1
|
Pillai VS, Ravindran S, Krishna G, Abhinand CS, Nelson-Sathi S, Veettil MV. REST Is Restless in Neuronal and Non-Neuronal Virus Infections: An In Silico Analysis-Based Perspective. Viruses 2025; 17:234. [PMID: 40006989 PMCID: PMC11860772 DOI: 10.3390/v17020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Repressor element-1 silencing transcription factor or neuron-restrictive silencer factor (REST/NRSF) is an extensively studied neuronal gene regulator both in neuronal cells and non-neuronal cells. Even though the role of REST in host cellular gene regulation is well established, its role in the establishment of viral infections and its capability to stabilize and destabilize such viral infections are scarcely studied. Co-repressor and DNA modifiers are involved in REST-mediated repressive action of its target genes. The role of REST and co-repressors together or individually in the regulation of viral as well as host genes has been unraveled in a few viruses such as HIV and influenza as well as two of the herpesvirus family members, namely herpes simplex virus type 1 (HSV-1) and Kaposi's sarcoma-associated herpesvirus (KSHV). Here, we summarize all such virus studies involved with REST to gain a better insight into REST biology in virus infections. We also focus on unraveling the possible RE-1 binding sites in the Epstein-Barr virus (EBV) genome, a well-known human oncogenic herpesvirus that is associated with infectious mononucleosis and neoplasms such as B-cell lymphomas, nasopharyngeal carcinoma, gastric carcinoma, etc. An in silico-based approach was employed towards the prediction of such possible RE-1 binding elements in the EBV genome. This review advances the present knowledge of REST in virus infection which will aid in future efforts towards a better understanding of how REST acts in herpesviruses and other viruses for their infections and pathogenesis.
Collapse
Affiliation(s)
- Vinod Soman Pillai
- Institute of Advanced Virology (IAV), Bio 360 Life Sciences Park, Thonnakkal P.O., Thiruvananthapuram 695317, India; (V.S.P.); (S.R.); (G.K.); (C.S.A.)
- Virology Laboratory, Department of Biotechnology, Cochin University of Science and Technology (CUSAT), Cochin 682022, India
| | - Shilpa Ravindran
- Institute of Advanced Virology (IAV), Bio 360 Life Sciences Park, Thonnakkal P.O., Thiruvananthapuram 695317, India; (V.S.P.); (S.R.); (G.K.); (C.S.A.)
| | - Gayathri Krishna
- Institute of Advanced Virology (IAV), Bio 360 Life Sciences Park, Thonnakkal P.O., Thiruvananthapuram 695317, India; (V.S.P.); (S.R.); (G.K.); (C.S.A.)
| | - Chandran S. Abhinand
- Institute of Advanced Virology (IAV), Bio 360 Life Sciences Park, Thonnakkal P.O., Thiruvananthapuram 695317, India; (V.S.P.); (S.R.); (G.K.); (C.S.A.)
| | - Shijulal Nelson-Sathi
- Rajiv Gandhi Center for Biotechnology (RGCB), Cheruvikkal Village Office Road, Aakkulam, Thiruvananthapuram 695585, India;
| | - Mohanan Valiya Veettil
- Institute of Advanced Virology (IAV), Bio 360 Life Sciences Park, Thonnakkal P.O., Thiruvananthapuram 695317, India; (V.S.P.); (S.R.); (G.K.); (C.S.A.)
| |
Collapse
|
2
|
Zhao B. Epstein-Barr Virus B Cell Growth Transformation: The Nuclear Events. Viruses 2023; 15:832. [PMID: 37112815 PMCID: PMC10146190 DOI: 10.3390/v15040832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is the first human DNA tumor virus identified from African Burkitt's lymphoma cells. EBV causes ~200,000 various cancers world-wide each year. EBV-associated cancers express latent EBV proteins, EBV nuclear antigens (EBNAs), and latent membrane proteins (LMPs). EBNA1 tethers EBV episomes to the chromosome during mitosis to ensure episomes are divided evenly between daughter cells. EBNA2 is the major EBV latency transcription activator. It activates the expression of other EBNAs and LMPs. It also activates MYC through enhancers 400-500 kb upstream to provide proliferation signals. EBNALP co-activates with EBNA2. EBNA3A/C represses CDKN2A to prevent senescence. LMP1 activates NF-κB to prevent apoptosis. The coordinated activity of EBV proteins in the nucleus allows efficient transformation of primary resting B lymphocytes into immortalized lymphoblastoid cell lines in vitro.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital and Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
3
|
Role of Epitranscriptomic and Epigenetic Modifications during the Lytic and Latent Phases of Herpesvirus Infections. Microorganisms 2022; 10:microorganisms10091754. [PMID: 36144356 PMCID: PMC9503318 DOI: 10.3390/microorganisms10091754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
Herpesviruses are double-stranded DNA viruses occurring at a high prevalence in the human population and are responsible for a wide array of clinical manifestations and diseases, from mild to severe. These viruses are classified in three subfamilies (Alpha-, Beta- and Gammaherpesvirinae), with eight members currently known to infect humans. Importantly, all herpesviruses can establish lifelong latent infections with symptomatic or asymptomatic lytic reactivations. Accumulating evidence suggest that chemical modifications of viral RNA and DNA during the lytic and latent phases of the infections caused by these viruses, are likely to play relevant roles in key aspects of the life cycle of these viruses by modulating and regulating their replication, establishment of latency and evasion of the host antiviral response. Here, we review and discuss current evidence regarding epitranscriptomic and epigenetic modifications of herpesviruses and how these can influence their life cycles. While epitranscriptomic modifications such as m6A are the most studied to date and relate to positive effects over the replication of herpesviruses, epigenetic modifications of the viral genome are generally associated with defense mechanisms of the host cells to suppress viral gene transcription. However, herpesviruses can modulate these modifications to their own benefit to persist in the host, undergo latency and sporadically reactivate.
Collapse
|
4
|
EBNA2-EBF1 complexes promote MYC expression and metabolic processes driving S-phase progression of Epstein-Barr virus-infected B cells. Proc Natl Acad Sci U S A 2022; 119:e2200512119. [PMID: 35857872 PMCID: PMC9335265 DOI: 10.1073/pnas.2200512119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human tumor virus which preferentially infects resting human B cells. Upon infection in vitro, EBV activates and immortalizes these cells. The viral latent protein EBV nuclear antigen 2 (EBNA2) is essential for B cell activation and immortalization; it targets and binds the cellular and ubiquitously expressed DNA-binding protein CBF1, thereby transactivating a plethora of viral and cellular genes. In addition, EBNA2 uses its N-terminal dimerization (END) domain to bind early B cell factor 1 (EBF1), a pioneer transcription factor specifying the B cell lineage. We found that EBNA2 exploits EBF1 to support key metabolic processes and to foster cell cycle progression of infected B cells in their first cell cycles upon activation. The α1-helix within the END domain was found to promote EBF1 binding. EBV mutants lacking the α1-helix in EBNA2 can infect and activate B cells efficiently, but activated cells fail to complete the early S phase of their initial cell cycle. Expression of MYC, target genes of MYC and E2F, as well as multiple metabolic processes linked to cell cycle progression are impaired in EBVΔα1-infected B cells. Our findings indicate that EBF1 controls B cell activation via EBNA2 and, thus, has a critical role in regulating the cell cycle of EBV-infected B cells. This is a function of EBF1 going beyond its well-known contribution to B cell lineage specification.
Collapse
|
5
|
Ranger-Rogez S. EBV Genome Mutations and Malignant Proliferations. Infect Dis (Lond) 2021. [DOI: 10.5772/intechopen.93194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The Epstein-Barr virus (EBV) is a DNA virus with a relatively stable genome. Indeed, genomic variability is reported to be around 0.002%. However, some regions are more variable such as those carrying latency genes and specially EBNA1, -2, -LP, and LMP1. Tegument genes, particularly BNRF1, BPLF1, and BKRF3, are also quite mutated. For a long time, it has been considered for this ubiquitous virus, which infects a very large part of the population, that particular strains could be the cause of certain diseases. However, the mutations found, in some cases, are more geographically restricted rather than associated with proliferation. In other cases, they appear to be involved in oncogenesis. The objective of this chapter is to provide an update on changes in viral genome sequences in malignancies associated with EBV. We focused on describing the structure and function of the proteins corresponding to the genes mentioned above in order to understand how certain mutations of these proteins could increase the tumorigenic character of this virus. Mutations described in the literature for these proteins were identified by reporting viral and/or cellular functional changes as they were described.
Collapse
|
6
|
Zhang X, Schuhmachers P, Mourão A, Giansanti P, Murer A, Thumann S, Kuklik‐Roos C, Beer S, Hauck SM, Hammerschmidt W, Küppers R, Kuster B, Raab M, Strebhardt K, Sattler M, Münz C, Kempkes B. PLK1-dependent phosphorylation restrains EBNA2 activity and lymphomagenesis in EBV-infected mice. EMBO Rep 2021; 22:e53007. [PMID: 34605140 PMCID: PMC8647151 DOI: 10.15252/embr.202153007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/17/2021] [Accepted: 09/10/2021] [Indexed: 01/17/2023] Open
Abstract
While Epstein-Barr virus (EBV) establishes a life-long latent infection in apparently healthy human immunocompetent hosts, immunodeficient individuals are at particular risk to develop lymphoproliferative B-cell malignancies caused by EBV. A key EBV protein is the transcription factor EBV nuclear antigen 2 (EBNA2), which initiates B-cell proliferation. Here, we combine biochemical, cellular, and in vivo experiments demonstrating that the mitotic polo-like kinase 1 (PLK1) binds to EBNA2, phosphorylates its transactivation domain, and thereby inhibits its biological activity. EBNA2 mutants that impair PLK1 binding or prevent EBNA2 phosphorylation are gain-of-function mutants. They exhibit enhanced transactivation capacities, accelerate the proliferation of infected B cells, and promote the development of monoclonal B-cell lymphomas in infected mice. Thus, PLK1 coordinates the activity of EBNA2 to attenuate the risk of tumor incidences in favor of the establishment of latency in the infected but healthy host.
Collapse
Affiliation(s)
- Xiang Zhang
- Research Unit Gene Vectors, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| | - Patrick Schuhmachers
- Viral ImmunbiologyInstitute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - André Mourão
- Institute of Structural BiologyHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
- Department of ChemistryBavarian NMR CenterTechnical University of MunichGarchingGermany
| | - Piero Giansanti
- Chair of Proteomics and BioanalyticsTechnical University of MunichFreisingGermany
| | - Anita Murer
- Viral ImmunbiologyInstitute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Sybille Thumann
- Research Unit Gene Vectors, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| | - Cornelia Kuklik‐Roos
- Research Unit Gene Vectors, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| | - Sophie Beer
- Research Unit Gene Vectors, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| | - Stefanie M Hauck
- Research Unit Protein Science and Metabolomics and Proteomics Core FacilityHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| | - Wolfgang Hammerschmidt
- Research Unit Gene Vectors, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research)University Hospital EssenEssenGermany
| | - Bernhard Kuster
- Chair of Proteomics and BioanalyticsTechnical University of MunichFreisingGermany
- Bavarian Center for Biomolecular Mass SpectrometryTechnical University of MunichFreisingGermany
| | - Monika Raab
- Department of Gynecology and ObstetricsJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
| | - Klaus Strebhardt
- Department of Gynecology and ObstetricsJohann Wolfgang Goethe UniversityFrankfurt am MainGermany
| | - Michael Sattler
- Institute of Structural BiologyHelmholtz Zentrum MünchenGerman Research Center for Environmental HealthNeuherbergGermany
- Department of ChemistryBavarian NMR CenterTechnical University of MunichGarchingGermany
| | - Christian Münz
- Viral ImmunbiologyInstitute of Experimental ImmunologyUniversity of ZürichZürichSwitzerland
| | - Bettina Kempkes
- Research Unit Gene Vectors, Helmholtz Zentrum MünchenGerman Research Center for Environmental HealthMünchenGermany
| |
Collapse
|
7
|
Ponnusamy R, Khatri R, Correia PB, Wood CD, Mancini EJ, Farrell PJ, West MJ. Increased association between Epstein-Barr virus EBNA2 from type 2 strains and the transcriptional repressor BS69 restricts EBNA2 activity. PLoS Pathog 2019; 15:e1007458. [PMID: 31283782 PMCID: PMC6638984 DOI: 10.1371/journal.ppat.1007458] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 07/18/2019] [Accepted: 06/09/2019] [Indexed: 12/20/2022] Open
Abstract
Natural variation separates Epstein-Barr virus (EBV) into type 1 and type 2 strains. Type 2 EBV is less transforming in vitro due to sequence differences in the EBV transcription factor EBNA2. This correlates with reduced activation of the EBV oncogene LMP1 and some cell genes. Transcriptional activation by type 1 EBNA2 can be suppressed through the binding of two PXLXP motifs in its transactivation domain (TAD) to the dimeric coiled-coil MYND domain (CC-MYND) of the BS69 repressor protein (ZMYND11). We identified a third conserved PXLXP motif in type 2 EBNA2. We found that type 2 EBNA2 peptides containing this motif bound BS69CC-MYND efficiently and that the type 2 EBNA2TAD bound an additional BS69CC-MYND molecule. Full-length type 2 EBNA2 also bound BS69 more efficiently in pull-down assays. Molecular weight analysis and low-resolution structures obtained using small-angle X-ray scattering showed that three BS69CC-MYND dimers bound two molecules of type 2 EBNA2TAD, in line with the dimeric state of full-length EBNA2 in vivo. Importantly, mutation of the third BS69 binding motif in type 2 EBNA2 improved B-cell growth maintenance and the transcriptional activation of the LMP1 and CXCR7 genes. Our data indicate that increased association with BS69 restricts the function of type 2 EBNA2 as a transcriptional activator and driver of B cell growth and may contribute to reduced B-cell transformation by type 2 EBV. Epstein-Barr virus (EBV) drives the development of many human cancers worldwide including specific types of lymphoma and carcinoma. EBV infects B lymphocytes and immortalises them, thus contributing to lymphoma development. The virus promotes B lymphocyte growth and survival by altering the level at which hundreds of genes are expressed. The EBV protein EBNA2 is known to activate many growth-promoting genes. Natural variation in the sequence of EBNA2 defines the two main EBV strains: type 1 and type 2. Type 2 strains immortalise B lymphocytes less efficiency and activate some growth genes poorly, although the mechanism of this difference is unclear. We now show that sequence variation in type 2 EBNA2 creates a third site of interaction for the repressor protein (BS69, ZMYND11). We have characterised the complex formed between type 2 EBNA2 and BS69 and show that three dimers of BS69 form a bridged complex with two molecules of type 2 EBNA2. We demonstrate that mutation of the additional BS69 interaction site in type 2 EBNA2 improves its growth-promoting and gene induction function. Our results therefore highlight a molecular mechanism that may contribute to the different B lymphocyte growth promoting activities of EBV strains. This aids our understanding of immortalisation by EBV.
Collapse
Affiliation(s)
- Rajesh Ponnusamy
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Ritika Khatri
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Paulo B. Correia
- Section of Virology, Imperial College London, London, United Kingdom
| | - C. David Wood
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Erika J. Mancini
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
| | - Paul J. Farrell
- Section of Virology, Imperial College London, London, United Kingdom
| | - Michelle J. West
- School of Life Sciences, University of Sussex, Falmer, Brighton, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Mühe J, Wang F. Species-specific functions of Epstein-Barr virus nuclear antigen 2 (EBNA2) reveal dual roles for initiation and maintenance of B cell immortalization. PLoS Pathog 2017; 13:e1006772. [PMID: 29261800 PMCID: PMC5754137 DOI: 10.1371/journal.ppat.1006772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 01/04/2018] [Accepted: 11/27/2017] [Indexed: 01/08/2023] Open
Abstract
Epstein-Barr virus (EBV) and related lymphocryptoviruses (LCV) from non-human primates infect B cells, transform their growth to facilitate life-long viral persistence in the host, and contribute to B cell oncogenesis. Co-evolution of LCV with their primate hosts has led to species-specificity so that LCVs preferentially immortalize B cells from their natural host in vitro. We investigated whether the master regulator of transcription, EBV nuclear antigen 2 (EBNA2), is involved in LCV species-specificity. Using recombinant EBVs, we show that EBNA2 orthologues of LCV isolated from chimpanzees, baboons, cynomolgus or rhesus macaques cannot replace EBV EBNA2 for the immortalization of human B cells. Thus, LCV species-specificity is functionally linked to viral proteins expressed during latent, growth-transforming infection. In addition, we identified three independent domains within EBNA2 that act through species-specific mechanisms. Importantly, the EBNA2 orthologues and species-specific EBNA2 domains separate unique roles for EBNA2 in the initiation of B cell immortalization from those responsible for maintaining the immortalized state. Investigating LCV species-specificity provides a novel approach to identify critical steps underlying EBV-induced B cell growth transformation, persistent infection, and oncogenesis.
Collapse
Affiliation(s)
- Janine Mühe
- Department of Medicine, Brigham & Women's Hospital, Boston, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States of America
| | - Fred Wang
- Department of Medicine, Brigham & Women's Hospital, Boston, United States of America
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States of America
- * E-mail:
| |
Collapse
|
9
|
Glaser LV, Rieger S, Thumann S, Beer S, Kuklik-Roos C, Martin DE, Maier KC, Harth-Hertle ML, Grüning B, Backofen R, Krebs S, Blum H, Zimmer R, Erhard F, Kempkes B. EBF1 binds to EBNA2 and promotes the assembly of EBNA2 chromatin complexes in B cells. PLoS Pathog 2017; 13:e1006664. [PMID: 28968461 PMCID: PMC5638620 DOI: 10.1371/journal.ppat.1006664] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 10/12/2017] [Accepted: 09/22/2017] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV) infection converts resting human B cells into permanently proliferating lymphoblastoid cell lines (LCLs). The Epstein-Barr virus nuclear antigen 2 (EBNA2) plays a key role in this process. It preferentially binds to B cell enhancers and establishes a specific viral and cellular gene expression program in LCLs. The cellular DNA binding factor CBF1/CSL serves as a sequence specific chromatin anchor for EBNA2. The ubiquitous expression of this highly conserved protein raises the question whether additional cellular factors might determine EBNA2 chromatin binding selectively in B cells. Here we used CBF1 deficient B cells to identify cellular genes up or downregulated by EBNA2 as well as CBF1 independent EBNA2 chromatin binding sites. Apparently, CBF1 independent EBNA2 target genes and chromatin binding sites can be identified but are less frequent than CBF1 dependent EBNA2 functions. CBF1 independent EBNA2 binding sites are highly enriched for EBF1 binding motifs. We show that EBNA2 binds to EBF1 via its N-terminal domain. CBF1 proficient and deficient B cells require EBF1 to bind to CBF1 independent binding sites. Our results identify EBF1 as a co-factor of EBNA2 which conveys B cell specificity to EBNA2. Epstein-Barr virus (EBV) infection is closely linked to cancer development. At particular risk are immunocompromised individuals like post-transplant patients which can develop B cell lymphomas. In healthy individuals EBV preferentially infects B cells and establishes a latent infection without causing apparent clinical symptoms in most cases. Upon infection, Epstein-Barr virus nuclear antigen 2 (EBNA2) initiates a B cell specific gene expression program that causes activation and proliferation of the infected cells. EBNA2 is a transcription factor well known to use a cellular protein, CBF1/CSL, as a DNA adaptor. CBF1/CSL is a sequence specific DNA binding protein robustly expressed in all tissues. Here we show that EBNA2 can form complexes with early B cell factor 1 (EBF1), a B cell specific DNA binding transcription factor, and EBF1 stabilizes EBNA2 chromatin binding. This EBNA2/EBF1 complex might serve as a novel target to develop future small molecule strategies that act as antivirals in latent B cell infection.
Collapse
Affiliation(s)
- Laura V Glaser
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| | - Simone Rieger
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| | - Sybille Thumann
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| | - Sophie Beer
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| | | | | | | | | | - Björn Grüning
- Bioinformatics, Institute for Informatics, Albert-Ludwigs-University, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics, Institute for Informatics, Albert-Ludwigs-University, Freiburg, Germany
| | - Stefan Krebs
- Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Helmut Blum
- Gene Center, Ludwig-Maximilians-University, Munich, Germany
| | - Ralf Zimmer
- Teaching and Research Unit Bioinformatics, Institute of Informatics, Ludwig-Maximilians-University, Munich, Germany
| | - Florian Erhard
- Teaching and Research Unit Bioinformatics, Institute of Informatics, Ludwig-Maximilians-University, Munich, Germany
| | - Bettina Kempkes
- Department of Gene Vectors, Helmholtz Center Munich, Munich, Germany
| |
Collapse
|