1
|
Budden KF, Gellatly SL, Vaughan A, Amorim N, Horvat JC, Hansbro NG, Wood DLA, Hugenholtz P, Dennis PG, Wark PAB, Hansbro PM. Probiotic Bifidobacterium longum subsp. longum Protects against Cigarette Smoke-Induced Inflammation in Mice. Int J Mol Sci 2022; 24:252. [PMID: 36613693 PMCID: PMC9820259 DOI: 10.3390/ijms24010252] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/18/2022] [Accepted: 12/20/2022] [Indexed: 12/25/2022] Open
Abstract
Bifidobacterium are prominent gut commensals that produce the short-chain fatty acid (SCFA) acetate, and they are often used as probiotics. Connections between the gut and the lung, termed the gut-lung axis, are regulated by the microbiome. The gut-lung axis is increasingly implicated in cigarette smoke-induced diseases, and cigarette smoke exposure has been associated with depletion of Bifidobacterium species. In this study, we assessed the impact of acetate-producing Bifidobacterium longum subsp. longum (WT) and a mutant strain with an impaired acetate production capacity (MUT) on cigarette smoke-induced inflammation. The mice were treated with WT or MUT B. longum subsp. longum and exposed to cigarette smoke for 8 weeks before assessments of lung inflammation, lung tissue gene expression and cecal SCFAs were performed. Both strains of B. longum subsp. longum reduced lung inflammation, inflammatory cytokine expression and adhesion factor expression and alleviated cigarette smoke-induced depletion in caecum butyrate. Thus, the probiotic administration of B. longum subsp. longum, irrespective of its acetate-producing capacity, alleviated cigarette smoke-induced inflammation and the depletion of cecal butyrate levels.
Collapse
Affiliation(s)
- Kurtis F. Budden
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, Hunter Medical Research Institute and The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Shaan L. Gellatly
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, Hunter Medical Research Institute and The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Annalicia Vaughan
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Nadia Amorim
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Jay C. Horvat
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, Hunter Medical Research Institute and The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Nicole G. Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| | - David L. A. Wood
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Paul G. Dennis
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter A. B. Wark
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, Hunter Medical Research Institute and The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Philip M. Hansbro
- Priority Research Centre for Healthy Lungs and Immune Health Research Program, Hunter Medical Research Institute and The University of Newcastle, Callaghan, NSW 2308, Australia
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
2
|
Regulatory network of miRNA, lncRNA, transcription factor and target immune response genes in bovine mastitis. Sci Rep 2021; 11:21899. [PMID: 34753991 PMCID: PMC8578396 DOI: 10.1038/s41598-021-01280-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Pre- and post-transcriptional modifications of gene expression are emerging as foci of disease studies, with some studies revealing the importance of non-coding transcripts, like long non-coding RNAs (lncRNAs) and microRNAs (miRNAs). We hypothesize that transcription factors (TFs), lncRNAs and miRNAs modulate immune response in bovine mastitis and could potentially serve as disease biomarkers and/or drug targets. With computational analyses, we identified candidate genes potentially regulated by miRNAs and lncRNAs base pair complementation and thermodynamic stability of binding regions. Remarkably, we found six miRNAs, two being bta-miR-223 and bta-miR-24-3p, to bind to several targets. LncRNAs NONBTAT027932.1 and XR_003029725.1, were identified to target several genes. Functional and pathway analyses revealed lipopolysaccharide-mediated signaling pathway, regulation of chemokine (C-X-C motif) ligand 2 production and regulation of IL-23 production among others. The overarching interactome deserves further in vitro/in vivo explication for specific molecular regulatory mechanisms during bovine mastitis immune response and could lay the foundation for development of disease markers and therapeutic intervention.
Collapse
|
3
|
Nair PM, Starkey MR, Haw TJ, Liu G, Collison AM, Mattes J, Wark PA, Morris JC, Verrills NM, Clark AR, Ammit AJ, Hansbro PM. Enhancing tristetraprolin activity reduces the severity of cigarette smoke-induced experimental chronic obstructive pulmonary disease. Clin Transl Immunology 2019; 8:e01084. [PMID: 31921419 PMCID: PMC6946917 DOI: 10.1002/cti2.1084] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/29/2019] [Accepted: 09/29/2019] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Chronic obstructive pulmonary disease (COPD) is a progressive disease that causes significant mortality and morbidity worldwide and is primarily caused by the inhalation of cigarette smoke (CS). Lack of effective treatments for COPD means there is an urgent need to identify new therapeutic strategies for the underlying mechanisms of pathogenesis. Tristetraprolin (TTP) encoded by the Zfp36 gene is an anti-inflammatory protein that induces mRNA decay, especially of transcripts encoding inflammatory cytokines, including those implicated in COPD. METHODS Here, we identify a novel protective role for TTP in CS-induced experimental COPD using Zfp36aa/aa mice, a genetically modified mouse strain in which endogenous TTP cannot be phosphorylated, rendering it constitutively active as an mRNA-destabilising factor. TTP wild-type (Zfp36 +/+) and Zfp36aa/aa active C57BL/6J mice were exposed to CS for four days or eight weeks, and the impact on acute inflammatory responses or chronic features of COPD, respectively, was assessed. RESULTS After four days of CS exposure, Zfp36aa/aa mice had reduced numbers of airway neutrophils and lymphocytes and mRNA expression levels of cytokines compared to wild-type controls. After eight weeks, Zfp36aa/aa mice had reduced pulmonary inflammation, airway remodelling and emphysema-like alveolar enlargement, and lung function was improved. We then used pharmacological treatments in vivo (protein phosphatase 2A activator, AAL(S), and the proteasome inhibitor, bortezomib) to promote the activation and stabilisation of TTP and show that hallmark features of CS-induced experimental COPD were ameliorated. CONCLUSION Collectively, our study provides the first evidence for the therapeutic potential of inducing TTP as a treatment for COPD.
Collapse
Affiliation(s)
- Prema M Nair
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
- School of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of NewcastleCallaghanNSWAustralia
| | - Malcolm R Starkey
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
- School of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of NewcastleCallaghanNSWAustralia
| | - Tatt Jhong Haw
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
- School of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of NewcastleCallaghanNSWAustralia
| | - Gang Liu
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
- School of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of NewcastleCallaghanNSWAustralia
| | - Adam M Collison
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
| | - Joerg Mattes
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
| | - Peter A. Wark
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
| | | | - Nikki M Verrills
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
- School of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of NewcastleCallaghanNSWAustralia
| | - Andrew R Clark
- Institute of Inflammation and AgeingCollege of Medical and Dental SciencesUniversity of BirminghamBirminghamUK
| | - Alaina J Ammit
- Woolcock Emphysema CentreWoolcock Institute of Medical ResearchUniversity of SydneyNSWAustralia
- School of Life SciencesFaculty of ScienceUniversity of Technology SydneySydneyNSWAustralia
| | - Philip M Hansbro
- Priority Research Centres for Healthy Lungs, Grow Up Well and Cancer Research, Innovation and TranslationHunter Medical Research InstituteUniversity of NewcastleNSWAustralia
- School of Biomedical Sciences and PharmacyFaculty of Health and MedicineUniversity of NewcastleCallaghanNSWAustralia
- School of Life SciencesFaculty of ScienceUniversity of Technology SydneySydneyNSWAustralia
- Centenary InstituteCentre for InflammationUniversity of Technology SydneySydneyNSWAustralia
| |
Collapse
|
4
|
Ali MK, Kim RY, Karim R, Mayall JR, Martin KL, Shahandeh A, Abbasian F, Starkey MR, Loustaud-Ratti V, Johnstone D, Milward EA, Hansbro PM, Horvat JC. Role of iron in the pathogenesis of respiratory disease. Int J Biochem Cell Biol 2017; 88:181-195. [PMID: 28495571 DOI: 10.1016/j.biocel.2017.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022]
Abstract
Iron is essential for many biological processes, however, too much or too little iron can result in a wide variety of pathological consequences, depending on the organ system, tissue or cell type affected. In order to reduce pathogenesis, iron levels are tightly controlled in throughout the body by regulatory systems that control iron absorption, systemic transport and cellular uptake and storage. Altered iron levels and/or dysregulated homeostasis have been associated with several lung diseases, including chronic obstructive pulmonary disease, lung cancer, cystic fibrosis, idiopathic pulmonary fibrosis and asthma. However, the mechanisms that underpin these associations and whether iron plays a key role in the pathogenesis of lung disease are yet to be fully elucidated. Furthermore, in order to survive and replicate, pathogenic micro-organisms have evolved strategies to source host iron, including freeing iron from cells and proteins that store and transport iron. To counter these microbial strategies, mammals have evolved immune-mediated defence mechanisms that reduce iron availability to pathogens. This interplay between iron, infection and immunity has important ramifications for the pathogenesis and management of human respiratory infections and diseases. An increased understanding of the role that iron plays in the pathogenesis of lung disease and respiratory infections may help inform novel therapeutic strategies. Here we review the clinical and experimental evidence that highlights the potential importance of iron in respiratory diseases and infections.
Collapse
Affiliation(s)
- Md Khadem Ali
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Richard Y Kim
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Rafia Karim
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Jemma R Mayall
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Kristy L Martin
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Ali Shahandeh
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Firouz Abbasian
- Global Centre for Environmental Remediation, Faculty of Science, the University of Newcastle, Callaghan, NSW 2308, Australia
| | - Malcolm R Starkey
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | | | - Daniel Johnstone
- Bosch Institute and Discipline of Physiology, The University of Sydney, Sydney NSW 2000, Australia
| | - Elizabeth A Milward
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia
| | - Jay C Horvat
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan NSW 2308, Australia.
| |
Collapse
|
5
|
Dhouib R, Othman DSMP, Lin V, Lai XJ, Wijesinghe HGS, Essilfie AT, Davis A, Nasreen M, Bernhardt PV, Hansbro PM, McEwan AG, Kappler U. A Novel, Molybdenum-Containing Methionine Sulfoxide Reductase Supports Survival of Haemophilus influenzae in an In vivo Model of Infection. Front Microbiol 2016; 7:1743. [PMID: 27933034 PMCID: PMC5122715 DOI: 10.3389/fmicb.2016.01743] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/18/2016] [Indexed: 01/07/2023] Open
Abstract
Haemophilus influenzae is a host adapted human mucosal pathogen involved in a variety of acute and chronic respiratory tract infections, including chronic obstructive pulmonary disease and asthma, all of which rely on its ability to efficiently establish continuing interactions with the host. Here we report the characterization of a novel molybdenum enzyme, TorZ/MtsZ that supports interactions of H. influenzae with host cells during growth in oxygen-limited environments. Strains lacking TorZ/MtsZ showed a reduced ability to survive in contact with epithelial cells as shown by immunofluorescence microscopy and adherence/invasion assays. This included a reduction in the ability of the strain to invade human epithelial cells, a trait that could be linked to the persistence of H. influenzae. The observation that in a murine model of H. influenzae infection, strains lacking TorZ/MtsZ were almost undetectable after 72 h of infection, while ∼3.6 × 103 CFU/mL of the wild type strain were measured under the same conditions is consistent with this view. To understand how TorZ/MtsZ mediates this effect we purified and characterized the enzyme, and were able to show that it is an S- and N-oxide reductase with a stereospecificity for S-sulfoxides. The enzyme converts two physiologically relevant sulfoxides, biotin sulfoxide and methionine sulfoxide (MetSO), with the kinetic parameters suggesting that MetSO is the natural substrate of this enzyme. TorZ/MtsZ was unable to repair sulfoxides in oxidized Calmodulin, suggesting that a role in cell metabolism/energy generation and not protein repair is the key function of this enzyme. Phylogenetic analyses showed that H. influenzae TorZ/MtsZ is only distantly related to the Escherichia coli TorZ TMAO reductase, but instead is a representative of a new, previously uncharacterized clade of molybdenum enzyme that is widely distributed within the Pasteurellaceae family of pathogenic bacteria. It is likely that MtsZ/TorZ has a similar role in supporting host/pathogen interactions in other members of the Pasteurellaceae, which includes both human and animal pathogens.
Collapse
Affiliation(s)
- Rabeb Dhouib
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Dk. Seti Maimonah Pg Othman
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Victor Lin
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Xuanjie J. Lai
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Hewa G. S. Wijesinghe
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Ama-Tawiah Essilfie
- Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, New LambtonNSW, Australia
| | - Amanda Davis
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
- Department of Chemistry and Biochemistry, The University of Arizona, TucsonAZ, USA
| | - Marufa Nasreen
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Paul V. Bernhardt
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Philip M. Hansbro
- Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, New LambtonNSW, Australia
| | - Alastair G. McEwan
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| | - Ulrike Kappler
- Centre for Metals in Biology/Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. LuciaQLD, Australia
| |
Collapse
|