1
|
Lin Q, Guo H, Zhu Y, Gao W, Zhu X, Lai D, Qi L, Li Z, Chen D, Lu X, Zhao W, Peng YL, Zhang Z, Yang J. Isoflavones extracted from Millettia pachyloba prevent the infection of the rice blast fungus by inhibiting its conidial germination and appressorium formation. PEST MANAGEMENT SCIENCE 2025; 81:3284-3292. [PMID: 39906930 DOI: 10.1002/ps.8701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/06/2025]
Abstract
BACKGROUND The ascomycete Magnaporthe oryzae is a destructive phytopathogenic fungus that causes rice blast disease and can greatly reduce rice yields. Due to the widespread use of synthesized chemical fungicides and the frequent occurrence of fungicide resistance and environmental pollution as a result, it has become increasingly urgent to develop environmentally friendly biocontrol alternatives, including plant crude extracts. RESULTS In this study, the crude extracts of the tropical plant Millettia pachyloba were screened out and exhibited excellent preventive effects against M. oryzae at 200 μg mL-1. Bio-guided isolation of M. pachyloba was conducted and three isoflavonoids, rotenolone, durmillone, and durallone, whose chemical structures were determined using spectroscopic and spectrometric analyses, were obtained. The three isoflavonoids exhibited antifungal activities on conidial germination and appressorium formation in M. oryzae. Rotenolone had the strongest effect, with EC50 values of 57.81 μg mL-1 on conidial germination and 19.14 μg mL-1 on appressorium formation. Comparative metabolomics showed that differential metabolites were enriched in ABC transporter pathways and amino acid metabolic pathways when M. oryzae conidia were treated with rotenolone, suggesting that rotenolone interferes with amino acid transportation. Moreover, the M. pachyloba crude extract also effectively inhibited the infection of other fungal pathogens on tomato, apple, wheat, and maize. CONCLUSION The results suggest that isoflavones extracted from M. pachyloba prevent rice blast by inhibiting the infection-related morphogenesis of M. oryzae and may interfere with amino acid transport, demonstrating that M. pachyloba crude extract exhibits potential as a bio-fungicide for controlling fungal diseases in plants. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qitong Lin
- Sanya Institute of China Agricultural University, Sanya, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hong Guo
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Yanqiu Zhu
- Sanya Institute of China Agricultural University, Sanya, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wenqiang Gao
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoying Zhu
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Daowan Lai
- Sanya Institute of China Agricultural University, Sanya, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Linlu Qi
- Sanya Institute of China Agricultural University, Sanya, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhigang Li
- Sanya Institute of Breeding and Multiplication/School of Tropical Agriculture and Forestry, Hainan University, Haikou, China
| | - Deng Chen
- National Key Laboratory for Tropical Crop Breeding, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya/Haikou, China
| | - Xunli Lu
- Sanya Institute of China Agricultural University, Sanya, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wensheng Zhao
- Sanya Institute of China Agricultural University, Sanya, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - You-Liang Peng
- Sanya Institute of China Agricultural University, Sanya, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhenhua Zhang
- Sanya Institute of China Agricultural University, Sanya, China
- Department of Applied Chemistry, China Agricultural University, Beijing, China
| | - Jun Yang
- Sanya Institute of China Agricultural University, Sanya, China
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Wengler MR, Talbot NJ. Mechanisms of regulated cell death during plant infection by the rice blast fungus Magnaporthe oryzae. Cell Death Differ 2025; 32:793-801. [PMID: 39794451 PMCID: PMC12089313 DOI: 10.1038/s41418-024-01442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 12/10/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
Fungi are the most important group of plant pathogens, responsible for many of the world's most devastating crop diseases. One of the reasons they are such successful pathogens is because several fungi have evolved the capacity to breach the tough outer cuticle of plants using specialized infection structures called appressoria. This is exemplified by the filamentous ascomycete fungus Magnaporthe oryzae, causal agent of rice blast, one of the most serious diseases affecting rice cultivation globally. M. oryzae develops a pressurized dome-shaped appressorium that uses mechanical force to rupture the rice leaf cuticle. Appressoria form in response to the hydrophobic leaf surface, which requires the Pmk1 MAP kinase signalling pathway, coupled to a series of cell-cycle checkpoints that are necessary for regulated cell death of the fungal conidium and development of a functionally competent appressorium. Conidial cell death requires autophagy, which occurs within each cell of the spore, and is regulated by components of the cargo-independent autophagy pathway. This results in trafficking of the contents of all three cells to the incipient appressorium, which develops enormous turgor of up to 8.0 MPa, due to glycerol accumulation, and differentiates a thickened, melanin-lined cell wall. The appressorium then re-polarizes, re-orienting the actin and microtubule cytoskeleton to enable development of a penetration peg in a perpendicular orientation, that ruptures the leaf surface using mechanical force. Re-polarization requires septin GTPases which form a ring structure at the base of the appressorium, which delineates the point of plant infection, and acts as a scaffold for actin re-localization, enhances cortical rigidity, and forms a lateral diffusion barrier to focus polarity determinants that regulate penetration peg formation. Here we review the mechanism of regulated cell death in M. oryzae, which requires autophagy but may also involve ferroptosis. We critically evaluate the role of regulated cell death in appressorium morphogenesis and examine how it is initiated and regulated, both temporally and spatially, during plant infection. We then use this synopsis to present a testable model for control of regulated cell death during appressorium-dependent plant infection by the blast fungus.
Collapse
|
3
|
Xiao J, Kang X, Li N, Hu J, Wang Y, Si J, Pan Y, Zhang S. The role of the poly(A) binding protein-binding protein MoPbp1 as a regulator of the TOR signaling pathway in growth, autophagy, and pathogenicity of the rice blast fungus. Int J Biol Macromol 2025; 306:141730. [PMID: 40043978 DOI: 10.1016/j.ijbiomac.2025.141730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/01/2025] [Accepted: 03/02/2025] [Indexed: 05/11/2025]
Abstract
The target of the rapamycin (TOR) signaling pathway is crucial for biological function in plant pathogenic fungi, yet its regulatory mechanisms remain limited. In this study, the biological functions of MoPbp1 were identified and characterized, and the findings indicate that MoPbp1 contributes to hyphal growth, conidiation, appressoria formation, metabolism of glycogen and lipid droplets, responses to stress, and pathogenicity in Magnaporthe oryzae. Further investigation revealed that MoPBP1 acts as a negative regulator of TOR activity and influences autophagy. In addition, transcriptome data revealed that MoPBP1 mainly regulates amino acid metabolism pathways, components of membrane, and oxidation-reduction process. Our results suggest that MoPbp1 is required for autophagy and pathogenicity in M. oryzae. Overall, we first revealed the relationship between Pbp1 and TOR activity in plant pathogenic fungi.
Collapse
Affiliation(s)
- Junlian Xiao
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoru Kang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Na Li
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Jinmei Hu
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Yu Wang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Jianyu Si
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China
| | - Yuemin Pan
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| | - Shulin Zhang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Quime BG, Ryder LS, Talbot NJ. Live cell imaging of plant infection provides new insight into the biology of pathogenesis by the rice blast fungus Magnaporthe oryzae. J Microsc 2025; 297:274-288. [PMID: 39797625 PMCID: PMC11808454 DOI: 10.1111/jmi.13382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025]
Abstract
Magnaporthe oryzae is the causal agent of rice blast, one of the most serious diseases affecting rice cultivation around the world. During plant infection, M. oryzae forms a specialised infection structure called an appressorium. The appressorium forms in response to the hydrophobic leaf surface and relies on multiple signalling pathways, including a MAP kinase phosphorelay and cAMP-dependent signalling, integrated with cell cycle control and autophagic cell death of the conidium. Together, these pathways regulate appressorium morphogenesis.The appressorium generates enormous turgor, applied as mechanical force to breach the rice cuticle. Re-polarisation of the appressorium requires a turgor-dependent sensor kinase which senses when a critical threshold of turgor has been reached to initiate septin-dependent re-polarisation of the appressorium and plant infection. Invasive growth then requires differential expression and secretion of a large repertoire of effector proteins secreted by distinct secretory pathways depending on their destination, which is also governed by codon usage and tRNA thiolation. Cytoplasmic effectors require an unconventional Golgi-independent secretory pathway and evidence suggests that clathrin-mediated endocytosis is necessary for their delivery into plant cells. The blast fungus then develops a transpressorium, a specific invasion structure used to move from cell-to-cell using pit field sites containing plasmodesmata, to facilitate its spread in plant tissue. This is controlled by the same MAP kinase signalling pathway as appressorium development and requires septin-dependent hyphal constriction. Recent progress in understanding the mechanisms of rice infection by this devastating pathogen using live cell imaging procedures are presented.
Collapse
|
5
|
Wang J, Zou Y, Xia Y, Jin K. MaNrtB, a Putative Nitrate Transporter, Contributes to Stress Tolerance and Virulence in the Entomopathogenic Fungus Metarhizium acridum. J Fungi (Basel) 2025; 11:111. [PMID: 39997405 PMCID: PMC11855974 DOI: 10.3390/jof11020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/28/2025] [Accepted: 01/30/2025] [Indexed: 02/26/2025] Open
Abstract
Nitrogen is an essential nutrient that frequently determines the growth rate of fungi. Nitrate transporter proteins (Nrts) play a crucial role in the cellular absorption of nitrate from the environment. Entomopathogenic fungi (EPF) have shown their potential in the biological control of pests. Thus, comprehending the mechanisms that govern the pathogenicity and stress tolerance of EPF is helpful in improving the effectiveness and practical application of these fungal biocontrol agents. In this study, we utilized homologous recombination to create MaNrtB deletion mutants and complementation strains. We systematically investigated the biological functions of the nitrate transporter protein gene MaNrtB in M. acridum. Our findings revealed that the disruption of MaNrtB resulted in delayed conidial germination without affecting conidial production. Stress tolerance assays demonstrated that the MaNrtB disruption strain was more vulnerable to UV-B irradiation, hyperosmotic stress, and cell wall disturbing agents, yet it exhibited increased heat resistance compared to the wild-type strain. Bioassays on the locust Locusta migratoria manilensis showed that the disruption of MaNrtB impaired the fungal virulence owing to the reduced appressorium formation on the insect cuticle and the attenuated growth in the locust hemolymph. These findings provide new perspectives for understanding the pathogenesis of EPF.
Collapse
Affiliation(s)
- Jia Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (J.W.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Yuneng Zou
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (J.W.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (J.W.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (J.W.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- National Engineering Research Center of Microbial Pesticides, Chongqing 401331, China
| |
Collapse
|
6
|
Zhi QQ, Wang ZL, Yuan PB, He L, He ZM. The GATA factor AreB regulates nitrogen metabolism, fungal development, and aflatoxin production in Aspergillus flavus. FEMS Microbiol Lett 2025; 372:fnae110. [PMID: 39701830 DOI: 10.1093/femsle/fnae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 12/21/2024] Open
Abstract
Nitrogen is important for fungal growth and development, and the GATA transcription factor AreA has been widely studied as a key regulator of nitrogen catabolite repression (NCR) in many fungi. However, AreB, another GATA transcription factor in the NCR pathway, remains less studied, and its role in Aspergillus flavus is still unclear. In this study, we characterized areB in A. flavus and investigated its role in regulating nitrogen utilization, fungal growth, and aflatoxin production. The areB gene produces three transcripts, with areB-α being the most abundantly expressed, particularly under nitrogen-limited conditions. Gene expression analysis via qPCR confirmed that areB acts as a negative regulator of NCR, as its deletion led to the upregulation of NCR-related genes under nitrogen-limiting conditions. Gene function analysis of areB revealed that its deletion impaired hyphal growth, reduced conidia production, and delayed conidial germination. Additionally, deletion of areB led to increased aflatoxin production, particularly under less favorable nitrogen sources, while overexpression of areB reduced aflatoxin levels. Furthermore, areB influenced sclerotia formation in a nitrogen-source-dependent manner. These findings reveal the multifaceted role of areB in nitrogen regulation, fungal development, and secondary metabolism, offering insights for controlling aflatoxin contamination and fungal growth.
Collapse
Affiliation(s)
- Qing-Qing Zhi
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhen-Long Wang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Pei-Bo Yuan
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Lei He
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510182, China
| | - Zhu-Mei He
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
- School of Medicine, Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
7
|
Deng J, Zhang Z, Wang X, Cao Y, Huang H, Wang M, Luo Q. Molecular basis for loss of virulence in Magnaporthe oryzae strain AM16. FRONTIERS IN PLANT SCIENCE 2024; 15:1484214. [PMID: 39711596 PMCID: PMC11659016 DOI: 10.3389/fpls.2024.1484214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/21/2024] [Indexed: 12/24/2024]
Abstract
The rapid virulence variation of Magnaporthe oryzae (M. oryzae) to rice is a big challenge for rice blast control. Even though many studies have been done by scientists all over the world, the mechanism of virulence variation in M. oryzae remains elusive. AM16, an avirulent M. oryzae strain reported in our previous study, provides an excellent entry point to explore the mechanism of virulence variation in M. oryzae. In this study, we found that the Pmk1 and Mac1 had specific mutations in strain AM16. The AM16 strains overexpressing Pmk1 Guy11 or (and) Mac1 Guy11 allele from strain Guy11 displayed significantly increasing conidiation, functional appressorium formation, and restoring pathogenicity to rice. Moreover, we observed that the strains overexpressing Mac1 Guy11 had stronger conidia forming capacity than that of the strains overexpressing Pmk1 Guy11, while the appressorium formation rate of strains overexpressing Pmk1 Guy11 was similar to that of strains overexpressing Pmk1 Guy11-Mac1 Guy11, much higher than that of the strains overexpressing Mac1 Guy11. Taken together, our results reveal that the natural mutation of Pmk1 and Mac1 genes are important, but not the sole cause, for the loss of virulence in strain AM16. The functional difference between Pmk1 and Mac1 in the growth and development of M. oryzae was first discovered, providing new insight into the pathogenic mechanism of M. oryzae.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qiong Luo
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
8
|
Müller T, Scheuring D. At knifepoint: Appressoria-dependent turgor pressure of filamentous plant pathogens. CURRENT OPINION IN PLANT BIOLOGY 2024; 82:102628. [PMID: 39265521 DOI: 10.1016/j.pbi.2024.102628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024]
Abstract
Filamentous pathogens need to overcome plant barriers for successful infection. To this end, special structures, most commonly appressoria, are used for penetration. In differentiated appressoria, the generation of high turgor pressure is mandatory to breach plant cell wall and cuticle. However, quantitative description of turgor pressure and resulting invasive forces are only described for a handful of plant pathogens. Recent advances in methodology allowed determination of surprisingly high pressures and corresponding forces in oomycetes and a necrotrophic fungus. Here, we describe turgor generation in appressoria as essential function for host penetration. We summarize the known experimentally determined turgor pressure as well as invasive forces and discuss their universal role in plant pathogen infection.
Collapse
Affiliation(s)
- Tobias Müller
- Plant Pathology, Department of Biology, University of Kaiserslautern-Landau, Germany
| | - David Scheuring
- Plant Pathology, Department of Biology, University of Kaiserslautern-Landau, Germany.
| |
Collapse
|
9
|
Song Y, Wang Y, Zhang H, Saddique MAB, Luo X, Ren M. The TOR signalling pathway in fungal phytopathogens: A target for plant disease control. MOLECULAR PLANT PATHOLOGY 2024; 25:e70024. [PMID: 39508186 PMCID: PMC11541241 DOI: 10.1111/mpp.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024]
Abstract
Plant diseases caused by fungal phytopathogens have led to significant economic losses in agriculture worldwide. The management of fungal diseases is mainly dependent on the application of fungicides, which are not suitable for sustainable agriculture, human health, and environmental safety. Thus, it is necessary to develop novel targets and green strategies to mitigate the losses caused by these pathogens. The target of rapamycin (TOR) complexes and key components of the TOR signalling pathway are evolutionally conserved in pathogens and closely related to the vegetative growth and pathogenicity. As indicated in recent systems, chemical, genetic, and genomic studies on the TOR signalling pathway, phytopathogens with TOR dysfunctions show severe growth defects and nonpathogenicity, which makes the TOR signalling pathway to be developed into an ideal candidate target for controlling plant disease. In this review, we comprehensively discuss the current knowledge on components of the TOR signalling pathway in microorganisms and the diverse roles of various plant TOR in response to plant pathogens. Furthermore, we analyse a range of disease management strategies that rely on the TOR signalling pathway, including genetic modification technologies and chemical controls. In the future, disease control strategies based on the TOR signalling network are expected to become a highly effective weapon for crop protection.
Collapse
Affiliation(s)
- Yun Song
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Yaru Wang
- College of Agriculture and BiologyLiaocheng UniversityLiaochengChina
| | - Huafang Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| | - Muhammad Abu Bakar Saddique
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| | - Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences; Chengdu Agricultural Science and Technology CenterChengduChina
| |
Collapse
|
10
|
Huang Q, Li F, Meng F. Functional Characterization of the Transcription Factor Gene CgHox7 in Colletotrichum gloeosporioides, Which Is Responsible for Poplar Anthracnose. J Fungi (Basel) 2024; 10:505. [PMID: 39057390 PMCID: PMC11278219 DOI: 10.3390/jof10070505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Colletotrichum gloeosporioides is the main pathogen that causes poplar anthracnose. This hemibiotrophic fungus, which can severely decrease the economic benefits and ecological functions of poplar trees, infects the host by forming an appressorium. Hox7 is an important regulatory factor that functions downstream of the Pmk1 MAPK signaling pathway. In this study, we investigated the effect of deleting CgHox7 on C. gloeosporioides. The conidia of the ΔCgHox7 deletion mutant germinated on a GelBond membrane to form non-melanized hyphal structures, but were unable to form appressoria. The deletion of CgHox7 weakened the ability of hyphae to penetrate a cellophane membrane and resulted in decreased virulence on poplar leaves. Furthermore, deleting CgHox7 affected the oxidative stress response. In the initial stage of appressorium formation, the accumulation of reactive oxygen species differed between the ΔCgHox7 deletion mutant and the wild-type control. Moreover, CgHox7 expression was necessary for maintaining cell wall integrity. Considered together, these results indicate that CgHox7 is a transcription factor with crucial regulatory effects on appressorium formation and the pathogenicity of C. gloeosporioides.
Collapse
Affiliation(s)
- Qiuyi Huang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing 100083, China; (Q.H.); (F.L.)
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Fuhan Li
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing 100083, China; (Q.H.); (F.L.)
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Fanli Meng
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing 100083, China; (Q.H.); (F.L.)
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
11
|
Baudin M, Le Naour‐Vernet M, Gladieux P, Tharreau D, Lebrun M, Lambou K, Leys M, Fournier E, Césari S, Kroj T. Pyricularia oryzae: Lab star and field scourge. MOLECULAR PLANT PATHOLOGY 2024; 25:e13449. [PMID: 38619508 PMCID: PMC11018116 DOI: 10.1111/mpp.13449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/08/2024] [Accepted: 03/09/2024] [Indexed: 04/16/2024]
Abstract
Pyricularia oryzae (syn. Magnaporthe oryzae), is a filamentous ascomycete that causes a major disease called blast on cereal crops, as well as on a wide variety of wild and cultivated grasses. Blast diseases have a tremendous impact worldwide particularly on rice and on wheat, where the disease emerged in South America in the 1980s, before spreading to Asia and Africa. Its economic importance, coupled with its amenability to molecular and genetic manipulation, have inspired extensive research efforts aiming at understanding its biology and evolution. In the past 40 years, this plant-pathogenic fungus has emerged as a major model in molecular plant-microbe interactions. In this review, we focus on the clarification of the taxonomy and genetic structure of the species and its host range determinants. We also discuss recent molecular studies deciphering its lifecycle. TAXONOMY Kingdom: Fungi, phylum: Ascomycota, sub-phylum: Pezizomycotina, class: Sordariomycetes, order: Magnaporthales, family: Pyriculariaceae, genus: Pyricularia. HOST RANGE P. oryzae has the ability to infect a wide range of Poaceae. It is structured into different host-specialized lineages that are each associated with a few host plant genera. The fungus is best known to cause tremendous damage to rice crops, but it can also attack other economically important crops such as wheat, maize, barley, and finger millet. DISEASE SYMPTOMS P. oryzae can cause necrotic lesions or bleaching on all aerial parts of its host plants, including leaf blades, sheaths, and inflorescences (panicles, spikes, and seeds). Characteristic symptoms on leaves are diamond-shaped silver lesions that often have a brown margin and whose appearance is influenced by numerous factors such as the plant genotype and environmental conditions. USEFUL WEBSITES Resources URL Genomic data repositories http://genome.jouy.inra.fr/gemo/ Genomic data repositories http://openriceblast.org/ Genomic data repositories http://openwheatblast.net/ Genome browser for fungi (including P. oryzae) http://fungi.ensembl.org/index.html Comparative genomics database https://mycocosm.jgi.doe.gov/mycocosm/home T-DNA mutant database http://atmt.snu.kr/ T-DNA mutant database http://www.phi-base.org/ SNP and expression data https://fungidb.org/fungidb/app/.
Collapse
Affiliation(s)
- Maël Baudin
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- Present address:
Université Angers, Institut Agro, INRAE, IRHS, SFR QUASAVAngersFrance
| | - Marie Le Naour‐Vernet
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Didier Tharreau
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
- CIRAD, UMR PHIMMontpellierFrance
| | - Marc‐Henri Lebrun
- UMR 1290 BIOGER – Campus Agro Paris‐Saclay – INRAE‐AgroParisTechPalaiseauFrance
| | - Karine Lambou
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Marie Leys
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Elisabeth Fournier
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Stella Césari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRDMontpellierFrance
| |
Collapse
|
12
|
Kerkaert JD, Huberman LB. Regulation of nutrient utilization in filamentous fungi. Appl Microbiol Biotechnol 2023; 107:5873-5898. [PMID: 37540250 PMCID: PMC10983054 DOI: 10.1007/s00253-023-12680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
Organisms must accurately sense and respond to nutrients to survive. In filamentous fungi, accurate nutrient sensing is important in the establishment of fungal colonies and in continued, rapid growth for the exploitation of environmental resources. To ensure efficient nutrient utilization, fungi have evolved a combination of activating and repressing genetic networks to tightly regulate metabolic pathways and distinguish between preferred nutrients, which require minimal energy and resources to utilize, and nonpreferred nutrients, which have more energy-intensive catabolic requirements. Genes necessary for the utilization of nonpreferred carbon sources are activated by transcription factors that respond to the presence of the specific nutrient and repressed by transcription factors that respond to the presence of preferred carbohydrates. Utilization of nonpreferred nitrogen sources generally requires two transcription factors. Pathway-specific transcription factors respond to the presence of a specific nonpreferred nitrogen source, while another transcription factor activates genes in the absence of preferred nitrogen sources. In this review, we discuss the roles of transcription factors and upstream regulatory genes that respond to preferred and nonpreferred carbon and nitrogen sources and their roles in regulating carbon and nitrogen catabolism. KEY POINTS: • Interplay of activating and repressing transcriptional networks regulates catabolism. • Nutrient-specific activating transcriptional pathways provide metabolic specificity. • Repressing regulatory systems differentiate nutrients in mixed nutrient environments.
Collapse
Affiliation(s)
- Joshua D Kerkaert
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Lori B Huberman
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
13
|
Wu Y, Li X, Dong L, Liu T, Tang Z, Lin R, Norvienyeku J, Xing M. A New Insight into 6-Pentyl-2H-pyran-2-one against Peronophythora litchii via TOR Pathway. J Fungi (Basel) 2023; 9:863. [PMID: 37623635 PMCID: PMC10515317 DOI: 10.3390/jof9080863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/13/2023] [Accepted: 08/18/2023] [Indexed: 08/26/2023] Open
Abstract
The litchi downy blight disease of litchi caused by Peronophythora litchii accounts for severe losses in the field and during storage. While ample quantitative studies have shown that 6-pentyl-2H-pyran-2-one (6PP) possesses antifungal activities against multiple plant pathogenic fungi, the regulatory mechanisms of 6PP-mediated inhibition of fungal pathogenesis and growth are still unknown. Here, we investigated the potential molecular targets of 6PP in the phytopathogenic oomycetes P. litchii through integrated deployment of RNA-sequencing, functional genetics, and biochemical techniques to investigate the regulatory effects of 6PP against P. litchii. Previously we demonstrated that 6PP exerted significant oomyticidal activities. Also, comparative transcriptomic evaluation of P. litchii strains treated with 6PP Revealed significant up-regulations in the expression profile of TOR pathway-related genes, including PlCytochrome C and the transcription factors PlYY1. We also noticed that 6PP treatment down-regulated putative negative regulatory genes of the TOR pathway, including PlSpm1 and PlrhoH12 in P. litchii. Protein-ligand binding analyses revealed stable affinities between PlYY1, PlCytochrome C, PlSpm1, PlrhoH12 proteins, and the 6PP ligand. Phenotypic characterization of PlYY1 targeted gene deletion strains generated in this study using CRISPR/Cas9 and homologous recombination strategies significantly reduced the vegetative growth, sporangium, encystment, zoospore release, and pathogenicity of P. litchii. These findings suggest that 6PP-mediated activation of PlYY1 expression positively regulates TOR-related responses and significantly influences vegetative growth and the virulence of P. litchii. The current investigations revealed novel targets for 6PP and underscored the potential of deploying 6PP in developing management strategies for controlling the litchi downy blight pathogen.
Collapse
Affiliation(s)
- Yinggu Wu
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Xinyu Li
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Li Dong
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Tong Liu
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Zhengbin Tang
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Runmao Lin
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Justice Norvienyeku
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| | - Mengyu Xing
- Key Laboratory of Green Prevention and Control of Tropical Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Y.W.); (X.L.); (L.D.); (T.L.); (Z.T.); (R.L.)
- Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China
| |
Collapse
|
14
|
Zhu XM, Li L, Bao JD, Wang JY, Liang S, Zhao LL, Huang CL, Yan JY, Cai YY, Wu XY, Dong B, Liu XH, Klionsky DJ, Lin FC. MoVast2 combined with MoVast1 regulates lipid homeostasis and autophagy in Magnaporthe oryzae. Autophagy 2023; 19:2353-2371. [PMID: 36803211 PMCID: PMC10351449 DOI: 10.1080/15548627.2023.2181739] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Macroautophagy/autophagy is an evolutionarily conserved biological process among eukaryotes that degrades unwanted materials such as protein aggregates, damaged mitochondria and even viruses to maintain cell survival. Our previous studies have demonstrated that MoVast1 acts as an autophagy regulator regulating autophagy, membrane tension, and sterol homeostasis in rice blast fungus. However, the detailed regulatory relationships between autophagy and VASt domain proteins remain unsolved. Here, we identified another VASt domain-containing protein, MoVast2, and further uncovered the regulatory mechanism of MoVast2 in M. oryzae. MoVast2 interacted with MoVast1 and MoAtg8, and colocalized at the PAS and deletion of MoVAST2 results in inappropriate autophagy progress. Through TOR activity analysis, sterols and sphingolipid content detection, we found high sterol accumulation in the ΔMovast2 mutant, whereas this mutant showed low sphingolipids and low activity of both TORC1 and TORC2. In addition, MoVast2 colocalized with MoVast1. The localization of MoVast2 in the MoVAST1 deletion mutant was normal; however, deletion of MoVAST2 leads to mislocalization of MoVast1. Notably, the wide-target lipidomic analyses revealed significant changes in sterols and sphingolipids, the major PM components, in the ΔMovast2 mutant, which was involved in lipid metabolism and autophagic pathways. These findings confirmed that the functions of MoVast1 were regulated by MoVast2, revealing that MoVast2 combined with MoVast1 maintained lipid homeostasis and autophagy balance by regulating TOR activity in M. oryzae.
Collapse
Affiliation(s)
- Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jian-Dong Bao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jiao-Yu Wang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Shuang Liang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Li-Li Zhao
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Chang-Li Huang
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jiong-Yi Yan
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying-Ying Cai
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xi-Yu Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Dong
- Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Xiao-Hong Liu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| | - Daniel J. Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
15
|
Navarro‐Velasco GY, Di Pietro A, López‐Berges MS. Constitutive activation of TORC1 signalling attenuates virulence in the cross-kingdom fungal pathogen Fusarium oxysporum. MOLECULAR PLANT PATHOLOGY 2023; 24:289-301. [PMID: 36840362 PMCID: PMC10013769 DOI: 10.1111/mpp.13292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
The filamentous fungus Fusarium oxysporum causes vascular wilt disease in a wide range of plant species and opportunistic infections in humans. Previous work suggested that invasive growth in this pathogen is controlled by environmental cues such as pH and nutrient status. Here we investigated the role of Target Of Rapamycin Complex 1 (TORC1), a global regulator of eukaryotic cell growth and development. Inactivation of the negative regulator Tuberous Sclerosis Complex 2 (Tsc2), but not constitutive activation of the positive regulator Gtr1, in F. oxysporum resulted in inappropriate activation of TORC1 signalling under nutrient-limiting conditions. The tsc2Δ mutants showed reduced colony growth on minimal medium with different nitrogen sources and increased sensitivity to cell wall or high temperature stress. Furthermore, these mutants were impaired in invasive hyphal growth across cellophane membranes and exhibited a marked decrease in virulence, both on tomato plants and on the invertebrate animal host Galleria mellonella. Importantly, invasive hyphal growth in tsc2Δ strains was rescued by rapamycin-mediated inhibition of TORC1. Collectively, these results reveal a key role of TORC1 signalling in the development and pathogenicity of F. oxysporum and suggest new potential targets for controlling fungal infections.
Collapse
Affiliation(s)
- Gesabel Yaneth Navarro‐Velasco
- Departamento de GenéticaUniversidad de CórdobaCórdobaSpain
- Present address:
Centro de Investigación e Información de Medicamentos y Tóxicos, Facultad de MedicinaUniversidad de PanamáPanama CityPanama
| | | | | |
Collapse
|
16
|
Comparative Transcriptomics of Fusarium graminearum and Magnaporthe oryzae Spore Germination Leading up To Infection. mBio 2023; 14:e0244222. [PMID: 36598191 PMCID: PMC9973345 DOI: 10.1128/mbio.02442-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
For fungal plant pathogens, the germinating spore provides the first interaction with the host. Spore germlings move across the plant surface and use diverse penetration strategies for ingress into plant surfaces. Penetration strategies include pressurized melanized appressoria, which facilitate physically punching through the plant cuticle, and nonmelanized appressoria, which penetrate with the help of enzymes or cuticular damage to breach the plant surface. Two well-studied plant pathogens, Fusarium graminearum and Magnaporthe oryzae, are typical of these two modes of penetration. We applied comparative transcriptomics to Fusarium graminearum and Magnaporthe oryzae to characterize the genetic programming of the early host-pathogen interface. Four sequential stages of development following spore localization on the plant surface, from spore swelling to appressorium formation, were sampled for each species on culture medium and on barley sheaths, and transcriptomic analyses were performed. Gene expression in the prepenetration stages in both species and under both conditions was similar. In contrast, gene expression in the final stage was strongly influenced by the environment. Appressorium formation involved the greatest number of differentially expressed genes. Laser-dissection microscopy was used to perform detailed transcriptomics of initial infection points by F. graminearum. These analyses revealed new and important aspects of early fungal ingress in this species. Expression of the trichothecene genes involved in biosynthesis of deoxynivalenol by F. graminearum implies that toxisomes are not fully functional until after penetration and indicates that deoxynivalenol is not essential for penetration under our conditions. The use of comparative gene expression of divergent fungi promises to advance highly effective targets for antifungal strategies. IMPORTANCE Fusarium graminearum and Magnaporthe oryzae are two of the most important pathogens of cereal grains worldwide. Despite years of research, strong host resistance has not been identified for F. graminearum, so other methods of control are essential. The pathogen takes advantage of multiple entry points to infect the host, including breaches in the florets due to senescence of flower parts and penetration of the weakened trichome bases to breach the epidermis. In contrast, M. oryzae directly punctures leaves that it infects, and resistant cultivars have been characterized. The threat of either pathogen causing a major disease outbreak is ever present. Comparative transcriptomics demonstrated its potential to reveal novel and effective disease prevention strategies that affect the initial stages of disease. Shedding light on the basis of this diversity of infection strategies will result in development of increasingly specific control strategies.
Collapse
|
17
|
TORC1 Signaling in Fungi: From Yeasts to Filamentous Fungi. Microorganisms 2023; 11:microorganisms11010218. [PMID: 36677510 PMCID: PMC9864104 DOI: 10.3390/microorganisms11010218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Target of rapamycin complex 1 (TORC1) is an important regulator of various signaling pathways. It can control cell growth and development by integrating multiple signals from amino acids, glucose, phosphate, growth factors, pressure, oxidation, and so on. In recent years, it has been reported that TORC1 is of great significance in regulating cytotoxicity, morphology, protein synthesis and degradation, nutrient absorption, and metabolism. In this review, we mainly discuss the upstream and downstream signaling pathways of TORC1 to reveal its role in fungi.
Collapse
|
18
|
CRISPR-Cas12a induced DNA double-strand breaks are repaired by multiple pathways with different mutation profiles in Magnaporthe oryzae. Nat Commun 2022; 13:7168. [PMID: 36418866 PMCID: PMC9684475 DOI: 10.1038/s41467-022-34736-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/01/2022] [Indexed: 11/24/2022] Open
Abstract
CRISPR-Cas mediated genome engineering has revolutionized functional genomics. However, understanding of DNA repair following Cas-mediated DNA cleavage remains incomplete. Using Cas12a ribonucleoprotein genome editing in the fungal pathogen, Magnaporthe oryzae, we detail non-canonical DNA repair outcomes from hundreds of transformants. Sanger and nanopore sequencing analysis reveals significant variation in DNA repair profiles, ranging from small INDELs to kilobase size deletions and insertions. Furthermore, we find the frequency of DNA repair outcomes varies between loci. The results are not specific to the Cas-nuclease or selection procedure. Through Ku80 deletion analysis, a key protein required for canonical non-homologous end joining, we demonstrate activity of an alternative end joining mechanism that creates larger DNA deletions, and uses longer microhomology compared to C-NHEJ. Together, our results suggest preferential DNA repair pathway activity in the genome that can create different mutation profiles following repair, which could create biased genome variation and impact genome engineering and genome evolution.
Collapse
|
19
|
The Rheb GTPase promotes pheromone blindness via a TORC1-independent pathway in the phytopathogenic fungus Ustilago maydis. PLoS Genet 2022; 18:e1010483. [DOI: 10.1371/journal.pgen.1010483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/28/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022] Open
Abstract
The target of the rapamycin (TOR) signaling pathway plays a negative role in controlling virulence in phytopathogenic fungi. However, the actual targets involved in virulence are currently unknown. Using the corn smut fungus Ustilago maydis, we tried to address the effects of the ectopic activation of TOR on virulence. We obtained gain-of-function mutations in the Rheb GTPase, one of the conserved TOR kinase regulators. We have found that unscheduled activation of Rheb resulted in the alteration of the proper localization of the pheromone receptor, Pra1, and thereby pheromone insensitivity. Since pheromone signaling triggers virulence in Ustilaginales, we believe that the Rheb-induced pheromone blindness was responsible for the associated lack of virulence. Strikingly, although these effects required the concourse of the Rsp5 ubiquitin ligase and the Art3 α-arrestin, the TOR kinase was not involved. Several eukaryotic organisms have shown that Rheb transmits environmental information through TOR-dependent and -independent pathways. Therefore, our results expand the range of signaling manners at which environmental conditions could impinge on the virulence of phytopathogenic fungi.
Collapse
|
20
|
Cai YY, Li L, Zhu XM, Lu JP, Liu XH, Lin FC. The crucial role of the regulatory mechanism of the Atg1/ULK1 complex in fungi. Front Microbiol 2022; 13:1019543. [PMID: 36386635 PMCID: PMC9643702 DOI: 10.3389/fmicb.2022.1019543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/10/2022] [Indexed: 12/05/2022] Open
Abstract
Autophagy, an evolutionarily conserved cellular degradation pathway in eukaryotes, is hierarchically regulated by autophagy-related genes (Atgs). The Atg1/ULK1 complex is the most upstream factor involved in autophagy initiation. Here,we summarize the recent studies on the structure and molecular mechanism of the Atg1/ULK1 complex in autophagy initiation, with a special focus on upstream regulation and downstream effectors of Atg1/ULK1. The roles of pathogenicity and autophagy aspects in Atg1/ULK1 complexes of various pathogenic hosts, including plants, insects, and humans, are also discussed in this work based on recent research findings. We establish a framework to study how the Atg1/ULK1 complex integrates the signals that induce autophagy in accordance with fungus to mammalian autophagy regulation pathways. This framework lays the foundation for studying the deeper molecular mechanisms of the Atg1 complex in pathogenic fungi.
Collapse
Affiliation(s)
- Ying-Ying Cai
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Lin Li
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xue-Ming Zhu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jian-Ping Lu
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Xiao-Hong Liu
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
- *Correspondence: Fu-Cheng Lin,
| |
Collapse
|
21
|
The CfSnt2-Dependent Deacetylation of Histone H3 Mediates Autophagy and Pathogenicity of Colletotrichum fructicola. J Fungi (Basel) 2022; 8:jof8090974. [PMID: 36135699 PMCID: PMC9506038 DOI: 10.3390/jof8090974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 12/12/2022] Open
Abstract
Camellia oleifera is one of the most valuable woody edible-oil crops, and anthracnose seriously afflicts its yield and quality. We recently showed that the CfSnt2 regulates the pathogenicity of Colletotrichum fructicola, the dominant causal agent of anthracnose on C. oleifera. However, the molecular mechanisms of CfSnt2-mediated pathogenesis remain largely unknown. Here, we found that CfSnt2 is localized to the nucleus to regulate the deacetylation of histone H3. The further transcriptomic analysis revealed that CfSnt2 mediates the expression of global genes, including most autophagy-related genes. Furthermore, we provided evidence showing that CfSnt2 negatively regulates autophagy and is involved in the responses to host-derived ROS and ER stresses. These combined functions contribute to the pivotal roles of CfSnt2 on pathogenicity. Taken together, our studies not only illustrate how CfSnt2 functions in the nucleus, but also link its roles on the autophagy and responses to host-derived stresses with pathogenicity in C. fructicola.
Collapse
|
22
|
Wang J, Wang Q, Huang P, Qu Y, Huang Z, Wang H, Liu XH, Lin FC, Lu J. An appressorium membrane protein, Pams1, controls infection structure maturation and virulence via maintaining endosomal stability in the rice blast fungus. FRONTIERS IN PLANT SCIENCE 2022; 13:955254. [PMID: 36160954 PMCID: PMC9500233 DOI: 10.3389/fpls.2022.955254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/04/2022] [Indexed: 05/28/2023]
Abstract
The rice blast fungus Magnaporthe oryzae spores differentiate and mature into functional appressoria by sensing the host surface signals. Environmental stimuli are transduced into cells through internalization during appressorium formation, such as in the cAMP-PKA pathway. Here, we describe a novel contribution to how appressoria mature on the surface of a leaf, and its connection to endosomes and the cAMP-PKA pathway. An appressorium membrane-specific protein, Pams1, is required for maintaining endosomal structure, appressorium maturation, and virulence in M. oryzae. During appressorium development, Pams1 was translocated from the cell membrane to the endosomal membrane. Deletion of PAMS1 led to the formation of two types of abnormal appressoria after 8 h post inoculation (hpi): melanized type I had a reduced virulence, while pale type II was dead. Before 8 hpi, Δpams1 formed appressoria that were similar to those of the wild type. After 8 hpi, the appressoria of Δpams1 was differentiated into two types: (1) the cell walls of type I appressoria were melanized, endosomes were larger, and had a different distribution from the wild type and (2) Type II appressoria gradually stopped melanization and began to die. The organelles, including the nucleus, endosomes, mitochondria, and endoplasmic reticula, were degraded, leaving only autophagic body-like vesicles in type II appressoria. The addition of exogenous cAMP to Δpams1 led to the formation of a greater proportion of type I appressoria and a smaller proportion of type II appressoria. Thus, defects in endosomal structure and the cAMP-PKA pathway are among the causes of the defective appressorium maturation and virulence of Δpams1.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Qing Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Pengyun Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yingmin Qu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhicheng Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Huan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Hong Liu
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Fu-Cheng Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Jianping Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Ryder LS, Cruz-Mireles N, Molinari C, Eisermann I, Eseola AB, Talbot NJ. The appressorium at a glance. J Cell Sci 2022; 135:276040. [PMID: 35856284 DOI: 10.1242/jcs.259857] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many plant pathogenic fungi have the capacity to infect their plant hosts using specialised cells called appressoria. These structures act as a gateway between the fungus and host, allowing entry to internal tissues. Appressoria apply enormous physical force to rupture the plant surface, or use a battery of enzymes to digest the cuticle and plant cell wall. Appressoria also facilitate focal secretion of effectors at the point of plant infection to suppress plant immunity. These infection cells develop in response to the physical characteristics of the leaf surface, starvation stress and signals from the plant. Appressorium morphogenesis has been linked to septin-mediated reorganisation of F-actin and microtubule networks of the cytoskeleton, and remodelling of the fungal cell wall. In this Cell Science at a Glance and accompanying poster, we highlight recent advances in our understanding of the mechanisms of appressorium-mediated infection, and compare development on the leaf surface to the biology of invasive growth by pathogenic fungi. Finally, we outline key gaps in our current knowledge of appressorium cell biology.
Collapse
Affiliation(s)
- Lauren S Ryder
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Neftaly Cruz-Mireles
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Camilla Molinari
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Iris Eisermann
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Alice B Eseola
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
24
|
Ren Z, Tang B, Xing J, Liu C, Cai X, Hendy A, Kamran M, Liu H, Zheng L, Huang J, Chen XL. MTA1-mediated RNA m 6 A modification regulates autophagy and is required for infection of the rice blast fungus. THE NEW PHYTOLOGIST 2022; 235:247-262. [PMID: 35338654 DOI: 10.1111/nph.18117] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
In eukaryotes, N6 -methyladenosine (m6 A) is abundant on mRNA, and plays key roles in the regulation of RNA function. However, the roles and regulatory mechanisms of m6 A in phytopathogenic fungi are still largely unknown. Combined with biochemical analysis, MeRIP-seq and RNA-seq methods, as well as biological analysis, we showed that Magnaporthe oryzae MTA1 gene is an orthologue of human METTL4, which is involved in m6 A modification and plays a critical role in autophagy for fungal infection. The Δmta1 mutant showed reduced virulence due to blockage of appressorial penetration and invasive growth. Moreover, the autophagy process was severely disordered in the mutant. MeRIP-seq identified 659 hypomethylated m6 A peaks covering 595 mRNAs in Δmta1 appressoria, 114 m6 A peaks was negatively related to mRNA abundance, including several ATG gene transcripts. Typically, the mRNA abundance of MoATG8 was also increased in the single m6 A site mutant ∆atg8/MoATG8A982C , leading to an autophagy disorder. Our findings reveal the functional importance of the m6 A methylation in infection of M. oryzae and provide novel insight into the regulatory mechanisms of plant pathogenic fungi.
Collapse
Affiliation(s)
- Zhiyong Ren
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bozeng Tang
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, NR4 7UH, Norwich, UK
| | - Junjie Xing
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Caiyun Liu
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Cai
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ahmed Hendy
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Kamran
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Liu
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junbing Huang
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology, Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| |
Collapse
|
25
|
Cai X, Xiang S, He W, Tang M, Zhang S, Chen D, Zhang X, Liu C, Li G, Xing J, Li Y, Chen X, Nie Y. Deubiquitinase Ubp3 regulates ribophagy and deubiquitinates Smo1 for appressorium-mediated infection by Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2022; 23:832-844. [PMID: 35220670 PMCID: PMC9104258 DOI: 10.1111/mpp.13196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
The Ubp family of deubiquitinating enzymes has been found to play important roles in plant-pathogenic fungi, but their regulatory mechanisms are still largely unknown. In this study, we revealed the regulatory mechanism of the deubiquitinating enzyme Ubp3 during the infection process of Magnaporthe oryzae. AUBP3 deletion mutant was severely defective in appressorium turgor accumulation, leading to the impairment of appressorial penetration. During appressorium formation, the mutant was also defective in glycogen and lipid metabolism. Interestingly, we found that nitrogen starvation and rapamycin treatment induced the ribophagy process in M. oryzae, which is closely dependent on Ubp3. In the ∆ubp3 mutant, the ribosome proteins and rRNAs were not well degraded on nitrogen starvation and rapamycin treatment. We also found that Ubp3 interacted with the GTPase-activating protein Smo1 and regulated its de-ubiquitination. Ubp3-dependent de-ubiquitination of Smo1 may be required for Smo1 to coordinate Ras signalling. Taken together, our results showed at least two roles of Ubp3 in M. oryzae: it regulates the ribophagy process and it regulates de-ubiquitination of GTPase-activating protein Smo1 for appressorium-mediated infection.
Collapse
Affiliation(s)
- Xuan Cai
- Laboratory of Physiological Plant PathologySouth China Agricultural UniversityGuangzhouChina
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shikun Xiang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wenhui He
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Mengxi Tang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shimei Zhang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Deng Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xinrong Zhang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Caiyun Liu
- Laboratory of Physiological Plant PathologySouth China Agricultural UniversityGuangzhouChina
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Guotian Li
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Junjie Xing
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| | - Yunfeng Li
- Laboratory of Physiological Plant PathologySouth China Agricultural UniversityGuangzhouChina
| | - Xiao‐Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yanfang Nie
- Laboratory of Physiological Plant PathologySouth China Agricultural UniversityGuangzhouChina
- College of Materials and EnergySouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
26
|
Barrit T, Porcher A, Cukier C, Satour P, Guillemette T, Limami AM, Teulat B, Campion C, Planchet E. Nitrogen nutrition modifies the susceptibility of Arabidopsis thaliana to the necrotrophic fungus, Alternaria brassicicola. PHYSIOLOGIA PLANTARUM 2022; 174:e13621. [PMID: 34989007 DOI: 10.1111/ppl.13621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The impact of the form of nitrogen (N) source (nitrate versus ammonium) on the susceptibility to Alternaria brassicicola, a necrotrophic fungus, has been examined in Arabidopsis thaliana at the rosette stage. Nitrate nutrition was found to increase fungal lesions considerably. There was a similar induction of defence gene expression following infection under both N nutritions, except for the phytoalexin deficient 3 gene, which was overexpressed with nitrate. Nitrate also led to a greater nitric oxide production occurring in planta during the saprophytic growth and lower nitrate reductase (NIA1) expression 7 days after inoculation. This suggests that nitrate reductase-dependent nitric oxide production had a dual role, whereby, despite its known role in the generic response to pathogens, it affected plant metabolism, and this facilitated fungal infection. In ammonium-grown plants, infection with A. brassicicola induced a stronger gene expression of ammonium transporters and significantly reduced the initially high ammonium content in the leaves. There was a significant interaction between N source and inoculation (presence versus absence of the fungus) on the total amino acid content, while N nutrition reconfigured the spectrum of major amino acids. Typically, a higher content of total amino acid, mainly due to a stronger increase in asparagine and glutamine, is observed under ammonium nutrition while, in nitrate-fed plants, glutamate was the only amino acid which content increased significantly after fungal inoculation. N nutrition thus appears to control fungal infection via a complex set of signalling and nutritional events, shedding light on how nitrate availability can modulate disease susceptibility.
Collapse
Affiliation(s)
| | - Alexis Porcher
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, France
| | | | - Pascale Satour
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, France
| | | | - Anis M Limami
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, France
| | | | - Claire Campion
- Univ Angers, Institut Agro, INRAE, IRHS, SFR QUASAV, France
| | | |
Collapse
|
27
|
Chen D, Hu H, He W, Zhang S, Tang M, Xiang S, Liu C, Cai X, Hendy A, Kamran M, Liu H, Zheng L, Huang J, Chen X, Xing J. Endocytic protein Pal1 regulates appressorium formation and is required for full virulence of Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2022; 23:133-147. [PMID: 34636149 PMCID: PMC8659611 DOI: 10.1111/mpp.13149] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Endocytosis plays key roles during infection of plant-pathogenic fungi, but its regulatory mechanisms are still largely unknown. Here, we identified a putative endocytosis-related gene, PAL1, which was highly expressed in appressorium of Magnaporthe oryzae, and was found to be important for appressorium formation and maturation. Deletion of PAL1 significantly reduced the virulence of M. oryzae due to defects in appressorial penetration and invasive growth in host cells. The Pal1 protein interacted and colocalized with the endocytosis protein Sla1, suggesting it is involved in endocytosis. The Δpal1 mutant was significantly reduced in appressorium formation, which was recovered by adding exogenous cAMP and 3-isobutyl-1-methylxanthine (IBMX). Moreover, the phosphorylation level of Pmk1 in Δpal1 was also reduced, suggesting Pal1 functions upstream of both the cAMP and Pmk1 signalling pathways. As a consequence, the utilization of glycogen and lipid, appressorial autophagy, actin ring formation, localization of septin proteins, as well as turgor accumulation were all affected in the Δpal1 mutant. Taken together, Pal1 regulates cAMP and the Pmk1 signalling pathway for appressorium formation and maturation to facilitate infection of M. oryzae.
Collapse
Affiliation(s)
- Deng Chen
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Hong Hu
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Wenhui He
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shimei Zhang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Mengxi Tang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shikun Xiang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Caiyun Liu
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xuan Cai
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ahmed Hendy
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Muhammad Kamran
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Hao Liu
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Junbing Huang
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xiao‐Lin Chen
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
- State Key Laboratory of Agricultural Microbiology and Provincial Key Laboratory of Plant Pathology of Hubei ProvinceCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Junjie Xing
- State Key Laboratory of Hybrid RiceHunan Hybrid Rice Research CenterChangshaChina
| |
Collapse
|
28
|
Chen Y, Cao Y, Gai Y, Ma H, Zhu Z, Chung KR, Li H. Genome-Wide Identification and Functional Characterization of GATA Transcription Factor Gene Family in Alternaria alternata. J Fungi (Basel) 2021; 7:jof7121013. [PMID: 34946995 PMCID: PMC8706292 DOI: 10.3390/jof7121013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/19/2022] Open
Abstract
In the present study, we identified six GATA transcription factors (AaAreA, AaAreB, AaLreA, AaLreB, AaNsdD, and AaSreA) and characterized their functions in response to environmental stress and virulence in the tangerine pathotype of Alternaria alternata. The targeted gene knockout of each of the GATA-coding genes decreased the growth to varying degrees. The mutation of AaAreA, AaAreB, AaLreB, or AaNsdD decreased the conidiation. All the GATA transcription factors were found to be required for tolerance to cumyl hydroperoxide and tert-butyl-hydroperoxide (oxidants) and Congo red (a cell-wall-destructing agent). Pathogenicity assays assessed on detached citrus leaves revealed that mutations of AaAreA, AaLreA, AaLreB, or AaNsdD significantly decreased the fungal virulence. A comparative transcriptome analysis between the ∆AreA mutant and the wild-type strain revealed that the inactivation of AaAreA led to alterations in the expression of genes involved in a number of biological processes, including oxidoreductase activity, amino acid metabolism, and secondary metabolite biogenesis. Taken together, our findings revealed that GATA-coding genes play diverse roles in response to environmental stress and are important regulators involved in fungal development, conidiation, ROS detoxification, as well as pathogenesis. This study, for the first time, systemically underlines the critical role of GATA transcription factors in response to environmental stress and virulence in A. alternata.
Collapse
Affiliation(s)
- Yanan Chen
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
| | - Yingzi Cao
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
| | - Yunpeng Gai
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
| | - Haijie Ma
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
- School of Agriculture and Food Sciences, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Zengrong Zhu
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
- Hainan Institute, Zhejiang University, Sanya 572000, China
| | - Kuang-Ren Chung
- Department of Plant Pathology, College of Agriculture and Natural Resources, National Chung-Hsing University, Taichung 40227, Taiwan;
| | - Hongye Li
- The Key Laboratory of Molecular Biology of Crop Pathogens and Insects of Ministry of Agriculture and Rural Affairs, The Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (Y.C.); (Y.C.); (Y.G.); (H.M.); (Z.Z.)
- Correspondence: ; Tel.: +86-13634190823
| |
Collapse
|
29
|
A Histone Deacetylase, Magnaporthe oryzae RPD3, Regulates Reproduction and Pathogenic Development in the Rice Blast Fungus. mBio 2021; 12:e0260021. [PMID: 34781734 PMCID: PMC8593672 DOI: 10.1128/mbio.02600-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Acetylation and deacetylation of histones are key epigenetic mechanisms for gene regulation in response to environmental stimuli. RPD3 is a well-conserved class I histone deacetylase (HDAC) that is involved in diverse biological processes. Here, we investigated the roles of the Magnaporthe oryzaeRPD3 (MoRPD3) gene, an ortholog of Saccharomyces cerevisiaeRpd3, during development and pathogenesis in the model plant-pathogenic fungus Magnaporthe oryzae. We demonstrated that the MoRPD3 gene is able to functionally complement the yeast Rpd3 deletion mutant despite the C-terminal extension of the MoRPD3 protein. MoRPD3 localizes primarily to the nuclei of vegetative hyphae, asexual spores, and invasive hyphae. Deletion of MoRPD3 appears to be lethal. Depletion of MoRPD3 transcripts via gene silencing (MoRPD3kd, where “kd” stands for “knockdown”) has opposing effects on asexual and sexual reproduction. Although conidial germination and appressorium formation rates of the mutants were almost comparable to those of the wild type, in-depth analysis revealed that the appressoria of mutants are smaller than those of the wild type. Furthermore, the MoRPD3kd strain shows a significant reduction in pathogenicity, which can be attributed to the delay in appressorium-mediated penetration and impaired invasive growth. Interestingly, MoRPD3 does not regulate potassium transporters, as shown for Rpd3 of S. cerevisiae. However, it functioned in association with the target of rapamycin (TOR) kinase pathway, resulting in the dependency of appressorium formation on hydrophilic surfaces and on TOR’s inhibition by MoRPD3. Taken together, our results uncovered distinct and evolutionarily conserved roles of MoRPD3 in regulating fungal reproduction, infection-specific development, and virulence.
Collapse
|
30
|
Luo X, Tian T, Bonnave M, Tan X, Huang X, Li Z, Ren M. The Molecular Mechanisms of Phytophthora infestans in Response to Reactive Oxygen Species Stress. PHYTOPATHOLOGY 2021; 111:2067-2079. [PMID: 33787286 DOI: 10.1094/phyto-08-20-0321-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Reactive oxygen species (ROSs) are critical for the growth, development, proliferation, and pathogenicity of microbial pathogens; however, excessive levels of ROSs are toxic. Little is known about the signaling cascades in response to ROS stress in oomycetes such as Phytophthora infestans, the causal agent of potato late blight. Here, P. infestans was used as a model system to investigate the mechanism underlying the response to ROS stress in oomycete pathogens. Results showed severe defects in sporangium germination, mycelium growth, appressorium formation, and virulence of P. infestans in response to H2O2 stress. Importantly, these phenotypes mimic those of P. infestans treated with rapamycin, the inhibitor of target of rapamycin (TOR, 1-phosphatidylinositol-3-kinase). Strong synergism occurred when P. infestans was treated with a combination of H2O2 and rapamycin, suggesting that a crosstalk exists between ROS stress and the TOR signaling pathway. Comprehensive analysis of transcriptome, proteome, and phosphorylation omics showed that H2O2 stress significantly induced the operation of the TOR-mediated autophagy pathway. Monodansylcadaverine staining showed that in the presence of H2O2 and rapamycin, the autophagosome level increased in a dosage-dependent manner. Furthermore, transgenic potatoes containing double-stranded RNA of TOR in P. infestans (PiTOR) displayed high resistance to P. infestans. Therefore, TOR is involved in the ROS response and is a potential target for control of oomycete diseases, because host-mediated silencing of PiTOR increases potato resistance to late blight.
Collapse
Affiliation(s)
- Xiumei Luo
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Tingting Tian
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Maxime Bonnave
- Centre for Agriculture and Agro-Industry of Hainaut Province, Ath 7800, Belgium
| | - Xue Tan
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Xiaoqing Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Maozhi Ren
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
31
|
Osés-Ruiz M, Cruz-Mireles N, Martin-Urdiroz M, Soanes DM, Eseola AB, Tang B, Derbyshire P, Nielsen M, Cheema J, Were V, Eisermann I, Kershaw MJ, Yan X, Valdovinos-Ponce G, Molinari C, Littlejohn GR, Valent B, Menke FLH, Talbot NJ. Appressorium-mediated plant infection by Magnaporthe oryzae is regulated by a Pmk1-dependent hierarchical transcriptional network. Nat Microbiol 2021; 6:1383-1397. [PMID: 34707224 DOI: 10.1038/s41564-021-00978-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 09/09/2021] [Indexed: 01/18/2023]
Abstract
Rice blast is a devastating disease caused by the fungal pathogen Magnaporthe oryzae that threatens rice production around the world. The fungus produces a specialized infection cell, called the appressorium, that enables penetration through the plant cell wall in response to surface signals from the rice leaf. The underlying biology of plant infection, including the regulation of appressorium formation, is not completely understood. Here we report the identification of a network of temporally coregulated transcription factors that act downstream of the Pmk1 mitogen-activated protein kinase pathway to regulate gene expression during appressorium-mediated plant infection. We show that this tiered regulatory mechanism involves Pmk1-dependent phosphorylation of the Hox7 homeobox transcription factor, which regulates genes associated with induction of major physiological changes required for appressorium development-including cell-cycle control, autophagic cell death, turgor generation and melanin biosynthesis-as well as controlling a additional set of virulence-associated transcription factor-encoding genes. Pmk1-dependent phosphorylation of Mst12 then regulates gene functions involved in septin-dependent cytoskeletal re-organization, polarized exocytosis and effector gene expression, which are necessary for plant tissue invasion. Identification of this regulatory cascade provides new potential targets for disease intervention.
Collapse
Affiliation(s)
- Míriam Osés-Ruiz
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, Norwich, UK.
| | - Neftaly Cruz-Mireles
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, Norwich, UK
| | | | | | - Alice Bisola Eseola
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, Norwich, UK
| | - Bozeng Tang
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, Norwich, UK
| | - Paul Derbyshire
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, Norwich, UK
| | | | | | - Vincent Were
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, Norwich, UK
| | - Iris Eisermann
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, Norwich, UK
| | | | - Xia Yan
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, Norwich, UK
| | - Guadalupe Valdovinos-Ponce
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA.,Department of Plant Pathology, Colegio de Postgraduados, Montecillo, Texcoco, Mexico
| | - Camilla Molinari
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, Norwich, UK
| | - George R Littlejohn
- School of Biosciences, University of Exeter, Exeter, UK.,Department of Biological and Marine Sciences, University of Plymouth, Drakes Circus, Plymouth, UK
| | - Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS, USA
| | - Frank L H Menke
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, Norwich, UK
| | - Nicholas J Talbot
- The Sainsbury Laboratory, Norwich Research Park, University of East Anglia, Norwich, UK.
| |
Collapse
|
32
|
Trehalose Phosphate Synthase Complex-Mediated Regulation of Trehalose 6-Phosphate Homeostasis Is Critical for Development and Pathogenesis in Magnaporthe oryzae. mSystems 2021; 6:e0046221. [PMID: 34609170 PMCID: PMC8547450 DOI: 10.1128/msystems.00462-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Trehalose biosynthesis pathway is a potential target for antifungal drug development, and trehalose 6-phosphate (T6P) accumulation is widely known to have toxic effects on cells. However, how organisms maintain a safe T6P level and cope with its cytotoxicity effects when accumulated have not been reported. Herein, we unveil the mechanism by which the rice blast fungus Magnaporthe oryzae avoids T6P accumulation and the genetic and physiological adjustments it undergoes to self-adjust the metabolite level when it is unavoidably accumulated. We found that T6P accumulation leads to defects in fugal development and pathogenicity. The accumulated T6P impairs cell wall assembly by disrupting actin organization. The disorganization of actin impairs the distribution of chitin synthases, thereby disrupting cell wall polymer distribution. Additionally, accumulation of T6P compromise energy metabolism. M. oryzae was able to overcome the effects of T6P accumulation by self-mutation of its MoTPS3 gene at two different mutation sites. We further show that mutation of MoTPS3 suppresses MoTps1 activity to reduce the intracellular level of T6P and partially restore ΔMotps2 defects. Overall, our results provide insights into the cytotoxicity effects of T6P accumulation and uncover a spontaneous mutation strategy to rebalance accumulated T6P in M. oryzae. IMPORTANCEM. oryzae, the causative agent of the rice blast disease, threatens rice production worldwide. Our results revealed that T6P accumulation, caused by the disruption of MoTPS2, has toxic effects on fugal development and pathogenesis in M. oryzae. The accumulated T6P impairs the distribution of cell wall polymers via actin organization and therefore disrupts cell wall structure. M. oryzae uses a spontaneous mutation to restore T6P cytotoxicity. Seven spontaneous mutation sites were found, and a mutation in MoTPS3 was further identified. The spontaneous mutation in MoTPS3 can partially rescue ΔMotps2 defects by suppressing MoTps1 activity to alleviate T6P cytotoxicity. This study provides clear evidence for better understanding of T6P cytotoxicity and how the fungus protects itself from T6P’s toxic effects when it has accumulated to severely high levels.
Collapse
|
33
|
Plant killers make the cut. Nat Microbiol 2021; 6:975-976. [PMID: 34326520 DOI: 10.1038/s41564-021-00943-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Yan Y, Tang J, Yuan Q, Liu H, Huang J, Hsiang T, Bao C, Zheng L. Ornithine decarboxylase of the fungal pathogen Colletotrichum higginsianum plays an important role in regulating global metabolic pathways and virulence. Environ Microbiol 2021; 24:1093-1116. [PMID: 34472183 DOI: 10.1111/1462-2920.15755] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 08/30/2021] [Indexed: 11/30/2022]
Abstract
Colletotrichum higginsianum is an important fungal pathogen causing anthracnose disease of cruciferous plants. In this study, we characterized a putative orthologue of yeast SPE1 in C. higginsianum, named ChODC. Deletion mutants of ChODC were defective in hyphal and conidial development. Importantly, deletion of ChODC significantly affected appressorium-mediated penetration in C. higginsianum. However, polyamines partially restore appressorium function and virulence indicating that loss of ChODC caused significantly decreased virulence by the crosstalk between polyamines and other metabolic pathways. Subsequently, transcriptomic and metabolomic analyses demonstrated that ChODC played an important role in metabolism of various carbon and nitrogen compounds including amino acids, carbohydrates and lipids. Along with these clues, we found deletion of ChODC affected glycogen and lipid metabolism, which were important for conidial storage utilization and functional appressorium formation. Loss of ChODC affected the mTOR signalling pathway via modulation of autophagy. Interestingly, cAMP treatment restored functional appressoria to the ΔChODC mutant, and rapamycin treatment also stimulated formation of functional appressoria in the ΔChODC mutant. Overall, ChODC was associated with the polyamine biosynthesis pathway, as a mediator of cAMP and mTOR signalling pathways to regulate appressorium function. Our study provides evidence of a link between ChODC and the cAMP signalling pathway and defines a novel mechanism by which ChODC regulates infection-associated autophagy and plant infection by fungi.
Collapse
Affiliation(s)
- Yaqin Yan
- Institute of Vegetable, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, China.,State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jintian Tang
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinfeng Yuan
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Liu
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junbin Huang
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Chonglai Bao
- Institute of Vegetable, Zhejiang Academy of Agricultural Science, Hangzhou, 310021, China
| | - Lu Zheng
- State Key Laboratory of Agricultural Microbiology/Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
35
|
Liu W, Triplett L, Chen XL. Emerging Roles of Posttranslational Modifications in Plant-Pathogenic Fungi and Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:99-124. [PMID: 33909479 DOI: 10.1146/annurev-phyto-021320-010948] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Posttranslational modifications (PTMs) play crucial roles in regulating protein function and thereby control many cellular processes and biological phenotypes in both eukaryotes and prokaryotes. Several recent studies illustrate how plant fungal and bacterial pathogens use these PTMs to facilitate development, stress response, and host infection. In this review, we discuss PTMs that have key roles in the biological and infection processes of plant-pathogenic fungi and bacteria. The emerging roles of PTMs during pathogen-plant interactions are highlighted. We also summarize traditional tools and emerging proteomics approaches for PTM research. These discoveries open new avenues for investigating the fundamental infection mechanisms of plant pathogens and the discovery of novel strategies for plant disease control.
Collapse
Affiliation(s)
- Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Lindsay Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA;
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
36
|
Shi H, Meng S, Qiu J, Wang C, Shu Y, Luo C, Kou Y. MoWhi2 regulates appressorium formation and pathogenicity via the MoTor signalling pathway in Magnaporthe oryzae. MOLECULAR PLANT PATHOLOGY 2021; 22:969-983. [PMID: 34036714 PMCID: PMC8295519 DOI: 10.1111/mpp.13074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/13/2021] [Accepted: 04/21/2021] [Indexed: 05/17/2023]
Abstract
Magnaporthe oryzae causes rice blast disease, which seriously threatens the safety of food production. Understanding the mechanism of appressorium formation, which is one of the key steps for successful infection by M. oryzae, is helpful to formulate effective control strategies of rice blast. In this study, we identified MoWhi2, the homolog of Saccharomyces cerevisiae Whi2 (Whisky2), as an important regulator that controls appressorium formation in M. oryzae. When MoWHI2 was disrupted, multiple appressoria were formed by one conidium and pathogenicity was significantly reduced. A putative phosphatase, MoPsr1, was identified to interact with MoWhi2 using a yeast two-hybridization screening assay. The knockout mutant ΔMopsr1 displayed similar phenotypes to the ΔMowhi2 strain. Both the ΔMowhi2 and ΔMopsr1 mutants could form appressoria on a hydrophilic surface with cAMP levels increasing in comparison with the wild type (WT). The conidia of ΔMowhi2 and ΔMopsr1 formed a single appressorium per conidium, similar to WT, when the target of rapamycin (TOR) inhibitor rapamycin was present. In addition, compared with WT, the expression levels of MoTOR and the MoTor signalling activation marker gene MoRS3 were increased, suggesting that inappropriate activation of the MoTor signalling pathway is one of the important reasons for the defects in appressorium formation in the ΔMowhi2 and ΔMopsr1 strains. Our results provide insights into MoWhi2 and MoPsr1-mediated appressorium development and pathogenicity by regulating cAMP levels and the activation of MoTor signalling in M. oryzae.
Collapse
Affiliation(s)
- Huanbin Shi
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Shuai Meng
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
- Hubei Key Lab of Plant Pathology, and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jiehua Qiu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Congcong Wang
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Yazhou Shu
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| | - Chaoxi Luo
- Hubei Key Lab of Plant Pathology, and College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yanjun Kou
- State Key Laboratory of Rice BiologyChina National Rice Research InstituteHangzhouChina
| |
Collapse
|
37
|
Tang C, Li W, Klosterman SJ, Wang Y. Transcriptome Variations in Verticillium dahliae in Response to Two Different Inorganic Nitrogen Sources. Front Microbiol 2021; 12:712701. [PMID: 34394062 PMCID: PMC8355529 DOI: 10.3389/fmicb.2021.712701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
The fungus Verticillium dahliae causes vascular wilt disease on hundreds of plant species. The main focus of the research to control this fungus has been aimed at infection processes such as penetration peg formation and effector secretion, but the ability of the fungus to acquire and utilize nutrients are often overlooked and may hold additional potential to formulate new disease control approaches. Little is known about the molecular mechanisms of nitrogen acquisition and assimilation processes in V. dahliae. In this present study, RNA sequencing and gene expression analysis were used to examine differentially expressed genes in response to the different nitrogen sources, nitrate and ammonium, in V. dahliae. A total of 3244 and 2528 differentially expressed genes were identified in response to nitrate and ammonium treatments, respectively. The data indicated nitrate metabolism requires additional energy input while ammonium metabolism is accompanied by reductions in particular cellular processes. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses of DEGs during nitrate metabolism revealed that many of the genes encoded those involved in protein biosynthetic and metabolic processes, especially ribosome and RNA polymerase biosynthesis, but also other processes including transport and organonitrogen compound metabolism. Analysis of DEGs in the ammonium treatment indicated that cell cycle, oxidoreductase, and certain metabolic activities were reduced. In addition, DEGs participating in the utilization of both nitrate and ammonium were related to L-serine biosynthesis, energy-dependent multidrug efflux pump activity, and glycerol transport. We further showed that the mutants of three differentially expressed transcription factors (VdMcm1, VdHapX, and VDAG_08640) exhibited abnormal phenotypes under nitrate and ammonium treatment compared with the wild type strain. Deletion of VdMcm1 displayed slower growth when utilizing both nitrogen sources, while deletion of VdHapX and VDAG_08640 only affected nitrate metabolism, inferring that nitrogen assimilation required regulation of bZIP transcription factor family and participation of cell cycle. Taken together, our findings illustrate the convergent and distinctive regulatory mechanisms between preferred (ammonium) and alternative nitrogen (nitrate) metabolism at the transcriptome level, leading to better understanding of inorganic nitrogen metabolism in V. dahliae.
Collapse
Affiliation(s)
- Chen Tang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Wenwen Li
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| | - Steven J Klosterman
- Agricultural Research Service, United States Department of Agriculture, Salinas, CA, United States
| | - Yonglin Wang
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
38
|
Cai E, Sun S, Deng Y, Huang P, Sun X, Wang Y, Chang C, Jiang Z. Histidine Kinase Sln1 and cAMP/PKA Signaling Pathways Antagonistically Regulate Sporisorium scitamineum Mating and Virulence via Transcription Factor Prf1. J Fungi (Basel) 2021; 7:jof7080610. [PMID: 34436149 PMCID: PMC8397173 DOI: 10.3390/jof7080610] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/16/2021] [Accepted: 07/26/2021] [Indexed: 11/16/2022] Open
Abstract
Many prokaryotes and eukaryotes utilize two-component signaling pathways to counter environmental stress and regulate virulence genes associated with infection. In this study, we identified and characterized a conserved histidine kinase (SsSln1), which is the sensor of the two-component system of Sln1-Ypd1-Ssk1 in Sporisorium scitamineum. SsSln1 null mutant exhibited enhanced mating and virulence capabilities in S. scitamineum, which is opposite to what has been reported in Candida albicans. Further investigations revealed that the deletion of SsSLN1 enhanced SsHog1 phosphorylation and nuclear localization and thus promoted S. scitamineum mating. Interestingly, SsSln1 and cAMP/PKA signaling pathways antagonistically regulated the transcription of pheromone-responsive transcription factor SsPrf1, for regulating S. scitamineum mating and virulence. In short, the study depicts a novel mechanism in which the cross-talk between SsSln1 and cAMP/PKA pathways antagonistically regulates mating and virulence by balancing the transcription of the SsPRF1 gene in S. scitamineum.
Collapse
Affiliation(s)
- Enping Cai
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (E.C.); (S.S.); (Y.D.); (P.H.); (X.S.)
- Integrate Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China;
| | - Shuquan Sun
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (E.C.); (S.S.); (Y.D.); (P.H.); (X.S.)
- Environmental Monitoring and Remediation Engineering Technology Research Center, School of Environmental Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475004, China
| | - Yizhen Deng
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (E.C.); (S.S.); (Y.D.); (P.H.); (X.S.)
- Integrate Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China;
| | - Peishen Huang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (E.C.); (S.S.); (Y.D.); (P.H.); (X.S.)
- Integrate Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China;
| | - Xian Sun
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (E.C.); (S.S.); (Y.D.); (P.H.); (X.S.)
- Integrate Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China;
| | - Yuting Wang
- Integrate Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China;
| | - Changqing Chang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (E.C.); (S.S.); (Y.D.); (P.H.); (X.S.)
- Integrate Microbiology Research Center, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: (C.C.); (Z.J.); Tel.: +86-020-757-3225 (C.C.); +86-020-3860-4779 (Z.J.)
| | - Zide Jiang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (E.C.); (S.S.); (Y.D.); (P.H.); (X.S.)
- Correspondence: (C.C.); (Z.J.); Tel.: +86-020-757-3225 (C.C.); +86-020-3860-4779 (Z.J.)
| |
Collapse
|
39
|
Zhou X, Li J, Tang N, Xie H, Fan X, Chen H, Tang M, Xie X. Genome-Wide Analysis of Nutrient Signaling Pathways Conserved in Arbuscular Mycorrhizal Fungi. Microorganisms 2021; 9:1557. [PMID: 34442636 PMCID: PMC8401276 DOI: 10.3390/microorganisms9081557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/03/2023] Open
Abstract
Arbuscular mycorrhizal (AM) fungi form a mutualistic symbiosis with a majority of terrestrial vascular plants. To achieve an efficient nutrient trade with their hosts, AM fungi sense external and internal nutrients, and integrate different hierarchic regulations to optimize nutrient acquisition and homeostasis during mycorrhization. However, the underlying molecular networks in AM fungi orchestrating the nutrient sensing and signaling remain elusive. Based on homology search, we here found that at least 72 gene components involved in four nutrient sensing and signaling pathways, including cAMP-dependent protein kinase A (cAMP-PKA), sucrose non-fermenting 1 (SNF1) protein kinase, target of rapamycin kinase (TOR) and phosphate (PHO) signaling cascades, are well conserved in AM fungi. Based on the knowledge known in model yeast and filamentous fungi, we outlined the possible gene networks functioning in AM fungi. These pathways may regulate the expression of downstream genes involved in nutrient transport, lipid metabolism, trehalase activity, stress resistance and autophagy. The RNA-seq analysis and qRT-PCR results of some core genes further indicate that these pathways may play important roles in spore germination, appressorium formation, arbuscule longevity and sporulation of AM fungi. We hope to inspire further studies on the roles of these candidate genes involved in these nutrient sensing and signaling pathways in AM fungi and AM symbiosis.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Jiangyong Li
- Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China;
| | - Nianwu Tang
- UMR Interactions Arbres/Microorganismes, Centre INRA-Grand Est-Nancy, 54280 Champenoux, France;
| | - Hongyun Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Xiaoning Fan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (X.Z.); (H.X.); (X.F.); (H.C.)
| |
Collapse
|
40
|
Wang S, Liang H, Wei Y, Zhang P, Dang Y, Li G, Zhang SH. Alternative Splicing of MoPTEN Is Important for Growth and Pathogenesis in Magnaporthe oryzae. Front Microbiol 2021; 12:715773. [PMID: 34335554 PMCID: PMC8322540 DOI: 10.3389/fmicb.2021.715773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022] Open
Abstract
Human PTEN, a dual-phosphatase tumor suppressor, is frequently dysregulated by alternative splicing. Fungi harbor PTEN homologs, but alternative splicing of fungal PTENs has not been reported as far as we know. Here, we described an alternative splicing case in the PTEN homolog of Magnaporthe oryzae (MoPTEN). Two splice variants of MoPTEN were detected and identified, which are resulted from an intron retention and exclusion (MoPTEN-1/2). Both proteins were different in lipid and protein phosphatase activity and in expression patterns. The MoPTEN deletion mutant (ΔMoPTEN) showed the defects in conidiation, appressorium formation, and pathogenesis. ΔMoPTEN could be completely restored by MoPTEN, but rescued partially by MoPTEN-1 in the defect of conidium and appressorium formation, and by MoPTEN-2 in the defect of invasive development. Assays to assess sensitivity to oxidative stress reveal the involvement of MoPTEN-2 in scavenging exogenous and host-derived H2O2. Taken together, MoPTEN undergoes alternative splicing, and both variants cooperatively contribute to conidium and appressorium development, and invasive hyphae growth in plant cells, revealing a novel disease development pathway in M. oryzae.
Collapse
Affiliation(s)
- Shaowei Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Hao Liang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, China.,Center for Extreme-Environmental Microorganisms, Shenyang Agricultural University, Shenyang, China.,College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Penghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Yuejia Dang
- Center for Extreme-Environmental Microorganisms, Shenyang Agricultural University, Shenyang, China.,College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Guihua Li
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China.,Center for Extreme-Environmental Microorganisms, Shenyang Agricultural University, Shenyang, China.,College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
41
|
John E, Singh KB, Oliver RP, Tan K. Transcription factor control of virulence in phytopathogenic fungi. MOLECULAR PLANT PATHOLOGY 2021; 22:858-881. [PMID: 33973705 PMCID: PMC8232033 DOI: 10.1111/mpp.13056] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 05/12/2023]
Abstract
Plant-pathogenic fungi are a significant threat to economic and food security worldwide. Novel protection strategies are required and therefore it is critical we understand the mechanisms by which these pathogens cause disease. Virulence factors and pathogenicity genes have been identified, but in many cases their roles remain elusive. It is becoming increasingly clear that gene regulation is vital to enable plant infection and transcription factors play an essential role. Efforts to determine their regulatory functions in plant-pathogenic fungi have expanded since the annotation of fungal genomes revealed the ubiquity of transcription factors from a broad range of families. This review establishes the significance of transcription factors as regulatory elements in plant-pathogenic fungi and provides a systematic overview of those that have been functionally characterized. Detailed analysis is provided on regulators from well-characterized families controlling various aspects of fungal metabolism, development, stress tolerance, and the production of virulence factors such as effectors and secondary metabolites. This covers conserved transcription factors with either specialized or nonspecialized roles, as well as recently identified regulators targeting key virulence pathways. Fundamental knowledge of transcription factor regulation in plant-pathogenic fungi provides avenues to identify novel virulence factors and improve our understanding of the regulatory networks linked to pathogen evolution, while transcription factors can themselves be specifically targeted for disease control. Areas requiring further insight regarding the molecular mechanisms and/or specific classes of transcription factors are identified, and direction for future investigation is presented.
Collapse
Affiliation(s)
- Evan John
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWestern AustraliaAustralia
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Karam B. Singh
- Agriculture and FoodCommonwealth Scientific and Industrial Research OrganisationFloreatWestern AustraliaAustralia
| | - Richard P. Oliver
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| | - Kar‐Chun Tan
- Centre for Crop and Disease ManagementCurtin UniversityBentleyWestern AustraliaAustralia
- School of Molecular and Life SciencesCurtin UniversityBentleyWestern AustraliaAustralia
| |
Collapse
|
42
|
Li C, Zhang Q, Xia Y, Jin K. MaAreB, a GATA Transcription Factor, Is Involved in Nitrogen Source Utilization, Stress Tolerances and Virulence in Metarhizium acridum. J Fungi (Basel) 2021; 7:jof7070512. [PMID: 34198996 PMCID: PMC8305397 DOI: 10.3390/jof7070512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/24/2021] [Accepted: 06/24/2021] [Indexed: 01/14/2023] Open
Abstract
The nitrogen catabolite repression (NCR) pathway is involved in nitrogen utilization, in which the global GATA transcription factor AreA plays an indispensable role and has been reported in many fungi. However, relatively few studies are focused on AreB, another GATA transcription factor in the NCR pathway and the functions of AreB are largely unknown in entomopathogenic fungi. Here, we characterized MaAreB in the model entomopathogenic fungus Metarhizium acridum. Sequence arrangement found that MaAreB had a conserved GATA zinc finger DNA binding domain and a leucine zipper domain. Disruption of MaAreB affected the nitrogen utilization and led to decelerated conidial germination and hyphal growth, decreased conidial yield, and lower tolerances to UV-B irradiation and heat-shock. Furthermore, the MaAreB mutant (ΔMaAreB) exhibited increased sensitivity to CFW (Calcofluor white), decreased cell wall contents (chitin and β-1,3-glucan) and reduced expression levels of some genes related to cell wall integrity, indicating that disruption of MaAreB affected the cell wall integrity. Bioassays showed that the virulence of the ΔMaAreB strain was decreased in topical inoculation but not in intra-hemocoel injection. Consistently, deletion of MaAreB severely impaired the appressorium formation and reduced the turgor pressure of appressorium. These results revealed that MaAreB regulated fungal nitrogen utilization, cell wall integrity and biological control potential, which would contribute to the functional characterization of AreB homologous proteins in other insect fungal pathogens, and even filamentous fungi.
Collapse
Affiliation(s)
- Chaochuang Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (C.L.); (Q.Z.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Qipei Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (C.L.); (Q.Z.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (C.L.); (Q.Z.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- Correspondence: (Y.X.); (K.J.); Tel.: +86-23-65120990 (Y.X.)
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing 401331, China; (C.L.); (Q.Z.)
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing 401331, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing 401331, China
- Correspondence: (Y.X.); (K.J.); Tel.: +86-23-65120990 (Y.X.)
| |
Collapse
|
43
|
A Novel Nitrogen and Carbon Metabolism Regulatory Cascade Is Implicated in Entomopathogenicity of the Fungus Metarhizium robertsii. mSystems 2021; 6:e0049921. [PMID: 34156296 PMCID: PMC8269237 DOI: 10.1128/msystems.00499-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The entomopathogenic fungus Metarhizium robertsii can switch among parasitic, saprophytic, and symbiotic lifestyles in response to changing nutritional conditions, which is attributed to its extremely versatile metabolism. Here, we found that the Fus3–mitogen-activated protein kinase (MAPK) and the transcription factor regulator of nutrient selection 1 (RNS1) constitute a novel fungal cascade that regulates the degradation of insect cuticular lipids, proteins, and chitin to obtain nutrients for hyphal growth and enter the insect hemocoel for subsequent colonization. On the insect cuticle, Fus3-MAPK physically contacts and phosphorylates RNS1, which facilitates the entry of RNS1 into nuclei. The phosphorylated RNS1 binds to the DNA motif BM2 (ACCAGAC) in its own promoter to self-induce expression, which then activates the expression of genes for degrading cuticular proteins, chitin, and lipids. We further found that the Fus3-MAPK/RNS1 cascade also activates genes for utilizing complex and less-favored nitrogen and carbon sources (casein, colloid chitin, and hydrocarbons) that were not derived from insects, which is repressed by favored organic carbon and nitrogen nutrients, including glucose and glutamine. In conclusion, we discovered a novel regulatory cascade that controls fungal nitrogen and carbon metabolism and is implicated in the entomopathogenicity of M. robertsii. IMPORTANCE Penetration of the cuticle, the first physical barrier to pathogenic fungi, is the prerequisite for fungal infection of insects. In the entomopathogenic fungus Metarhizium robertsii, we found that the Fus3–mitogen-activated protein kinase (MAPK) and the transcription factor regulator of nutrient selection 1 (RNS1) constitute a novel cascade that controls cuticle penetration by regulating degradation of cuticular lipids, proteins, and chitin to obtain nutrients for hyphal growth and entry into the insect hemocoel. In addition, during saprophytic growth, the Fus3-MAPK/RNS1 cascade also activates utilization of complex and less-favored carbon and nitrogen sources that are not derived from insects. The homologs of Fus3-MAPK and RNS1 are widely found in ascomycete filamentous fungi, including saprophytes and pathogens with diverse hosts, suggesting that the regulation of utilization of nitrogen and carbon sources by the Fus3-MAPK/RNS1 cascade could be widespread. Our work provides significant insights into regulation of carbon and nitrogen metabolism in fungi and fungal pathogenesis in insects.
Collapse
|
44
|
Aron O, Wang M, Lin L, Batool W, Lin B, Shabbir A, Wang Z, Tang W. MoGLN2 Is Important for Vegetative Growth, Conidiogenesis, Maintenance of Cell Wall Integrity and Pathogenesis of Magnaporthe oryzae. J Fungi (Basel) 2021; 7:463. [PMID: 34201222 PMCID: PMC8229676 DOI: 10.3390/jof7060463] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 11/17/2022] Open
Abstract
Glutamine is a non-essential amino acid that acts as a principal source of nitrogen and nucleic acid biosynthesis in living organisms. In Saccharomyces cerevisiae, glutamine synthetase catalyzes the synthesis of glutamine. To determine the role of glutamine synthetase in the development and pathogenicity of plant fungal pathogens, we used S. cerevisiae Gln1 amino acid sequence to identify its orthologs in Magnaporthe oryzae and named them MoGln1, MoGln2, and MoGln3. Deletion of MoGLN1 and MoGLN3 showed that they are not involved in the development and pathogenesis of M. oryzae. Conversely, ΔMogln2 was reduced in vegetative growth, experienced attenuated growth on Minimal Medium (MM), and exhibited hyphal autolysis on oatmeal and straw decoction and corn media. Exogenous l-glutamine rescued the growth of ΔMogln2 on MM. The ΔMogln2 mutant failed to produce spores and was nonpathogenic on barley leaves, as it was unable to form an appressorium-like structure from its hyphal tips. Furthermore, deletion of MoGLN2 altered the fungal cell wall integrity, with the ΔMogln2 mutant being hypersensitive to H2O2. MoGln1, MoGln2, and MoGln3 are located in the cytoplasm. Taken together, our results shows that MoGLN2 is important for vegetative growth, conidiation, appressorium formation, maintenance of cell wall integrity, oxidative stress tolerance and pathogenesis of M. oryzae.
Collapse
Affiliation(s)
- Osakina Aron
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| | - Min Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| | - Lianyu Lin
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
| | - Wajjiha Batool
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| | - Birong Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| | - Ammarah Shabbir
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
| | - Zonghua Wang
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
- Marine and Agricultural Biotechnology Center, Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Wei Tang
- Fujian Universities Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (O.A.); (L.L.); (W.B.); (A.S.)
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.W.); (B.L.)
| |
Collapse
|
45
|
Jian Y, Liu Z, Wang H, Chen Y, Yin Y, Zhao Y, Ma Z. Interplay of two transcription factors for recruitment of the chromatin remodeling complex modulates fungal nitrosative stress response. Nat Commun 2021; 12:2576. [PMID: 33958593 PMCID: PMC8102577 DOI: 10.1038/s41467-021-22831-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/25/2021] [Indexed: 02/03/2023] Open
Abstract
Nitric oxide (NO) is a diffusible signaling molecule that modulates animal and plant immune responses. In addition, reactive nitrogen species derived from NO can display antimicrobial activities by reacting with microbial cellular components, leading to nitrosative stress (NS) in pathogens. Here, we identify FgAreB as a regulator of the NS response in Fusarium graminearum, a fungal pathogen of cereal crops. FgAreB serves as a pioneer transcription factor for recruitment of the chromatin-remodeling complex SWI/SNF at the promoters of genes involved in the NS response, thus promoting their transcription. FgAreB plays important roles in fungal infection and growth. Furthermore, we show that a transcription repressor (FgIxr1) competes with the SWI/SNF complex for FgAreB binding, and negatively regulates the NS response. NS, in turn, promotes the degradation of FgIxr1, thus enhancing the recruitment of the SWI/SNF complex by FgAreB.
Collapse
Affiliation(s)
- Yunqing Jian
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Zunyong Liu
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Haixia Wang
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China.
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China.
| |
Collapse
|
46
|
Eseola AB, Ryder LS, Osés-Ruiz M, Findlay K, Yan X, Cruz-Mireles N, Molinari C, Garduño-Rosales M, Talbot NJ. Investigating the cell and developmental biology of plant infection by the rice blast fungus Magnaporthe oryzae. Fungal Genet Biol 2021; 154:103562. [PMID: 33882359 DOI: 10.1016/j.fgb.2021.103562] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/18/2023]
Abstract
Magnaporthe oryzae is the causal agent of rice blast disease, the most widespread and serious disease of cultivated rice. Live cell imaging and quantitative 4D image analysis have provided new insight into the mechanisms by which the fungus infects host cells and spreads rapidly in plant tissue. In this video review article, we apply live cell imaging approaches to understanding the cell and developmental biology of rice blast disease. To gain entry to host plants, M. oryzae develops a specialised infection structure called an appressorium, a unicellular dome-shaped cell which generates enormous turgor, translated into mechanical force to rupture the leaf cuticle. Appressorium development is induced by perception of the hydrophobic leaf surface and nutrient deprivation. Cargo-independent autophagy in the three-celled conidium, controlled by cell cycle regulation, is essential for appressorium morphogenesis. Appressorium maturation involves turgor generation and melanin pigment deposition in the appressorial cell wall. Once a threshold of turgor has been reached, this triggers re-polarisation which requires regulated generation of reactive oxygen species, to facilitate septin GTPase-dependent cytoskeletal re-organisation and re-polarisation of the appressorium to form a narrow, rigid penetration peg. Infection of host tissue requires a further morphogenetic transition to a pseudohyphal-type of growth within colonised rice cells. At the same time the fungus secretes an arsenal of effector proteins to suppress plant immunity. Many effectors are secreted into host cells directly, which involves a specific secretory pathway and a specialised structure called the biotrophic interfacial complex. Cell-to-cell spread of the fungus then requires development of a specialised structure, the transpressorium, that is used to traverse pit field sites, allowing the fungus to maintain host cell membrane integrity as new living plant cells are invaded. Thereafter, the fungus rapidly moves through plant tissue and host cells begin to die, as the fungus switches to necrotrophic growth and disease symptoms develop. These morphogenetic transitions are reviewed in the context of live cell imaging studies.
Collapse
Affiliation(s)
- Alice Bisola Eseola
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR47UH, United Kingdom
| | - Lauren S Ryder
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR47UH, United Kingdom
| | - Míriam Osés-Ruiz
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR47UH, United Kingdom
| | - Kim Findlay
- The John Innes Centre, Norwich Research Park, NR47UH, United Kingdom
| | - Xia Yan
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR47UH, United Kingdom
| | - Neftaly Cruz-Mireles
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR47UH, United Kingdom
| | - Camilla Molinari
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR47UH, United Kingdom
| | - Marisela Garduño-Rosales
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR47UH, United Kingdom
| | - Nicholas J Talbot
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR47UH, United Kingdom.
| |
Collapse
|
47
|
Wang S, Li G, Wei Y, Wang G, Dang Y, Zhang P, Zhang SH. Involvement of the Mitochondrial Protein Tyrosine Phosphatase PTPM1 in the Promotion of Conidiation, Development, and Pathogenicity in Colletotrichum graminicola. Front Microbiol 2021; 11:605738. [PMID: 33519752 PMCID: PMC7841309 DOI: 10.3389/fmicb.2020.605738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
The phosphorylation status of proteins, which is determined by protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), governs many cellular actions. In fungal pathogens, phosphorylation-mediated signal transduction has been considered to be one of the most important mechanisms in pathogenicity. Colletotrichum graminicola is an economically important corn pathogen. However, whether phosphorylation is involved in its pathogenicity is unknown. A mitochondrial protein tyrosine phosphatase gene, designated CgPTPM1, was deduced in C. graminicola through the use of bioinformatics and confirmed by enzyme activity assays and observation of its subcellular localization. We then created a CgPTPM1 deletion mutant (ΔCgPTPM1) to analyze its biological function. The results indicated that the loss of CgPTPM1 dramatically affected the formation of conidia and the development and differentiation into appressoria. However, the colony growth and conidial morphology of the ΔCgPTPM1 strains were unaffected. Importantly, the ΔCgPTPM1 mutant strains exhibited an obvious reduction of virulence, and the delayed infected hyphae failed to expand in the host cells. In comparison with the wild-type, ΔCgPTPM1 accumulated a larger amount of H2O2 and was sensitive to exogenous H2O2. Interestingly, the host cells infected by the mutant also exhibited an increased accumulation of H2O2 around the infection sites. Since the expression of the CgHYR1, CgGST1, CgGLR1, CgGSH1 and CgPAP1 genes was upregulated with the H2O2 treatment, our results suggest that the mitochondrial protein tyrosine phosphatase PTPM1 plays an essential role in promoting the pathogenicity of C. graminicola by regulating the excessive in vivo and in vitro production of H2O2.
Collapse
Affiliation(s)
- Shaowei Wang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Guihua Li
- College of Plant Sciences, Jilin University, Changchun, China
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Yi Wei
- College of Plant Sciences, Jilin University, Changchun, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Gang Wang
- School of Life Sciences, Henan University, Kaifeng, China
| | - Yuejia Dang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Penghui Zhang
- College of Plant Sciences, Jilin University, Changchun, China
| | - Shi-Hong Zhang
- College of Plant Sciences, Jilin University, Changchun, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
48
|
Abstract
This introductory chapter describes the life cycle of Magnaporthe oryzae, the causal agent of rice blast disease. During plant infection, M. oryzae forms a specialized infection structure called an appressorium, which generates enormous turgor, applied as a mechanical force to breach the rice cuticle. Appressoria form in response to physical cues from the hydrophobic rice leaf cuticle and nutrient availability. The signaling pathways involved in perception of surface signals are described and the mechanism by which appressoria function is also introduced. Re-polarization of the appressorium requires a septin complex to organize a toroidal F-actin network at the base of the cell. Septin aggregation requires a turgor-dependent sensor kinase, Sln1, necessary for re-polarization of the appressorium and development of a rigid penetration hypha to rupture the leaf cuticle. Once inside the plant, the fungus undergoes secretion of a large set of effector proteins, many of which are directed into plant cells using a specific secretory pathway. Here they suppress plant immunity, but can also be perceived by rice immune receptors, triggering resistances. M. oryzae then manipulates pit field sites, containing plasmodesmata, to facilitate rapid spread from cell to cell in plant tissue, leading to disease symptom development.
Collapse
|
49
|
Zhu XM, Li L, Cai YY, Wu XY, Shi HB, Liang S, Qu YM, Naqvi NI, Del Poeta M, Dong B, Lin FC, Liu XH. A VASt-domain protein regulates autophagy, membrane tension, and sterol homeostasis in rice blast fungus. Autophagy 2020; 17:2939-2961. [PMID: 33176558 DOI: 10.1080/15548627.2020.1848129] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Sterols are a class of lipids critical for fundamental biological processes and membrane dynamics. These molecules are synthesized in the endoplasmic reticulum (ER) and are transported bi-directionally between the ER and plasma membrane (PM). However, the trafficking mechanism of sterols and their relationship with macroautophagy/autophagy are still poorly understood in the rice blast fungus Magnaporthe oryzae. Here, we identified the VAD1 Analog of StAR-related lipid transfer (VASt) domain-containing protein MoVast1 via co-immunoprecipitation in M. oryzae. Loss of MoVAST1 resulted in conidial defects, impaired appressorium development, and reduced pathogenicity. The MoTor (target of rapamycin in M. oryzae) activity is inhibited because MoVast1 deletion leads to high levels of sterol accumulation in the PM. Site-directed mutagenesis showed that the 902 T site is essential for localization and function of MoVast1. Through filipin or Flipper-TR staining, autophagic flux detection, MoAtg8 lipidation, and drug sensitivity assays, we uncovered that MoVast1 acts as a novel autophagy inhibition factor that monitors tension in the PM by regulating the sterol content, which in turn modulates the activity of MoTor. Lipidomics and transcriptomics analyses further confirmed that MoVast1 is an important regulator of lipid metabolism and the autophagy pathway. Our results revealed and characterized a novel sterol transfer protein important for M. oryzae pathogenicity.Abbreviations: AmB: amphotericin B; ATMT: Agrobacterium tumefaciens-mediated transformation; CM: complete medium; dpi: days post-inoculation; ER: endoplasmic reticulum; Flipper-TR: fluorescent lipid tension reporter; GO: Gene ontology; hpi: hours post-inoculation; IH: invasive hyphae; KEGG: kyoto encyclopedia of genes and genomes; MoTor: target of rapamycin in Magnaporthe oryzae; PalmC: palmitoylcarnitine; PM: plasma membrane; SD-N: synthetic defined medium without amino acids and ammonium sulfate; TOR: target of rapamycin; VASt: VAD1 Analog of StAR-related lipid transfer; YFP, yellow fluorescent protein.
Collapse
Affiliation(s)
- Xue-Ming Zhu
- St Ate Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China.,State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lin Li
- St Ate Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ying-Ying Cai
- St Ate Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xi-Yu Wu
- St Ate Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Huan-Bin Shi
- St Ate Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shuang Liang
- St Ate Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Ying-Min Qu
- St Ate Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Naweed I Naqvi
- Temasek Life Sciences Laboratory, Department of Biological Sciences, National University of Singapore, Singapore
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA.,Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, USA.,Veterans Affairs Medical Center, Northport, New York, USA
| | - Bo Dong
- Markey Cancer Center, University of Kentucky, College of Medicine, Lexington, KY, USA
| | - Fu-Cheng Lin
- St Ate Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China.,State Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiao-Hong Liu
- St Ate Key Laboratory for Managing Biotic and Chemical Treats to the Quality and Safety of Agro-products, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
50
|
Rocha RO, Wilson RA. Magnaporthe oryzae nucleoside diphosphate kinase is required for metabolic homeostasis and redox-mediated host innate immunity suppression. Mol Microbiol 2020; 114:789-807. [PMID: 32936940 DOI: 10.1111/mmi.14580] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/25/2020] [Accepted: 07/19/2020] [Indexed: 12/25/2022]
Abstract
The fungus Magnaporthe oryzae causes blast, the most devastating disease of cultivated rice. After penetrating the leaf cuticle, M. oryzae grows as a biotroph in intimate contact with living rice epidermal cells before necrotic lesions develop. Biotrophic growth requires maintaining metabolic homeostasis while suppressing plant defenses, but the metabolic connections and requirements involved are largely unknown. Here, we characterized the M. oryzae nucleoside diphosphate kinase-encoding gene NDK1 and discovered it was essential for facilitating biotrophic growth by suppressing the host oxidative burst-the first line of plant defense. NDK enzymes reversibly transfer phosphate groups from tri- to diphosphate nucleosides. Correspondingly, intracellular nucleotide pools were perturbed in M. oryzae strains lacking NDK1 through targeted gene deletion, compared to WT. This affected metabolic homeostasis: TCA, purine and pyrimidine intermediates, and oxidized NADP+ , accumulated in Δndk1. cAMP and glutathione were depleted. ROS accumulated in Δndk1 hyphae. Functional appressoria developed on rice leaf sheath surfaces, but Δndk1 invasive hyphal growth was restricted and redox homeostasis was perturbed, resulting in unsuppressed host oxidative bursts that triggered immunity. We conclude Ndk1 modulates intracellular nucleotide pools to maintain redox balance via metabolic homeostasis, thus quenching the host oxidative burst and suppressing rice innate immunity during biotrophy.
Collapse
Affiliation(s)
- Raquel O Rocha
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Richard A Wilson
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|