1
|
Bai S, Yao Z, Cai Z, Ma Q, Guo Q, Zhang P, Zhou Q, Gu J, Liu S, Lemaitre B, Li X, Zhang H. Bacterial-induced Duox-ROS regulates the Imd immune pathway in the gut by modulating the peritrophic matrix. Cell Rep 2025; 44:115404. [PMID: 40053451 DOI: 10.1016/j.celrep.2025.115404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/19/2025] [Accepted: 02/14/2025] [Indexed: 03/09/2025] Open
Abstract
The Duox-reactive oxygen species (ROS) system and the immune deficiency (Imd) pathway play a major role in insect gut immunity. However, their interaction to accomplish an effective immune response is still unclear. Here, we show that Duox regulates the peritrophic matrix (PM) and further affects the Imd immune response to pathogens in Bactrocera dorsalis. This regulation requires a nuanced ROS balance: low H2O2 increases PM permeability, while higher H2O2 damages the PM during infection. Importantly, we found that gut commensal bacteria ensured proper Duox-dependent ROS production and PM stability, thus preventing Imd pathway overactivation in response to pathogens. We conclude that gut commensal bacteria-induced Duox-ROS is crucial for maintaining PM structural homeostasis, and the PM, in turn, regulates Imd pathway activation and protects intestinal epithelial cells. Thus, our study reveals a crosstalk between the PM barrier and Imd-mediated antibacterial function to ensure host defense in the gut.
Collapse
Affiliation(s)
- Shuai Bai
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhichao Yao
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Zhaohui Cai
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, People's Republic of China
| | - Qiongke Ma
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Qiongyu Guo
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Ping Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Qi Zhou
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jian Gu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Siying Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Xiaoxue Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.
| |
Collapse
|
2
|
Leelagud P, Wang HL, Lu KH, Dai SM. Pseudomonas mosselii: a potential alternative for managing pyrethroid-resistant Aedes aegypti. PEST MANAGEMENT SCIENCE 2024; 80:4344-4351. [PMID: 38634536 DOI: 10.1002/ps.8139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/23/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Aedes aegypti is a widespread mosquito in tropical and subtropical regions that causes significant mortality and morbidity in humans by transmitting diseases, such as dengue fever and Zika virus disease. Synthetic insecticides, such as pyrethroids, have been used to control Ae. aegypti, but these insecticides can also affect nontarget organisms and contaminate soil and water. This study aimed to investigate the mosquitocidal activity of Pseudomonas mosselii isolated from pond sludge against larvae of Ae. aegypti. RESULTS Based on the initial results, similar time-course profiles were obtained for the mosquitocidal activity of the bacterial culture and its supernatant, and the pellet resuspended in Luria-Bertani (LB) medium also showed delayed toxicity. These results imply that the toxic component can be released into the medium from live bacteria. Further research indicated that the toxic component appeared in the supernatant approximately 4 h after a 3-mL stock was cultured in 200 mL of LB medium. The stabilities of the P. mosselii culture and supernatant stored at different temperatures were also evaluated, and the best culture stability was obtained at 28 °C and supernatant stability at 4 °C. The bacterial culture and supernatant were toxic to larvae and pupae of not only susceptible Ae. aegypti but also pyrethroid-resistant strains. CONCLUSION This study highlights the value of the mosquitocidal activity of P. mosselii, which has potential as an alternative insecticide to control pyrethroid-resistant Ae. aegypti in the field. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Piyatida Leelagud
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Liang Wang
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Kuang-Hui Lu
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Mei Dai
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
3
|
Liu LS, Fan JQ, Zhang ME, Chen Q, Yang XJ, Hong QM, Huang W, Chen YH. A Peritrophin-44 gene in Litopenaeus vannamei is involved in disease resistance. Int J Biol Macromol 2024; 272:132799. [PMID: 38830496 DOI: 10.1016/j.ijbiomac.2024.132799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/14/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Peritrophic membrane (PM) is a pellicle structure present in the midgut of some invertebrates, such as insects and crustaceans. It could isolate harmful components and pathogens in food from intestinal epithelial cells; and it also plays a role in improving digestion and absorption efficiency. So PM is important for survival of its owner. In current study, 44 PM proteins were identified in Litopenaeus vannamei by PM proteome analysis. Among these PM proteins, the Peritrophin-44 homologous protein (LvPT44) was further studied. Chitin-binding assay indicated that LvPT44 could bind to colloidal chitin, and immunoeletron microscopy analysis shown that it was located to PM of L. vannamei. Furthermore, LvPT44 promoter was found to be activated by L. vannamei STAT and c-Jun. Besides, LvPT44 was induced by ER-stress as well as white spot syndrome virus infection. Knocked-down expression of LvPT44 by RNA inference increased the cumulative mortality of shrimp that caused by ER-stress or white spot syndrome virus. These results suggested that LvPT44 has an important role in disease resistance.
Collapse
Affiliation(s)
- Li-Shi Liu
- Institute of Modern Aquaculture Science and Engineering (IMASE) / Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jin-Quan Fan
- Institute of Modern Aquaculture Science and Engineering (IMASE) / Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Meng-En Zhang
- Institute of Modern Aquaculture Science and Engineering (IMASE) / Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qi Chen
- Institute of Modern Aquaculture Science and Engineering (IMASE) / Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Xin-Jun Yang
- Institute of Modern Aquaculture Science and Engineering (IMASE) / Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Qian-Ming Hong
- Institute of Modern Aquaculture Science and Engineering (IMASE) / Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Wen Huang
- Collaborative Innovation Center of Aquatic Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yi-Hong Chen
- Institute of Modern Aquaculture Science and Engineering (IMASE) / Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
4
|
Dishaw LJ, Litman GW, Liberti A. Tethering of soluble immune effectors to mucin and chitin reflects a convergent and dynamic role in gut immunity. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230078. [PMID: 38497268 PMCID: PMC10945408 DOI: 10.1098/rstb.2023.0078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/04/2023] [Indexed: 03/19/2024] Open
Abstract
The immune system employs soluble effectors to shape luminal spaces. Antibodies are soluble molecules that effect immunological responses, including neutralization, opsonization, antibody-dependent cytotoxicity and complement activation. These molecules are comprised of immunoglobulin (Ig) domains. The N-terminal Ig domains recognize antigen, and the C-terminal domains facilitate their elimination through phagocytosis (opsonization). A less-recognized function mediated by the C-terminal Ig domains of the IgG class of antibodies (Fc region) involves the formation of multiple low-affinity bonds with the mucus matrix. This association anchors the antibody molecule to the matrix to entrap potential pathogens. Even though invertebrates are not known to have antibodies, protochordates have a class of secreted molecules containing Ig domains that can bind bacteria and potentially serve a similar purpose. The VCBPs (V region-containing chitin-binding proteins) possess a C-terminal chitin-binding domain that helps tether them to chitin-rich mucus gels, mimicking the IgG-mediated Fc trapping of microbes in mucus. The broad functional similarity of these structurally divergent, Ig-containing, secreted effectors makes a case for a unique form of convergent evolution within chordates. This opinion essay highlights emerging evidence that divergent secreted immune effectors with Ig-like domains evolved to manage immune recognition at mucosal surfaces in strikingly similar ways. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- L. J. Dishaw
- Morsani College of Medicine, Department of Pediatrics, University of South Florida, Children's Research Institute, St. Petersburg, FL 33701, USA
| | - G. W. Litman
- Morsani College of Medicine, Department of Pediatrics, University of South Florida, Children's Research Institute, St. Petersburg, FL 33701, USA
| | - A. Liberti
- Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn, 80122 Naples, Italy
| |
Collapse
|
5
|
Awais MM, Fei S, Xia J, Feng M, Sun J. Insights into midgut cell types and their crucial role in antiviral immunity in the lepidopteran model Bombyx mori. Front Immunol 2024; 15:1349428. [PMID: 38420120 PMCID: PMC10899340 DOI: 10.3389/fimmu.2024.1349428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
The midgut, a vital component of the digestive system in arthropods, serves as an interface between ingested food and the insect's physiology, playing a pivotal role in nutrient absorption and immune defense mechanisms. Distinct cell types, including columnar, enteroendocrine, goblet and regenerative cells, comprise the midgut in insects and contribute to its robust immune response. Enterocytes/columnar cells, the primary absorptive cells, facilitate the immune response through enzyme secretions, while regenerative cells play a crucial role in maintaining midgut integrity by continuously replenishing damaged cells and maintaining the continuity of the immune defense. The peritrophic membrane is vital to the insect's innate immunity, shielding the midgut from pathogens and abrasive food particles. Midgut juice, a mixture of digestive enzymes and antimicrobial factors, further contributes to the insect's immune defense, helping the insect to combat invading pathogens and regulate the midgut microbial community. The cutting-edge single-cell transcriptomics also unveiled previously unrecognized subpopulations within the insect midgut cells and elucidated the striking similarities between the gastrointestinal tracts of insects and higher mammals. Understanding the intricate interplay between midgut cell types provides valuable insights into insect immunity. This review provides a solid foundation for unraveling the complex roles of the midgut, not only in digestion but also in immunity. Moreover, this review will discuss the novel immune strategies led by the midgut employed by insects to combat invading pathogens, ultimately contributing to the broader understanding of insect physiology and defense mechanisms.
Collapse
Affiliation(s)
| | | | | | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Fuse N, Hashiba H, Ishibashi K, Suzuki T, Nguyen QD, Fujii K, Ikeda-Ohtsubo W, Kitazawa H, Tanimoto H, Kurata S. Neural control of redox response and microbiota-triggered inflammation in Drosophila gut. Front Immunol 2023; 14:1268611. [PMID: 37965334 PMCID: PMC10642236 DOI: 10.3389/fimmu.2023.1268611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
Background The neural system plays a critical role in controlling gut immunity, and the gut microbiota contributes to this process. However, the roles and mechanisms of gut-brain-microbiota interactions remain unclear. To address this issue, we employed Drosophila as a model organism. We have previously shown that NP3253 neurons, which are connected to the brain and gut, are essential for resistance to oral bacterial infections. Here, we aimed to investigate the role of NP3253 neurons in the regulation of gut immunity. Methods We performed RNA-seq analysis of the adult Drosophila gut after genetically inactivating the NP3253 neurons. Flies were reared under oral bacterial infection and normal feeding conditions. In addition, we prepared samples under germ-free conditions to evaluate the role of the microbiota in gut gene expression. We knocked down the genes regulated by NP3253 neurons and examined their susceptibility to oral bacterial infections. Results We found that immune-related gene expression was upregulated in NP3253 neuron-inactivated flies compared to the control. However, this upregulation was abolished in axenic flies, suggesting that the immune response was abnormally activated by the microbiota in NP3253 neuron-inactivated flies. In addition, redox-related gene expression was downregulated in NP3253 neuron-inactivated flies, and this downregulation was also observed in axenic flies. Certain redox-related genes were required for resistance to oral bacterial infections, suggesting that NP3253 neurons regulate the redox responses for gut immunity in a microbiota-independent manner. Conclusion These results show that NP3253 neurons regulate the appropriate gene expression patterns in the gut and contribute to maintain homeostasis during oral infections.
Collapse
Affiliation(s)
- Naoyuki Fuse
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Haruka Hashiba
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kentaro Ishibashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Takuro Suzuki
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Quang-Dat Nguyen
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Kiho Fujii
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | - Haruki Kitazawa
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- The Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, Sendai, Japan
| | - Hiromu Tanimoto
- The Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, Sendai, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Shoichiro Kurata
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
- The Division for the Establishment of Frontier Sciences of the Organization for Advanced Studies, Tohoku University, Sendai, Japan
| |
Collapse
|
7
|
Pan Q, Tsuji Y, Sreedevi Madhavikutty A, Ohta S, Fujisawa A, Inagaki NF, Fujishiro M, Ito T. Prevention of esophageal stenosis via in situ cross-linkable alginate/gelatin powder in a new submucosal exfoliation model in rats. Biomater Sci 2023; 11:6781-6789. [PMID: 37614197 DOI: 10.1039/d3bm00887h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Endoscopic submucosal dissection (ESD) for the treatment of esophageal mucosal lesions often leads to postoperative stenosis, causing difficulty in swallowing, known as dysphagia. In this study, we developed an in situ cross-linkable powder composed of alginate, gelatin, transglutaminase (TG), and calcium chloride ions (Ca2+), which can be administered through a 1.5 m-long and 3.2 mm-diameter endoscopic instrument channel. The powdered mixture of alginate and gelatin quickly formed a hydrogel by absorbing body fluids and was cross-linked by TG and Ca2+, which adhered ex vivo to porcine submucosal layers for over 2 weeks. In addition, we developed a new submucosal exfoliation model in rats that induced severe stenosis, similar to the ESD-induced stenosis models in clinical practice. When administered to the new rat model, the powder system effectively reduced the severity of esophageal stenosis based on body weight change monitoring, anatomical findings, and histological analysis. The body weight of the rats was maintained at the initial weight on postoperative day 14 (POD14), and epithelialization on POD7 and 14 improved to almost 100%. Additionally, collagen accumulation and the number of α-SMA-positive cells decreased due to powder administration. Therefore, these findings indicate that the in situ cross-linkable powder can prevent esophageal stenosis after ESD.
Collapse
Affiliation(s)
- Qi Pan
- Center for Disease Biology and Integrative Medicine, School of Medicine, the University of Tokyo, Japan.
| | - Yosuke Tsuji
- Department of Gastroenterology, School of Medicine, the University of Tokyo, Japan
| | | | - Seiichi Ohta
- Center for Disease Biology and Integrative Medicine, School of Medicine, the University of Tokyo, Japan.
- Institute of Engineering Innovation, School of Engineering, the University of Tokyo, Japan
- Department of Bioengineering, School of Engineering, the University of Tokyo, Japan
| | - Ayano Fujisawa
- Department of Bioengineering, School of Engineering, the University of Tokyo, Japan
| | - Natsuko F Inagaki
- Center for Disease Biology and Integrative Medicine, School of Medicine, the University of Tokyo, Japan.
| | - Mitsuhiro Fujishiro
- Department of Gastroenterology, School of Medicine, the University of Tokyo, Japan
| | - Taichi Ito
- Center for Disease Biology and Integrative Medicine, School of Medicine, the University of Tokyo, Japan.
- Department of Chemical System Engineering, School of Engineering, the University of Tokyo, Japan
- Department of Bioengineering, School of Engineering, the University of Tokyo, Japan
| |
Collapse
|
8
|
Giacomini JJ, Adler LS, Reading BJ, Irwin RE. Differential bumble bee gene expression associated with pathogen infection and pollen diet. BMC Genomics 2023; 24:157. [PMID: 36991318 DOI: 10.1186/s12864-023-09143-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/18/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Diet and parasitism can have powerful effects on host gene expression. However, how specific dietary components affect host gene expression that could feed back to affect parasitism is relatively unexplored in many wild species. Recently, it was discovered that consumption of sunflower (Helianthus annuus) pollen reduced severity of gut protozoan pathogen Crithidia bombi infection in Bombus impatiens bumble bees. Despite the dramatic and consistent medicinal effect of sunflower pollen, very little is known about the mechanism(s) underlying this effect. However, sunflower pollen extract increases rather than suppresses C. bombi growth in vitro, suggesting that sunflower pollen reduces C. bombi infection indirectly via changes in the host. Here, we analyzed whole transcriptomes of B. impatiens workers to characterize the physiological response to sunflower pollen consumption and C. bombi infection to isolate the mechanisms underlying the medicinal effect. B. impatiens workers were inoculated with either C. bombi cells (infected) or a sham control (un-infected) and fed either sunflower or wildflower pollen ad libitum. Whole abdominal gene expression profiles were then sequenced with Illumina NextSeq 500 technology. RESULTS Among infected bees, sunflower pollen upregulated immune transcripts, including the anti-microbial peptide hymenoptaecin, Toll receptors and serine proteases. In both infected and un-infected bees, sunflower pollen upregulated putative detoxification transcripts and transcripts associated with the repair and maintenance of gut epithelial cells. Among wildflower-fed bees, infected bees downregulated immune transcripts associated with phagocytosis and the phenoloxidase cascade. CONCLUSIONS Taken together, these results indicate dissimilar immune responses between sunflower- and wildflower-fed bumble bees infected with C. bombi, a response to physical damage to gut epithelial cells caused by sunflower pollen, and a strong detoxification response to sunflower pollen consumption. Identifying host responses that drive the medicinal effect of sunflower pollen in infected bumble bees may broaden our understanding of plant-pollinator interactions and provide opportunities for effective management of bee pathogens.
Collapse
Affiliation(s)
- Jonathan J Giacomini
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Lynn S Adler
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Benjamin J Reading
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Rebecca E Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
9
|
Talyuli OAC, Oliveira JHM, Bottino-Rojas V, Silveira GO, Alvarenga PH, Barletta ABF, Kantor AM, Paiva-Silva GO, Barillas-Mury C, Oliveira PL. The Aedes aegypti peritrophic matrix controls arbovirus vector competence through HPx1, a heme-induced peroxidase. PLoS Pathog 2023; 19:e1011149. [PMID: 36780872 PMCID: PMC9956595 DOI: 10.1371/journal.ppat.1011149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 02/24/2023] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Aedes aegypti mosquitoes are the main vectors of arboviruses. The peritrophic matrix (PM) is an extracellular layer that surrounds the blood bolus. It acts as an immune barrier that prevents direct contact of bacteria with midgut epithelial cells during blood digestion. Here, we describe a heme-dependent peroxidase, hereafter referred to as heme peroxidase 1 (HPx1). HPx1 promotes PM assembly and antioxidant ability, modulating vector competence. Mechanistically, the heme presence in a blood meal induces HPx1 transcriptional activation mediated by the E75 transcription factor. HPx1 knockdown increases midgut reactive oxygen species (ROS) production by the DUOX NADPH oxidase. Elevated ROS levels reduce microbiota growth while enhancing epithelial mitosis, a response to tissue damage. However, simultaneous HPx1 and DUOX silencing was not able to rescue bacterial population growth, as explained by increased expression of antimicrobial peptides (AMPs), which occurred only after double knockdown. This result revealed hierarchical activation of ROS and AMPs to control microbiota. HPx1 knockdown produced a 100-fold decrease in Zika and dengue 2 midgut infection, demonstrating the essential role of the mosquito PM in the modulation of arbovirus vector competence. Our data show that the PM connects blood digestion to midgut immunological sensing of the microbiota and viral infections.
Collapse
Affiliation(s)
- Octavio A. C. Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Henrique M. Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Departments of Microbiology and Molecular Genetics and of Molecular Biology and Biochemistry, University of California, Irvine, California, United States of America
| | - Gilbert O. Silveira
- Laboratório de Expressão Genica em Eucariotos, Instituto Butantan and Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Patricia H. Alvarenga
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Ana Beatriz F. Barletta
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Asher M. Kantor
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Gabriela O. Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Carolina Barillas-Mury
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Pedro L. Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Chen Q, Sasikala-Appukuttan AK, Husain Z, Shrivastava A, Spain M, Sendler ED, Daines B, Fischer S, Chen R, Cook TA, Friedrich M. Global Gene Expression Analysis Reveals Complex Cuticle Organization of the Tribolium Compound Eye. Genome Biol Evol 2023; 15:evac181. [PMID: 36575057 PMCID: PMC9866248 DOI: 10.1093/gbe/evac181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 12/29/2022] Open
Abstract
The red flour beetle Tribolium castaneum is a resource-rich model for genomic and developmental studies. To extend previous studies on Tribolium eye development, we produced transcriptomes for normal-eyed and eye-depleted heads of pupae and adults to identify differentially transcript-enriched (DE) genes in the visual system. Unexpectedly, cuticle-related genes were the largest functional class in the pupal compound eye DE gene population, indicating differential enrichment in three distinct cuticle components: clear lens facet cuticle, highly melanized cuticle of the ocular diaphragm, which surrounds the Tribolium compound eye for internal fortification, and newly identified facet margins of the tanned cuticle, possibly enhancing external fortification. Phylogenetic, linkage, and high-throughput gene knockdown data suggest that most cuticle proteins (CPs) expressed in the Tribolium compound eye stem from the deployment of ancient CP genes. Consistent with this, TcasCPR15, which we identified as the major lens CP gene in Tribolium, is a beetle-specific but pleiotropic paralog of the ancient CPR RR-2 CP gene family. The less abundant yet most likely even more lens-specific TcasCP63 is a member of a sprawling family of noncanonical CP genes, documenting a role of local gene family expansions in the emergence of the Tribolium compound eye CP repertoire. Comparisons with Drosophila and the mosquito Anopheles gambiae reveal a steady turnover of lens-enriched CP genes during insect evolution.
Collapse
Affiliation(s)
- Qing Chen
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | | | - Zahabiya Husain
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Anura Shrivastava
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Marla Spain
- Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Edward D Sendler
- Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bryce Daines
- Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
| | - Stefan Fischer
- Evolutionary Biology of Invertebrates, Institute of Evolution and Ecology, University of Tübingen, Germany
| | - Rui Chen
- Evolutionary Biology of Invertebrates, Institute of Evolution and Ecology, University of Tübingen, Germany
| | - Tiffany A Cook
- Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
- Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
11
|
Sato R, Minamihata K, Wakabayashi R, Goto M, Kamiya N. Molecular crowding elicits the acceleration of enzymatic crosslinking of macromolecular substrates. Org Biomol Chem 2023; 21:306-314. [PMID: 36342388 DOI: 10.1039/d2ob01549h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cytoplasm contains high concentrations of biomacromolecules. Protein behavior under such crowded conditions is reportedly different from that in an aqueous buffer solution, mainly owing to the effect of volume exclusion caused by the presence of macromolecules. Using a crosslinking reaction catalyzed by microbial transglutaminase (MTG) as a model, we herein systematically determined how the substrate size affects enzymatic activity in both dilute and crowded solutions of dextran. We first observed a threefold reduction in MTG-mediated crosslinking of a pair of small peptide substrates in 15 wt% dextran solution. In contrast, when proteinaceous substrates were involved, the crosslinking rates in 15 wt% dextran solutions accelerated markedly to levels comparable with the level in the absence of dextran. Our results provide new insights into the action of enzymes with regard to macromolecular substrates under crowded conditions, of which the potential utility was demonstrated by the formation of highly crosslinked protein polymers.
Collapse
Affiliation(s)
- Ryo Sato
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan. .,Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan. .,Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
12
|
Liu D, De Schutter K, Far J, Staes A, Dewettinck K, Quinton L, Gevaert K, Smagghe G. RNAi of Mannosidase-Ia in the Colorado potato beetle and changes in the midgut and peritrophic membrane. PEST MANAGEMENT SCIENCE 2022; 78:5071-5079. [PMID: 36053804 DOI: 10.1002/ps.7145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/03/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In addition to its role in the digestive system, the peritrophic membrane (PM) provides a physical barrier protecting the intestine from abrasion and against pathogens. Because of its sensitivity to RNA interference (RNAi), the notorious pest insect, the Colorado potato beetle (CPB, Leptinotarsa decemlineata), has become a model insect for functional studies. Previously, RNAi-mediated silencing of Mannosidase-Ia (ManIa), a key enzyme in the transition from high-mannose glycan moieties to paucimannose N-glycans, was shown to disrupt the transition from larva to pupa and the metamorphosis into adult beetles. While these effects at the organismal level were interesting in a pest control context, the effects at the organ or tissue level and also immune effects have not been investigated yet. To fill this knowledge gap, we performed an analysis of the midgut and PM in ManIa-silenced insects. RESULTS As marked phenotype, the ManIaRNAi insects, the PM pore size was found to be decreased when compared to the control GFPRNAi insects. These smaller pores are related to the observation of thinner microvilli (Mv) on the epithelial cells of the midgut of ManIaRNAi insects. A midgut and PM proteome study and reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis with a selection of marker genes was performed to characterize the midgut cells and understand their response to the silencing of ManIa. In agreement with the loss of ManIa activity, an accumulation of high-mannose N-glycans was observed in the ManIa-silenced insects. As a pathogen-associated molecular pattern (PAMP), the presence of these glycan structures could trigger the activation of the immune pathways. CONCLUSION The observed decrease in PM pore size could be a response to prevent potential pathogens to access the midgut epithelium. This hypothesis is supported by the strong increase in transcription levels of the anti-fungal peptide drosomycin-like in ManIaRNAi insects, although further research is required to elucidate this possibility. The potential immune response in the midgut and the smaller pore size in the PM shed a light on the function of the PM as a physical barrier and provide evidence for the relation between the Mv and PM. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Dongdong Liu
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kristof De Schutter
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Johann Far
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège, Belgium
| | - An Staes
- VIB Center for Medical Biotechnology, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Koen Dewettinck
- Food Structure and Function Research Group, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Loic Quinton
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liège, Liège, Belgium
| | - Kris Gevaert
- VIB Center for Medical Biotechnology, Ghent University, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
13
|
Zeng T, Jaffar S, Xu Y, Qi Y. The Intestinal Immune Defense System in Insects. Int J Mol Sci 2022; 23:ijms232315132. [PMID: 36499457 PMCID: PMC9740067 DOI: 10.3390/ijms232315132] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Over a long period of evolution, insects have developed unique intestinal defenses against invasion by foreign microorganisms, including physical defenses and immune responses. The physical defenses of the insect gut consist mainly of the peritrophic matrix (PM) and mucus layer, which are the first barriers to pathogens. Gut microbes also prevent the colonization of pathogens. Importantly, the immune-deficiency (Imd) pathways produce antimicrobial peptides to eliminate pathogens; mechanisms related to reactive oxygen species are another important pathway for insect intestinal immunity. The janus kinase/STAT signaling pathway is involved in intestinal immunity by producing bactericidal substances and regulating tissue repair. Melanization can produce many bactericidal active substances into the intestine; meanwhile, there are multiple responses in the intestine to fight against viral and parasitic infections. Furthermore, intestinal stem cells (ISCs) are also indispensable in intestinal immunity. Only the coordinated combination of the intestinal immune defense system and intestinal tissue renewal can effectively defend against pathogenic microorganisms.
Collapse
|
14
|
Kawabata SI, Shibata T. New insights into the hemolymph coagulation cascade of horseshoe crabs initiated by autocatalytic activation of a lipopolysaccharide-sensitive zymogen. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104491. [PMID: 35850280 DOI: 10.1016/j.dci.2022.104491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The concept of a chain reaction of proteolytic activation of multiple protease zymogens was first proposed to explain the blood clotting system in mammals as an enzyme cascade. In multicellular organisms, similar enzyme cascades are widely present in signal transduction and amplification systems. The initiation step of the blood coagulation cascade often consists of autocatalytic activation of the corresponding zymogens located on the surfaces of host- or foreign-derived substances at injured sites. However, the molecular mechanism underlying the concept of autocatalytic activation remains speculative. In this review, we will focus on the autocatalytic activation of prochelicerase C on the surface of lipopolysaccharide as a potential initiator of hemolymph coagulation in horseshoe crabs. Prochelicerase C is presumed to have evolved from a common complement factor in Chelicerata; thus, evolutionary insights into the hemolymph coagulation and complement systems in horseshoe crabs will also be discussed.
Collapse
Affiliation(s)
- Shun-Ichiro Kawabata
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan.
| | - Toshio Shibata
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Fukuoka, 819-0395, Japan
| |
Collapse
|
15
|
Prakash A, Monteith KM, Vale PF. Mechanisms of damage prevention, signalling and repair impact disease tolerance. Proc Biol Sci 2022; 289:20220837. [PMID: 35975433 PMCID: PMC9382215 DOI: 10.1098/rspb.2022.0837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The insect gut is frequently exposed to pathogenic threats and must not only clear these potential infections, but also tolerate relatively high microbe loads. In contrast to the mechanisms that eliminate pathogens, we currently know less about the mechanisms of disease tolerance. We investigated how well-described mechanisms that prevent, signal, control or repair damage during infection contribute to the phenotype of disease tolerance. We established enteric infections with the bacterial pathogen Pseudomonas entomophila in transgenic lines of Drosophila melanogaster fruit flies affecting dcy (a major component of the peritrophic matrix), upd3 (a cytokine-like molecule), irc (a negative regulator of reactive oxygen species) and egfr1 (epithelial growth factor receptor). Flies lacking dcy experienced the highest mortality, while loss of function of either irc or upd3 reduced tolerance in both sexes. The disruption of egfr1 resulted in a severe loss in tolerance in male flies but had no substantial effect on the ability of female flies to tolerate P. entomophila infection, despite carrying greater microbe loads than males. Together, our findings provide evidence for the role of damage limitation mechanisms in disease tolerance and highlight how sexual dimorphism in these mechanisms could generate sex differences in infection outcomes.
Collapse
Affiliation(s)
- Arun Prakash
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Katy M. Monteith
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Pedro F. Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
16
|
Syed ZA, Zhang L, Ten Hagen KG. In vivo models of mucin biosynthesis and function. Adv Drug Deliv Rev 2022; 184:114182. [PMID: 35278522 PMCID: PMC9068269 DOI: 10.1016/j.addr.2022.114182] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/04/2022] [Indexed: 12/22/2022]
Abstract
The secreted mucus layer that lines and protects epithelial cells is conserved across diverse species. While the exact composition of this protective layer varies between organisms, certain elements are conserved, including proteins that are heavily decorated with N-acetylgalactosamine-based sugars linked to serines or threonines (O-linked glycosylation). These heavily O-glycosylated proteins, known as mucins, exist in many forms and are able to form hydrated gel-like structures that coat epithelial surfaces. In vivo studies in diverse organisms have highlighted the importance of both the mucin proteins as well as their constituent O-glycans in the protection and health of internal epithelia. Here, we summarize in vivo approaches that have shed light on the synthesis and function of these essential components of mucus.
Collapse
Affiliation(s)
- Zulfeqhar A Syed
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892-4370, United States
| | - Liping Zhang
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892-4370, United States
| | - Kelly G Ten Hagen
- Developmental Glycobiology Section, NIDCR, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892-4370, United States.
| |
Collapse
|
17
|
Kitsou C, Foor SD, Dutta S, Bista S, Pal U. Tick gut barriers impacting tick-microbe interactions and pathogen persistence. Mol Microbiol 2021; 116:1241-1248. [PMID: 34570926 DOI: 10.1111/mmi.14822] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/08/2023]
Abstract
Ticks are regarded as one of the most ancient, unique, and highly evolved ectoparasites. They can parasitize diverse vertebrates and transmit a number of widespread infections. Once acquired from infected hosts, many tick-borne pathogens, like Borrelia burgdorferi, are confined within the tick gut lumen and are surrounded by discrete gut barriers. Such barriers include the peritrophic membrane (PM) and the dityrosine network (DTN), which are in close contact with resident microbiota and invading pathogens, influencing their survival within the vector. Herein, we review our current state of knowledge about tick-microbe interactions involving the PM and DTN structures. As a model, we will focus on Ixodes ticks, their microbiome, and the pathogen of Lyme disease. We will address the most salient findings on the structural and physiological roles of these Ixodes gut barriers on microbial interactions, with a comparison to analogous functions in other model vectors, such as mosquitoes. We will distill how this information could be leveraged towards a better understanding of the basic mechanisms of gut biology and tick-microbial interactions, which could contribute to potential therapeutic strategies in response to ticks and tick-borne infections.
Collapse
Affiliation(s)
- Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Shelby D Foor
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Shraboni Dutta
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Sandhya Bista
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park and Virginia-Maryland Regional College of Veterinary Medicine, College Park, Maryland, USA
| |
Collapse
|
18
|
Characteristics of the Peritrophic Matrix of the Silkworm, Bombyx mori and Factors Influencing Its Formation. INSECTS 2021; 12:insects12060516. [PMID: 34199436 PMCID: PMC8227122 DOI: 10.3390/insects12060516] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The insect midgut is an important digestive organ with the peritrophic matrix (PM) being a semi-permeable membrane secreted by the midgut cells. The PM plays an important role in improving midgut digestion efficiency and protecting the midgut from food particles and exogenous pathogens. The silkworm, Bombyx mori, is an economically important insect. Understanding the structure of the PM is necessary for studying its function, but characteristics of PM in B. mori have been rarely reported. In this study, we conducted a comprehensive study on the PM structure of the PM in silkworms and found its thickness increased gradually during growth, but there was no difference in the thickness comparing the anterior, middle, and posterior regions. Permeability of the PM gradually decreased from the anterior to posterior regions. In addition, we found the formation of the PM was influenced by food ingestion and the gut microbiota. Abstract The peritrophic matrix (PM) secreted by the midgut cells of insects is formed by the binding of PM proteins to chitin fibrils. The PM envelops the food bolus, serving as a barrier between the content of the midgut lumen and its epithelium, and plays a protective role for epithelial cells against mechanical damage, pathogens, toxins, and other harmful substances. However, few studies have investigated the characteristics and synthesis factors of the PM in the silkworm, Bombyx mori. Here, we examined the characteristics of the PM in the silkworms. The PM thickness of the silkworms increased gradually during growth, while there was no significant difference in thickness along the entire PM region. Permeability of the PM decreased gradually from the anterior to posterior PM. We also found that PM synthesis was affected by food ingestion and the gut microbiota. Our results are beneficial for future studies regarding the function of the PM in silkworms.
Collapse
|
19
|
Physical and Chemical Barriers in the Larval Midgut Confer Developmental Resistance to Virus Infection in Drosophila. Viruses 2021; 13:v13050894. [PMID: 34065985 PMCID: PMC8151258 DOI: 10.3390/v13050894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023] Open
Abstract
Insects can become lethally infected by the oral intake of a number of insect-specific viruses. Virus infection commonly occurs in larvae, given their active feeding behaviour; however, older larvae often become resistant to oral viral infections. To investigate mechanisms that contribute to resistance throughout the larval development, we orally challenged Drosophila larvae at different stages of their development with Drosophila C virus (DCV, Dicistroviridae). Here, we showed that DCV-induced mortality is highest when infection initiates early in larval development and decreases the later in development the infection occurs. We then evaluated the peritrophic matrix as an antiviral barrier within the gut using a Crystallin-deficient fly line (Crys-/-), whose PM is weakened and becomes more permeable to DCV-sized particles as the larva ages. This phenotype correlated with increasing mortality the later in development oral challenge occurred. Lastly, we tested in vitro the infectivity of DCV after incubation at pH conditions that may occur in the midgut. DCV virions were stable in a pH range between 3.0 and 10.5, but their infectivity decreased at least 100-fold below (1.0) and above (12.0) this range. We did not observe such acidic conditions in recently hatched larvae. We hypothesise that, in Drosophila larvae, the PM is essential for containing ingested virions separated from the gut epithelium, while highly acidic conditions inactivate the majority of the virions as they transit.
Collapse
|
20
|
Bai S, Yao Z, Raza MF, Cai Z, Zhang H. Regulatory mechanisms of microbial homeostasis in insect gut. INSECT SCIENCE 2021; 28:286-301. [PMID: 32888254 DOI: 10.1111/1744-7917.12868] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/20/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Insects live in incredibly complex environments. The intestinal epithelium of insects is in constant contact with microorganisms, some of which are beneficial and some harmful to the host. Insect gut health and function are maintained through multidimensional mechanisms that can proficiently remove foreign pathogenic microorganisms while effectively maintaining local symbiotic microbial homeostasis. The basic immune mechanisms of the insect gut, such as the dual oxidase-reactive oxygen species (Duox-ROS) system and the immune deficiency (Imd)-signaling pathway, are involved in the maintenance of microbial homeostasis. This paper reviews the role of physical defenses, the Duox-ROS and Imd signaling pathways, the Janus kinase/signal transducers and activators of transcription signaling pathway, and intestinal symbiotic flora in the homeostatic maintenance of the insect gut microbiome.
Collapse
Affiliation(s)
- Shuai Bai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhichao Yao
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Fahim Raza
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhaohui Cai
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongyu Zhang
- State Key Laboratory of Agricultural Microbiology, Key Laboratory of Horticultural Plant Biology (MOE), China-Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
21
|
Kobler JM, Rodriguez Jimenez FJ, Petcu I, Grunwald Kadow IC. Immune Receptor Signaling and the Mushroom Body Mediate Post-ingestion Pathogen Avoidance. Curr Biol 2020; 30:4693-4709.e3. [DOI: 10.1016/j.cub.2020.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/31/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023]
|
22
|
Ito D, Kawamura H, Oikawa A, Ihara Y, Shibata T, Nakamura N, Asano T, Kawabata SI, Suzuki T, Masuda S. ppGpp functions as an alarmone in metazoa. Commun Biol 2020; 3:671. [PMID: 33188280 PMCID: PMC7666150 DOI: 10.1038/s42003-020-01368-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/09/2020] [Indexed: 01/20/2023] Open
Abstract
Guanosine 3′,5′-bis(pyrophosphate) (ppGpp) functions as a second messenger in bacteria to adjust their physiology in response to environmental changes. In recent years, the ppGpp-specific hydrolase, metazoan SpoT homolog-1 (Mesh1), was shown to have important roles for growth under nutrient deficiency in Drosophila melanogaster. Curiously, however, ppGpp has never been detected in animal cells, and therefore the physiological relevance of this molecule, if any, in metazoans has not been established. Here, we report the detection of ppGpp in Drosophila and human cells and demonstrate that ppGpp accumulation induces metabolic changes, cell death, and eventually lethality in Drosophila. Our results provide the evidence of the existence and function of the ppGpp-dependent stringent response in animals. Ito et al. succeed in detecting guanosine tetraphosphate (ppGpp) in measurable levels in metazoan, specifically in Drosophila. They further demonstrate that the ppGpp-specific hydrolase, metazoan SpoT homolog-1 (Mesh1), is necessary, at least in certain conditions, to maintain low ppGpp levels, hence providing insights into the role of Mesh1 as a ppGpp hydrolase in vivo.
Collapse
Affiliation(s)
- Doshun Ito
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hinata Kawamura
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Akira Oikawa
- Faculty of Agriculture, Yamagata University, Tsuruoka, Japan
| | - Yuta Ihara
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshio Shibata
- Department of Biology, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Nobuhiro Nakamura
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tsunaki Asano
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | | | - Takashi Suzuki
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
23
|
Funk MC, Zhou J, Boutros M. Ageing, metabolism and the intestine. EMBO Rep 2020; 21:e50047. [PMID: 32567155 PMCID: PMC7332987 DOI: 10.15252/embr.202050047] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/18/2020] [Accepted: 05/29/2020] [Indexed: 12/14/2022] Open
Abstract
The intestinal epithelium serves as a dynamic barrier to the environment and integrates a variety of signals, including those from metabolites, commensal microbiota, immune responses and stressors upon ageing. The intestine is constantly challenged and requires a high renewal rate to replace damaged cells in order to maintain its barrier function. Essential for its renewal capacity are intestinal stem cells, which constantly give rise to progenitor cells that differentiate into the multiple cell types present in the epithelium. Here, we review the current state of research of how metabolism and ageing control intestinal stem cell function and epithelial homeostasis. We focus on recent insights gained from model organisms that indicate how changes in metabolic signalling during ageing are a major driver for the loss of stem cell plasticity and epithelial homeostasis, ultimately affecting the resilience of an organism and limiting its lifespan. We compare findings made in mouse and Drosophila and discuss differences and commonalities in the underlying signalling pathways and mechanisms in the context of ageing.
Collapse
Affiliation(s)
- Maja C Funk
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
| | - Jun Zhou
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
24
|
Ferreira PG, Tesla B, Horácio ECA, Nahum LA, Brindley MA, de Oliveira Mendes TA, Murdock CC. Temperature Dramatically Shapes Mosquito Gene Expression With Consequences for Mosquito-Zika Virus Interactions. Front Microbiol 2020; 11:901. [PMID: 32595607 PMCID: PMC7303344 DOI: 10.3389/fmicb.2020.00901] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
Vector-borne flaviviruses are emerging threats to human health. For successful transmission, the virus needs to efficiently enter mosquito cells and replicate within and escape several tissue barriers while mosquitoes elicit major transcriptional responses to flavivirus infection. This process will be affected not only by the specific mosquito-pathogen pairing but also by variation in key environmental variables such as temperature. Thus far, few studies have examined the molecular responses triggered by temperature and how these responses modify infection outcomes, despite substantial evidence showing strong relationships between temperature and transmission in a diversity of systems. To define the host transcriptional changes associated with temperature variation during the early infection process, we compared the transcriptome of mosquito midgut samples from mosquitoes exposed to Zika virus (ZIKV) and non-exposed mosquitoes housed at three different temperatures (20, 28, and 36°C). While the high-temperature samples did not show significant changes from those with standard rearing conditions (28°C) 48 h post-exposure, the transcriptome profile of mosquitoes housed at 20°C was dramatically different. The expression of genes most altered by the cooler temperature involved aspects of blood-meal digestion, ROS metabolism, and mosquito innate immunity. Further, we did not find significant differences in the viral RNA copy number between 24 and 48 h post-exposure at 20°C, suggesting that ZIKV replication is limited by cold-induced changes to the mosquito midgut environment. In ZIKV-exposed mosquitoes, vitellogenin, a lipid carrier protein, was most up-regulated at 20°C. Our results provide a deeper understanding of the temperature-triggered transcriptional changes in Aedes aegypti and can be used to further define the molecular mechanisms driven by environmental temperature variation.
Collapse
Affiliation(s)
| | - Blanka Tesla
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Elvira Cynthia Alves Horácio
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Laila Alves Nahum
- René Rachou Institute, Oswaldo Cruz Foundation, Belo Horizonte, Brazil.,Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil.,Promove College of Technology, Belo Horizonte, Brazil
| | - Melinda Ann Brindley
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States
| | | | - Courtney Cuinn Murdock
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States.,Center for Vaccines and Immunology, University of Georgia, Athens, GA, United States.,Odum School of Ecology, University of Georgia, Athens, GA, United States.,Center for the Ecology of Infectious Diseases, University of Georgia, Athens, GA, United States.,Center for Emerging and Global Tropical Diseases, University of Georgia, Athens, GA, United States.,River Basin Center, University of Georgia, Athens, GA, United States.,Department of Entomology, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
25
|
Affiliation(s)
- William B. Ludington
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail: (WBL); (WWJ)
| | - William W. Ja
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Center on Aging, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail: (WBL); (WWJ)
| |
Collapse
|
26
|
Nonaka S, Salim E, Kamiya K, Hori A, Nainu F, Asri RM, Masyita A, Nishiuchi T, Takeuchi S, Kodera N, Kuraishi T. Molecular and Functional Analysis of Pore-Forming Toxin Monalysin From Entomopathogenic Bacterium Pseudomonas entomophila. Front Immunol 2020; 11:520. [PMID: 32292407 PMCID: PMC7118224 DOI: 10.3389/fimmu.2020.00520] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/06/2020] [Indexed: 01/05/2023] Open
Abstract
Pseudomonas entomophila is a highly pathogenic bacterium that infects insects. It is also used as a suitable model pathogen to analyze Drosophila's innate immunity. P. entomophila's virulence is largely derived from Monalysin, a β-barrel pore-forming toxin that damages Drosophila tissues, inducing necrotic cell death. Here we report the first and efficient purification of endogenous Monalysin and its characterization. Monalysin is successfully purified as a pro-form, and trypsin treatment results in a cleaved mature form of purified Monalysin which kills Drosophila cell lines and adult flies. Electrophysiological measurement of Monalysin in a lipid membrane with an on-chip device confirms that Monalysin forms a pore, in a cleavage-dependent manner. This analysis also provides a pore-size estimate of Monalysin using current amplitude for a single pore and suggests lipid preferences for the insertion. Atomic Force Microscope (AFM) analysis displays its structure in a solution and shows that active-Monalysin is stable and composed of an 8-mer complex; this observation is consistent with mass spectrometry data. AFM analysis also shows the 8-mer structure of active-Monalysin in a lipid bilayer, and real-time imaging demonstrates the moment at which Monalysin is inserted into the lipid membrane. These results collectively suggest that endogenous Monalysin is indeed a pore-forming toxin composed of a rigid structure before pore formation in the lipid membrane. The endogenous Monalysin characterized in this study could be a desirable tool for analyzing host defense mechanisms against entomopathogenic bacteria producing damage-inducing toxins.
Collapse
Affiliation(s)
- Saori Nonaka
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Emil Salim
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Koki Kamiya
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan.,Graduate School of Science and Technology, Gunma University, Maebashi, Japan
| | - Aki Hori
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Firzan Nainu
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Rangga Meidianto Asri
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Ayu Masyita
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.,Faculty of Pharmacy, Universitas Hasanuddin, Makassar, Indonesia
| | - Takumi Nishiuchi
- Institute for Gene Research, Kanazawa University, Kanazawa, Japan
| | - Shoji Takeuchi
- Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan.,Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Noriyuki Kodera
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, Japan
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
27
|
Erlandson MA, Toprak U, Hegedus DD. Role of the peritrophic matrix in insect-pathogen interactions. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103894. [PMID: 31175854 DOI: 10.1016/j.jinsphys.2019.103894] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/27/2019] [Accepted: 06/05/2019] [Indexed: 05/12/2023]
Abstract
The peritrophic matrix (PM) is an acellular chitin and glycoprotein layer that lines the invertebrate midgut. The PM has long been considered a physical as well as a biochemical barrier, protecting the midgut epithelium from abrasive food particles, digestive enzymes and pathogens infectious per os. This short review will focus on the latter function, as a barrier to pathogens infectious per os. We focus on the evidence confirming the role of the PM as protective barrier against pathogenic microorganisms of insects, mainly bacteria and viruses, as well as the evolution of a variety of mechanisms used by pathogens to overcome the PM barrier.
Collapse
Affiliation(s)
- Martin A Erlandson
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada; Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Umut Toprak
- Molecular Entomology Laboratory, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne D Hegedus
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada; Department of Food and Bioproduct Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
28
|
Stewart Merrill TE, Hall SR, Merrill L, Cáceres CE. Variation in Immune Defense Shapes Disease Outcomes in Laboratory and Wild Daphnia. Integr Comp Biol 2019; 59:1203-1219. [DOI: 10.1093/icb/icz079] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Host susceptibility may be critical for the spread of infectious disease, and understanding its basis is a goal of ecological immunology. Here, we employed a series of mechanistic tests to evaluate four factors commonly assumed to influence host susceptibility: parasite exposure, barriers to infection, immune responses, and body size. We tested these factors in an aquatic host–parasite system (Daphnia dentifera and the fungal parasite, Metschnikowia bicuspidata) using both laboratory-reared and field-collected hosts. We found support for each factor as a driver of infection. Elevated parasite exposure, which occurs through consumption of infectious fungal spores, increased a host’s probability of infection. The host’s gut epithelium functioned as a barrier to infection, but in the opposite manner from which we predicted: thinner anterior gut epithelia were more resistant to infectious spores than thick epithelia. This relationship may be mediated by structural attributes associated with epithelial cell height. Fungal spores that breached the host’s gut barrier elicited an intensity-dependent hemocyte response that decreased the probability of infection for some Daphnia. Although larger body sizes were associated with increased levels of spore ingestion, larger hosts also had lower frequencies of parasite attack, less penetrable gut barriers, and stronger hemocyte responses. After investigating which mechanisms underlie host susceptibility, we asked: do these four factors contribute equally or asymmetrically to the outcome of infection? An information-theoretic approach revealed that host immune defenses (barriers and immune responses) played the strongest roles in mediating infection outcomes. These two immunological traits may be valuable metrics for linking host susceptibility to the spread of infectious disease.
Collapse
Affiliation(s)
- Tara E Stewart Merrill
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL 61801, USA
| | - Spencer R Hall
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Loren Merrill
- Department of Natural Resources, University of Illinois, Urbana, IL 61801, USA
| | - Carla E Cáceres
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
29
|
Miguel-Aliaga I, Jasper H, Lemaitre B. Anatomy and Physiology of the Digestive Tract of Drosophila melanogaster. Genetics 2018; 210:357-396. [PMID: 30287514 PMCID: PMC6216580 DOI: 10.1534/genetics.118.300224] [Citation(s) in RCA: 288] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/26/2018] [Indexed: 12/15/2022] Open
Abstract
The gastrointestinal tract has recently come to the forefront of multiple research fields. It is now recognized as a major source of signals modulating food intake, insulin secretion and energy balance. It is also a key player in immunity and, through its interaction with microbiota, can shape our physiology and behavior in complex and sometimes unexpected ways. The insect intestine had remained, by comparison, relatively unexplored until the identification of adult somatic stem cells in the Drosophila intestine over a decade ago. Since then, a growing scientific community has exploited the genetic amenability of this insect organ in powerful and creative ways. By doing so, we have shed light on a broad range of biological questions revolving around stem cells and their niches, interorgan signaling and immunity. Despite their relatively recent discovery, some of the mechanisms active in the intestine of flies have already been shown to be more widely applicable to other gastrointestinal systems, and may therefore become relevant in the context of human pathologies such as gastrointestinal cancers, aging, or obesity. This review summarizes our current knowledge of both the formation and function of the Drosophila melanogaster digestive tract, with a major focus on its main digestive/absorptive portion: the strikingly adaptable adult midgut.
Collapse
Affiliation(s)
- Irene Miguel-Aliaga
- Medical Research Council London Institute of Medical Sciences, Imperial College London, W12 0NN, United Kingdom
| | - Heinrich Jasper
- Buck Institute for Research on Aging, Novato, California 94945-1400
- Immunology Discovery, Genentech, Inc., San Francisco, California 94080
| | - Bruno Lemaitre
- Global Health Institute, School of Life Sciences, École polytechnique fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
30
|
Benguettat O, Jneid R, Soltys J, Loudhaief R, Brun-Barale A, Osman D, Gallet A. The DH31/CGRP enteroendocrine peptide triggers intestinal contractions favoring the elimination of opportunistic bacteria. PLoS Pathog 2018; 14:e1007279. [PMID: 30180210 PMCID: PMC6138423 DOI: 10.1371/journal.ppat.1007279] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 09/14/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023] Open
Abstract
The digestive tract is the first organ affected by the ingestion of foodborne bacteria. While commensal bacteria become resident, opportunistic or virulent bacteria are eliminated from the gut by the local innate immune system. Here we characterize a new mechanism of defense, independent of the immune system, in Drosophila melanogaster. We observed strong contractions of longitudinal visceral muscle fibers for the first 2 hours following bacterial ingestion. We showed that these visceral muscle contractions are induced by immune reactive oxygen species (ROS) that accumulate in the lumen and depend on the ROS-sensing TRPA1 receptor. We then demonstrate that both ROS and TRPA1 are required in a subset of anterior enteroendocrine cells for the release of the DH31 neuropeptide which activates its receptor in the neighboring visceral muscles. The resulting contractions of the visceral muscles favors quick expulsion of the bacteria, limiting their presence in the gut. Our results unveil a precocious mechanism of defense against ingested opportunistic bacteria, whether they are Gram-positive like Bacillus thuringiensis or Gram-negative like Erwinia carotovora carotovora. Finally, we found that the human homolog of DH31, CGRP, has a conserved function in Drosophila. The intestine is the first barrier to fight non-commensal bacteria ingested along with the food. The innate immune system is the main mean mounted by the gut lining in response to ill-causing bacteria to avoid detrimental impact. Intestinal cells produce chlorine bleach and antimicrobial peptides that destroy exogenous bacteria. Here, we identified and characterized a new mechanism of gut defense that occurs rapidly after ingestion of exogenous bacteria. We found that the enteroendocrine cells perceive the presence of chlorine bleach in the lumen thanks to a sensor. This sensor promotes a calcium flux within enteroendocrine cells that allows the release of a hormone. This hormone acts locally on the visceral muscle surrounding the intestine by provoking its strong contractions (or spasms). We show that these strong but brief visceral contractions are helping to the quick expulsion of the ingested bacteria thus limiting their potential detrimental impact on the intestine. Markedly, the bleach-sensor is well known to be involved in pain. Therefore we have deciphered in this study a biological mechanism that has so far been described only empirically by medicine, potentially explaining intestinal pain and visceral spasms upon food poisoning.
Collapse
Affiliation(s)
| | - Rouba Jneid
- Université Côte d'Azur, CNRS, INRA, ISA, France
- Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli, Lebanon
| | | | | | | | - Dani Osman
- Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli, Lebanon
| | - Armel Gallet
- Université Côte d'Azur, CNRS, INRA, ISA, France
- * E-mail:
| |
Collapse
|
31
|
Dawadi B, Wang X, Xiao R, Muhammad A, Hou Y, Shi Z. PGRP-LB homolog acts as a negative modulator of immunity in maintaining the gut-microbe symbiosis of red palm weevil, Rhynchophorus ferrugineus Olivier. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:65-77. [PMID: 29715482 DOI: 10.1016/j.dci.2018.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 05/08/2023]
Abstract
Many notorious insect pests live in the symbiotic associations with gut microbiota. However, the mechanisms underlying how they host their gut microbiota are unknown. Most gut bacteria can release peptidoglycan (PGN) which is an important antigen to activate the immune response. Therefore, how to keep the appropriate gut immune intensity to host commensals while to efficiently remove enteropathogens is vital for insect health. This study is aimed at elucidating the roles of an amidase PGRP, Rf PGRP-LB, in maintaining the gut-microbe symbiosis of Red palm weevil (RPW), Rhynchophorus ferrugineus Olivier. RfPGRP-LB is a secreted protein containing a typical PGRP domain. The existence of five conservative amino acid residues, being required for amidase activity, showed that RfPGRP-LB is a catalytic protein. Expression analysis revealed abundance of RfPGRP-LB transcripts in gut was dramatically higher than those in other tissues. RfPGRP-LB could be significantly induced against the infection of Escherichia coli. In vitro assays revealed that rRfPGRP-LB impaired the growth of E. coli and agglutinated bacteria cells obviously, suggesting RfPGRP-LB is a pathogen recognition receptor and bactericidal molecule. RfPGRP-LB knockdown reduced the persistence of E. coli in gut and load of indigenous gut microbiota significantly. Furthermore, the community structure of indigenous gut microbiota was also intensively altered by RfPGRP-LB silence. Higher levels of the antimicrobial peptide, attacin, were detected in guts of RfPGRP-LB silenced larvae than controls. Collectively, RfPGRP-LB plays multiple roles in modulating the homeostasis of RPW gut microbiota not only by acting as a negative regulator of mucosal immunity through PGN degradation but also as a bactericidal effector to prevent overgrowth of commensals and persistence of noncommensals.
Collapse
Affiliation(s)
- Bishnu Dawadi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinghong Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rong Xiao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Abrar Muhammad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zhanghong Shi
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fuzhou, 350002, China; Fujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
32
|
Hori A, Kurata S, Kuraishi T. Unexpected role of the IMD pathway in Drosophila gut defense against Staphylococcus aureus. Biochem Biophys Res Commun 2017; 495:395-400. [PMID: 29108998 DOI: 10.1016/j.bbrc.2017.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 12/29/2022]
Abstract
In this study, fruit fly of the genus Drosophila is utilized as a suitable model animal to investigate the molecular mechanisms of innate immunity. To combat orally transmitted pathogenic Gram-negative bacteria, the Drosophila gut is armed with the peritrophic matrix, which is a physical barrier composed of chitin and glycoproteins: the Duox system that produces reactive oxygen species (ROS), which in turn sterilize infected microbes, and the IMD pathway that regulates the expression of antimicrobial peptides (AMPs), which in turn control ROS-resistant pathogens. However, little is known about the defense mechanisms against Gram-positive bacteria in the fly gut. Here, we show that the peritrophic matrix protects Drosophila against Gram-positive bacteria S. aureus. We also define the few roles of ROS in response to the infection and show that the IMD pathway is required for the clearance of ingested microbes, possibly independently from AMP expression. These findings provide a new aspect of the gut defense system of Drosophila, and helps to elucidate the processes of gut-microbe symbiosis and pathogenesis.
Collapse
Affiliation(s)
- Aki Hori
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan; Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Shoichiro Kurata
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan.
| | - Takayuki Kuraishi
- Department of Molecular Biopharmacy and Genetics, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan; Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan; PRESTO, Japan Science and Technology Agency, Tokyo, Japan.
| |
Collapse
|
33
|
Liu Q, Jin LH. Tissue-resident stem cell activity: a view from the adult Drosophila gastrointestinal tract. Cell Commun Signal 2017; 15:33. [PMID: 28923062 PMCID: PMC5604405 DOI: 10.1186/s12964-017-0184-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal tract serves as a fast-renewing model for unraveling the multifaceted molecular mechanisms underlying remarkably rapid cell renewal, which is exclusively fueled by a small number of long-lived stem cells and their progeny. Stem cell activity is the best-characterized aspect of mucosal homeostasis in mitotically active tissues, and the dysregulation of regenerative capacity is a hallmark of epithelial immune defects. This dysregulation is frequently associated with pathologies ranging from chronic enteritis to malignancies in humans. Application of the adult Drosophila gastrointestinal tract model in current and future studies to analyze the immuno-physiological aspects of epithelial defense strategies, including stem cell behavior and re-epithelialization, will be necessary to improve our general understanding of stem cell participation in epithelial turnover. In this review, which describes exciting observations obtained from the adult Drosophila gastrointestinal tract, we summarize a remarkable series of recent findings in the literature to decipher the molecular mechanisms through which stem cells respond to nonsterile environments.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Genetics, College of Life Sciences, Northeast Forestry University, No.26 Hexing Road Xiangfang District, Harbin, 150040, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, No.26 Hexing Road Xiangfang District, Harbin, 150040, China.
| |
Collapse
|
34
|
Shibata T, Kawabata SI. Pluripotency and a secretion mechanism of Drosophila transglutaminase. J Biochem 2017; 163:165-176. [DOI: 10.1093/jb/mvx059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/14/2017] [Indexed: 01/13/2023] Open
Affiliation(s)
- Toshio Shibata
- Institute for Advanced Study, Kyushu University, Fukuoka 819-0395, Japan
- Department of Biology, Faculty of Science, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| | - Shun-ichiro Kawabata
- Department of Biology, Faculty of Science, Kyushu University, Motooka 744, Fukuoka 819-0395, Japan
| |
Collapse
|
35
|
Rodgers FH, Gendrin M, Wyer CAS, Christophides GK. Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes. PLoS Pathog 2017; 13:e1006391. [PMID: 28545061 PMCID: PMC5448818 DOI: 10.1371/journal.ppat.1006391] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/30/2017] [Accepted: 04/28/2017] [Indexed: 12/22/2022] Open
Abstract
Manipulation of the mosquito gut microbiota can lay the foundations for novel methods for disease transmission control. Mosquito blood feeding triggers a significant, transient increase of the gut microbiota, but little is known about the mechanisms by which the mosquito controls this bacterial growth whilst limiting inflammation of the gut epithelium. Here, we investigate the gut epithelial response to the changing microbiota load upon blood feeding in the malaria vector Anopheles coluzzii. We show that the synthesis and integrity of the peritrophic matrix, which physically separates the gut epithelium from its luminal contents, is microbiota dependent. We reveal that the peritrophic matrix limits the growth and persistence of Enterobacteriaceae within the gut, whilst preventing seeding of a systemic infection. Our results demonstrate that the peritrophic matrix is a key regulator of mosquito gut homeostasis and establish functional analogies between this and the mucus layers of the mammalian gastrointestinal tract. When a female mosquito takes a blood meal from a human, the bacteria residing within its gut grow significantly. Following a blood meal, female mosquitoes produce a barrier within their gut, known as the peritrophic matrix, which physically separates the blood meal from the cells of the epithelium. Here, we show that the presence of bacteria in the gut is required for the synthesis of the peritrophic matrix. By experimentally disrupting this barrier, we find that this structure plays a role in limiting the extent to which bacteria of one particular family are able to grow and persist in the mosquito gut. We also find that the peritrophic matrix ensures that bacteria remain within the gut, preventing them from invading the mosquito body cavity. These results will be useful in designing disease control strategies that depend on the ability of bacteria to colonize and persist in relevant tissues in the mosquito host.
Collapse
Affiliation(s)
- Faye H. Rodgers
- Vector Immunogenomics and Infection Laboratory, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Mathilde Gendrin
- Vector Immunogenomics and Infection Laboratory, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Claudia A. S. Wyer
- Vector Immunogenomics and Infection Laboratory, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - George K. Christophides
- Vector Immunogenomics and Infection Laboratory, Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Shibata T, Hadano J, Kawasaki D, Dong X, Kawabata SI. Drosophila TG-A transglutaminase is secreted via an unconventional Golgi-independent mechanism involving exosomes and two types of fatty acylations. J Biol Chem 2017; 292:10723-10734. [PMID: 28476891 DOI: 10.1074/jbc.m117.779710] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/26/2017] [Indexed: 01/07/2023] Open
Abstract
Transglutaminases (TGs) play essential intracellular and extracellular roles by covalently cross-linking many proteins. Drosophila TG is encoded by one gene and has two alternative splicing-derived isoforms, TG-A and TG-B, which contain distinct N-terminal 46- and 38-amino acid sequences, respectively. The TGs identified to date do not have a typical endoplasmic reticulum (ER)-signal peptide, and the molecular mechanisms of their secretion under physiologic conditions are unclear. Immunocytochemistry revealed that TG-A localizes to multivesicular-like structures, whereas TG-B localizes to the cytosol. We also found that TG-A, but not TG-B, was modified concomitantly by N-myristoylation and S-palmitoylation, and N-myristoylation was a pre-requisite for S-palmitoylation. Moreover, TG-A, but not TG-B, was secreted in response to calcium signaling induced by Ca2+ ionophores and uracil, a pathogenic bacteria-derived substance. Brefeldin A and monensin, inhibitors of the ER/Golgi-mediated conventional pathway, did not suppress TG-A secretion, whereas inhibition of S-palmitoylation by 2-bromopalmitate blocked TG-A secretion. Ultracentrifugation, electron microscopy analyses, and treatments with inhibitors of multivesicular body formation revealed that TG-A was secreted via exosomes together with co-transfected mammalian CD63, an exosomal marker, and the secreted TG-A was taken up by other cells. The 8-residue N-terminal fragment of TG-A containing the fatty acylation sites was both necessary and sufficient for the exosome-dependent secretion of TG-A. In conclusion, TG-A is secreted through an unconventional ER/Golgi-independent pathway involving two types of fatty acylations and exosomes.
Collapse
Affiliation(s)
- Toshio Shibata
- From the Department of Biology, Faculty of Science.,Institute for Advanced Study, and
| | - Jinki Hadano
- the Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Daichi Kawasaki
- the Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Xiaoqing Dong
- the Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Shun-Ichiro Kawabata
- From the Department of Biology, Faculty of Science, .,the Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
37
|
Maki K, Shibata T, Kawabata SI. Transglutaminase-catalyzed incorporation of polyamines masks the DNA-binding region of the transcription factor Relish. J Biol Chem 2017; 292:6369-6380. [PMID: 28258224 DOI: 10.1074/jbc.m117.779579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 02/27/2017] [Indexed: 02/01/2023] Open
Abstract
In Drosophila, the final immune deficiency (IMD) pathway-dependent signal is transmitted through proteolytic conversion of the nuclear factor-κB (NF-κB)-like transcription factor Relish to the active N-terminal fragment Relish-N. Relish-N is then translocated from the cytosol into the nucleus for the expression of IMD-controlled genes. We previously demonstrated that transglutaminase (TG) suppresses the IMD pathway by polymerizing Relish-N to inhibit its nuclear translocation. Conversely, we also demonstrated that orally ingested synthetic amines, such as monodansylcadaverine (DCA) and biotin-labeled pentylamine, are TG-dependently incorporated into Relish-N, causing the nuclear translocation of modified Relish-N in gut epithelial cells. It remains unclear, however, whether polyamine-containing Relish-N retains transcriptional activity. Here, we used mass spectrometry analysis of a recombinant Relish-N modified with DCA by TG activity after proteolytic digestion and show that the DCA-modified Gln residues are located in the DNA-binding region of Relish-N. TG-catalyzed DCA incorporation inhibited binding of Relish-N to the Rel-responsive element in the NF-κB-binding DNA sequence. Subcellular fractionation of TG-expressing Drosophila S2 cells indicated that TG was localized in both the cytosol and nucleus. Of note, natural polyamines, including spermidine and spermine, competitively inhibited TG-dependent DCA incorporation into Relish-N. Moreover, in vivo experiments demonstrated that Relish-N was modified by spermine and that this modification reduced transcription of IMD pathway-controlled cecropin A1 and diptericin genes. These findings suggest that intracellular TG regulates Relish-N-mediated transcriptional activity by incorporating polyamines into Relish-N and via protein-protein cross-linking.
Collapse
Affiliation(s)
- Kouki Maki
- From the Graduate School of Systems Life Sciences
| | - Toshio Shibata
- Institute for Advanced Study, and.,Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| | - Shun-Ichiro Kawabata
- From the Graduate School of Systems Life Sciences, .,Department of Biology, Faculty of Science, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
38
|
Wong ACN, Vanhove AS, Watnick PI. The interplay between intestinal bacteria and host metabolism in health and disease: lessons from Drosophila melanogaster. Dis Model Mech 2016; 9:271-81. [PMID: 26935105 PMCID: PMC4833331 DOI: 10.1242/dmm.023408] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
All higher organisms negotiate a truce with their commensal microbes and battle pathogenic microbes on a daily basis. Much attention has been given to the role of the innate immune system in controlling intestinal microbes and to the strategies used by intestinal microbes to overcome the host immune response. However, it is becoming increasingly clear that the metabolisms of intestinal microbes and their hosts are linked and that this interaction is equally important for host health and well-being. For instance, an individual's array of commensal microbes can influence their predisposition to chronic metabolic diseases such as diabetes and obesity. A better understanding of host-microbe metabolic interactions is important in defining the molecular bases of these disorders and could potentially lead to new therapeutic avenues. Key advances in this area have been made using Drosophila melanogaster. Here, we review studies that have explored the impact of both commensal and pathogenic intestinal microbes on Drosophila carbohydrate and lipid metabolism. These studies have helped to elucidate the metabolites produced by intestinal microbes, the intestinal receptors that sense these metabolites, and the signaling pathways through which these metabolites manipulate host metabolism. Furthermore, they suggest that targeting microbial metabolism could represent an effective therapeutic strategy for human metabolic diseases and intestinal infection.
Collapse
Affiliation(s)
- Adam C N Wong
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Audrey S Vanhove
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Paula I Watnick
- Division of Infectious Diseases, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
39
|
Capo F, Charroux B, Royet J. Bacteria sensing mechanisms in Drosophila gut: Local and systemic consequences. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:11-21. [PMID: 26778296 DOI: 10.1016/j.dci.2016.01.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 06/05/2023]
Abstract
All insects are colonized by microorganisms on their exoskeleton, their gut and even in some cases within their own somatic and germ line cells. This microbiota that can represent up to a few percent of the insect biomass may have a pervasive impact on many aspects of insect biology including physiology, nutrient acquisition, ageing, behaviour and resistance to infection. Mainly through ingestion of contaminated food, the mouth-gut axis represents the first and principal access of external bacteria to the host. Soon after ingestion, the feeding insect needs to rapidly and accurately identify the ingested microbes and decide whether to preserve them if beneficial or neutral, or to eliminate them if potentially harmful. We will review here the recent data acquired in Drosophila on the mechanisms that invertebrate enterocytes rely on to detect the presence of bacteria in the gut. We will compare these modes of bacteria sensing to those in other immune competent tissues and try to rationalize differences that may exist. We will also analyse the physiological consequences of bacteria detection not only locally for the gut itself but also for remote tissues. Finally, we will describe the physiological disorders that can occur due to inaccurate bacteria identification by the gut epithelium.
Collapse
Affiliation(s)
- Florence Capo
- Aix Marseille Université, CNRS, IBDM UMR 7288, 13288, Marseille, France
| | - Bernard Charroux
- Aix Marseille Université, CNRS, IBDM UMR 7288, 13288, Marseille, France
| | - Julien Royet
- Aix Marseille Université, CNRS, IBDM UMR 7288, 13288, Marseille, France.
| |
Collapse
|
40
|
Sekihara S, Shibata T, Hyakkendani M, Kawabata SI. RNA Interference Directed against the Transglutaminase Gene Triggers Dysbiosis of Gut Microbiota in Drosophila. J Biol Chem 2016; 291:25077-25087. [PMID: 27760824 DOI: 10.1074/jbc.m116.761791] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Indexed: 12/27/2022] Open
Abstract
We recently reported that transglutaminase (TG) suppresses immune deficiency pathway-controlled antimicrobial peptides (IMD-AMPs), thereby conferring immune tolerance to gut microbes, and that RNAi of the TG gene in flies decreases the lifespan compared with non-TG-RNAi flies. Here, analysis of the bacterial composition of the Drosophila gut by next-generation sequencing revealed that gut microbiota comprising one dominant genus of Acetobacter in non-TG-RNAi flies was shifted to that comprising two dominant genera of Acetobacter and Providencia in TG-RNAi flies. Four bacterial strains, including Acetobacter persici SK1 and Acetobacter indonesiensis SK2, Lactobacillus pentosus SK3, and Providencia rettgeri SK4, were isolated from the midgut of TG-RNAi flies. SK1 exhibited the highest resistance to the IMD-AMPs Cecropin A1 and Diptericin among the isolated bacteria. In contrast, SK4 exhibited considerably lower resistance against Cecropin A1, whereas SK4 exhibited high resistance to hypochlorous acid. The resistance of strains SK1-4 against IMD-AMPs in in vitro assays could not explain the shift of the microbiota in the gut of TG-RNAi flies. The lifespan was reduced in gnotobiotic flies that ingested both SK4 and SK1, concomitant with the production of reactive oxygen species and apoptosis in the midgut, whereas the survival rate was not altered in gnotobiotic flies that mono-ingested either SK4 or SK1. Interestingly, significant amounts of reactive oxygen species were detected in the midgut of gnotobiotic flies that ingested SK4 and SK2, concomitant with no significant apoptosis in the midgut. In gnotobiotic flies that co-ingested SK4 and SK1, an additional unknown factor(s) may be required to cause midgut apoptosis.
Collapse
Affiliation(s)
| | - Toshio Shibata
- From the Department of Biology, Faculty of Science.,the Institute for Advanced Study, and
| | - Mai Hyakkendani
- the Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| | - Shun-Ichiro Kawabata
- From the Department of Biology, Faculty of Science, .,the Graduate School of Systems Life Sciences, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
41
|
Correction: Crosslinking of a Peritrophic Matrix Protein Protects Gut Epithelia from Bacterial Exotoxins. PLoS Pathog 2016; 12:e1005670. [PMID: 27249643 PMCID: PMC4889057 DOI: 10.1371/journal.ppat.1005670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
[This corrects the article DOI: 10.1371/journal.ppat.1005244.].
Collapse
|