the pseudomonads and insects: mechanisms and prospects. Arch Microbiol 2021; 203:1891-1915. [PMID: 33634321 DOI: 10.1007/s00203-021-02230-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/19/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Insects and bacteria are the most widespread groups of organisms found in nearly all habitats on earth, establishing diverse interactions that encompass the entire range of possible symbiotic associations from strict parasitism to obligate mutualism. The complexity of their interactions is instrumental in shaping the roles of insects in the environment, meanwhile ensuring the survival and persistence of the associated bacteria. This review aims to provide detailed insight on the multifaceted symbiosis between one of the most versatile bacterial genera, Pseudomonas (Gammaproteobacteria: Pseudomonadaceae) and a diverse group of insect species. The Pseudomonas engages with varied interactions with insects, being either a pathogen or beneficial endosymbiont, as well as using insects as vectors. In addition, this review also provides updates on existing and potential applications of Pseudomonas and their numerous insecticidal metabolites as biocontrol agents against pest insects for the improvement of integrated pest management strategies. Here, we have summarized several known modes of action and the virulence factors of entomopathogenic Pseudomonas strains essential for their pathogenicity against insects. Meanwhile, the beneficial interactions between pseudomonads and insects are currently limited to a few known insect taxa, despite numerous studies reporting identification of pseudomonads in the guts and haemocoel of various insect species. The vector-symbiont association between pseudomonads and insects can be diverse from strict phoresy to a role switch from commensalism to parasitism following a dose-dependent response. Overall, the pseudomonads appeared to have evolved independently to be either exclusively pathogenic or beneficial towards insects.
Collapse
Affiliation(s)
- Miao-Ching Teoh
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| | - G Veera Singham
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
12
|
Song N, Chen L, Zhou Z, Ren X, Liu B, Zhou S, Wang C, Wu Y, Waterfield NR, Yang J, Yang G. Genome-wide dissection reveals diverse pathogenic roles of bacterial Tc toxins. PLoS Pathog 2021; 17:e1009102. [PMID: 33540421 PMCID: PMC7861908 DOI: 10.1371/journal.ppat.1009102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Tc toxins were originally identified in entomopathogenic bacteria, which are important as biological pest control agents. Tc toxins are heteromeric exotoxins composed of three subunit types, TcA, TcB, and TcC. The C-terminal portion of the TcC protein encodes the actual toxic domain, which is translocated into host cells by an injectosome nanomachine comprising the other subunits. Currently the pathogenic roles and distribution of Tc toxins among different bacterial genera remain unclear. Here we have performed a comprehensive genome-wide analysis, and established a database that includes 1,608 identified Tc loci containing 2,528 TcC proteins in 1,421 Gram-negative and positive bacterial genomes. Our findings indicate that TcCs conform to the architecture of typical polymorphic toxins, with C-terminal hypervariable regions (HVR) encoding more than 100 different classes of putative toxic domains, most of which have not been previously recognized. Based on further analysis of Tc loci in the genomes of all Salmonella and Yersinia strains in EnteroBase, a “two-level” evolutionary dynamics scenario is proposed for TcC homologues. This scenario implies that the conserved TcC RHS core domain plays a critical role in the taxonomical specific distribution of TcC HVRs. This study provides an extensive resource for the future development of Tc toxins as valuable agrochemical tools. It furthermore implies that Tc proteins, which are encoded by a wide range of pathogens, represent an important versatile toxin superfamily with diverse pathogenic mechanisms. Entomopathogenic bacteria deploy a range of toxins to combat their insect hosts. The Tc toxins were first identified in Photorhabdus as having potent oral toxicity to insects, with a mode of action distinct from the well-studied Bacillus thuringiensis Cry toxins. As such the Tc toxins have been considered as potential candidates for novel crop protection strategies. This could mitigate against the potential risks of pest insects developing resistance to the traditionally used Cry toxin-based systems. To date, the generality of diverse Tc toxins and their related pathogenic roles has remained mainly obscure. Our analysis has showed Tc toxins are widely distributed among Gram-negative and positive bacterial genomes. A database was constructed including thousands of Tc loci with hundreds of different putative TcC toxic domains, any one of which might represent candidates for the development of future pest control systems. Moreover, the findings of this study are of wider significance because Tc toxin homologues have been shown to be encoded by a range of human pathogens. These include Salmonella and Yersinia, suggesting their potential roles in human infectious diseases. Together, this study describes the characteristics and distribution of Tc toxins among diverse bacterial genera, and provides a new insight into their roles in different pathogenesis mechanisms. This study also describes findings of potential importance to their development as tools for biotechnological applications.
Collapse
Affiliation(s)
- Nan Song
- Beijing Institute of Tropical Medicine, Beijing, China
- Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lihong Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhemin Zhou
- Warwick Medical School, Warwick University, Coventry, United Kingdom
| | - Xingmei Ren
- Beijing Institute of Tropical Medicine, Beijing, China
- Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Siyu Zhou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Caihong Wang
- Beijing Institute of Tropical Medicine, Beijing, China
- Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yun Wu
- Beijing Institute of Tropical Medicine, Beijing, China
- Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | - Jian Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- * E-mail: (JY); (GY)
| | - Guowei Yang
- Beijing Institute of Tropical Medicine, Beijing, China
- Emergency and Critical Care Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- * E-mail: (JY); (GY)
| |
Collapse
|
13
|
Wu H, Rao ZC, Cao L, De Clercq P, Han RC. Infection of Ophiocordyceps sinensis Fungus Causes Dramatic Changes in the Microbiota of Its Thitarodes Host. Front Microbiol 2020; 11:577268. [PMID: 33343519 PMCID: PMC7744566 DOI: 10.3389/fmicb.2020.577268] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/13/2020] [Indexed: 12/31/2022] Open
Abstract
The Chinese cordyceps is a unique and valuable parasitic complex of Thitarodes/Hepialus ghost moths and the Ophiocordyceps sinensis fungus for medicine and health foods from the Tibetan Plateau. During artificial cultivation of Chinese cordyceps, the induction of blastospores into hyphae is a prerequisite for mummification of the infected Thitarodes larvae. To explore the microbial involvement in the induction of mycelia-blastospore transition, the microbiota of the hemolymph and gut from Thitarodes xiaojinensis larvae with or without injected O. sinensis blastospores were investigated by culture-dependent and -independent methods. Twenty-five culturable bacterial species and 14 fungal species, together with 537 bacterial operational taxonomic units (OTUs) and 218 fungal OTUs, were identified from the hemolymph and gut of samples from five stages including living larvae without injected fungi (A) or with high blastospore load (B), mummifying larvae without mycelia coating (C), freshly mummifying larvae coated with mycelia (D), and completely mummified larvae with mycelia (E). Two culturable bacterial species (Serratia plymuthica, Serratia proteamaculans), and 47 bacterial and 15 fungal OTUs were considered as shared species. The uninfected larval hemolymph contained 13 culturable bacterial species but no fungal species, together with 164 bacterial and 73 fungal OTUs. To our knowledge, this is the first study to detect large bacterial communities from the hemolymph of healthy insect larvae. When the living larvae contained high blastospore load, the culturable bacterial community was sharply inhibited in the hemolymph but the bacterial and fungal community greatly increased in the gut. In general, high blastospore load increased bacterial diversity but sharply decreased fungal diversity in the hemolymph and gut by OTUs. The bacterial loads of four culturable species (Chryseobacterium sp., Pseudomonas fragi, S. plymuthica, S. proteamaculans) increased significantly and O. sinensis and Pseudomonas spp. became dominant microbes, when the infected larvae became mummified, indicating their possible involvement in the larval mummification process. The discovery of many opportunistic pathogenic bacteria in the hemolymph of the healthy larvae, the larval microbial diversity influenced by O. sinensis challenge and the involvement of dominant bacteria during larval mummification process provide new insight into the infection and mummification mechanisms of O. sinensis in its Thitarodes hosts.
Collapse
Affiliation(s)
- Hua Wu
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.,Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhong-Chen Rao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Li Cao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Patrick De Clercq
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Ri-Chou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
14
|
Whole Genome Sequencing and Tn 5-Insertion Mutagenesis of Pseudomonas taiwanensis CMS to Probe Its Antagonistic Activity Against Rice Bacterial Blight Disease. Int J Mol Sci 2020; 21:ijms21228639. [PMID: 33207795 PMCID: PMC7696974 DOI: 10.3390/ijms21228639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 01/07/2023] Open
Abstract
The Gram-negative bacterium Pseudomonas taiwanensis is a novel bacterium that uses shrimp shell waste as its sole sources of carbon and nitrogen. It is a versatile bacterium with potential for use in biological control, with activities including toxicity toward insects, fungi, and the rice pathogen Xanthomonas oryzae pv.oryzae (Xoo). In this study, the complete 5.08-Mb genome sequence of P. taiwanensis CMS was determined by a combination of NGS/Sanger sequencing and optical mapping. Comparison of optical maps of seven Pseudomonas species showed that P. taiwanensis is most closely related to P. putida KT 2400. We screened a total of 11,646 individual Tn5-transponson tagged strains to identify genes that are involved in the production and regulation of the iron-chelator pyoverdine in P. taiwanensis, which is a key anti-Xoo factor. Our results indicated that the two-component system (TCS) EnvZ/OmpR plays a positive regulatory role in the production of pyoverdine, whereas the sigma factor RpoS functions as a repressor. The knowledge of the molecular basis of the regulation of pyoverdine by P. taiwanensis provided herein will be useful for its development for use in biological control, including as an anti-Xoo agent.
Collapse
|
15
|
Perspectives of Microbial Metabolites as Pesticides in Agricultural Pest Management. REFERENCE SERIES IN PHYTOCHEMISTRY 2020. [DOI: 10.1007/978-3-319-96397-6_44] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
16
|
Looking for the X Factor in Bacterial Pathogenesis: Association of orfX- p47 Gene Clusters with Toxin Genes in Clostridial and Non-Clostridial Bacterial Species. Toxins (Basel) 2019; 12:toxins12010019. [PMID: 31906154 PMCID: PMC7020563 DOI: 10.3390/toxins12010019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 12/13/2022] Open
Abstract
The botulinum neurotoxin (BoNT) has been extensively researched over the years in regard to its structure, mode of action, and applications. Nevertheless, the biological roles of four proteins encoded from a number of BoNT gene clusters, i.e., OrfX1-3 and P47, are unknown. Here, we investigated the diversity of orfX-p47 gene clusters using in silico analytical tools. We show that the orfX-p47 cluster was not only present in the genomes of BoNT-producing bacteria but also in a substantially wider range of bacterial species across the bacterial phylogenetic tree. Remarkably, the orfX-p47 cluster was consistently located in proximity to genes coding for various toxins, suggesting that OrfX1-3 and P47 may have a conserved function related to toxinogenesis and/or pathogenesis, regardless of the toxin produced by the bacterium. Our work also led to the identification of a putative novel BoNT-like toxin gene cluster in a Bacillus isolate. This gene cluster shares striking similarities to the BoNT cluster, encoding a bont/ntnh-like gene and orfX-p47, but also differs from it markedly, displaying additional genes putatively encoding the components of a polymorphic ABC toxin complex. These findings provide novel insights into the biological roles of OrfX1, OrfX2, OrfX3, and P47 in toxinogenesis and pathogenesis of BoNT-producing and non-producing bacteria.
Collapse
|
17
|
Chewapreecha C, Mather AE, Harris SR, Hunt M, Holden MTG, Chaichana C, Wuthiekanun V, Dougan G, Day NPJ, Limmathurotsakul D, Parkhill J, Peacock SJ. Genetic variation associated with infection and the environment in the accidental pathogen Burkholderia pseudomallei. Commun Biol 2019; 2:428. [PMID: 31799430 PMCID: PMC6874650 DOI: 10.1038/s42003-019-0678-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023] Open
Abstract
The environmental bacterium Burkholderia pseudomallei causes melioidosis, an important endemic human disease in tropical and sub-tropical countries. This bacterium occupies broad ecological niches including soil, contaminated water, single-cell microbes, plants and infection in a range of animal species. Here, we performed genome-wide association studies for genetic determinants of environmental and human adaptation using a combined dataset of 1,010 whole genome sequences of B. pseudomallei from Northeast Thailand and Australia, representing two major disease hotspots. With these data, we identified 47 genes from 26 distinct loci associated with clinical or environmental isolates from Thailand and replicated 12 genes in an independent Australian cohort. We next outlined the selective pressures on the genetic loci (dN/dS) and the frequency at which they had been gained or lost throughout their evolutionary history, reflecting the bacterial adaptability to a wide range of ecological niches. Finally, we highlighted loci likely implicated in human disease.
Collapse
Affiliation(s)
- Claire Chewapreecha
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
- Bioinformatics and Systems Biology Program, School of Bioresource and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, 10150 Thailand
- Wellcome Sanger Institute, Hinxton, CB10 1SA UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Alison E. Mather
- Quadram Institute Bioscience, Norwich, NR4 7UQ UK
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | | | - Martin Hunt
- Wellcome Sanger Institute, Hinxton, CB10 1SA UK
| | | | - Chutima Chaichana
- Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok, 10140 Thailand
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LF UK
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LF UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES UK
| | - Sharon J. Peacock
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ UK
| |
Collapse
|
18
|
Perspectives of Microbial Metabolites as Pesticides in Agricultural Pest Management. BIOACTIVE MOLECULES IN FOOD 2019. [DOI: 10.1007/978-3-319-76887-8_44-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Spiroplasma dominates the microbiome of khapra beetle: comparison with a congener, effects of life stage and temperature. Symbiosis 2018. [DOI: 10.1007/s13199-018-0560-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
20
|
Dorati F, Barrett GA, Sanchez-Contreras M, Arseneault T, José MS, Studholme DJ, Murillo J, Caballero P, Waterfield NR, Arnold DL, Shaw LJ, Jackson RW. Coping with Environmental Eukaryotes; Identification of Pseudomonas syringae Genes during the Interaction with Alternative Hosts or Predators. Microorganisms 2018; 6:microorganisms6020032. [PMID: 29690522 PMCID: PMC6027264 DOI: 10.3390/microorganisms6020032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/09/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022] Open
Abstract
Understanding the molecular mechanisms underpinning the ecological success of plant pathogens is critical to develop strategies for controlling diseases and protecting crops. Recent observations have shown that plant pathogenic bacteria, particularly Pseudomonas, exist in a range of natural environments away from their natural plant host e.g., water courses, soil, non-host plants. This exposes them to a variety of eukaryotic predators such as nematodes, insects and amoebae present in the environment. Nematodes and amoeba in particular are bacterial predators while insect herbivores may act as indirect predators, ingesting bacteria on plant tissue. We therefore postulated that bacteria are probably under selective pressure to avoid or survive predation and have therefore developed appropriate coping mechanisms. We tested the hypothesis that plant pathogenic Pseudomonas syringae are able to cope with predation pressure and found that three pathovars show weak, but significant resistance or toxicity. To identify the gene systems that contribute to resistance or toxicity we applied a heterologous screening technique, called Rapid Virulence Annotation (RVA), for anti-predation and toxicity mechanisms. Three cosmid libraries for P. syringae pv. aesculi, pv. tomato and pv. phaseolicola, of approximately 2000 cosmids each, were screened in the susceptible/non-toxic bacterium Escherichia coli against nematode, amoebae and an insect. A number of potential conserved and unique genes were identified which included genes encoding haemolysins, biofilm formation, motility and adhesion. These data provide the first multi-pathovar comparative insight to how plant pathogens cope with different predation pressures and infection of an insect gut and provide a foundation for further study into the function of selected genes and their role in ecological success.
Collapse
Affiliation(s)
- Federico Dorati
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
| | - Glyn A Barrett
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
| | | | - Tanya Arseneault
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
- Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, Research and Development Centre, Quebec, J3B 3E6, Canada.
| | - Mateo San José
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
| | | | - Jesús Murillo
- Instituto de Agrobiotecnología, Universidad Pública de Navarra, 31192 Mutilva, Spain.
| | - Primitivo Caballero
- Instituto de Agrobiotecnología, Universidad Pública de Navarra, 31192 Mutilva, Spain.
| | - Nicholas R Waterfield
- Department of Biology and Biochemistry, University of Bath, Bath, BA1 9BJ, UK.
- Warwick Medical School, University of Warwick, Warwick, CV4 7AL, UK.
| | - Dawn L Arnold
- Centre for Research in Bioscience, Faculty of Health and Applied Sciences, University of the West of England, Bristol, BS16 1QY, UK.
| | - Liz J Shaw
- School of Archaeology, Geography and Environmental Science, University of Reading, Reading, RG6 6AX, UK.
| | - Robert W Jackson
- School of Biological Sciences, University of Reading, Reading, RG6 6UR, UK.
| |
Collapse
|
21
|
Lee SA, Jang SH, Kim BH, Shibata T, Yoo J, Jung Y, Kawabata SI, Lee BL. Insecticidal activity of the metalloprotease AprA occurs through suppression of host cellular and humoral immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 81:116-126. [PMID: 29174605 DOI: 10.1016/j.dci.2017.11.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/22/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
The biochemical characterization of virulence factors from entomopathogenic bacteria is important to understand entomopathogen-insect molecular interactions. Pseudomonas entomophila is a typical entomopathogenic bacterium that harbors virulence factors against several insects. However, the molecular actions of these factors against host innate immune responses are not clearly elucidated. In this study, we observed that bean bugs (Riptortus pedestris) that were injected with P. entomophila were highly susceptible to this bacterium. To determine how P. entomophila counteracts the host innate immunity to survive within the insect, we purified a highly enriched protein with potential host insect-killing activity from the culture supernatant of P. entomophila. Then, a 45-kDa protein was purified to homogeneity and identified as AprA which is an alkaline zinc metalloprotease of the genus Pseudomonas by liquid chromatography mass spectrometry (LC-MS). Purified AprA showed a pronounced killing effect against host insects and suppressed both host cellular and humoral innate immunity. Furthermore, to show that AprA is an important insecticidal protein of P. entomophila, we used an aprA-deficient P. entomophila mutant strain (ΔaprA). When ΔaprA mutant cells were injected to host insects, this mutant exhibited extremely attenuated virulence. In addition, the cytotoxicity against host hemocytes and the antimicrobial peptide-degrading ability of the ΔaprA mutant were greatly decreased. These findings suggest that AprA functions as an important insecticidal protein of P. entomophila via suppression of host cellular and humoral innate immune responses.
Collapse
Affiliation(s)
- Seung Ah Lee
- Global Research Laboratory of Insect Symbiosis, Pusan National University, Busan 46241, South Korea
| | - Seong Han Jang
- Global Research Laboratory of Insect Symbiosis, Pusan National University, Busan 46241, South Korea
| | - Byung Hyun Kim
- Global Research Laboratory of Insect Symbiosis, Pusan National University, Busan 46241, South Korea
| | - Toshio Shibata
- Institute for Advanced Study, Kyushu University, Fukuoka 819-0395, Japan; Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Jinwook Yoo
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Yunjin Jung
- College of Pharmacy, Pusan National University, Busan 46241, South Korea
| | - Shun-Ichiro Kawabata
- Institute for Advanced Study, Kyushu University, Fukuoka 819-0395, Japan; Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Bok Luel Lee
- Global Research Laboratory of Insect Symbiosis, Pusan National University, Busan 46241, South Korea.
| |
Collapse
|
22
|
Agaras BC, Iriarte A, Valverde CF. Genomic insights into the broad antifungal activity, plant-probiotic properties, and their regulation, in Pseudomonas donghuensis strain SVBP6. PLoS One 2018. [PMID: 29538430 PMCID: PMC5851621 DOI: 10.1371/journal.pone.0194088] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Plant-growth promotion has been linked to the Pseudomonas genus since the beginning of this research field. In this work, we mined the genome of an Argentinean isolate of the recently described species P. donghuensis. Strain SVBP6, isolated from bulk soil of an agricultural plot, showed a broad antifungal activity and several other plant-probiotic activities. As this species has been recently described, and it seems like some plant-growth promoting (PGP) traits do not belong to the classical pseudomonads toolbox, we decide to explore the SVBP6 genome via an bioinformatic approach. Genome inspection confirmed our previous in vitro results about genes involved in several probiotic activities. Other genetic traits possibly involved in survival of SVBP6 in highly competitive environments, such as rhizospheres, were found. Tn5 mutagenesis revealed that the antifungal activity against the soil pathogen Macrophomina phaseolina was dependent on a functional gacS gene, from the regulatory cascade Gac-Rsm, but it was not due to volatile compounds. Altogether, our genomic analyses and in vitro tests allowed the phylogenetic assignment and provided the first insights into probiotic properties of the first P. donghuensis isolate from the Americas.
Collapse
Affiliation(s)
- Betina Cecilia Agaras
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrés Iriarte
- Laboratorio de Biología Computacional, Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Claudio Fabián Valverde
- Laboratorio de Bioquímica, Microbiología e Interacciones Biológicas en el Suelo, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Bernal, Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
23
|
Wei J, O'Rear J, Schellenberger U, Rosen BA, Park Y, McDonald MJ, Zhu G, Xie W, Kassa A, Procyk L, Perez Ortega C, Zhao J, Yalpani N, Crane VC, Diehn SH, Sandahl GA, Nelson ME, Lu AL, Wu G, Liu L. A selective insecticidal protein from Pseudomonas mosselii for corn rootworm control. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:649-659. [PMID: 28796437 PMCID: PMC5787824 DOI: 10.1111/pbi.12806] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/22/2017] [Accepted: 08/04/2017] [Indexed: 06/07/2023]
Abstract
The coleopteran insect western corn rootworm (WCR, Diabrotica virgifera virgifera) is an economically important pest in North America and Europe. Transgenic corn plants producing Bacillus thuringiensis (Bt) insecticidal proteins have been useful against this devastating pest, but evolution of resistance has reduced their efficacy. Here, we report the discovery of a novel insecticidal protein, PIP-47Aa, from an isolate of Pseudomonas mosselii. PIP-47Aa sequence shows no shared motifs, domains or signatures with other known proteins. Recombinant PIP-47Aa kills WCR, two other corn rootworm pests (Diabrotica barberi and Diabrotica undecimpunctata howardi) and two other beetle species (Diabrotica speciosa and Phyllotreta cruciferae), but it was not toxic to the spotted lady beetle (Coleomegilla maculata) or seven species of Lepidoptera and Hemiptera. Transgenic corn plants expressing PIP-47Aa show significant protection from root damage by WCR. PIP-47Aa kills a WCR strain resistant to mCry3A and does not share rootworm midgut binding sites with mCry3A or AfIP-1A/1B from Alcaligenes that acts like Cry34Ab1/Cry35Ab1. Our results indicate that PIP-47Aa is a novel insecticidal protein for controlling the corn rootworm pests.
Collapse
Affiliation(s)
| | | | - Ute Schellenberger
- DuPont PioneerHaywardCAUSA
- Present address:
TeneoBio Inc.1490 O'Brien DriveMenlo ParkCA94025USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lu Liu
- DuPont PioneerHaywardCAUSA
| |
Collapse
|
24
|
Lopes LD, Davis EW, Pereira E Silva MDC, Weisberg AJ, Bresciani L, Chang JH, Loper JE, Andreote FD. Tropical soils are a reservoir for fluorescent Pseudomonas spp. biodiversity. Environ Microbiol 2017; 20:62-74. [PMID: 29027341 DOI: 10.1111/1462-2920.13957] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 10/07/2017] [Accepted: 10/08/2017] [Indexed: 11/30/2022]
Abstract
Fluorescent Pseudomonas spp. are widely studied for their beneficial activities to plants. To explore the genetic diversity of Pseudomonas spp. in tropical regions, we collected 76 isolates from a Brazilian soil. Genomes were sequenced and compared to known strains, mostly collected from temperate regions. Phylogenetic analyses classified the isolates in the P. fluorescens (57) and P. putida (19) groups. Among the isolates in the P. fluorescens group, most (37) were classified in the P. koreensis subgroup and two in the P. jessenii subgroup. The remaining 18 isolates fell into two phylogenetic subclades distinct from currently recognized P. fluorescens subgroups, and probably represent new subgroups. Consistent with their phylogenetic distance from described subgroups, the genome sequences of strains in these subclades are asyntenous to the genome sequences of members of their neighbour subgroups. The tropical isolates have several functional genes also present in known fluorescent Pseudomonas spp. strains. However, members of the new subclades share exclusive genes not detected in other subgroups, pointing to the potential for novel functions. Additionally, we identified 12 potential new species among the 76 isolates from the tropical soil. The unexplored diversity found in the tropical soil is possibly related to biogeographical patterns.
Collapse
Affiliation(s)
- Lucas Dantas Lopes
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Edward W Davis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA
| | - Michele de C Pereira E Silva
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Luana Bresciani
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA
| | - Joyce E Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.,Molecular and Cellular Biology Program, Oregon State University, Corvallis, OR 97331, USA
| | - Fernando D Andreote
- Department of Soil Science, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
25
|
Ojha A, Sinha DK, Padmakumari AP, Bentur JS, Nair S. Bacterial Community Structure in the Asian Rice Gall Midge Reveals a Varied Microbiome Rich in Proteobacteria. Sci Rep 2017; 7:9424. [PMID: 28842593 PMCID: PMC5573367 DOI: 10.1038/s41598-017-09791-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/31/2017] [Indexed: 02/03/2023] Open
Abstract
The Asian rice gall midge (ARGM) has emerged as a model gall forming pest of rice. The ARGM infestation of rice results in failure of panicle formation and economic loss. Understanding the molecular basis of ARGM-rice interactions is very crucial in order to control this devastating pest of rice. The current investigation was devised to identify bacterial communities present in the ARGM and in addition the bacterial diversity in the maggots during their interaction with susceptible or resistant rice varieties. Sequencing of 16S rRNA bacterial gene (V3-V4 region) revealed differences in the microflora of the ARGM maggots feeding on susceptible or resistant rice hosts. Results revealed that Wolbachia was the predominant bacterium in pupae and adults while Pseudomonas was predominant in maggots. Further, we observed that members of proteobacteria were predominant across all the samples. There was high species diversity in maggots isolated from susceptible rice and a high representation of unclassified bacteria in maggots isolated from resistant rice. This is the first study that reports variation of microbiome of the ARGM, based on host phenotype from which it was isolated, and results suggest that these variations could have an important role in host's susceptibility.
Collapse
Affiliation(s)
- Abhishek Ojha
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110 067, India.,State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Deepak Kumar Sinha
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - A P Padmakumari
- Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - J S Bentur
- Agri Biotech Foundation, Rajendranagar, Hyderabad, 500 030, India
| | - Suresh Nair
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| |
Collapse
|
26
|
Trienens M, Kraaijeveld K, Wertheim B. Defensive repertoire of Drosophila larvae in response to toxic fungi. Mol Ecol 2017; 26:5043-5057. [PMID: 28746736 DOI: 10.1111/mec.14254] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/30/2017] [Accepted: 07/13/2017] [Indexed: 01/12/2023]
Abstract
Chemical warfare including insecticidal secondary metabolites is a well-known strategy for environmental microbes to monopolize a food source. Insects in turn have evolved behavioural and physiological defences to eradicate or neutralize the harmful microorganisms. We studied the defensive repertoire of insects in this interference competition by combining behavioural and developmental assays with whole-transcriptome time-series analysis. Confrontation with the toxic filamentous fungus Aspergillus nidulans severely reduced the survival of Drosophila melanogaster larvae. Nonetheless, the larvae did not behaviourally avoid the fungus, but aggregated at it. Confrontation with fungi strongly affected larval gene expression, including many genes involved in detoxification (e.g., CYP, GST and UGT genes) and the formation of the insect cuticle (e.g., Tweedle genes). The most strongly upregulated genes were several members of the insect-specific gene family Osiris, and CHK-kinase-like domains were over-represented. Immune responses were not activated, reflecting the competitive rather than pathogenic nature of the antagonistic interaction. While internal microbes are widely acknowledged as important, our study emphasizes the underappreciated role of environmental microbes as fierce competitors.
Collapse
Affiliation(s)
- Monika Trienens
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.,Institute for Evolution and Biodiversity, University of Muenster, Muenster, Germany
| | - Ken Kraaijeveld
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.,Institute of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
27
|
Chen WJ, Kuo TY, Hsieh FC, Chen PY, Wang CS, Shih YL, Lai YM, Liu JR, Yang YL, Shih MC. Involvement of type VI secretion system in secretion of iron chelator pyoverdine in Pseudomonas taiwanensis. Sci Rep 2016; 6:32950. [PMID: 27605490 PMCID: PMC5015096 DOI: 10.1038/srep32950] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/17/2016] [Indexed: 12/29/2022] Open
Abstract
Rice bacterial blight caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most destructive rice diseases worldwide. Therefore, in addition to breeding disease-resistant rice cultivars, it is desirable to develop effective biocontrol agents against Xoo. Here, we report that a soil bacterium Pseudomonas taiwanensis displayed strong antagonistic activity against Xoo. Using matrix-assisted laser desorption/ionization imaging mass spectrometry, we identified an iron chelator, pyoverdine, secreted by P. taiwanensis that could inhibit the growth of Xoo. Through Tn5 mutagenesis of P. taiwanensis, we showed that mutations in genes that encode components of the type VI secretion system (T6SS) as well as biosynthesis and maturation of pyoverdine resulted in reduced toxicity against Xoo. Our results indicated that T6SS is involved in the secretion of endogenous pyoverdine. Mutations in T6SS component genes affected the secretion of mature pyoverdine from the periplasmic space into the extracellular medium after pyoverdine precursor is transferred to the periplasm by the inner membrane transporter PvdE. In addition, we also showed that other export systems, i.e., the PvdRT-OpmQ and MexAB-OprM efflux systems (for which there have been previous suggestions of involvement) and the type II secretion system (T2SS), are not involved in pyoverdine secretion.
Collapse
Affiliation(s)
- Wen-Jen Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, 10617, Taiwan
| | - Tzu-Yen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Feng-Chia Hsieh
- Biopesticide Division, Taiwan Agricultural Chemicals and Toxic Substances Research Institute, Council of Agriculture, Taichung, 41358, Taiwan
| | - Pi-Yu Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Chang-Sheng Wang
- Department of Agronomy, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Yu-Ling Shih
- Institute of Biological Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Ying-Mi Lai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Je-Ruei Liu
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, 10617, Taiwan
| | - Yu-Liang Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Ming-Che Shih
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
28
|
Rangel LI, Henkels MD, Shaffer BT, Walker FL, Davis EW, Stockwell VO, Bruck D, Taylor BJ, Loper JE. Characterization of Toxin Complex Gene Clusters and Insect Toxicity of Bacteria Representing Four Subgroups of Pseudomonas fluorescens. PLoS One 2016; 11:e0161120. [PMID: 27580176 PMCID: PMC5006985 DOI: 10.1371/journal.pone.0161120] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 07/29/2016] [Indexed: 11/30/2022] Open
Abstract
Ten strains representing four lineages of the Pseudomonas fluorescens group (P. chlororaphis, P. corrugata, P. koreensis, and P. fluorescens subgroups) were evaluated for toxicity to the tobacco hornworm Manduca sexta and the common fruit fly Drosophila melanogaster. The three strains within the P. chlororaphis subgroup exhibited both oral and injectable toxicity to the lepidopteran M. sexta. All three strains have the gene cluster encoding the FitD insect toxin and a ΔfitD mutant of P. protegens strain Pf-5 exhibited diminished oral toxicity compared to the wildtype strain. Only one of the three strains, P. protegens Pf-5, exhibited substantial levels of oral toxicity against the dipteran D. melanogaster. Three strains in the P. fluorescens subgroup, which lack fitD, consistently showed significant levels of injectable toxicity against M. sexta. In contrast, the oral toxicity of these strains against D. melanogaster was variable between experiments, with only one strain, Pseudomonas sp. BG33R, causing significant levels of mortality in repeated experiments. Toxin complex (Tc) gene clusters, which encode insecticidal properties in Photorhabdus luminescens, were identified in the genomes of seven of the ten strains evaluated in this study. Within those seven genomes, six types of Tc gene clusters were identified, distinguished by gene content, organization and genomic location, but no correlation was observed between the presence of Tc genes and insect toxicity of the evaluated strains. Our results demonstrate that members of the P. fluorescens group have the capacity to kill insects by both FitD-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Lorena I. Rangel
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Marcella D. Henkels
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Agricultural Research Service, US Department of Agriculture, Horticultural Crops Research Laboratory, Corvallis, Oregon, United States of America
| | - Brenda T. Shaffer
- Agricultural Research Service, US Department of Agriculture, Horticultural Crops Research Laboratory, Corvallis, Oregon, United States of America
| | - Francesca L. Walker
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Edward W. Davis
- Agricultural Research Service, US Department of Agriculture, Horticultural Crops Research Laboratory, Corvallis, Oregon, United States of America
| | - Virginia O. Stockwell
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Denny Bruck
- Agricultural Research Service, US Department of Agriculture, Horticultural Crops Research Laboratory, Corvallis, Oregon, United States of America
| | - Barbara J. Taylor
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, United States of America
| | - Joyce E. Loper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Agricultural Research Service, US Department of Agriculture, Horticultural Crops Research Laboratory, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
29
|
Keel C. A look into the toolbox of multi-talents: insect pathogenicity determinants of plant-beneficial pseudomonads. Environ Microbiol 2016; 18:3207-3209. [DOI: 10.1111/1462-2920.13462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Christoph Keel
- Department of Fundamental Microbiology; University of Lausanne; Lausanne Switzerland
| |
Collapse
|
30
|
Loper JE, Henkels MD, Rangel LI, Olcott MH, Walker FL, Bond KL, Kidarsa TA, Hesse CN, Sneh B, Stockwell VO, Taylor BJ. Rhizoxin analogs, orfamide A and chitinase production contribute to the toxicity of Pseudomonas protegens strain Pf-5 to Drosophila melanogaster. Environ Microbiol 2016; 18:3509-3521. [PMID: 27130686 DOI: 10.1111/1462-2920.13369] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/13/2016] [Indexed: 11/28/2022]
Abstract
Pseudomonas protegens strain Pf-5 is a soil bacterium that was first described for its capacity to suppress plant diseases and has since been shown to be lethal to certain insects. Among these is the common fruit fly Drosophila melanogaster, a well-established model organism for studies evaluating the molecular and cellular basis of the immune response to bacterial challenge. Pf-5 produces the insect toxin FitD, but a ΔfitD mutant of Pf-5 retained full toxicity against D. melanogaster in a noninvasive feeding assay, indicating that FitD is not a major determinant of Pf-5's oral toxicity against this insect. Pf-5 also produces a broad spectrum of exoenzymes and natural products with antibiotic activity, whereas a mutant with a deletion in the global regulatory gene gacA produces none of these exoproducts and also lacks toxicity to D. melanogaster. In this study, we made use of a panel of Pf-5 mutants having single or multiple mutations in the biosynthetic gene clusters for seven natural products and two exoenzymes that are produced by the bacterium under the control of gacA. Our results demonstrate that the production of rhizoxin analogs, orfamide A, and chitinase are required for full oral toxicity of Pf-5 against D. melanogaster, with rhizoxins being the primary determinant.
Collapse
Affiliation(s)
- Joyce E Loper
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Ave., Corvallis, OR, 97330, USA. .,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.
| | - Marcella D Henkels
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Ave., Corvallis, OR, 97330, USA.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Lorena I Rangel
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Marika H Olcott
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Francesca L Walker
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Kise L Bond
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| | - Teresa A Kidarsa
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Ave., Corvallis, OR, 97330, USA.,Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Cedar N Hesse
- Agricultural Research Service, US Department of Agriculture, 3420 N.W. Orchard Ave., Corvallis, OR, 97330, USA
| | - Baruch Sneh
- Department of Molecular Biology and Ecology of Plants, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Virginia O Stockwell
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Barbara J Taylor
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|