1
|
Godbold GD, Hewitt FC, Kappell AD, Scholz MB, Agar SL, Treangen TJ, Ternus KL, Sandbrink JB, Koblentz GD. Improved understanding of biorisk for research involving microbial modification using annotated sequences of concern. Front Bioeng Biotechnol 2023; 11:1124100. [PMID: 37180048 PMCID: PMC10167326 DOI: 10.3389/fbioe.2023.1124100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Regulation of research on microbes that cause disease in humans has historically been focused on taxonomic lists of 'bad bugs'. However, given our increased knowledge of these pathogens through inexpensive genome sequencing, 5 decades of research in microbial pathogenesis, and the burgeoning capacity of synthetic biologists, the limitations of this approach are apparent. With heightened scientific and public attention focused on biosafety and biosecurity, and an ongoing review by US authorities of dual-use research oversight, this article proposes the incorporation of sequences of concern (SoCs) into the biorisk management regime governing genetic engineering of pathogens. SoCs enable pathogenesis in all microbes infecting hosts that are 'of concern' to human civilization. Here we review the functions of SoCs (FunSoCs) and discuss how they might bring clarity to potentially problematic research outcomes involving infectious agents. We believe that annotation of SoCs with FunSoCs has the potential to improve the likelihood that dual use research of concern is recognized by both scientists and regulators before it occurs.
Collapse
Affiliation(s)
| | | | | | | | - Stacy L. Agar
- Signature Science, LLC, Charlottesville, VA, United States
| | - Todd J. Treangen
- Department of Computer Science, Rice University, Houston, TX, United States
| | | | - Jonas B. Sandbrink
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gregory D. Koblentz
- Schar School of Policy and Government, George Mason University, Arlington, VA, United States
| |
Collapse
|
2
|
Nüssing S, Sutton VR, Trapani JA, Parish IA. Beyond target cell death - Granzyme serine proteases in health and disease. Mol Aspects Med 2022; 88:101152. [PMID: 36368281 DOI: 10.1016/j.mam.2022.101152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 10/06/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022]
Abstract
Granzymes are a family of small (∼32 kDa) serine proteases with a range of substrate specificities that are stored in, and released from, the cytoplasmic secretory vesicles ('granules') of cytotoxic T lymphocytes and natural killer cells. Granzymes are not digestive proteases but finely tuned processing enzymes that target their substrates in specific ways to activate various signalling pathways, or to inactivate viral proteins and other targets. Great emphasis has been placed on studying the pro-apoptotic functions of granzymes, which largely depend on their synergy with the pore-forming protein perforin, on which they rely for penetration into the target cell cytosol to access their substrates. While a critical role for granzyme B in target cell apoptosis is undisputed, both it and the remaining granzymes also influence a variety of other biological processes (including important immunoregulatory functions), which are discussed in this review. This includes the targeting of many extracellular as well as intracellular substrates, and can also lead to deleterious outcomes for the host if granzyme expression or function are dysregulated or abrogated. A final important consideration is that granzyme repertoire, biochemistry and function vary considerably across species, probably resulting from the pressures applied by viruses and other pathogens across evolutionary time. This has implications for the interpretation of granzyme function in preclinical models of disease.
Collapse
Affiliation(s)
- Simone Nüssing
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Vivien R Sutton
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia
| | - Joseph A Trapani
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia.
| | - Ian A Parish
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, 3052, Australia; John Curtin School of Medical Research, ANU, ACT, Australia.
| |
Collapse
|
3
|
Chen Y, Wang X, Hao X, Li B, Tao W, Zhu S, Qu K, Wei H, Sun R, Peng H, Tian Z. Ly49E separates liver ILC1s into embryo-derived and postnatal subsets with different functions. J Exp Med 2022; 219:213100. [PMID: 35348580 PMCID: PMC8992684 DOI: 10.1084/jem.20211805] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/23/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Type 1 innate lymphoid cells (ILC1s) represent the predominant population of liver ILCs and function as important effectors and regulators of immune responses, but the cellular heterogeneity of ILC1s is not fully understood. Here, single-cell RNA sequencing and flow cytometric analysis demonstrated that liver ILC1s could be dissected into Ly49E+ and Ly49E− populations with unique transcriptional and phenotypic features. Genetic fate-mapping analysis revealed that liver Ly49E+ ILC1s with strong cytotoxicity originated from embryonic non–bone marrow hematopoietic progenitor cells (HPCs), persisted locally during postnatal life, and mediated protective immunity against cytomegalovirus infection in newborn mice. However, Ly49E− ILC1s developed from BM and extramedullary HPCs after birth, gradually replaced Ly49E+ ILC1s in the livers with age, and contained the memory subset in recall response to hapten challenge. Thus, our study shows that Ly49E dissects liver ILC1s into two unique subpopulations, with distinct origins and a bias toward neonatal innate or adult immune memory responses.
Collapse
Affiliation(s)
- Yawen Chen
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xianwei Wang
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaolei Hao
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Bin Li
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wanyin Tao
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shu Zhu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Kun Qu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Haiming Wei
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Rui Sun
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui Peng
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Biomedical Sciences and Health Laboratory of Anhui Province, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Research Unit of NK Cell Study, Chinese Academy of Medical Sciences, Hefei, China
| |
Collapse
|
4
|
Categorizing sequences of concern by function to better assess mechanisms of microbial pathogenesis. Infect Immun 2021; 90:e0033421. [PMID: 34780277 PMCID: PMC9119117 DOI: 10.1128/iai.00334-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
To identify sequences with a role in microbial pathogenesis, we assessed the adequacy of their annotation by existing controlled vocabularies and sequence databases. Our goal was to regularize descriptions of microbial pathogenesis for improved integration with bioinformatic applications. Here, we review the challenges of annotating sequences for pathogenic activity. We relate the categorization of more than 2,750 sequences of pathogenic microbes through a controlled vocabulary called Functions of Sequences of Concern (FunSoCs). These allow for an ease of description by both humans and machines. We provide a subset of 220 fully annotated sequences in the supplemental material as examples. The use of this compact (∼30 terms), controlled vocabulary has potential benefits for research in microbial genomics, public health, biosecurity, biosurveillance, and the characterization of new and emerging pathogens.
Collapse
|
5
|
Hasankhani A, Bahrami A, Sheybani N, Fatehi F, Abadeh R, Ghaem Maghami Farahani H, Bahreini Behzadi MR, Javanmard G, Isapour S, Khadem H, Barkema HW. Integrated Network Analysis to Identify Key Modules and Potential Hub Genes Involved in Bovine Respiratory Disease: A Systems Biology Approach. Front Genet 2021; 12:753839. [PMID: 34733317 PMCID: PMC8559434 DOI: 10.3389/fgene.2021.753839] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Bovine respiratory disease (BRD) is the most common disease in the beef and dairy cattle industry. BRD is a multifactorial disease resulting from the interaction between environmental stressors and infectious agents. However, the molecular mechanisms underlying BRD are not fully understood yet. Therefore, this study aimed to use a systems biology approach to systematically evaluate this disorder to better understand the molecular mechanisms responsible for BRD. Methods: Previously published RNA-seq data from whole blood of 18 healthy and 25 BRD samples were downloaded from the Gene Expression Omnibus (GEO) and then analyzed. Next, two distinct methods of weighted gene coexpression network analysis (WGCNA), i.e., module-trait relationships (MTRs) and module preservation (MP) analysis were used to identify significant highly correlated modules with clinical traits of BRD and non-preserved modules between healthy and BRD samples, respectively. After identifying respective modules by the two mentioned methods of WGCNA, functional enrichment analysis was performed to extract the modules that are biologically related to BRD. Gene coexpression networks based on the hub genes from the candidate modules were then integrated with protein-protein interaction (PPI) networks to identify hub-hub genes and potential transcription factors (TFs). Results: Four significant highly correlated modules with clinical traits of BRD as well as 29 non-preserved modules were identified by MTRs and MP methods, respectively. Among them, two significant highly correlated modules (identified by MTRs) and six nonpreserved modules (identified by MP) were biologically associated with immune response, pulmonary inflammation, and pathogenesis of BRD. After aggregation of gene coexpression networks based on the hub genes with PPI networks, a total of 307 hub-hub genes were identified in the eight candidate modules. Interestingly, most of these hub-hub genes were reported to play an important role in the immune response and BRD pathogenesis. Among the eight candidate modules, the turquoise (identified by MTRs) and purple (identified by MP) modules were highly biologically enriched in BRD. Moreover, STAT1, STAT2, STAT3, IRF7, and IRF9 TFs were suggested to play an important role in the immune system during BRD by regulating the coexpressed genes of these modules. Additionally, a gene set containing several hub-hub genes was identified in the eight candidate modules, such as TLR2, TLR4, IL10, SOCS3, GZMB, ANXA1, ANXA5, PTEN, SGK1, IFI6, ISG15, MX1, MX2, OAS2, IFIH1, DDX58, DHX58, RSAD2, IFI44, IFI44L, EIF2AK2, ISG20, IFIT5, IFITM3, OAS1Y, HERC5, and PRF1, which are potentially critical during infection with agents of bovine respiratory disease complex (BRDC). Conclusion: This study not only helps us to better understand the molecular mechanisms responsible for BRD but also suggested eight candidate modules along with several promising hub-hub genes as diagnosis biomarkers and therapeutic targets for BRD.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Farhang Fatehi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Roxana Abadeh
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Sadegh Isapour
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hosein Khadem
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Sutton VR, Andoniou C, Leeming MG, House CM, Watt SV, Verschoor S, Ciccone A, Voskoboinik I, Degli-Esposti M, Trapani JA. Differential cleavage of viral polypeptides by allotypic variants of granzyme B skews immunity to mouse cytomegalovirus. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140457. [PMID: 32473350 DOI: 10.1016/j.bbapap.2020.140457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/11/2020] [Accepted: 05/21/2020] [Indexed: 10/24/2022]
Abstract
We investigated the molecular basis for the remarkably different survival outcomes of mice expressing different alloforms of the pro-apoptotic serine protease granzyme B to mouse cytomegalovirus infection. Whereas C57BL/6 mice homozygous for granzyme BP (GzmBP/P) raise cytotoxic T lymphocytes that efficiently kill infected cells, those of C57BL/6 mice congenic for the outbred allele (GzmBW/W) fail to kill MCMV-infected cells and died from uncontrolled hepatocyte infection and acute liver failure. We identified subtle differences in how GzmBP and GzmBW activate cell death signalling - both alloforms predominantly activated pro-caspases directly, and cleaved pro-apoptotic Bid poorly. Consequently, neither alloform initiated mitochondrial outer membrane permeabilization, or was blocked by Bcl-2, Bcl-XL or co-expression of MCMV proteins M38.5/M41.1, which together stabilize mitochondria by sequestering Bak/Bax. Remarkably, mass spectrometric analysis of proteins from MCMV-infected primary mouse embryonic fibroblasts identified 13 cleavage sites in nine viral proteins (M18, M25, M28, M45, M80, M98, M102, M155, M164) that were cleaved >20-fold more efficiently by either GzmBP or GzmBW. Notably, M18, M28, M45, M80, M98, M102 and M164 were cleaved 20- >100-fold more efficiently by GzmBW, and so, would persist in infected cells targeted by CTLs from GzmBP/P mice. Conversely, M155 was cleaved >100-fold more efficiently by GzmBP, and would persist in cells targeted by CTLs of GzmBW/W mice. M25 was cleaved efficiently by both proteases, but at different sites. We conclude that different susceptibility to MCMV does not result from skewed endogenous cell death pathways, but rather, to as yet uncharacterised MCMV-intrinsic pathways that ultimately inhibit granzyme B-induced cell death.
Collapse
Affiliation(s)
- Vivien R Sutton
- Rosie Lew Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne 3050, Australia
| | - Christopher Andoniou
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia 6009, Australia
| | - Michael G Leeming
- Melbourne Mass Spectrometry and Proteomics Facility, Bio21 Molecular Science & Biotechnology Institute, Australia; School of Chemistry, The University of Melbourne, Melbourne, Australia
| | - Colin M House
- Rosie Lew Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne 3050, Australia
| | - Sally V Watt
- Rosie Lew Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne 3050, Australia
| | - Sandra Verschoor
- Rosie Lew Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne 3050, Australia
| | - Annette Ciccone
- Rosie Lew Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne 3050, Australia
| | - Ilia Voskoboinik
- Rosie Lew Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne 3050, Australia
| | - Mariapia Degli-Esposti
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; Centre for Experimental Immunology, Lions Eye Institute, Perth, Western Australia 6009, Australia
| | - Joseph A Trapani
- Rosie Lew Cancer Immunology Program, Peter MacCallum Cancer Centre, 305 Grattan Street Melbourne 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne 3050, Australia.
| |
Collapse
|
7
|
Experimental challenge with bovine respiratory syncytial virus in dairy calves: bronchial lymph node transcriptome response. Sci Rep 2019; 9:14736. [PMID: 31611566 PMCID: PMC6791843 DOI: 10.1038/s41598-019-51094-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/19/2019] [Indexed: 12/11/2022] Open
Abstract
Bovine Respiratory Disease (BRD) is the leading cause of mortality in calves. The objective of this study was to examine the response of the host’s bronchial lymph node transcriptome to Bovine Respiratory Syncytial Virus (BRSV) in a controlled viral challenge. Holstein-Friesian calves were either inoculated with virus (103.5 TCID50/ml × 15 ml) (n = 12) or mock challenged with phosphate buffered saline (n = 6). Clinical signs were scored daily and blood was collected for haematology counts, until euthanasia at day 7 post-challenge. RNA was extracted and sequenced (75 bp paired-end) from bronchial lymph nodes. Sequence reads were aligned to the UMD3.1 bovine reference genome and differential gene expression analysis was performed using EdgeR. There was a clear separation between BRSV challenged and control calves based on gene expression changes, despite an observed mild clinical manifestation of the disease. Therefore, measuring host gene expression levels may be beneficial for the diagnosis of subclinical BRD. There were 934 differentially expressed genes (DEG) (p < 0.05, FDR <0.1, fold change >2) between the BRSV challenged and control calves. Over-represented gene ontology terms, pathways and molecular functions, among the DEG, were associated with immune responses. The top enriched pathways included interferon signaling, granzyme B signaling and pathogen pattern recognition receptors, which are responsible for the cytotoxic responses necessary to eliminate the virus.
Collapse
|
8
|
Cheng WY, Jia HJ, He XB, Chen GH, Feng Y, Wang CY, Wang XX, Jing ZZ. Comparison of Host Gene Expression Profiles in Spleen Tissues of Genetically Susceptible and Resistant Mice during ECTV Infection. BIOMED RESEARCH INTERNATIONAL 2017; 2017:6456180. [PMID: 29430463 PMCID: PMC5752998 DOI: 10.1155/2017/6456180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/19/2017] [Accepted: 11/22/2017] [Indexed: 12/31/2022]
Abstract
Ectromelia virus (ECTV), the causative agent of mousepox, has emerged as a valuable model for investigating the host-Orthopoxvirus relationship as it relates to pathogenesis and the immune response. ECTV is a mouse-specific virus and causes high mortality in susceptible mice strains, including BALB/c and C3H, whereas C57BL/6 and 129 strains are resistant to the disease. To understand the host genetic factors in different mouse strains during the ECTV infection, we carried out a microarray analysis of spleen tissues derived from BALB/c and C57BL/6 mice, respectively, at 3 and 10 days after ECTV infection. Differential Expression of Genes (DEGs) analyses revealed distinct differences in the gene profiles of susceptible and resistant mice. The susceptible BALB/c mice generated more DEGs than the resistant C57BL/6 mice. Additionally, gene ontology and KEGG pathway analysis showed the DEGs of susceptible mice were involved in innate immunity, apoptosis, metabolism, and cancer-related pathways, while the DEGs of resistant mice were largely involved in MAPK signaling and leukocyte transendothelial migration. Furthermore, the BALB/c mice showed a strong induction of interferon-induced genes, which, however, were weaker in the C57BL/6 mice. Collectively, the differential transcriptome profiles of susceptible and resistant mouse strains with ECTV infection will be crucial for further uncovering the molecular mechanisms of the host-Orthopoxvirus interaction.
Collapse
Affiliation(s)
- Wen-Yu Cheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Huai-Jie Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Xiao-Bing He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Guo-Hua Chen
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Yuan Feng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Chun-Yan Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| | - Xiao-Xia Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Zhong Jing
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Public Health of Agriculture Ministry, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046, China
| |
Collapse
|
9
|
Epigenetic control of mitochondrial cell death through PACS1-mediated regulation of BAX/BAK oligomerization. Cell Death Differ 2017; 24:961-970. [PMID: 28060382 DOI: 10.1038/cdd.2016.119] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023] Open
Abstract
PCAF and ADA3 associate within the same macromolecular complexes to control the transcription of many genes, including some that regulate apoptosis. Here we show that PCAF and ADA3 regulate the expression of PACS1, whose protein product is a key component of the machinery that sorts proteins among the trans-Golgi network and the endosomal compartment. We describe a novel role for PACS1 as a regulator of the intrinsic pathway of apoptosis and mitochondrial outer membrane permeabilization. Cells with decreased PACS1 expression were refractory to cell death mediated by a variety of stimuli that operate through the mitochondrial pathway, including human granzyme B, staurosporine, ultraviolet radiation and etoposide, but remained sensitive to TRAIL receptor ligation. The mitochondria of protected cells failed to release cytochrome c as a result of perturbed oligomerization of BAX and BAK. We conclude that PCAF and ADA3 transcriptionally regulate PACS1 and that PACS1 is a key regulator of BAX/BAK oligomerization and the intrinsic (mitochondrial) pathway to apoptosis.
Collapse
|
10
|
Salvesen GS, Hempel A, Coll NS. Protease signaling in animal and plant-regulated cell death. FEBS J 2016; 283:2577-98. [PMID: 26648190 PMCID: PMC5606204 DOI: 10.1111/febs.13616] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 12/26/2022]
Abstract
This review aims to highlight the proteases required for regulated cell death mechanisms in animals and plants. The aim is to be incisive, and not inclusive of all the animal proteases that have been implicated in various publications. The review also aims to focus on instances when several publications from disparate groups have demonstrated the involvement of an animal protease, and also when there is substantial biochemical, mechanistic and genetic evidence. In doing so, the literature can be culled to a handful of proteases, covering most of the known regulated cell death mechanisms: apoptosis, regulated necrosis, necroptosis, pyroptosis and NETosis in animals. In plants, the literature is younger and not as extensive as for mammals, although the molecular drivers of vacuolar death, necrosis and the hypersensitive response in plants are becoming clearer. Each of these death mechanisms has at least one proteolytic component that plays a major role in controlling the pathway, and sometimes they combine in networks to regulate cell death/survival decision nodes. Some similarities are found among animal and plant cell death proteases but, overall, the pathways that they govern are kingdom-specific with very little overlap.
Collapse
Affiliation(s)
- Guy S. Salvesen
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anne Hempel
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nuria Sanchez Coll
- Centre for Research in Agricultural Genomics, Campus UAB, Edifici CRAG, Bellaterra 08193, Barcelona, Spain
| |
Collapse
|
11
|
Gillespie AL, Teoh J, Lee H, Prince J, Stadnisky MD, Anderson M, Nash W, Rival C, Wei H, Gamache A, Farber CR, Tung K, Brown MG. Genomic Modifiers of Natural Killer Cells, Immune Responsiveness and Lymphoid Tissue Remodeling Together Increase Host Resistance to Viral Infection. PLoS Pathog 2016; 12:e1005419. [PMID: 26845690 PMCID: PMC4742223 DOI: 10.1371/journal.ppat.1005419] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/05/2016] [Indexed: 02/06/2023] Open
Abstract
The MHC class I Dk molecule supplies vital host resistance during murine cytomegalovirus (MCMV) infection. Natural killer (NK) cells expressing the Ly49G2 inhibitory receptor, which specifically binds Dk, are required to control viral spread. The extent of Dk-dependent host resistance, however, differs significantly amongst related strains of mice, C57L and MA/My. As a result, we predicted that relatively small-effect modifier genetic loci might together shape immune cell features, NK cell reactivity, and the host immune response to MCMV. A robust Dk-dependent genetic effect, however, has so far hindered attempts to identify additional host resistance factors. Thus, we applied genomic mapping strategies and multicolor flow cytometric analysis of immune cells in naive and virus-infected hosts to identify genetic modifiers of the host immune response to MCMV. We discovered and validated many quantitative trait loci (QTL); these were mapped to at least 19 positions on 16 chromosomes. Intriguingly, one newly discovered non-MHC locus (Cmv5) controlled splenic NK cell accrual, secondary lymphoid organ structure, and lymphoid follicle development during MCMV infection. We infer that Cmv5 aids host resistance to MCMV infection by expanding NK cells needed to preserve and protect essential tissue structural elements, to enhance lymphoid remodeling and to increase viral clearance in spleen. Uncovering the genetic basis of resistance to viral infection and disease is critical to learning about how immune defenses might be adjusted, how to design better vaccines, and how to elicit effectual immune protection in human populations. Prior studies have shown that both MHC and non-MHC genes support host defenses, or endow specialized immune cells with efficient sensing or responsiveness to infection. Many additional resistance genes remain to be identified, including difficult to detect smaller-effect alleles, which might add to or interact with other genetic factors. Our grasp of the complex interaction involving these genetic elements is thus inadequate. We combined genomic and multiparameter phenotypic analyses to map and identify host genes that control immune cells or sensitivity to viral infection. We reasoned that some might also affect viral clearance. Thus we enumerated a range of immune cell traits in mice before and after infection, which permitted genomic analysis of viral immunity, and mapping of genetic modifiers for each trait. Our study demonstrates that distinct loci collectively regulate both NK cells and host resistance, which provides a framework to understand the genetic interactions, and a variety of potential novel targets to adjust NK cell functionality and host resistance to infection.
Collapse
Affiliation(s)
- Alyssa Lundgren Gillespie
- Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, Virginia, United States of America
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jeffrey Teoh
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Heather Lee
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jessica Prince
- Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, Virginia, United States of America
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael D. Stadnisky
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Monique Anderson
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - William Nash
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Claudia Rival
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Hairong Wei
- Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, Virginia, United States of America
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
| | - Awndre Gamache
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Charles R. Farber
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Public Health Sciences, University of Virginia, Charlottesville, Virginia, United States of America
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kenneth Tung
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Pathology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael G. Brown
- Department of Medicine, Division of Nephrology, University of Virginia, Charlottesville, Virginia, United States of America
- Beirne Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
12
|
Acute GVHD results in a severe DC defect that prevents T-cell priming and leads to fulminant cytomegalovirus disease in mice. Blood 2015; 126:1503-14. [PMID: 26130706 DOI: 10.1182/blood-2015-01-622837] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 06/13/2015] [Indexed: 11/20/2022] Open
Abstract
Viral infection is a common, life-threatening complication after allogeneic bone marrow transplantation (BMT), particularly in the presence of graft-versus-host disease (GVHD). Using cytomegalovirus (CMV) as the prototypic pathogen, we have delineated the mechanisms responsible for the inability to mount protective antiviral responses in this setting. Although CMV infection was self-limiting after syngeneic BMT, in the presence of GVHD after allogeneic BMT, CMV induced a striking cytopathy resulting in universal mortality in conjunction with a fulminant necrotizing hepatitis. Critically, GVHD induced a profound dendritic cell (DC) defect that led to a failure in the generation of CMV-specific CD8(+) T-cell responses. This was accompanied by a defect in antiviral CD8(+) T cells. In combination, these defects dramatically limited antiviral T-cell responses. The transfer of virus-specific cells circumvented the DC defects and provided protective immunity, despite concurrent GVHD. These data demonstrate the importance of avoiding GVHD when reconstructing antiviral immunity after BMT, and highlight the mechanisms by which the adoptive transfer of virus-specific T cells overcome the endogenous defects in priming invoked by GVHD.
Collapse
|
13
|
|
14
|
Trapani JA, Voskoboinik I, Jenkins MR. Perforin-dependent cytotoxicity: 'Kiss of death' or prolonged embrace with darker elocation-idnseque11es? Oncoimmunology 2015; 4:e1036215. [PMID: 26405605 DOI: 10.1080/2162402x.2015.1036215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 03/26/2015] [Indexed: 10/23/2022] Open
Abstract
Failure of natural killer (NK) cells or cytotoxic T-lymphocytes (CTL) to kill cognate target cells results in cytokine/chemokine hypersecretion and markedly delayed killer/target cell detachment. With congenital perforin deficiency, fatal cytokine storm results. In cancer cells, where corrupted apoptotic signaling frequently delays apoptosis, we propose that failed death may alter the tumor microenvironment and skew immune infiltrates, even when perforin is delivered normally.
Collapse
Affiliation(s)
- Joseph A Trapani
- Cancer immunology Program; Peter MacCallum Cancer Centre ; East Melbourne, VIC, Australia
| | - Ilia Voskoboinik
- Cancer immunology Program; Peter MacCallum Cancer Centre ; East Melbourne, VIC, Australia
| | - Misty R Jenkins
- Cancer immunology Program; Peter MacCallum Cancer Centre ; East Melbourne, VIC, Australia
| |
Collapse
|