1
|
de Thoisy B, Duron O, Epelboin L, Musset L, Quénel P, Roche B, Binetruy F, Briolant S, Carvalho L, Chavy A, Couppié P, Demar M, Douine M, Dusfour I, Epelboin Y, Flamand C, Franc A, Ginouvès M, Gourbière S, Houël E, Kocher A, Lavergne A, Le Turnier P, Mathieu L, Murienne J, Nacher M, Pelleau S, Prévot G, Rousset D, Roux E, Schaub R, Talaga S, Thill P, Tirera S, Guégan JF. Ecology, evolution, and epidemiology of zoonotic and vector-borne infectious diseases in French Guiana: Transdisciplinarity does matter to tackle new emerging threats. INFECTION GENETICS AND EVOLUTION 2021; 93:104916. [PMID: 34004361 DOI: 10.1016/j.meegid.2021.104916] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/09/2021] [Accepted: 05/12/2021] [Indexed: 02/06/2023]
Abstract
French Guiana is a European ultraperipheric region located on the northern Atlantic coast of South America. It constitutes an important forested region for biological conservation in the Neotropics. Although very sparsely populated, with its inhabitants mainly concentrated on the Atlantic coastal strip and along the two main rivers, it is marked by the presence and development of old and new epidemic disease outbreaks, both research and health priorities. In this review paper, we synthetize 15 years of multidisciplinary and integrative research at the interface between wildlife, ecosystem modification, human activities and sociodemographic development, and human health. This study reveals a complex epidemiological landscape marked by important transitional changes, facilitated by increased interconnections between wildlife, land-use change and human occupation and activity, human and trade transportation, demography with substantial immigration, and identified vector and parasite pharmacological resistance. Among other French Guianese characteristics, we demonstrate herein the existence of more complex multi-host disease life cycles than previously described for several disease systems in Central and South America, which clearly indicates that today the greater promiscuity between wildlife and humans due to demographic and economic pressures may offer novel settings for microbes and their hosts to circulate and spread. French Guiana is a microcosm that crystallizes all the current global environmental, demographic and socioeconomic change conditions, which may favor the development of ancient and future infectious diseases.
Collapse
Affiliation(s)
- Benoît de Thoisy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne Cedex, French Guiana.
| | - Olivier Duron
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Centre IRD de Montpellier, Montpellier, France; Centre de Recherche en Écologie et Évolution de la Santé, Montpellier, France
| | - Loïc Epelboin
- Infectious Diseases Department, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Lise Musset
- Laboratoire de Parasitologie, Centre Collaborateur OMS Pour La Surveillance Des Résistances Aux Antipaludiques, Centre National de Référence du Paludisme, Pôle zones Endémiques, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Philippe Quénel
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR-S 1085 Rennes, France
| | - Benjamin Roche
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Centre IRD de Montpellier, Montpellier, France; Centre de Recherche en Écologie et Évolution de la Santé, Montpellier, France
| | - Florian Binetruy
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Centre IRD de Montpellier, Montpellier, France
| | - Sébastien Briolant
- Unité Parasitologie et Entomologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France; Aix Marseille Université, IRD, SSA, AP-HM, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), France; IHU Méditerranée Infection, Marseille, France
| | | | - Agathe Chavy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne Cedex, French Guiana
| | - Pierre Couppié
- Dermatology Department, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Magalie Demar
- TBIP, Université de Guyane, Cayenne, French Guiana; Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR 9017-CIIL Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Maylis Douine
- Centre d'Investigation Clinique Antilles-Guyane, Inserm 1424, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Isabelle Dusfour
- Département de Santé Globale, Institut Pasteur, Paris, France; Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Cayenne, French Guiana
| | - Yanouk Epelboin
- Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Cayenne, French Guiana
| | - Claude Flamand
- Epidemiology Unit, Institut Pasteur de la Guyane, Cayenne, French Guiana; Mathematical Modelling of Infectious Diseases Unit, Institut Pasteur, UMR 2000, CNRS, Paris, France
| | - Alain Franc
- UMR BIOGECO, INRAE, Université de Bordeaux, Cestas, France; Pleiade, EPC INRIA-INRAE-CNRS, Université de Bordeaux Talence, France
| | - Marine Ginouvès
- TBIP, Université de Guyane, Cayenne, French Guiana; Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR 9017-CIIL Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Sébastien Gourbière
- UMR 5096 Laboratoire Génome et Développement des Plantes, Université de Perpignan Via Domitia, Perpignan, France
| | - Emeline Houël
- CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRAE, Université des Antilles, Université de Guyane, Cayenne, France
| | - Arthur Kocher
- Transmission, Infection, Diversification & Evolution Group, Max-Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany; Laboratoire Evolution et Diversité Biologique (UMR 5174), Université de Toulouse, CNRS, IRD, UPS, Toulouse, France
| | - Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne Cedex, French Guiana
| | - Paul Le Turnier
- Service de Maladies Infectieuses et Tropicales, Hôtel Dieu - INSERM CIC 1413, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Luana Mathieu
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR-S 1085 Rennes, France
| | - Jérôme Murienne
- Laboratoire Evolution et Diversité Biologique (UMR 5174), Université de Toulouse, CNRS, IRD, UPS, Toulouse, France
| | - Mathieu Nacher
- Centre d'Investigation Clinique Antilles-Guyane, Inserm 1424, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Stéphane Pelleau
- Université de Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail), UMR-S 1085 Rennes, France; Malaria: Parasites and Hosts, Institut Pasteur, Paris, France
| | - Ghislaine Prévot
- TBIP, Université de Guyane, Cayenne, French Guiana; Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR 9017-CIIL Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Dominique Rousset
- Laboratoire de Virologie, Institut Pasteur de la Guyane, Cayenne Cedex, French Guiana
| | - Emmanuel Roux
- ESPACE-DEV (Institut de Recherche pour le Développement, Université de la Réunion, Université des Antilles, Université de Guyane, Université de Montpellier, Montpellier, France; International Joint Laboratory "Sentinela" Fundação Oswaldo Cruz, Universidade de Brasília, Institut de Recherche pour le Développement, Rio de Janeiro RJ-21040-900, Brazil
| | - Roxane Schaub
- TBIP, Université de Guyane, Cayenne, French Guiana; Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR 9017-CIIL Centre d'Infection et d'Immunité de Lille, Lille, France; Centre d'Investigation Clinique Antilles-Guyane, Inserm 1424, Centre Hospitalier de Cayenne, Cayenne, French Guiana
| | - Stanislas Talaga
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Centre IRD de Montpellier, Montpellier, France; Institut Pasteur de la Guyane, Vectopôle Amazonien Emile Abonnenc, Cayenne, French Guiana
| | - Pauline Thill
- Service Universitaire des Maladies Infectieuses et du Voyageur, Centre Hospitalier Dron, Tourcoing, France
| | - Sourakhata Tirera
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne Cedex, French Guiana
| | - Jean-François Guégan
- UMR MIVEGEC, IRD, CNRS, Université de Montpellier, Centre IRD de Montpellier, Montpellier, France; UMR ASTRE, INRAE, CIRAD, Université de Montpellier, Montpellier, France.
| |
Collapse
|
2
|
Ezanno P, Picault S, Beaunée G, Bailly X, Muñoz F, Duboz R, Monod H, Guégan JF. Research perspectives on animal health in the era of artificial intelligence. Vet Res 2021; 52:40. [PMID: 33676570 PMCID: PMC7936489 DOI: 10.1186/s13567-021-00902-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/20/2021] [Indexed: 01/08/2023] Open
Abstract
Leveraging artificial intelligence (AI) approaches in animal health (AH) makes it possible to address highly complex issues such as those encountered in quantitative and predictive epidemiology, animal/human precision-based medicine, or to study host × pathogen interactions. AI may contribute (i) to diagnosis and disease case detection, (ii) to more reliable predictions and reduced errors, (iii) to representing more realistically complex biological systems and rendering computing codes more readable to non-computer scientists, (iv) to speeding-up decisions and improving accuracy in risk analyses, and (v) to better targeted interventions and anticipated negative effects. In turn, challenges in AH may stimulate AI research due to specificity of AH systems, data, constraints, and analytical objectives. Based on a literature review of scientific papers at the interface between AI and AH covering the period 2009-2019, and interviews with French researchers positioned at this interface, the present study explains the main AH areas where various AI approaches are currently mobilised, how it may contribute to renew AH research issues and remove methodological or conceptual barriers. After presenting the possible obstacles and levers, we propose several recommendations to better grasp the challenge represented by the AH/AI interface. With the development of several recent concepts promoting a global and multisectoral perspective in the field of health, AI should contribute to defract the different disciplines in AH towards more transversal and integrative research.
Collapse
Affiliation(s)
| | | | | | | | - Facundo Muñoz
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
| | - Raphaël Duboz
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- Sorbonne Université, IRD, UMMISCO, Bondy, France
| | - Hervé Monod
- Université Paris-Saclay, INRAE, Jouy-en-Josas, MaIAGE France
| | - Jean-François Guégan
- ASTRE, Univ Montpellier, CIRAD, INRAE, Montpellier, France
- MIVEGEC, IRD, CNRS, Univ Montpellier, Montpellier, France
- Comité National Français Sur Les Changements Globaux, Paris, France
| |
Collapse
|
3
|
Ippolito G, Lauria FN, Locatelli F, Magrini N, Montaldo C, Sadun R, Maeurer M, Strada G, Vairo F, Curiale S, Lafont A, di Caro A, Capobianchi MR, Meilicke R, Petersen E, Zumla A, Pletschette M. Lessons from the COVID-19 Pandemic-Unique Opportunities for Unifying, Revamping and Reshaping Epidemic Preparedness of Europe's Public Health Systems. Int J Infect Dis 2020; 101:361-366. [PMID: 33152511 PMCID: PMC9186783 DOI: 10.1016/j.ijid.2020.10.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Giuseppe Ippolito
- National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy.
| | | | - Franco Locatelli
- Sapienza, University of Rome and Department of Pediatric Hematology and Oncology IRCCS Ospedale Pediatrico Bambino Gesù, Italy.
| | | | - Chiara Montaldo
- National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy.
| | - Raffaella Sadun
- Harvard University, Harvard Business School, Boston, MA, USA.
| | - Markus Maeurer
- Champalimaud Centre for the Unknown, Lisbon, Portugal; I Medical Clinic, University of Mainz, Germany.
| | | | - Francesco Vairo
- National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy.
| | - Salvatore Curiale
- National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy.
| | | | - Antonino di Caro
- National Institute for Infectious Diseases, Lazzaro Spallanzani, Rome, Italy.
| | | | | | - Eskild Petersen
- Institute for Clinical Medicine, Faculty of Health Sciences, University of Aarhus, Denmark; European Society for Clinical Microbiology and Infectious Diseases [ESCMID] Task Force for Emerging Infections, Basel, Switzerland.
| | - Alimuddin Zumla
- Division of Infection and Immunity, University College London, London, UK; NIHR Biomedical Research Centre, University College London Hospitals, London, UK.
| | - Michel Pletschette
- Department of Tropical and Infectious Diseases, Medical Center of the University of Munich, Munich, Germany.
| |
Collapse
|
4
|
Le Turnier P, Leport C, Martin P, Jadand C, Hoen B, Guégan JF. Multi-sectorial research is paramount for preventing and controlling emerging infectious diseases. Rev Epidemiol Sante Publique 2019; 68:133-136. [PMID: 31862272 PMCID: PMC7130708 DOI: 10.1016/j.respe.2019.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/04/2019] [Indexed: 12/19/2022] Open
Abstract
The social, economic and political consequences of emerging infectious disease (EID) may escape the sphere in which they first arise. In recent years, many EIDs have revealed the close links between human, animal and plant health, highlighting the need for multi-scale, multisectorial EID management. Human beings play a dual role in EID because they can promote their development through numerous human-environment interfaces and expanding international trade. On the other hand, their ability to analyze, interpret and act on the determinants of EID allows them to access the expertise necessary to control these EIDs. This expertise must be constantly adapted to remain relevant as the EID evolves, particularly in its virulence or transmission channels. Flexibility should become an inherent part of the expertise-based decision-making process even if it means going backwards. A certain degree of transparency and feedback to citizens is necessary for the acceptability of political decisions basing on expertise. A key step in the management of EID is the appropriate management of the early signal of infectious emergence. This step combines multidisciplinary skills allowing access to the best pathway for containing EID by implementing early countermeasures adapted to the situation. New digital technologies could significantly improve this early detection phase. Finally, experts have a fundamental role to play because they are located at the interface between operational actors and decision-makers, which allows multidirectional feedback, ideally in real time, between professional actors and decision makers. To combat current and future EIDs, expertise should be based on a multi-sectorial approach, promotion of collegiality and continuously adaptation to the evolving nature of EIDs.
Collapse
Affiliation(s)
- P Le Turnier
- Service des maladies infectieuses et tropicales, Hôtel-Dieu, centre hospitalier universitaire de Nantes, Nantes, France; Centre d'investigation clinique unité d'investigation clinique 1413, institut national de la santé et de la recherche médicale, centre hospitalier universitaire de Nantes, Nantes, France.
| | - C Leport
- IAME, UMR 1137, Inserm, université Paris Diderot, Paris, France; Unité de coordination du risque épidémique et biologique, Assistance publique-Hôpitaux de Paris, Paris, France
| | - P Martin
- Consultant near the international network of Pasteur Institutes, Paris, France
| | - C Jadand
- IAME, UMR 1137, Inserm, université Paris Diderot, Paris, France
| | - B Hoen
- Maladies infectieuses et tropicales, centre hospitalier universitaire de Nancy, Nancy, France
| | - J-F Guégan
- UMR ASTRE, INRA, Cirad, université de Montpellier, et UMR MIVEGEC IRD, CNRS, université de Montpelier, Montpellier, France; Future Earth United Nations International Programme, OneHealth Global Research Programme, Paris, France
| |
Collapse
|
5
|
Rizzoli A, Tagliapietra V, Cagnacci F, Marini G, Arnoldi D, Rosso F, Rosà R. Parasites and wildlife in a changing world: The vector-host- pathogen interaction as a learning case. Int J Parasitol Parasites Wildl 2019; 9:394-401. [PMID: 31341772 PMCID: PMC6630057 DOI: 10.1016/j.ijppaw.2019.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
In the Anthropocene context, changes in climate, land use and biodiversity are considered among the most important anthropogenic factors affecting parasites-host interaction and wildlife zoonotic diseases emergence. Transmission of vector borne pathogens are particularly sensitive to these changes due to the complexity of their cycle, where the transmission of a microparasite depends on the interaction between its vector, usually a macroparasite, and its reservoir host, in many cases represented by a wildlife vertebrate. The scope of this paper focuses on the effect of some major, fast-occurring anthropogenic changes on the vectorial capacity for tick and mosquito borne pathogens. Specifically, we review and present the latest advances regarding two emerging vector-borne viruses in Europe: Tick-borne encephalitis virus (TBEV) and West Nile virus (WNV). In both cases, variation in vector to host ratio is critical in determining the intensity of pathogen transmission and consequently infection hazard for humans. Forecasting vector-borne disease hazard under the global change scenarios is particularly challenging, requiring long term studies based on a multidisciplinary approach in a One-Health framework.
Collapse
Affiliation(s)
- Annapaola Rizzoli
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Trento, Italy
| | - Valentina Tagliapietra
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Trento, Italy
| | - Francesca Cagnacci
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Trento, Italy
| | - Giovanni Marini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Trento, Italy
| | - Daniele Arnoldi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Trento, Italy
| | - Fausta Rosso
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Trento, Italy
| | - Roberto Rosà
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all’Adige, Trento, Italy
- Centre Agriculture Food Environment, University of Trento, San Michele all’Adige, Trento, Italy
| |
Collapse
|
6
|
National Scientific Funding for Interdisciplinary Research: A Comparison Study of Infectious Diseases in the US and EU. SUSTAINABILITY 2019. [DOI: 10.3390/su11154120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Infectious diseases have been continuously and increasingly threatening human health and welfare due to a variety of factors such as globalisation, environmental, demographic changes, and emerging pathogens. In order to establish an interdisciplinary approach for coordinating R&D via funding, it is imperative to discover research trends in the field. In this paper, we apply machine learning methodologies and network analyses to understand how the European Union (EU) and the United States (US) have invested their funding in infectious diseases research utilising an interdisciplinary approach. The purpose of this paper is to use public R&D project data as data and to grasp the research trends of epidemic diseases in the US and EU through scientometric analysis.
Collapse
|
7
|
Rothenburger JL, Himsworth CG, Nemeth NM, Pearl DL, Treuting PM, Jardine CM. The devil is in the details-Host disease and co-infections are associated with zoonotic pathogen carriage in Norway rats (Rattus norvegicus). Zoonoses Public Health 2019; 66:622-635. [PMID: 31222965 DOI: 10.1111/zph.12615] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/06/2019] [Accepted: 05/29/2019] [Indexed: 11/30/2022]
Abstract
Traditionally, zoonotic pathogen ecology studies in wildlife have focused on the interplay among hosts, their demographic characteristics and their pathogens. But pathogen ecology is also influenced by factors that traverse the hierarchical scale of biological organization, ranging from within-host factors at the molecular, cellular and organ levels, all the way to the host population within a larger environment. The influence of host disease and co-infections on zoonotic pathogen carriage in hosts is important because these factors may be key to a more holistic understanding of pathogen ecology in wildlife hosts, which are a major source of emerging infectious diseases in humans. Using wild Norway rats (Rattus norvegicus) as a model species, the purpose of this study was to investigate how host disease and co-infections impact the carriage of zoonotic pathogens. Following a systematic trap and removal study, we tested the rats for the presence of two potentially zoonotic bacterial pathogens (Bartonella tribocorum and Leptospira interrogans) and assessed them for host disease not attributable to these bacteria (i.e., nematode parasites, and macroscopic and microscopic lesions). We fitted multilevel multivariable logistic regression models with pathogen status as the outcome, lesions and parasites as predictor variables and city block as a random effect. Rats had significantly increased odds of being infected with B. tribocorum if they had a concurrent nematode infection in one or more organ systems. Rats with bite wounds, any macroscopic lesion, cardiomyopathy or tracheitis had significantly increased odds of being infected with L. interrogans. These results suggest that host disease may have an important role in the ecology and epidemiology of rat-associated zoonotic pathogens. Our multiscale approach to assessing complex intrahost factors in relation to zoonotic pathogen carriage may be applicable to future studies in rats and other wildlife hosts.
Collapse
Affiliation(s)
- Jamie L Rothenburger
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,Canadian Wildlife Health Cooperative Ontario-Nunavut Region, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Chelsea G Himsworth
- School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada.,Animal Health Centre, British Columbia Ministry of Agriculture and Canadian Wildlife Health Cooperative British Columbia Region, Abbotsford, British Columbia, Canada
| | - Nicole M Nemeth
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, Georgia
| | - David L Pearl
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Piper M Treuting
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, Washington
| | - Claire M Jardine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,Canadian Wildlife Health Cooperative Ontario-Nunavut Region, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
Carlson CJ, Getz WM, Kausrud KL, Cizauskas CA, Blackburn JK, Bustos Carrillo FA, Colwell R, Easterday WR, Ganz HH, Kamath PL, Økstad OA, Turner WC, Kolstø AB, Stenseth NC. Spores and soil from six sides: interdisciplinarity and the environmental biology of anthrax (Bacillus anthracis). Biol Rev Camb Philos Soc 2018; 93:1813-1831. [PMID: 29732670 DOI: 10.1111/brv.12420] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 03/27/2018] [Accepted: 04/03/2018] [Indexed: 12/11/2022]
Abstract
Environmentally transmitted diseases are comparatively poorly understood and managed, and their ecology is particularly understudied. Here we identify challenges of studying environmental transmission and persistence with a six-sided interdisciplinary review of the biology of anthrax (Bacillus anthracis). Anthrax is a zoonotic disease capable of maintaining infectious spore banks in soil for decades (or even potentially centuries), and the mechanisms of its environmental persistence have been the topic of significant research and controversy. Where anthrax is endemic, it plays an important ecological role, shaping the dynamics of entire herbivore communities. The complex eco-epidemiology of anthrax, and the mysterious biology of Bacillus anthracis during its environmental stage, have necessitated an interdisciplinary approach to pathogen research. Here, we illustrate different disciplinary perspectives through key advances made by researchers working in Etosha National Park, a long-term ecological research site in Namibia that has exemplified the complexities of the enzootic process of anthrax over decades of surveillance. In Etosha, the role of scavengers and alternative routes (waterborne transmission and flies) has proved unimportant relative to the long-term persistence of anthrax spores in soil and their infection of herbivore hosts. Carcass deposition facilitates green-ups of vegetation to attract herbivores, potentially facilitated by the role of anthrax spores in the rhizosphere. The underlying seasonal pattern of vegetation, and herbivores' immune and behavioural responses to anthrax risk, interact to produce regular 'anthrax seasons' that appear to be a stable feature of the Etosha ecosystem. Through the lens of microbiologists, geneticists, immunologists, ecologists, epidemiologists, and clinicians, we discuss how anthrax dynamics are shaped at the smallest scale by population genetics and interactions within the bacterial communities up to the broadest scales of ecosystem structure. We illustrate the benefits and challenges of this interdisciplinary approach to disease ecology, and suggest ways anthrax might offer insights into the biology of other important pathogens. Bacillus anthracis, and the more recently emerged Bacillus cereus biovar anthracis, share key features with other environmentally transmitted pathogens, including several zoonoses and panzootics of special interest for global health and conservation efforts. Understanding the dynamics of anthrax, and developing interdisciplinary research programs that explore environmental persistence, is a critical step forward for understanding these emerging threats.
Collapse
Affiliation(s)
- Colin J Carlson
- National Socio-Environmental Synthesis Center (SESYNC), University of Maryland, Annapolis, MD 21401, U.S.A.,Department of Biology, Georgetown University, Washington, DC 20057, U.S.A
| | - Wayne M Getz
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, U.S.A.,School of Mathematical Sciences, University of KwaZulu-Natal, PB X 54001, Durban 4000, South Africa
| | - Kyrre L Kausrud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, N-0316, Oslo, Norway
| | - Carrie A Cizauskas
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94720, U.S.A
| | - Jason K Blackburn
- Spatial Epidemiology & Ecology Research Lab, Department of Geography, University of Florida, Gainesville, FL 32611, U.S.A.,Emerging Pathogens Institute, University of Florida, Gainesville, FL, U.S.A
| | - Fausto A Bustos Carrillo
- Department of Epidemiology & Department of Biostatistics, School of Public Health, University of California, Berkeley, CA 94720-7360, U.S.A
| | - Rita Colwell
- CosmosID Inc., Rockville, MD 20850, U.S.A.,Center for Bioinformatics and Computational Biology, University of Maryland Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, U.S.A.,Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, U.S.A
| | - W Ryan Easterday
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, N-0316, Oslo, Norway
| | - Holly H Ganz
- UC Davis Genome Center, University of California, Davis, CA 95616, U.S.A
| | - Pauline L Kamath
- School of Food and Agriculture, University of Maine, Orono, ME 04469, U.S.A
| | - Ole A Økstad
- Centre for Integrative Microbial Evolution and Section for Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316, Oslo, Norway
| | - Wendy C Turner
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, U.S.A
| | - Anne-Brit Kolstø
- Centre for Integrative Microbial Evolution and Section for Pharmaceutical Biosciences, School of Pharmacy, University of Oslo, PO Box 1068 Blindern, N-0316, Oslo, Norway
| | - Nils C Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, PO Box 1066 Blindern, N-0316, Oslo, Norway
| |
Collapse
|
9
|
Milholland MT, Castro-Arellano I, Suzán G, Garcia-Peña GE, Lee TE, Rohde RE, Alonso Aguirre A, Mills JN. Global Diversity and Distribution of Hantaviruses and Their Hosts. ECOHEALTH 2018; 15:163-208. [PMID: 29713899 DOI: 10.1007/s10393-017-1305-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/13/2017] [Accepted: 11/24/2017] [Indexed: 06/08/2023]
Abstract
Rodents represent 42% of the world's mammalian biodiversity encompassing 2,277 species populating every continent (except Antarctica) and are reservoir hosts for a wide diversity of disease agents. Thus, knowing the identity, diversity, host-pathogen relationships, and geographic distribution of rodent-borne zoonotic pathogens, is essential for predicting and mitigating zoonotic disease outbreaks. Hantaviruses are hosted by numerous rodent reservoirs. However, the diversity of rodents harboring hantaviruses is likely unknown because research is biased toward specific reservoir hosts and viruses. An up-to-date, systematic review covering all known rodent hosts is lacking. Herein, we document gaps in our knowledge of the diversity and distribution of rodent species that host hantaviruses. Of the currently recognized 681 cricetid, 730 murid, 61 nesomyid, and 278 sciurid species, we determined that 11.3, 2.1, 1.6, and 1.1%, respectively, have known associations with hantaviruses. The diversity of hantaviruses hosted by rodents and their distribution among host species supports a reassessment of the paradigm that each virus is associated with a single-host species. We examine these host-virus associations on a global taxonomic and geographical scale with emphasis on the rodent host diversity and distribution. Previous reviews have been centered on the viruses and not the mammalian hosts. Thus, we provide a perspective not previously addressed.
Collapse
Affiliation(s)
- Matthew T Milholland
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - Iván Castro-Arellano
- Department of Biology, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA.
| | - Gerardo Suzán
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510, México City, Mexico
| | - Gabriel E Garcia-Peña
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, 04510, México City, Mexico
- Centro de Ciencias de la Complejidad C3, Universidad Nacional Autónoma de México, 04510, México City, Mexico
- UMR MIVEGEC, Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle, UMR 5290, CNRS-IRD-Université de Montpellier, Centre de Recherche IRD, Montpellier Cedex 5, France
| | - Thomas E Lee
- Department of Biology, Abilene Christian University, ACU Box 27868, Abilene, TX, 79699, USA
| | - Rodney E Rohde
- College of Health Professions, Clinical Laboratory Science Program, Texas State University, 601 University Drive, San Marcos, TX, 78666, USA
| | - A Alonso Aguirre
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, 22030, USA
| | - James N Mills
- Population Biology, Ecology, and Evolution Program, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
10
|
Destoumieux-Garzón D, Mavingui P, Boetsch G, Boissier J, Darriet F, Duboz P, Fritsch C, Giraudoux P, Le Roux F, Morand S, Paillard C, Pontier D, Sueur C, Voituron Y. The One Health Concept: 10 Years Old and a Long Road Ahead. Front Vet Sci 2018; 5:14. [PMID: 29484301 PMCID: PMC5816263 DOI: 10.3389/fvets.2018.00014] [Citation(s) in RCA: 330] [Impact Index Per Article: 47.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Accepted: 01/22/2018] [Indexed: 02/05/2023] Open
Abstract
Over the past decade, a significant increase in the circulation of infectious agents was observed. With the spread and emergence of epizootics, zoonoses, and epidemics, the risks of pandemics became more and more critical. Human and animal health has also been threatened by antimicrobial resistance, environmental pollution, and the development of multifactorial and chronic diseases. This highlighted the increasing globalization of health risks and the importance of the human-animal-ecosystem interface in the evolution and emergence of pathogens. A better knowledge of causes and consequences of certain human activities, lifestyles, and behaviors in ecosystems is crucial for a rigorous interpretation of disease dynamics and to drive public policies. As a global good, health security must be understood on a global scale and from a global and crosscutting perspective, integrating human health, animal health, plant health, ecosystems health, and biodiversity. In this study, we discuss how crucial it is to consider ecological, evolutionary, and environmental sciences in understanding the emergence and re-emergence of infectious diseases and in facing the challenges of antimicrobial resistance. We also discuss the application of the "One Health" concept to non-communicable chronic diseases linked to exposure to multiple stresses, including toxic stress, and new lifestyles. Finally, we draw up a list of barriers that need removing and the ambitions that we must nurture for the effective application of the "One Health" concept. We conclude that the success of this One Health concept now requires breaking down the interdisciplinary barriers that still separate human and veterinary medicine from ecological, evolutionary, and environmental sciences. The development of integrative approaches should be promoted by linking the study of factors underlying stress responses to their consequences on ecosystem functioning and evolution. This knowledge is required for the development of novel control strategies inspired by environmental mechanisms leading to desired equilibrium and dynamics in healthy ecosystems and must provide in the near future a framework for more integrated operational initiatives.
Collapse
Affiliation(s)
- Delphine Destoumieux-Garzón
- CNRS, Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR5244, Université de Perpignan Via Domitia, Université de Montpellier, Ifremer, Montpellier, France
| | - Patrick Mavingui
- Université de La Reunion, UMR PIMIT (Processus Infectieux en Milieu Insulaire Tropical), INSERM 1187, CNRS 9192, IRD 249, Sainte-Clotilde, La Réunion, France
- UMR Ecologie Microbienne, CNRS, INRA, VetAgro Sup, Claude Bernard University Lyon 1, Université de Lyon, Villeurbanne, France
| | - Gilles Boetsch
- UMI 3189 “Environnement, Santé, Sociétés”, Faculty of Medicine, Cheikh Anta Diop University, Dakar-Fann, Senegal
- Téssékéré International Human-Environment Observatory Labex DRIIM, CNRS and Cheikh Anta Diop University, Dakar, Senegal
| | - Jérôme Boissier
- Université de Perpignan Via Domitia, Interactions Hôtes-Pathogènes-Environnements (IHPE), UMR5244, CNRS, Ifremer, Université de Montpellier, Perpignan, France
| | - Frédéric Darriet
- Institut de Recherche pour le Développement, Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), IRD, CNRS, Université de Montpellier, Montpellier, France
| | - Priscilla Duboz
- UMI 3189 “Environnement, Santé, Sociétés”, Faculty of Medicine, Cheikh Anta Diop University, Dakar-Fann, Senegal
- Téssékéré International Human-Environment Observatory Labex DRIIM, CNRS and Cheikh Anta Diop University, Dakar, Senegal
| | - Clémentine Fritsch
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté Usc, INRA, Besançon, France
| | - Patrick Giraudoux
- Laboratoire Chrono-Environnement, UMR 6249 CNRS/Université Bourgogne Franche-Comté Usc, INRA, Besançon, France
- Institut Universitaire de France, Paris, France
| | - Frédérique Le Roux
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, Plouzané, France
| | - Serge Morand
- Institut des Sciences de l’Évolution (ISEM), UMR 5554, CNRS, Université de Montpellier, CIRAD, IRD, EPHE, Montpellier, France
- UPR ASTRE, CIRAD, Montpellier, France
| | - Christine Paillard
- Laboratoire des Sciences de l’Environnement Marin (LEMAR), Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, UMR 6539, CNRS, UBO, IRD, Ifremer, Plouzané, France
| | - Dominique Pontier
- Laboratoire de Biométrie et Biologie Evolutive UMR5558, CNRS, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
- LabEx Ecofect, Eco-Evolutionary Dynamics of Infectious Diseases, University of Lyon, Lyon, France
| | - Cédric Sueur
- Université de Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Yann Voituron
- Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023, CNRS, Université Claude Bernard Lyon1, Université de Lyon, Villeurbanne, France
| |
Collapse
|
11
|
Garira W. A complete categorization of multiscale models of infectious disease systems. JOURNAL OF BIOLOGICAL DYNAMICS 2017; 11:378-435. [PMID: 28849734 DOI: 10.1080/17513758.2017.1367849] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Modelling of infectious disease systems has entered a new era in which disease modellers are increasingly turning to multiscale modelling to extend traditional modelling frameworks into new application areas and to achieve higher levels of detail and accuracy in characterizing infectious disease systems. In this paper we present a categorization framework for categorizing multiscale models of infectious disease systems. The categorization framework consists of five integration frameworks and five criteria. We use the categorization framework to give a complete categorization of host-level immuno-epidemiological models (HL-IEMs). This categorization framework is also shown to be applicable in categorizing other types of multiscale models of infectious diseases beyond HL-IEMs through modifying the initial categorization framework presented in this study. Categorization of multiscale models of infectious disease systems in this way is useful in bringing some order to the discussion on the structure of these multiscale models.
Collapse
Affiliation(s)
- Winston Garira
- a Modelling Health and Environmental Linkages Research Group (MHELRG), Department of Mathematics and Applied Mathematics , University of Venda , Thohoyandou, South Africa
| |
Collapse
|
12
|
Degeling C, Johnson J, Ward M, Wilson A, Gilbert G. A Delphi Survey and Analysis of Expert Perspectives on One Health in Australia. ECOHEALTH 2017; 14:783-792. [PMID: 28831653 PMCID: PMC7087667 DOI: 10.1007/s10393-017-1264-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 03/17/2017] [Accepted: 06/28/2017] [Indexed: 05/11/2023]
Abstract
One Health (OH) is an interdisciplinary approach aiming to achieve optimal health for humans, animals and their environments. Case reports and systematic reviews of success are emerging; however, discussion of barriers and enablers of cross-sectoral collaboration are rare. A four-phase mixed-method Delphi survey of Australian human and animal health practitioners and policymakers (n = 52) explored areas of consensus and disagreement over: (1) the operational definition of OH; (2) potential for cross-sectoral collaboration; and (3) key priorities for shaping the development of an OH response to significantly elevated zoonotic disease risk. Participants agreed OH is essential for effective infectious disease prevention and control, and on key priorities for outbreak responses, but disagreed over definitions and the relative priority of animal health and welfare and economic considerations. Strong support emerged among Australian experts for an OH approach. There was also recognition of the need to ensure cross-sectoral differences are addressed.
Collapse
Affiliation(s)
- Chris Degeling
- Marie Bashir Institute for Infectious Disease and Biosecurity and Sydney Health Ethics, University of Sydney, Camperdown, Australia
| | - Jane Johnson
- Sydney Health Ethics, University of Sydney, Medical Foundation Building, Level 1, Camperdown, NSW 2006 Australia
| | - Michael Ward
- Sydney School of Veterinary Science, University of Sydney, Camden, Australia
| | - Andrew Wilson
- Menzies Centre for Health Policy Research, University of Sydney, Camperdown, Australia
| | - Gwendolyn Gilbert
- Marie Bashir Institute for Infectious Disease and Biosecurity and Sydney Health Ethics, University of Sydney, Camperdown, Australia
| |
Collapse
|
13
|
Hosseini PR, Mills JN, Prieur-Richard AH, Ezenwa VO, Bailly X, Rizzoli A, Suzán G, Vittecoq M, García-Peña GE, Daszak P, Guégan JF, Roche B. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160129. [PMID: 28438918 PMCID: PMC5413877 DOI: 10.1098/rstb.2016.0129] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 11/12/2022] Open
Abstract
Biodiversity is of critical value to human societies, but recent evidence that biodiversity may mitigate infectious-disease risk has sparked controversy among researchers. The majority of work on this topic has focused on direct assessments of the relationship between biodiversity and endemic-pathogen prevalence, without disentangling intervening mechanisms; thus study outcomes often differ, fuelling more debate. Here, we suggest two critical changes to the approach researchers take to understanding relationships between infectious disease, both endemic and emerging, and biodiversity that may help clarify sources of controversy. First, the distinct concepts of hazards versus risks need to be separated to determine how biodiversity and its drivers may act differently on each. This distinction is particularly important since it illustrates that disease emergence drivers in humans could be quite different to the general relationship between biodiversity and transmission of endemic pathogens. Second, the interactive relationship among biodiversity, anthropogenic change and zoonotic disease risk, including both direct and indirect effects, needs to be recognized and accounted for. By carefully disentangling these interactions between humans' activities and pathogen circulation in wildlife, we suggest that conservation efforts could mitigate disease risks and hazards in novel ways that complement more typical disease control efforts.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'.
Collapse
Affiliation(s)
- Parviez R Hosseini
- EcoHealth Alliance, 460 West 34th Street - 17th Floor, New York, NY 10001-2320, USA
| | - James N Mills
- Population Biology, Ecology, and Evolution Program, Emory University, 1335 Springdale Road, Northeast, Atlanta, GA 30306, USA
| | | | - Vanessa O Ezenwa
- Odum School of Ecology and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, 140 East Green Street, Athens, GA 30602-2202, USA
| | - Xavier Bailly
- INRA, UR346 Epidémiologie Animale, 63122 Saint Genès Champanelle, France
| | - Annapaola Rizzoli
- Edmund Mach Foundation, Research and Innovation Centre, 1 Via Edmondo Mach, 38010 San Michele all'Adige, Trentino, Italy
| | - Gerardo Suzán
- Departamento de Etología y Fauna Silvestre, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Distrito Federal, C.P. 04510, Mexico
- FutureEarth Programme, OneHealth Core Research Programme Domaine du Petit Arbois. Avenue Louis Philibert., 13857 Aix-en-Provence Cedex 3, France
| | - Marion Vittecoq
- Centre de recherche de la Tour du Valat, Le Sambuc, 13200 Arles, France
| | - Gabriel E García-Peña
- Departamento de Etología y Fauna Silvestre, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Distrito Federal, C.P. 04510, Mexico
- UMR MIVEGEC CNRS 5290/IRD 224/Université de Montpellier, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
- FutureEarth Programme, OneHealth Core Research Programme Domaine du Petit Arbois. Avenue Louis Philibert., 13857 Aix-en-Provence Cedex 3, France
- Centre de Synthèse et d'Analyse sur la Biodiversité -CESAB. Bâtiment Henri Poincaré, Domaine du Petit Arbois. Avenue Louis Philibert., 13857 Aix-en-Provence Cedex 3, France
| | - Peter Daszak
- EcoHealth Alliance, 460 West 34th Street - 17th Floor, New York, NY 10001-2320, USA
- FutureEarth Programme, OneHealth Core Research Programme Domaine du Petit Arbois. Avenue Louis Philibert., 13857 Aix-en-Provence Cedex 3, France
| | - Jean-François Guégan
- UMR MIVEGEC CNRS 5290/IRD 224/Université de Montpellier, 911 avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France
- FutureEarth Programme, OneHealth Core Research Programme Domaine du Petit Arbois. Avenue Louis Philibert., 13857 Aix-en-Provence Cedex 3, France
| | - Benjamin Roche
- UMI IRD/UPMC 209 UMMISCO, 32, avenue Henri Varagnat, 93143 Bondy Cedex, France
| |
Collapse
|
14
|
Lebov J, Grieger K, Womack D, Zaccaro D, Whitehead N, Kowalcyk B, MacDonald P. A framework for One Health research. One Health 2017; 3:44-50. [PMID: 28616503 PMCID: PMC5454183 DOI: 10.1016/j.onehlt.2017.03.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/14/2017] [Indexed: 01/29/2023] Open
Abstract
The need for multidisciplinary research to address today's complex health and environmental challenges has never been greater. The One Health (OH) approach to research ensures that human, animal, and environmental health questions are evaluated in an integrated and holistic manner to provide a more comprehensive understanding of the problem and potential solutions than would be possible with siloed approaches. However, the OH approach is complex, and there is limited guidance available for investigators regarding the practical design and implementation of OH research. In this paper we provide a framework to guide researchers through conceptualizing and planning an OH study. We discuss key steps in designing an OH study, including conceptualization of hypotheses and study aims, identification of collaborators for a multi-disciplinary research team, study design options, data sources and collection methods, and analytical methods. We illustrate these concepts through the presentation of a case study of health impacts associated with land application of biosolids. Finally, we discuss opportunities for applying an OH approach to identify solutions to current global health issues, and the need for cross-disciplinary funding sources to foster an OH approach to research.
Collapse
|
15
|
Manlove KR, Walker JG, Craft ME, Huyvaert KP, Joseph MB, Miller RS, Nol P, Patyk KA, O’Brien D, Walsh DP, Cross PC. "One Health" or Three? Publication Silos Among the One Health Disciplines. PLoS Biol 2016; 14:e1002448. [PMID: 27100532 PMCID: PMC4839662 DOI: 10.1371/journal.pbio.1002448] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 03/24/2016] [Indexed: 01/05/2023] Open
Abstract
The One Health initiative is a global effort fostering interdisciplinary collaborations to address challenges in human, animal, and environmental health. While One Health has received considerable press, its benefits remain unclear because its effects have not been quantitatively described. We systematically surveyed the published literature and used social network analysis to measure interdisciplinarity in One Health studies constructing dynamic pathogen transmission models. The number of publications fulfilling our search criteria increased by 14.6% per year, which is faster than growth rates for life sciences as a whole and for most biology subdisciplines. Surveyed publications clustered into three communities: one used by ecologists, one used by veterinarians, and a third diverse-authorship community used by population biologists, mathematicians, epidemiologists, and experts in human health. Overlap between these communities increased through time in terms of author number, diversity of co-author affiliations, and diversity of citations. However, communities continue to differ in the systems studied, questions asked, and methods employed. While the infectious disease research community has made significant progress toward integrating its participating disciplines, some segregation--especially along the veterinary/ecological research interface--remains.
Collapse
Affiliation(s)
- Kezia R. Manlove
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Josephine G. Walker
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Meggan E. Craft
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Kathryn P. Huyvaert
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Maxwell B. Joseph
- University of Colorado Boulder, Department of Ecology and Evolutionary Biology, Boulder, Colorado, United States of America
| | - Ryan S. Miller
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Science Technology and Analysis Services, Fort Collins, Colorado, United States of America
| | - Pauline Nol
- United States Department of Agriculture Animal and Plant Health Inspection Service, Veterinary Services, National Wildlife Research Center, Fort Collins, Colorado, United States of America
| | - Kelly A. Patyk
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Veterinary Services, Science Technology and Analysis Services, Fort Collins, Colorado, United States of America
| | - Daniel O’Brien
- Wildlife Disease Laboratory, Michigan Department of Natural Resources, Lansing, Michigan, United States of America
| | - Daniel P. Walsh
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Paul C. Cross
- U.S. Geological Survey, Northern Rocky Mountain Science Center, Bozeman, Montana, United States of America
| |
Collapse
|
16
|
Jacobsen KH, Aguirre AA, Bailey CL, Baranova AV, Crooks AT, Croitoru A, Delamater PL, Gupta J, Kehn-Hall K, Narayanan A, Pierobon M, Rowan KE, Schwebach JR, Seshaiyer P, Sklarew DM, Stefanidis A, Agouris P. Lessons from the Ebola Outbreak: Action Items for Emerging Infectious Disease Preparedness and Response. ECOHEALTH 2016; 13:200-212. [PMID: 26915507 PMCID: PMC7087787 DOI: 10.1007/s10393-016-1100-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/30/2015] [Accepted: 01/06/2016] [Indexed: 05/29/2023]
Abstract
As the Ebola outbreak in West Africa wanes, it is time for the international scientific community to reflect on how to improve the detection of and coordinated response to future epidemics. Our interdisciplinary team identified key lessons learned from the Ebola outbreak that can be clustered into three areas: environmental conditions related to early warning systems, host characteristics related to public health, and agent issues that can be addressed through the laboratory sciences. In particular, we need to increase zoonotic surveillance activities, implement more effective ecological health interventions, expand prediction modeling, support medical and public health systems in order to improve local and international responses to epidemics, improve risk communication, better understand the role of social media in outbreak awareness and response, produce better diagnostic tools, create better therapeutic medications, and design better vaccines. This list highlights research priorities and policy actions the global community can take now to be better prepared for future emerging infectious disease outbreaks that threaten global public health and security.
Collapse
Affiliation(s)
- Kathryn H Jacobsen
- Department of Global and Community Health, College of Health and Human Services, George Mason University, 4400 University Drive 5B7, Fairfax, VA, 22030, USA.
| | - A Alonso Aguirre
- Department of Environmental Science and Policy, College of Science, George Mason University, Fairfax, VA, USA
| | - Charles L Bailey
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, College of Science, George Mason University, Manassas, VA, USA
| | - Ancha V Baranova
- Department of Environmental Science and Policy, College of Science, George Mason University, Fairfax, VA, USA
- Center for the Study of Chronic Metabolic Diseases, School of Systems Biology, College of Science, George Mason University, Manassas, VA, USA
| | - Andrew T Crooks
- Department of Computational and Data Sciences, College of Science, George Mason University, Fairfax, VA, USA
| | - Arie Croitoru
- Department of Geography and Geoinformation Science, College of Science, George Mason University, Fairfax, VA, USA
| | - Paul L Delamater
- Department of Geography and Geoinformation Science, College of Science, George Mason University, Fairfax, VA, USA
| | - Jhumka Gupta
- Department of Global and Community Health, College of Health and Human Services, George Mason University, 4400 University Drive 5B7, Fairfax, VA, 22030, USA
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, College of Science, George Mason University, Manassas, VA, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, College of Science, George Mason University, Manassas, VA, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, College of Science, George Mason University, Manassas, VA, USA
| | - Katherine E Rowan
- Department of Communication, College of Humanities and Social Sciences, George Mason University, Fairfax, VA, USA
| | - J Reid Schwebach
- Department of Biology, College of Science, George Mason University, Fairfax, VA, USA
| | - Padmanabhan Seshaiyer
- Department of Mathematical Sciences, College of Science, George Mason University, Fairfax, VA, USA
| | - Dann M Sklarew
- Department of Environmental Science and Policy, College of Science, George Mason University, Fairfax, VA, USA
| | - Anthony Stefanidis
- Department of Geography and Geoinformation Science, College of Science, George Mason University, Fairfax, VA, USA
| | - Peggy Agouris
- Department of Geography and Geoinformation Science, College of Science, George Mason University, Fairfax, VA, USA
| |
Collapse
|