1
|
Cheng AY, Simmonds AJ. Peroxisome inter-organelle cooperation in Drosophila. Genome 2025; 68:1-12. [PMID: 39471439 DOI: 10.1139/gen-2024-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Many cellular functions are compartmentalized within the optimized environments of organelles. However, processing or storage of metabolites from the same pathway can occur in multiple organelles. Thus, spatially separated organelles need to cooperate functionally. Coordination between organelles in different specialized cells is also needed, with shared metabolites passed via circulation. Peroxisomes are membrane-bounded organelles responsible for cellular redox and lipid metabolism in eukaryotic cells. Peroxisomes coordinate with other organelles including mitochondria, endoplasmic reticulum, lysosomes, and lipid droplets. This functional coordination requires, or is at least enhanced by, direct contact between peroxisomes and other organelles. Peroxisome dysfunction in humans leads to multiorgan effects including neurological, metabolic, developmental, and age-related diseases. Thus, increased understanding of peroxisome coordination with other organelles, especially cells in various organs is essential. Drosophila melanogaster (fruit fly) has emerged recently as an effective animal model for understanding peroxisomes. Here we review current knowledge of pathways regulating coordination between peroxisomes with other organelles in flies, speculating about analogous roles for conserved Drosophila genes encoding proteins with known organelle coordinating roles in other species.
Collapse
Affiliation(s)
- Andy Y Cheng
- Department of Cell Biology, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, 5-14 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, 5-14 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
2
|
Ali AA, Tabll AA. Unlocking potential: Virus-like particles as a promising strategy for effective HCV vaccine development. Virology 2025; 602:110307. [PMID: 39580887 DOI: 10.1016/j.virol.2024.110307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
Hepatitis C virus (HCV) is a leading cause of liver disease worldwide. The development of prophylactic vaccine is essential for HCV global eradication. Despite over three decades of research, no effective vaccine for HCV has been developed, primarily due to the virus's genetic diversity, immune evasion mechanisms, and incomplete understanding of protective immunity. However, Virus-Like Particles (VLPs) offer a promising approach to overcoming these challenges. VLPs mimic the structure of native virus but without the infectious genome, making them safe and non-infectious vaccines candidates. The capability of VLPs to incorporate neutralizing and conformational epitopes, and engage humoral and cellular immune responses, positions them as a promising tool for overcoming challenges associated with the HCV vaccine development. This review examines the challenges and immunological considerations for HCV vaccine development and provides an overview of the VLPs-based vaccines development. It also discusses future directions and public health implications of HCV vaccine development.
Collapse
Affiliation(s)
- Ahmed A Ali
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre, (NRC), 12622, Cairo, Egypt.
| | - Ashraf A Tabll
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre, 12622, Cairo, Egypt; Egyptian Centre for Research and Regenerative Medicine (ECRRM), 11517, Cairo, Egypt.
| |
Collapse
|
3
|
Villares M, Espert L, Daussy CF. Peroxisomes are underappreciated organelles hijacked by viruses. Trends Cell Biol 2024:S0962-8924(24)00248-4. [PMID: 39667991 DOI: 10.1016/j.tcb.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/08/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
Peroxisomes are cellular organelles that are crucial for metabolism, stress responses, and healthy aging. They have recently come to be considered as important mediators of the immune response during viral infections. Consequently, various viruses target peroxisomes for the purpose of hijacking either their biogenesis or their functions, as a means of replicating efficiently, making this a compelling research area. Despite their known connections with mitochondria, which have been the object of considerable research on account of their role in the innate immune response, less is known about peroxisomes in this context. In this review, we explore the evolving understanding of the role of peroxisomes, highlighting recent findings on how they are exploited by viruses to modulate their replication cycle.
Collapse
Affiliation(s)
- Marie Villares
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Lucile Espert
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France
| | - Coralie F Daussy
- University of Montpellier, CNRS, Institut de Recherche en Infectiologie de Montpellier (IRIM), Montpellier, France.
| |
Collapse
|
4
|
Swaraj S, Tripathi S. Interference without interferon: interferon-independent induction of interferon-stimulated genes and its role in cellular innate immunity. mBio 2024; 15:e0258224. [PMID: 39302126 PMCID: PMC11481898 DOI: 10.1128/mbio.02582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Interferons (IFNs) are multifaceted proteins that play pivotal roles in orchestrating robust antiviral immune responses and modulating the intricate landscape of host immunity. The major signaling pathway activated by IFNs is the JAK/STAT (Janus kinase/signal transducer and activator of transcription) pathway, which leads to the transcription of a battery of genes, collectively known as IFN-stimulated genes (ISGs). While the well-established role of IFNs in coordinating the innate immune response against viral infections is widely acknowledged, recent years have provided a more distinct comprehension of the functional significance attributed to non-canonical, IFN-independent induction of ISGs. In this review, we summarize the non-conventional signaling pathways of ISG induction. These alternative pathways offer new avenues for developing antiviral strategies or immunomodulation in various diseases.
Collapse
Affiliation(s)
- Shachee Swaraj
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Emerging Viral Pathogens Laboratory, Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
- Microbiology & Cell Biology Department, Biological Sciences Division, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
5
|
Sarkar C, Lipinski MM. Role and Function of Peroxisomes in Neuroinflammation. Cells 2024; 13:1655. [PMID: 39404418 PMCID: PMC11476013 DOI: 10.3390/cells13191655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Peroxisomes are organelles involved in many cellular metabolic functions, including the degradation of very-long-chain fatty acids (VLCFAs; C ≥ 22), the initiation of ether-phospholipid synthesis, and the metabolism of reactive oxygen species. All of these processes are essential for the maintenance of cellular lipid and redox homeostasis, and their perturbation can trigger inflammatory response in immune cells, including in the central nervous system (CNS) resident microglia and astrocytes. Consistently, peroxisomal disorders, a group of congenital diseases caused by a block in peroxisomal biogenesis or the impairment of one of the peroxisomal enzymes, are associated with neuroinflammation. Peroxisomal function is also dysregulated in many neurodegenerative diseases and during brain aging, both of which are associated with neuroinflammation. This suggests that deciphering the role of peroxisomes in neuroinflammation may be important for understanding both congenital and age-related brain dysfunction. In this review, we discuss the current advances in understanding the role and function of peroxisomes in neuroinflammation.
Collapse
Affiliation(s)
- Chinmoy Sarkar
- Shock, Trauma and Anesthesiology Research (STAR) Center, Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marta M. Lipinski
- Shock, Trauma and Anesthesiology Research (STAR) Center, Department of Anesthesiology and Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| |
Collapse
|
6
|
Feng J, Kim J, Wang VD, Chang D, Liu H, Bain WG, Robinson KM, Jie Z, Kotenko SV, Dela Cruz CS, Sharma L. Context-specific anti-inflammatory roles of type III interferon signaling in the lung in nonviral injuries. Physiol Rep 2024; 12:e70104. [PMID: 39455422 PMCID: PMC11511623 DOI: 10.14814/phy2.70104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Type III interferons (λ1, λ2, and λ3) are potent antiviral cytokines in the lung. However, their roles in nonviral lung injuries are less well understood. This study investigates the activation of type III interferon signaling in three distinct models of lung injuries caused by diverse stimuli: the bacterial pathogen Pseudomonas aeruginosa, bacterial endotoxin LPS, and the chemotherapeutic agent bleomycin. Our data show that, despite inducing a potent inflammatory response, Pseudomonas and LPS did not increase IFNλ secretion. In contrast, bleomycin instillation increased secretion of IFNλ in the airways at both early and late time points. Consistent with limited secretion, type III interferon signaling had a minimal role in the host response to both Pseudomonas and LPS, as measured by pathogen burden, inflammatory response, and lung injury. Conversely, a deficiency in type III interferon signaling led to increased inflammatory signaling and elevated acute lung injury in the bleomycin model on day 3. This elevated early injury resulted in impaired recovery in IFNLR1 knockout mice, as evidenced by their recovery from bleomycin-induced weight loss. Taken together, these data suggest a context-specific activation of type III interferon signaling, where it plays an anti-inflammatory role in the lung.
Collapse
Affiliation(s)
- Jingjing Feng
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Center of Community‐Based Health ResearchFudan UniversityShanghaiChina
- Section of Pulmonary, Critical Care and Sleep MedicineYale School of MedicineNew HavenConnecticutUSA
| | - Jooyoung Kim
- Section of Pulmonary, Critical Care and Sleep MedicineYale School of MedicineNew HavenConnecticutUSA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Victoria D. Wang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - De Chang
- Section of Pulmonary, Critical Care and Sleep MedicineYale School of MedicineNew HavenConnecticutUSA
- Department of Pulmonary and Critical Care Medicine at the Seventh Medical Center, College of Pulmonary and Critical Care Medicine of the Eighth Medical CenterChinese PLA General HospitalBeijingChina
| | - Hongbo Liu
- Section of Pulmonary, Critical Care and Sleep MedicineYale School of MedicineNew HavenConnecticutUSA
| | - William G. Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Veterans Affairs Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Keven M. Robinson
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Zhijun Jie
- Department of Pulmonary and Critical Care Medicine, Shanghai Fifth People's Hospital, Center of Community‐Based Health ResearchFudan UniversityShanghaiChina
| | - Sergei V. Kotenko
- Department of Biochemistry and Molecular BiologyRutgers New Jersey Medical SchoolNew BrunswickNew JerseyUSA
| | - Charles S. Dela Cruz
- Section of Pulmonary, Critical Care and Sleep MedicineYale School of MedicineNew HavenConnecticutUSA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- Veterans Affairs Pittsburgh Healthcare SystemPittsburghPennsylvaniaUSA
| | - Lokesh Sharma
- Section of Pulmonary, Critical Care and Sleep MedicineYale School of MedicineNew HavenConnecticutUSA
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
7
|
Martineau CA, Rivard N, Bisaillon M. From viruses to cancer: exploring the role of the hepatitis C virus NS3 protein in carcinogenesis. Infect Agent Cancer 2024; 19:40. [PMID: 39192306 DOI: 10.1186/s13027-024-00606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
Hepatitis C virus (HCV) chronically infects approximately 170 million people worldwide and is a known etiological agent of hepatocellular carcinoma (HCC). The molecular mechanisms of HCV-mediated carcinogenesis are not fully understood. This review article focuses on the oncogenic potential of NS3, a viral protein with transformative effects on cells, although the precise mechanisms remain elusive. Unlike the more extensively studied Core and NS5A proteins, NS3's roles in cancer development are less defined but critical. Research indicates that NS3 is implicated in several carcinogenic processes such as proliferative signaling, cell death resistance, genomic instability and mutations, invasion and metastasis, tumor-related inflammation, immune evasion, and replicative immortality. Understanding the direct impact of viral proteins such as NS3 on cellular transformation is crucial for elucidating HCV's role in HCC development. Overall, this review sheds light on the molecular mechanisms used by NS3 to contribute to hepatocarcinogenesis, and highlights its significance in the context of HCV-associated HCC, underscoring the need for further investigation into its specific molecular and cellular actions.
Collapse
Affiliation(s)
- Carole-Anne Martineau
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Nathalie Rivard
- Département d'Immunologie et Biologie Cellulaire, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Martin Bisaillon
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
8
|
Liu T, Liang L, Zhao P, Lin W, Zhuang Y, Jiang L, Chen H, Li C. The M2 Protein of the Influenza A Virus Interacts with PEX19 to Facilitate Virus Replication by Disrupting the Function of Peroxisome. Viruses 2024; 16:1309. [PMID: 39205283 PMCID: PMC11359511 DOI: 10.3390/v16081309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
The peroxisomal biogenesis factor 19 (PEX19) is necessary for early peroxisomal biogenesis. PEX19 has been implicated in the replication of a variety of viruses, but the details pertaining to the mechanisms of how PEX19 engages in the life cycle of these viruses still need to be elucidated. Here, we demonstrated that the C terminus of PEX19 interacted with the cytoplasmic tail region of the M2 protein of the influenza A virus (IAV) and inhibited the viral growth titers. IAV infection or PEX19 knockdown triggered a reduction in the peroxisome pool and led to the accumulation of ROS and cell damage, thereby creating favorable conditions for IAV replication. Moreover, a reduction in the peroxisome pool led to the attenuation of early antiviral response mediated by peroxisome MAVS and downstream type III interferons. This study also showed that the interaction between IAV M2 and PEX19 affected the binding of PEX19 to the peroxisome-associated protein PEX14 and peroxisome membrane protein 24 (PMP24). Collectively, our data demonstrate that host factor PEX19 suppresses the replication of the IAV, and the IAV employs its M2 protein to mitigate the restricting role of PEX19.
Collapse
Affiliation(s)
- Tanbin Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.L.); (P.Z.)
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (W.L.); (Y.Z.); (L.J.)
| | - Libin Liang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Pu Zhao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.L.); (P.Z.)
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (W.L.); (Y.Z.); (L.J.)
| | - Weipeng Lin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (W.L.); (Y.Z.); (L.J.)
| | - Yichao Zhuang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (W.L.); (Y.Z.); (L.J.)
| | - Li Jiang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (W.L.); (Y.Z.); (L.J.)
| | - Hualan Chen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; (T.L.); (P.Z.)
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (W.L.); (Y.Z.); (L.J.)
| | - Chengjun Li
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; (W.L.); (Y.Z.); (L.J.)
| |
Collapse
|
9
|
Wang W, Meng J, Wu D, Ding J, Liu J. mRNA and miRNA expression profiles reveal the potential roles of RLRs signaling pathway and mitophagy in duck hepatitis A virus type 1 infection. Poult Sci 2024; 103:103839. [PMID: 38810565 PMCID: PMC11166875 DOI: 10.1016/j.psj.2024.103839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 05/04/2024] [Indexed: 05/31/2024] Open
Abstract
Duck hepatitis A virus 1 (DHAV-1) is the primary cause of duck viral hepatitis, leading to sudden mortality in ducklings and significant economic losses in the duck industry. However, little is known about how DHAV-1 affects duckling liver at the molecular level. We conducted an analysis comparing the expression patterns of mRNAs and miRNAs in DHAV-1-infected duckling livers to understand the underlying mechanisms and dynamic changes. We identified 6,818 differentially expressed mRNAs (DEGs) and 144 differentially expressed microRNAs (DEMs) during DHAV-1 infection. Functional enrichment analysis of DEGs and miRNA target genes using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed their potential involvement in innate antiviral immunity, mitophagy, and pyroptosis. We constructed coexpression networks of mRNA-miRNA interactions and confirmed key DEMs (novel-mir333, novel-mir288, novel-mir197, and novel-mir71) using RT-qPCR. Further investigation demonstrated that DHAV-1 activates the RLRs signaling pathway, disrupts mitophagy, and induces pyroptosis. In conclusion, DHAV-1-induced antiviral immunity is closely linked to mitophagy, suggesting it could be a promising therapeutic target.
Collapse
MESH Headings
- Animals
- Ducks/genetics
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Poultry Diseases/virology
- Poultry Diseases/genetics
- Poultry Diseases/immunology
- Hepatitis Virus, Duck/physiology
- Hepatitis, Viral, Animal/virology
- Hepatitis, Viral, Animal/genetics
- Hepatitis, Viral, Animal/immunology
- Mitophagy
- Signal Transduction
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Picornaviridae Infections/veterinary
- Picornaviridae Infections/virology
- Picornaviridae Infections/immunology
- Picornaviridae Infections/genetics
- Transcriptome
- Immunity, Innate/genetics
Collapse
Affiliation(s)
- Weiran Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jinwu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Desheng Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jinxue Ding
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China
| | - Jiaguo Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety and Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
10
|
Sharma S, Fazal FM. Localization of RNAs to the mitochondria-mechanisms and functions. RNA (NEW YORK, N.Y.) 2024; 30:597-608. [PMID: 38448244 PMCID: PMC11098466 DOI: 10.1261/rna.079999.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
The mammalian mitochondrial proteome comprises over 1000 proteins, with the majority translated from nuclear-encoded messenger RNAs (mRNAs). Mounting evidence suggests many of these mRNAs are localized to the outer mitochondrial membrane (OMM) in a pre- or cotranslational state. Upon reaching the mitochondrial surface, these mRNAs are locally translated to produce proteins that are cotranslationally imported into mitochondria. Here, we summarize various mechanisms cells use to localize RNAs, including transfer RNAs (tRNAs), to the OMM and recent technological advancements in the field to study these processes. While most early studies in the field were carried out in yeast, recent studies reveal RNA localization to the OMM and their regulation in higher organisms. Various factors regulate this localization process, including RNA sequence elements, RNA-binding proteins (RBPs), cytoskeletal motors, and translation machinery. In this review, we also highlight the role of RNA structures and modifications in mitochondrial RNA localization and discuss how these features can alter the binding properties of RNAs. Finally, in addition to RNAs related to mitochondrial function, RNAs involved in other cellular processes can also localize to the OMM, including those implicated in the innate immune response and piRNA biogenesis. As impairment of messenger RNA (mRNA) localization and regulation compromise mitochondrial function, future studies will undoubtedly expand our understanding of how RNAs localize to the OMM and investigate the consequences of their mislocalization in disorders, particularly neurodegenerative diseases, muscular dystrophies, and cancers.
Collapse
Affiliation(s)
- Surbhi Sharma
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, USA
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas 77030, USA
| | - Furqan M Fazal
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, Texas 77030, USA
- Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
11
|
Zhang Q, Kisand K, Feng Y, Rinchai D, Jouanguy E, Cobat A, Casanova JL, Zhang SY. In search of a function for human type III interferons: insights from inherited and acquired deficits. Curr Opin Immunol 2024; 87:102427. [PMID: 38781720 PMCID: PMC11209856 DOI: 10.1016/j.coi.2024.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 03/19/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The essential and redundant functions of human type I and II interferons (IFNs) have been delineated over the last three decades by studies of patients with inborn errors of immunity or their autoimmune phenocopies, but much less is known about type III IFNs. Patients with cells that do not respond to type III IFNs due to inherited IL10RB deficiency display no overt viral disease, and their inflammatory disease phenotypes can be explained by defective signaling via other interleukine10RB-dependent pathways. Moreover, patients with inherited deficiencies of interferon-stimulated gene factor 3 (ISGF-3) (STAT1, STAT2, IRF9) present viral diseases also seen in patients with inherited deficiencies of the type I IFN receptor (IFNAR1/2). Finally, patients with autoantibodies neutralizing type III IFNs have no obvious predisposition to viral disease. Current findings thus suggest that type III IFNs are largely redundant in humans. The essential functions of human type III IFNs, particularly in antiviral defenses, remain to be discovered.
Collapse
Affiliation(s)
- Qian Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France.
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Yi Feng
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Darawan Rinchai
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Aurélie Cobat
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France; Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, Paris, France; Howard Hughes Medical Institute, New York, USA
| | - Shen-Ying Zhang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France; Paris Cité University, Imagine Institute, Paris, France
| |
Collapse
|
12
|
Pandey S, Anang V, Schumacher MM. Mitochondria driven innate immune signaling and inflammation in cancer growth, immune evasion, and therapeutic resistance. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 386:223-247. [PMID: 38782500 DOI: 10.1016/bs.ircmb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Mitochondria play an important and multifaceted role in cellular function, catering to the cell's energy and biosynthetic requirements. They modulate apoptosis while responding to diverse extracellular and intracellular stresses including reactive oxygen species (ROS), nutrient and oxygen scarcity, endoplasmic reticulum stress, and signaling via surface death receptors. Integral components of mitochondria, such as mitochondrial DNA (mtDNA), mitochondrial RNA (mtRNA), Adenosine triphosphate (ATP), cardiolipin, and formyl peptides serve as major damage-associated molecular patterns (DAMPs). These molecules activate multiple innate immune pathways both in the cytosol [such as Retionoic Acid-Inducible Gene-1 (RIG-1) and Cyclic GMP-AMP Synthase (cGAS)] and on the cell surface [including Toll-like receptors (TLRs)]. This activation cascade leads to the release of various cytokines, chemokines, interferons, and other inflammatory molecules and oxidative species. The innate immune pathways further induce chronic inflammation in the tumor microenvironment which either promotes survival and proliferation or promotes epithelial to mesenchymal transition (EMT), metastasis and therapeutic resistance in the cancer cell's. Chronic activation of innate inflammatory pathways in tumors also drives immunosuppressive checkpoint expression in the cancer cells and boosts the influx of immune-suppressive populations like Myeloid-Derived Suppressor Cells (MDSCs) and Regulatory T cells (Tregs) in cancer. Thus, sensing of cellular stress by the mitochondria may lead to enhanced tumor growth. In addition to that, the tumor microenvironment also becomes a source of immunosuppressive cytokines. These cytokines exert a debilitating effect on the functioning of immune effector cells, and thus foster immune tolerance and facilitate immune evasion. Here we describe how alteration of the mitochondrial homeostasis and cellular stress drives innate inflammatory pathways in the tumor microenvironment.
Collapse
Affiliation(s)
- Sanjay Pandey
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, United States.
| | - Vandana Anang
- International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Michelle M Schumacher
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, United States; Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
13
|
Qin X, Wang B, Lu X, Song Y, Wang W. Identification and Validation of a PEX5-Dependent Signature for Prognostic Prediction in Glioma. Biomolecules 2024; 14:314. [PMID: 38540734 PMCID: PMC10967733 DOI: 10.3390/biom14030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Gliomas, the most prevalent and lethal form of brain cancer, are known to exhibit metabolic alterations that facilitate tumor growth, invasion, and resistance to therapies. Peroxisomes, essential organelles responsible for fatty acid oxidation and reactive oxygen species (ROS) homeostasis, rely on the receptor PEX5 for the import of metabolic enzymes into their matrix. However, the prognostic significance of peroxisomal enzymes for glioma patients remains unclear. In this study, we elucidate that PEX5 is indispensable for the cell growth, migration, and invasion of glioma cells. We establish a robust prognosis model based on the expression of peroxisomal enzymes, whose localization relies on PEX5. This PEX5-dependent signature not only serves as a robust prognosis model capable of accurately predicting outcomes for glioma patients, but also effectively distinguishes several clinicopathological features, including the grade, isocitrate dehydrogenase (IDH) mutation, and 1p19q codeletion status. Furthermore, we developed a nomogram that integrates the prognostic model with other clinicopathological factors, demonstrating highly accurate performance in estimating patient survival. Patients classified into the high-risk group based on our prognostic model exhibited an immunosuppressive microenvironment. Finally, our validation reveals that the elevated expression of GSTK1, an antioxidant enzyme within the signature, promotes the cell growth and migration of glioma cells, with this effect dependent on the peroxisomal targeting signal recognized by PEX5. These findings identify the PEX5-dependent signature as a promising prognostic tool for gliomas.
Collapse
Affiliation(s)
| | | | | | | | - Wei Wang
- Department of Human Anatomy, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, China
| |
Collapse
|
14
|
Xu Z, Elaish M, Wong CP, Hassan BB, Lopez-Orozco J, Felix-Lopez A, Ogando NS, Nagata L, Mahal LK, Kumar A, Wilson JA, Noyce R, Mayers I, Power C, Evans D, Hobman TC. The Wnt/β-catenin pathway is important for replication of SARS-CoV-2 and other pathogenic RNA viruses. NPJ VIRUSES 2024; 2:6. [PMID: 40295745 PMCID: PMC11721380 DOI: 10.1038/s44298-024-00018-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/10/2024] [Indexed: 04/30/2025]
Abstract
Understanding how viruses affect cellular pathways during infection may facilitate development of host cell-targeted therapeutics with broad-spectrum antiviral activity. The interferon (IFN) response is critical for reducing replication and pathogenesis of many viruses including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. Mounting evidence indicates that peroxisomes which are best known as metabolic organelles, function in the IFN response. Recently, we reported that the Wnt/β-catenin signaling pathway strongly suppresses peroxisome biogenesis. Here, we show that SARS-CoV-2 infection activates Wnt/β-catenin signaling and hypothesized that pharmacological inhibition of this pathway would result in increased peroxisome formation and enhanced IFN production. Indeed, Wnt/β-catenin signaling potently inhibits replication of SARS-CoV-2 and other pathogenic RNA viruses in vitro and reduces viral load, inflammation and clinical symptoms in a mouse model of COVID-19. As such, targeting this cellular pathway may have prophylactic and/or therapeutic value in reducing the disease burden caused by emerging viral pathogens.
Collapse
Affiliation(s)
- Zaikun Xu
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Mohamed Elaish
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Cheung Pang Wong
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada
| | - Bardes B Hassan
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | | - Alberto Felix-Lopez
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada
| | - Natacha S Ogando
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Les Nagata
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada
| | - Lara K Mahal
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Anil Kumar
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joyce A Wilson
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ryan Noyce
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Irv Mayers
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Christopher Power
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - David Evans
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Tom C Hobman
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, Canada.
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
15
|
Kumar R, Islinger M, Worthy H, Carmichael R, Schrader M. The peroxisome: an update on mysteries 3.0. Histochem Cell Biol 2024; 161:99-132. [PMID: 38244103 PMCID: PMC10822820 DOI: 10.1007/s00418-023-02259-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 01/22/2024]
Abstract
Peroxisomes are highly dynamic, oxidative organelles with key metabolic functions in cellular lipid metabolism, such as the β-oxidation of fatty acids and the synthesis of myelin sheath lipids, as well as the regulation of cellular redox balance. Loss of peroxisomal functions causes severe metabolic disorders in humans. Furthermore, peroxisomes also fulfil protective roles in pathogen and viral defence and immunity, highlighting their wider significance in human health and disease. This has sparked increasing interest in peroxisome biology and their physiological functions. This review presents an update and a continuation of three previous review articles addressing the unsolved mysteries of this remarkable organelle. We continue to highlight recent discoveries, advancements, and trends in peroxisome research, and address novel findings on the metabolic functions of peroxisomes, their biogenesis, protein import, membrane dynamics and division, as well as on peroxisome-organelle membrane contact sites and organelle cooperation. Furthermore, recent insights into peroxisome organisation through super-resolution microscopy are discussed. Finally, we address new roles for peroxisomes in immune and defence mechanisms and in human disorders, and for peroxisomal functions in different cell/tissue types, in particular their contribution to organ-specific pathologies.
Collapse
Grants
- BB/W015420/1, BB/V018167/1, BB/T002255/1, BB/R016844/1 Biotechnology and Biological Sciences Research Council
- BB/W015420/1, BB/V018167/1, BB/T002255/1, BB/R016844/1 Biotechnology and Biological Sciences Research Council
- BB/W015420/1, BB/V018167/1, BB/T002255/1, BB/R016844/1 Biotechnology and Biological Sciences Research Council
- European Union’s Horizon 2020 research and innovation programme
- Deutsches Zentrum für Herz-Kreislaufforschung
- German Research Foundation
- Medical Faculty Mannheim, University of Heidelberg
Collapse
Affiliation(s)
- Rechal Kumar
- Faculty of Health and Life Sciences, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Markus Islinger
- Institute of Neuroanatomy, Medical Faculty Mannheim, Mannheim Centre for Translational Neuroscience, University of Heidelberg, 68167, Mannheim, Germany
| | - Harley Worthy
- Faculty of Health and Life Sciences, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Ruth Carmichael
- Faculty of Health and Life Sciences, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - Michael Schrader
- Faculty of Health and Life Sciences, Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
16
|
Jiang H, Nair V, Sun Y, Ding C. The diverse roles of peroxisomes in the interplay between viruses and mammalian cells. Antiviral Res 2024; 221:105780. [PMID: 38092324 DOI: 10.1016/j.antiviral.2023.105780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023]
Abstract
Peroxisomes are ubiquitous organelles found in eukaryotic cells that play a critical role in the oxidative metabolism of lipids and detoxification of reactive oxygen species (ROS). Recently, the role of peroxisomes in viral infections has been extensively studied. Although several studies have reported that peroxisomes exert antiviral activity, evidence indicates that viruses have also evolved diverse strategies to evade peroxisomal antiviral signals. In this review, we summarize the multiple roles of peroxisomes in the interplay between viruses and mammalian cells. Focus is given on the peroxisomal regulation of innate immune response, lipid metabolism, ROS production, and viral regulation of peroxisomal biosynthesis and degradation. Understanding the interactions between peroxisomes and viruses provides novel insights for the development of new antiviral strategies.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China
| | - Venugopal Nair
- Avian Oncogenic Viruses Group, UK-China Centre of Excellence in Avian Disease Research, The Pirbright Institute, Pirbright, Guildford, Surrey, United Kingdom
| | - Yingjie Sun
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China.
| | - Chan Ding
- Department of Avian Infectious Diseases, Shanghai Veterinary Research Institute. Chinese Academy of Agricultural Science, Shanghai, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.
| |
Collapse
|
17
|
Dai J, Agbemabiese CA, Griffin AN, Patton JT. Rotavirus capping enzyme VP3 inhibits interferon expression by inducing MAVS degradation during viral replication. mBio 2023; 14:e0225523. [PMID: 37905816 PMCID: PMC10746195 DOI: 10.1128/mbio.02255-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Rotavirus is an enteric RNA virus that causes severe dehydrating gastroenteritis in infants and young children through infection of enterocytes in the small intestine. Timely clearance of the virus demands a robust innate immune response by cells associated with the small intestine, including the expression of interferon (IFN). Previous studies have shown that some rotavirus strains suppress the production of interferon, by inducing the degradation of mitochondrial antiviral signaling (MAVS) protein and interferon regulatory factor-3 (IRF3). In this study, we have used reverse genetics to generate recombinant rotaviruses expressing compromised forms of VP3 or NSP1, or both, to explore the function of these viral proteins in the degradation of MAVS and IRF3. Our results demonstrate that VP3 is responsible for MAVS depletion in rotavirus-infected cells, and through this activity, helps to suppress IFN production. Thus, VP3 functions to support the activity of rotavirus NSP1, the major interferon antagonist of the virus.
Collapse
Affiliation(s)
- Jin Dai
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | | | - Ashley N. Griffin
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - John T. Patton
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
18
|
Denolly S, Stukalov A, Barayeu U, Rosinski AN, Kritsiligkou P, Joecks S, Dick TP, Pichlmair A, Bartenschlager R. Zika virus remodelled ER membranes contain proviral factors involved in redox and methylation pathways. Nat Commun 2023; 14:8045. [PMID: 38052817 PMCID: PMC10698153 DOI: 10.1038/s41467-023-43665-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 11/16/2023] [Indexed: 12/07/2023] Open
Abstract
Zika virus (ZIKV) has emerged as a global health issue, yet neither antiviral therapy nor a vaccine are available. ZIKV is an enveloped RNA virus, replicating in the cytoplasm in close association with ER membranes. Here, we isolate ER membranes from ZIKV-infected cells and determine their proteome. Forty-six host cell factors are enriched in ZIKV remodeled membranes, several of these having a role in redox and methylation pathways. Four proteins are characterized in detail: thioredoxin reductase 1 (TXNRD1) contributing to folding of disulfide bond containing proteins and modulating ZIKV secretion; aldo-keto reductase family 1 member C3 (AKR1C3), regulating capsid protein abundance and thus, ZIKV assembly; biliverdin reductase B (BLVRB) involved in ZIKV induced lipid peroxidation and increasing stability of viral transmembrane proteins; adenosylhomocysteinase (AHCY) indirectly promoting m6A methylation of ZIKV RNA by decreasing the level of S- adenosyl homocysteine and thus, immune evasion. These results highlight the involvement of redox and methylation enzymes in the ZIKV life cycle and their accumulation at virally remodeled ER membranes.
Collapse
Affiliation(s)
- Solène Denolly
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120, Heidelberg, Germany
| | - Alexey Stukalov
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
| | - Uladzimir Barayeu
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Alina N Rosinski
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120, Heidelberg, Germany
| | - Paraskevi Kritsiligkou
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Sebastian Joecks
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120, Heidelberg, Germany
| | - Tobias P Dick
- Division of Redox Regulation, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Andreas Pichlmair
- Technical University of Munich, School of Medicine, Institute of Virology, 81675, Munich, Germany
- German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Ralf Bartenschlager
- Heidelberg University, Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research, 69120, Heidelberg, Germany.
- Division Virus-Associated Carcinogenesis, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
19
|
Duan X, Boo ZZ, Chua SL, Chong KHC, Long Z, Yang R, Zhou Y, Janela B, Chotirmall SH, Ginhoux F, Hu Q, Wu B, Yang L. A Bacterial Quorum Sensing Regulated Protease Inhibits Host Immune Responses by Cleaving Death Domains of Innate Immune Adaptors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304891. [PMID: 37870218 PMCID: PMC10700182 DOI: 10.1002/advs.202304891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/28/2023] [Indexed: 10/24/2023]
Abstract
Innate immune adaptor proteins are critical components of the innate immune system that propagate pro-inflammatory responses from their upstream receptors, and lead to pathogen clearance from the host. Bacterial pathogens have developed strategies to survive inside host cells without triggering the innate immune surveillance in ways that are still not fully understood. Here, it is reported that Pseudomonas aeruginosa induces its quorum sensing mechanism after macrophage engulfment. Further investigation of its secretome identified a quorum sensing regulated product, LasB, is responsible for innate immune suppression depending on the MyD88-mediated signaling. Moreover, it is showed that this specific type of pathogen-mediated innate immune suppression is due to the enzymatic digestion of the death domains of the innate immune adaptors, mainly MyD88, and attributed to LasB's large substrate binding groove. Lastly, it is demonstrated that the secretion of LasB from P. aeruginosa directly contributed to MyD88 degradation within macrophages. Hence, it is discovered an example of bacterial quorum sensing-regulated cellular innate immune suppression by direct cleavage of immune adaptors.
Collapse
Affiliation(s)
- Xiangke Duan
- Shenzhen Third People's HospitalThe Second Affiliated Hospital of Southern University of Science and TechnologyNational Clinical Research Center for Infectious DiseaseShenzhen518112P. R. China
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
- Shenzhen Center for Disease, Control and PreventionShenzhen518055P.R. China
| | - Zhao Zhi Boo
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingapore636921Singapore
| | - Song Lin Chua
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHong Kong SAR999077P. R. China
| | - Kelvin Han Chung Chong
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingapore636921Singapore
| | - Ziqi Long
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingapore636921Singapore
| | - Renliang Yang
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingapore636921Singapore
| | - Yachun Zhou
- Shenzhen Third People's HospitalThe Second Affiliated Hospital of Southern University of Science and TechnologyNational Clinical Research Center for Infectious DiseaseShenzhen518112P. R. China
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Baptiste Janela
- Skin Research Institute of SingaporeSingapore308232Singapore
- Lee Kong Chian School of MedicineNanyang Technological UniversitySingapore639798Singapore
| | | | - Florent Ginhoux
- Singapore Immunology NetworkAgency for Science, Technology and Research (A*STAR)8A Biomedical Grove, ImmunosSingapore138648Singapore
| | - Qinghua Hu
- Shenzhen Center for Disease, Control and PreventionShenzhen518055P.R. China
| | - Bin Wu
- School of Biological SciencesNanyang Technological UniversitySingapore637551Singapore
- NTU Institute of Structural BiologyNanyang Technological UniversitySingapore636921Singapore
| | - Liang Yang
- Shenzhen Third People's HospitalThe Second Affiliated Hospital of Southern University of Science and TechnologyNational Clinical Research Center for Infectious DiseaseShenzhen518112P. R. China
- School of MedicineSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| |
Collapse
|
20
|
Harrington JS, Ryter SW, Plataki M, Price DR, Choi AMK. Mitochondria in health, disease, and aging. Physiol Rev 2023; 103:2349-2422. [PMID: 37021870 PMCID: PMC10393386 DOI: 10.1152/physrev.00058.2021] [Citation(s) in RCA: 250] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/07/2023] Open
Abstract
Mitochondria are well known as organelles responsible for the maintenance of cellular bioenergetics through the production of ATP. Although oxidative phosphorylation may be their most important function, mitochondria are also integral for the synthesis of metabolic precursors, calcium regulation, the production of reactive oxygen species, immune signaling, and apoptosis. Considering the breadth of their responsibilities, mitochondria are fundamental for cellular metabolism and homeostasis. Appreciating this significance, translational medicine has begun to investigate how mitochondrial dysfunction can represent a harbinger of disease. In this review, we provide a detailed overview of mitochondrial metabolism, cellular bioenergetics, mitochondrial dynamics, autophagy, mitochondrial damage-associated molecular patterns, mitochondria-mediated cell death pathways, and how mitochondrial dysfunction at any of these levels is associated with disease pathogenesis. Mitochondria-dependent pathways may thereby represent an attractive therapeutic target for ameliorating human disease.
Collapse
Affiliation(s)
- John S Harrington
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | | | - Maria Plataki
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - David R Price
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| | - Augustine M K Choi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, New York-Presbyterian Hospital/Weill Cornell Medical Center, Weill Cornell Medicine, New York, New York, United States
| |
Collapse
|
21
|
Martin de Fourchambault E, Callens N, Saliou JM, Fourcot M, Delos O, Barois N, Thorel Q, Ramirez S, Bukh J, Cocquerel L, Bertrand-Michel J, Marot G, Sebti Y, Dubuisson J, Rouillé Y. Hepatitis C virus alters the morphology and function of peroxisomes. Front Microbiol 2023; 14:1254728. [PMID: 37808318 PMCID: PMC10551450 DOI: 10.3389/fmicb.2023.1254728] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Despite the introduction of effective treatments for hepatitis C in clinics, issues remain regarding the liver disease induced by chronic hepatitis C virus (HCV) infection. HCV is known to disturb the metabolism of infected cells, especially lipid metabolism and redox balance, but the mechanisms leading to HCV-induced pathogenesis are still poorly understood. In an APEX2-based proximity biotinylation screen, we identified ACBD5, a peroxisome membrane protein, as located in the vicinity of HCV replication complexes. Confocal microscopy confirmed the relocation of peroxisomes near HCV replication complexes and indicated that their morphology and number are altered in approximately 30% of infected Huh-7 cells. Peroxisomes are small versatile organelles involved among other functions in lipid metabolism and ROS regulation. To determine their importance in the HCV life cycle, we generated Huh-7 cells devoid of peroxisomes by inactivating the PEX5 and PEX3 genes using CRISPR/Cas9 and found that the absence of peroxisomes had no impact on replication kinetics or infectious titers of HCV strains JFH1 and DBN3a. The impact of HCV on peroxisomal functions was assessed using sub-genomic replicons. An increase of ROS was measured in peroxisomes of replicon-containing cells, correlated with a significant decrease of catalase activity with the DBN3a strain. In contrast, HCV replication had little to no impact on cytoplasmic and mitochondrial ROS, suggesting that the redox balance of peroxisomes is specifically impaired in cells replicating HCV. Our study provides evidence that peroxisome function and morphology are altered in HCV-infected cells.
Collapse
Affiliation(s)
- Esther Martin de Fourchambault
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U 1019 – UMR9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Nathalie Callens
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U 1019 – UMR9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Michel Saliou
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UAR CNRS 2014 - US Inserm 41 - PLBS, Lille, France
| | - Marie Fourcot
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UAR CNRS 2014 - US Inserm 41 - PLBS, Lille, France
| | - Oceane Delos
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- I2MC, Université de Toulouse, Inserm, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Nicolas Barois
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U 1019 – UMR9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UAR CNRS 2014 - US Inserm 41 - PLBS, Lille, France
| | - Quentin Thorel
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Lille, France
| | - Santseharay Ramirez
- Faculty of Health and Medical Sciences, Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Faculty of Health and Medical Sciences, Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Laurence Cocquerel
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U 1019 – UMR9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Justine Bertrand-Michel
- MetaToul-MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
- I2MC, Université de Toulouse, Inserm, Université Toulouse III – Paul Sabatier (UPS), Toulouse, France
| | - Guillemette Marot
- Université de Lille, Inria, CHU Lille, ULR 2694 - METRICS: Évaluation des technologies de santé et des pratiques médicales, Lille, France
| | - Yasmine Sebti
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011 - EGID, Lille, France
| | - Jean Dubuisson
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U 1019 – UMR9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Yves Rouillé
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U 1019 – UMR9017 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
22
|
Roczkowsky A, Limonta D, Fernandes JP, Branton WG, Clarke M, Hlavay B, Noyce RS, Joseph JT, Ogando NS, Das SK, Elaish M, Arbour N, Evans DH, Langdon K, Hobman TC, Power C. COVID-19 Induces Neuroinflammation and Suppresses Peroxisomes in the Brain. Ann Neurol 2023; 94:531-546. [PMID: 37190821 DOI: 10.1002/ana.26679] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/17/2023]
Abstract
OBJECTIVE Peroxisome injury occurs in the central nervous system (CNS) during multiple virus infections that result in neurological disabilities. We investigated host neuroimmune responses and peroxisome biogenesis factors during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using a multiplatform strategy. METHODS Brain tissues from coronavirus disease 2019 (COVID-19) (n = 12) and other disease control (ODC) (n = 12) patients, as well as primary human neural cells and Syrian hamsters, infected with a clinical variant of SARS-CoV-2, were investigated by droplet digital polymerase chain reaction (ddPCR), quantitative reverse transcriptase PCR (RT-qPCR), and immunodetection methods. RESULTS SARS-CoV-2 RNA was detected in the CNS of 4 patients with COVID-19 with viral protein (NSP3 and spike) immunodetection in the brainstem. Olfactory bulb, brainstem, and cerebrum from patients with COVID-19 showed induction of pro-inflammatory transcripts (IL8, IL18, CXCL10, NOD2) and cytokines (GM-CSF and IL-18) compared to CNS tissues from ODC patients (p < 0.05). Peroxisome biogenesis factor transcripts (PEX3, PEX5L, PEX11β, and PEX14) and proteins (PEX3, PEX14, PMP70) were suppressed in the CNS of COVID-19 compared to ODC patients (p < 0.05). SARS-CoV-2 infection of hamsters revealed viral RNA detection in the olfactory bulb at days 4 and 7 post-infection while inflammatory gene expression was upregulated in the cerebrum of infected animals by day 14 post-infection (p < 0.05). Pex3 transcript levels together with catalase and PMP70 immunoreactivity were suppressed in the cerebrum of SARS-CoV-2 infected animals (p < 0.05). INTERPRETATION COVID-19 induced sustained neuroinflammatory responses with peroxisome biogenesis factor suppression despite limited brainstem SARS-CoV-2 neurotropism in humans. These observations offer insights into developing biomarkers and therapies, while also implicating persistent peroxisome dysfunction as a contributor to the neurological post-acute sequelae of COVID-19. ANN NEUROL 2023;94:531-546.
Collapse
Affiliation(s)
- A Roczkowsky
- Department of Medicine, University of Alberta, Edmonton, AB, USA
| | - D Limonta
- Department of Cell Biology, University of Alberta, Edmonton, AB, USA
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, USA
| | - J P Fernandes
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, USA
| | - W G Branton
- Department of Medicine, University of Alberta, Edmonton, AB, USA
| | - M Clarke
- Department of Medicine, University of Alberta, Edmonton, AB, USA
| | - B Hlavay
- Department of Medicine, University of Alberta, Edmonton, AB, USA
| | - R S Noyce
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, USA
| | - J T Joseph
- Department of Pathology, University of Calgary, Calgary, AB, USA
| | - N S Ogando
- Department of Medicine, University of Alberta, Edmonton, AB, USA
| | - S K Das
- Department of Laboratory Medicine & Pathology, University of Alberta, Edmonton, AB, USA
| | - M Elaish
- Department of Cell Biology, University of Alberta, Edmonton, AB, USA
| | - N Arbour
- Department of Neuroscience, University of Montreal, and CHUM, Montreal, QC, Canada
| | - D H Evans
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, USA
| | - K Langdon
- Department of Pathology, University of Calgary, Calgary, AB, USA
| | - T C Hobman
- Department of Cell Biology, University of Alberta, Edmonton, AB, USA
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, USA
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, USA
| | - C Power
- Department of Medicine, University of Alberta, Edmonton, AB, USA
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB, USA
| |
Collapse
|
23
|
Chaves-Filho AM, Braniff O, Angelova A, Deng Y, Tremblay MÈ. Chronic inflammation, neuroglial dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome. Brain Res Bull 2023; 201:110702. [PMID: 37423295 DOI: 10.1016/j.brainresbull.2023.110702] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/13/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
After five waves of coronavirus disease 2019 (COVID-19) outbreaks, it has been recognized that a significant portion of the affected individuals developed long-term debilitating symptoms marked by chronic fatigue, cognitive difficulties ("brain fog"), post-exertional malaise, and autonomic dysfunction. The onset, progression, and clinical presentation of this condition, generically named post-COVID-19 syndrome, overlap significantly with another enigmatic condition, referred to as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Several pathobiological mechanisms have been proposed for ME/CFS, including redox imbalance, systemic and central nervous system inflammation, and mitochondrial dysfunction. Chronic inflammation and glial pathological reactivity are common hallmarks of several neurodegenerative and neuropsychiatric disorders and have been consistently associated with reduced central and peripheral levels of plasmalogens, one of the major phospholipid components of cell membranes with several homeostatic functions. Of great interest, recent evidence revealed a significant reduction of plasmalogen contents, biosynthesis, and metabolism in ME/CFS and acute COVID-19, with a strong association to symptom severity and other relevant clinical outcomes. These bioactive lipids have increasingly attracted attention due to their reduced levels representing a common pathophysiological manifestation between several disorders associated with aging and chronic inflammation. However, alterations in plasmalogen levels or their lipidic metabolism have not yet been examined in individuals suffering from post-COVID-19 symptoms. Here, we proposed a pathobiological model for post-COVID-19 and ME/CFS based on their common inflammation and dysfunctional glial reactivity, and highlighted the emerging implications of plasmalogen deficiency in the underlying mechanisms. Along with the promising outcomes of plasmalogen replacement therapy (PRT) for various neurodegenerative/neuropsychiatric disorders, we sought to propose PRT as a simple, effective, and safe strategy for the potential relief of the debilitating symptoms associated with ME/CFS and post-COVID-19 syndrome.
Collapse
Affiliation(s)
| | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC) and Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
24
|
Pecori R, Ren W, Pirmoradian M, Wang X, Liu D, Berglund M, Li W, Tasakis RN, Di Giorgio S, Ye X, Li X, Arnold A, Wüst S, Schneider M, Selvasaravanan KD, Fuell Y, Stafforst T, Amini RM, Sonnevi K, Enblad G, Sander B, Wahlin BE, Wu K, Zhang H, Helm D, Binder M, Papavasiliou FN, Pan-Hammarström Q. ADAR1-mediated RNA editing promotes B cell lymphomagenesis. iScience 2023; 26:106864. [PMID: 37255666 PMCID: PMC10225930 DOI: 10.1016/j.isci.2023.106864] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 02/27/2023] [Accepted: 05/08/2023] [Indexed: 06/01/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is one of the most common types of aggressive lymphoid malignancies. Here, we explore the contribution of RNA editing to DLBCL pathogenesis. We observed that DNA mutations and RNA editing events are often mutually exclusive, suggesting that tumors can modulate pathway outcomes by altering sequences at either the genomic or the transcriptomic level. RNA editing targets transcripts within known disease-driving pathways such as apoptosis, p53 and NF-κB signaling, as well as the RIG-I-like pathway. In this context, we show that ADAR1-mediated editing within MAVS transcript positively correlates with MAVS protein expression levels, associating with increased interferon/NF-κB signaling and T cell exhaustion. Finally, using targeted RNA base editing tools to restore editing within MAVS 3'UTR in ADAR1-deficient cells, we demonstrate that editing is likely to be causal to an increase in downstream signaling in the absence of activation by canonical nucleic acid receptor sensing.
Collapse
Affiliation(s)
- Riccardo Pecori
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Helmholtz Institute for Translational Oncology (HI-TRON), Mainz, Germany
| | - Weicheng Ren
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Mohammad Pirmoradian
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Xianhuo Wang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dongbing Liu
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Mattias Berglund
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Wei Li
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Rafail Nikolaos Tasakis
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Graduate Program in Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Salvatore Di Giorgio
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Xiaofei Ye
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xiaobo Li
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Annette Arnold
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sandra Wüst
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Proteomics Core Facility (W120), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Yvonne Fuell
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Thorsten Stafforst
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Rose-Marie Amini
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Kristina Sonnevi
- Hematology Unit, Department of Medicine, Huddinge, Karolinska Institutet and Medical Unit Hematology, Karolinska University Hospital, Solna, StockholmSweden
| | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Birgitta Sander
- Department of Laboratory Medicine, Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Björn Engelbrekt Wahlin
- Hematology Unit, Department of Medicine, Huddinge, Karolinska Institutet and Medical Unit Hematology, Karolinska University Hospital, Solna, StockholmSweden
| | - Kui Wu
- BGI-Shenzhen, Shenzhen, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, Shenzhen, China
| | - Huilai Zhang
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dominic Helm
- Proteomics Core Facility (W120), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marco Binder
- Research Group "Dynamics of Early Viral Infection and the Innate Antiviral Response", Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - F. Nina Papavasiliou
- Division of Immune Diversity (D150), German Cancer Research Center (DKFZ), Heidelberg, Germany
- Graduate Program in Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Qiang Pan-Hammarström
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
- BGI-Shenzhen, Shenzhen, China
| |
Collapse
|
25
|
Barnard TR, Landry BN, Wang AB, Sagan SM. Zika virus NS3 and NS5 proteins determine strain-dependent differences in dsRNA accumulation in a host cell type-dependent manner. J Gen Virol 2023; 104. [PMID: 37289497 DOI: 10.1099/jgv.0.001855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023] Open
Abstract
For positive-sense RNA viruses, initiation of viral RNA replication represents a major target of antiviral responses to infection. Despite this, the interplay between viral replication and the innate antiviral response at early steps in the Zika virus (ZIKV) life cycle is not well understood. We have previously identified ZIKV isolates with differing levels of dsRNA accumulation, ZIKVPR (high dsRNA per infected cell) and ZIKVCDN (low dsRNA per infected cell), and we hypothesized that we could use reverse genetics to investigate how host and viral factors contribute to the establishment of viral RNA replication. We found that both the ZIKV NS3 and NS5 proteins as well as host factors were necessary to determine the dsRNA accumulation phenotype. Additionally, we show that dsRNA correlates with viral negative-strand RNA measured by strand-specific RT-qPCR, suggesting that dsRNA is an accurate readout of viral RNA replication. Interestingly, although we did not observe NS3- and NS5-dependent differences in cells with defects in interferon (IFN) production, differences in RNA accumulation precede induction of the IFN response, suggesting that RNA sensing pathways or intrinsic restriction factors may differentially restrict ZIKV in an NS3- and NS5-dependent manner. This work expands our understanding of the interplay of early steps of viral RNA replication and the induction of the innate antiviral response to ZIKV infection.
Collapse
Affiliation(s)
- Trisha R Barnard
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Breanna N Landry
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Alex B Wang
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Selena M Sagan
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Zheng J, Shi W, Yang Z, Chen J, Qi A, Yang Y, Deng Y, Yang D, Song N, Song B, Luo D. RIG-I-like receptors: Molecular mechanism of activation and signaling. Adv Immunol 2023; 158:1-74. [PMID: 37453753 DOI: 10.1016/bs.ai.2023.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
During RNA viral infection, RIG-I-like receptors (RLRs) recognize the intracellular pathogenic RNA species derived from viral replication and activate antiviral innate immune response by stimulating type 1 interferon expression. Three RLR members, namely, RIG-I, MDA5, and LGP2 are homologous and belong to a subgroup of superfamily 2 Helicase/ATPase that is preferably activated by double-stranded RNA. RLRs are significantly different in gene architecture, RNA ligand preference, activation, and molecular functions. As switchable macromolecular sensors, RLRs' activities are tightly regulated by RNA ligands, ATP, posttranslational modifications, and cellular cofactors. We provide a comprehensive review of the structure and function of the RLRs and summarize the molecular understanding of sensing and signaling events during the RLR activation process. The key roles RLR signaling play in both anti-infection and immune disease conditions highlight the therapeutic potential in targeting this important molecular pathway.
Collapse
Affiliation(s)
- Jie Zheng
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Wenjia Shi
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ziqun Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jin Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ao Qi
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yulin Yang
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ying Deng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dongyuan Yang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ning Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Bin Song
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore; NTU Institute of Structural Biology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
27
|
Li X, Yang E, Li X, Fan T, Guo S, Yang H, Wu B, Wang H. MAVS-Based Reporter Systems for Real-Time Imaging of EV71 Infection and Antiviral Testing. Viruses 2023; 15:v15051064. [PMID: 37243150 DOI: 10.3390/v15051064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Enterovirus consists of a variety of viruses that could cause a wide range of illness in human. The pathogenesis of these viruses remains incompletely understood and no specific treatment is available. Better methods to study enterovirus infection in live cells will help us better understand the pathogenesis of these viruses and might contribute to antiviral development. Here in this study, we developed fluorescent cell-based reporter systems that allow sensitive distinction of individual cells infected with enterovirus 71 (EV71). More importantly, these systems could be easily used for live-cell imaging by monitoring viral-induced fluorescence translocation after EV71 infection. We further demonstrated that these reporter systems could be used to study other enterovirus-mediated MAVS cleavage and they are sensitive for antiviral activity testing. Therefore, integration of these reporters with modern image-based analysis has the potential to generate new insights into enterovirus infection and facilitate antiviral development.
Collapse
Affiliation(s)
- Xiaozhen Li
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - E Yang
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Xinyu Li
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Tingting Fan
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Shangrui Guo
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Hang Yang
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Bo Wu
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Hongliang Wang
- Department of Pathogen Biology and Immunology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
28
|
Schulz J, Schilling E, Fabian C, Zenclussen AC, Stojanovska V, Claus C. Dissecting Rubella Placental Infection in an In Vitro Trophoblast Model. Int J Mol Sci 2023; 24:ijms24097894. [PMID: 37175600 PMCID: PMC10178045 DOI: 10.3390/ijms24097894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Vertical transmission of rubella virus (RuV) occurs at a high rate during the first trimester of pregnancy. The modes of vertical transmission including the response of trophoblasts to RuV are not well understood. Here, RuV-trophoblast interaction was studied in the BeWo trophoblast cell line. Analysis included early and late time-point kinetics of virus infection rate and the antiviral innate immune response at mRNA and protein level. BeWo characteristics were addressed through metabolic activity by extracellular flux analysis and syncytiotrophoblast formation through incubation with forskolin. We found that RuV infection of BeWo led to profuse type III interferon (IFN) production. Transfecting trophoblast cells with dsRNA analog induced an increase in the production of type I IFN-β and type III IFNs; however, this did not occur in RuV-infected BeWo trophoblasts. IFN-β and to a lesser extent type III IFN-λ1 were inhibitory to RuV. While no significant metabolic alteration was detected, RuV infection reduced the cell number in the monolayer culture in comparison to the mock control and resulted in detached and floating cells. Syncytia formation restricted RuV infection. The use of BeWo as a relevant cell culture model for infection of trophoblasts highlights cytopathogenicity in the absence of a type I IFN response as a pathogenic alteration by RuV.
Collapse
Affiliation(s)
- Juliane Schulz
- Institute of Medical Microbiology and Virology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Erik Schilling
- Rheumatology Unit, Department of Internal Medicine III, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Claire Fabian
- Department of Vaccines and Infection Models, Fraunhofer Institute for Cell Therapy and Immunology, 04103 Leipzig, Germany
- Medical Department II, University Cancer Center Leipzig (UCCL), University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Ana Claudia Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
- Perinatal Immunology Research Group, Saxonian Incubator for Clinical Translation, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| | - Violeta Stojanovska
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, 04318 Leipzig, Germany
| | - Claudia Claus
- Institute of Medical Microbiology and Virology, Medical Faculty, Leipzig University, 04103 Leipzig, Germany
| |
Collapse
|
29
|
Martínez-Espinoza I, Guerrero-Plata A. Current Landscape of IFN-λ: Induction, Inhibition, and Potential Clinical Applications to Treat Respiratory Viral Infections. Immunohorizons 2023; 7:265-272. [PMID: 37071039 PMCID: PMC10579847 DOI: 10.4049/immunohorizons.2200010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/23/2023] [Indexed: 04/19/2023] Open
Abstract
IFN-λ or type III IFN is an important mediator of antiviral response. Several respiratory viruses induce the production of IFN-λ during their course of infection. However, they have also developed intricate mechanisms to inhibit its expression and activity. Despite a considerable amount of research on the regulatory mechanisms of respiratory viruses on the IFN-λ response, little is still known about the effect of this cytokine on immune cells and the antiviral effects of all IFN-λ isoforms, and a better understanding of the detrimental effects of IFN-λ treatment is required. Here we highlight the relevance of IFN-λ as an antiviral cytokine in the respiratory tract. Data from studies in vitro, ex vivo, experimental animal models, and ongoing clinical trials emphasize the therapeutic opportunity that IFN-λ represents to treat and prevent different types of respiratory viral infections.
Collapse
Affiliation(s)
- Iván Martínez-Espinoza
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| | - Antonieta Guerrero-Plata
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA
| |
Collapse
|
30
|
Russ E, Mikhalkevich N, Iordanskiy S. Expression of Human Endogenous Retrovirus Group K (HERV-K) HML-2 Correlates with Immune Activation of Macrophages and Type I Interferon Response. Microbiol Spectr 2023; 11:e0443822. [PMID: 36861980 PMCID: PMC10100713 DOI: 10.1128/spectrum.04438-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/30/2023] [Indexed: 03/03/2023] Open
Abstract
Human endogenous retroviruses (HERVs) comprise about 8.3% of the human genome and are capable of producing RNA molecules that can be sensed by pattern recognition receptors, leading to the activation of innate immune response pathways. The HERV-K (HML-2) subgroup is the youngest HERV clade with the highest degree of coding competence. Its expression is associated with inflammation-related diseases. However, the precise HML-2 loci, stimuli, and signaling pathways involved in these associations are not well understood or defined. To elucidate HML-2 expression on a locus-specific level, we used the retroelement sequencing tools TEcount and Telescope to analyze publicly available transcriptome sequencing (RNA-seq) and chromatin immunoprecipitation (ChIP) sequencing data sets of macrophages treated with a wide range of agonists. We found that macrophage polarization significantly correlates with modulation of the expression of specific HML-2 proviral loci. Further analysis demonstrated that the provirus HERV-K102, located in an intergenic region of locus 1q22, constituted the majority of the HML-2 derived transcripts following pro-inflammatory (M1) polarization and was upregulated explicitly in response to interferon gamma (IFN-γ) signaling. We found that signal transducer and activator of transcription 1 and interferon regulatory factor 1 interact with a solo long terminal repeat (LTR) located upstream of HERV-K102, termed LTR12F, following IFN-γ signaling. Using reporter constructs, we demonstrated that LTR12F is critical for HERV-K102 upregulation by IFN-γ. In THP1-derived macrophages, knockdown of HML-2 or knockout of MAVS, an adaptor of RNA-sensing pathways, significantly downregulated genes containing interferon-stimulated response elements (ISREs) in their promoters, suggesting an intermediate role of HERV-K102 in the switch from IFN-γ signaling to the activation of type I interferon expression and, therefore, in a positive feedback loop to enhance pro-inflammatory signaling. IMPORTANCE The human endogenous retrovirus group K subgroup, HML-2, is known to be elevated in a long list of inflammation-associated diseases. However, a clear mechanism for HML-2 upregulation in response to inflammation has not been defined. In this study, we identify a provirus of the HML-2 subgroup, HERV-K102, which is significantly upregulated and constitutes the majority of the HML-2 derived transcripts in response to pro-inflammatory activation of macrophages. Moreover, we identify the mechanism of HERV-K102 upregulation and demonstrate that HML-2 expression enhances interferon-stimulated response element activation. We also demonstrate that this provirus is elevated in vivo and correlates with interferon gamma signaling activity in cutaneous leishmaniasis patients. This study provides key insights into the HML-2 subgroup and suggests that it may participate in enhancing pro-inflammatory signaling in macrophages and probably other immune cells.
Collapse
Affiliation(s)
- Eric Russ
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- Graduate Program of Cellular and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Natallia Mikhalkevich
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Sergey Iordanskiy
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| |
Collapse
|
31
|
Wanders RJA, Baes M, Ribeiro D, Ferdinandusse S, Waterham HR. The physiological functions of human peroxisomes. Physiol Rev 2023; 103:957-1024. [PMID: 35951481 DOI: 10.1152/physrev.00051.2021] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED) and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Sacha Ferdinandusse
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| | - Hans R Waterham
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Pediatrics, Emma Children's Hospital, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,United for Metabolic Diseases, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Ferreira V, Ferreira AR, Ribeiro D. Peroxisomes and Viruses: Overview on Current Knowledge and Experimental Approaches. Methods Mol Biol 2023; 2643:271-294. [PMID: 36952192 DOI: 10.1007/978-1-0716-3048-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The general interest in the study of the interplay between peroxisomes and viruses has increased in recent years, with different reports demonstrating that distinct viruses modulate peroxisome-related mechanisms to either counteract the cellular antiviral response or support viral propagation. Nevertheless, mechanistical details are still scarce, and information is often incomplete. In this chapter, we present an overview of the current knowledge concerning the interplay between peroxisomes and different viruses. We furthermore present, compare, and discuss the most relevant experimental approaches and tools used in the different studies. Finally, we stress the importance of further, more detailed, and spatial-temporal analyses that encompass all the different phases of the viruses' infection cycles. These studies may lead to the discovery of novel peroxisome-related cellular mechanisms that can further be explored as targets for the development of novel antiviral therapies.
Collapse
Affiliation(s)
- Vanessa Ferreira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Ana Rita Ferreira
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Daniela Ribeiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
33
|
Membrane Sphingomyelin in Host Cells Is Essential for Nucleocapsid Penetration into the Cytoplasm after Hemifusion during Rubella Virus Entry. mBio 2022; 13:e0169822. [PMID: 36346228 PMCID: PMC9765692 DOI: 10.1128/mbio.01698-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The lipid composition of the host cell membrane is one of the key determinants of the entry of enveloped viruses into cells. To elucidate the detailed mechanisms behind the cell entry of rubella virus (RuV), one of the enveloped viruses, we searched for host factors involved in such entry by using CRISPR/Cas9 genome-wide knockout screening, and we found sphingomyelin synthase 1 (SMS1), encoded by the SGMS1 gene, as a candidate. RuV growth was strictly suppressed in SGMS1-knockout cells and was completely recovered by the overexpression of enzymatically active SMS1 and partially recovered by that of SMS2, another member of the SMS family, but not by that of enzymatically inactive SMS1. An entry assay using pseudotyped vesicular stomatitis virus possessing RuV envelope proteins revealed that sphingomyelin generated by SMSs is crucial for at least RuV entry. In SGMS1-knockout cells, lipid mixing between the RuV envelope membrane and the membrane of host cells occurred, but entry of the RuV genome from the viral particles into the cytoplasm was strongly inhibited. This indicates that sphingomyelin produced by SMSs is essential for the formation of membrane pores after hemifusion occurs during RuV entry. IMPORTANCE Infection with rubella virus during pregnancy causes congenital rubella syndrome in infants. Despite its importance in public health, the detailed mechanisms of rubella virus cell entry have only recently become somewhat clearer. The E1 protein of rubella virus is classified as a class II fusion protein based on its structural similarity, but it has the unique feature that its activity is dependent on calcium ion binding in the fusion loops. In this study, we found another unique feature, as cellular sphingomyelin plays a critical role in the penetration of the nucleocapsid into the cytoplasm after hemifusion by rubella virus. This provides important insight into the entry mechanism of rubella virus. This study also presents a model of hemifusion arrest during cell entry by an intact virus, providing a useful tool for analyzing membrane fusion, a biologically important phenomenon.
Collapse
|
34
|
Antia A, Pinski AN, Ding S. Re-Examining Rotavirus Innate Immune Evasion: Potential Applications of the Reverse Genetics System. mBio 2022; 13:e0130822. [PMID: 35699371 PMCID: PMC9426431 DOI: 10.1128/mbio.01308-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rotaviruses represent one of the most successful pathogens in the world, with high infectivity and efficient transmission between the young of many animal species, including humans. To overcome host defenses, rotaviruses have evolved a plethora of strategies to effectively evade the innate immune response, establish initial infection in the small intestine, produce progeny, and shed into the environment. Previously, studying the roles and relative contributions of specific rotaviral factors in innate immune evasion had been challenging without a plasmid-only reverse genetics system. Although still in its infancy, current reverse genetics technology will help address important research questions regarding rotavirus innate immune evasion, host range restriction, and viral pathogenesis. In this review, we summarize the current knowledge about the antiviral host innate immune defense mechanisms, countermeasures of rotavirus-encoded factors, and strategies to better understand these interactions using the rotavirus reverse genetics system.
Collapse
Affiliation(s)
- Avan Antia
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Amanda N. Pinski
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
35
|
Latanova A, Starodubova E, Karpov V. Flaviviridae Nonstructural Proteins: The Role in Molecular Mechanisms of Triggering Inflammation. Viruses 2022; 14:v14081808. [PMID: 36016430 PMCID: PMC9414172 DOI: 10.3390/v14081808] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 12/24/2022] Open
Abstract
Members of the Flaviviridae family are posing a significant threat to human health worldwide. Many flaviviruses are capable of inducing severe inflammation in humans. Flaviviridae nonstructural proteins, apart from their canonical roles in viral replication, have noncanonical functions strongly affecting antiviral innate immunity. Among these functions, antagonism of type I IFN is the most investigated; meanwhile, more data are accumulated on their role in the other pathways of innate response. This review systematizes the last known data on the role of Flaviviridae nonstructural proteins in molecular mechanisms of triggering inflammation, with an emphasis on their interactions with TLRs and RLRs, interference with NF-κB and cGAS-STING signaling, and activation of inflammasomes.
Collapse
|
36
|
Abstract
Mammalian orthoreovirus (reovirus) is a double-stranded RNA (dsRNA) virus which encapsidates its 10 genome segments within a double-layered viral particle. Reovirus infection triggers an antiviral response in host cells which serves to limit viral replication. This antiviral response is initiated by recognition of the incoming viral genome by host sensors present in the cytoplasm. However, how host sensors gain access to the reovirus genome is unclear, as this dsRNA is protected by the viral particle proteins throughout infection. To initiate infection, reovirus particles are endocytosed and the outer viral particle layer is disassembled through the action of host proteases. This disassembly event is required for viral escape into the cytoplasm to begin replication. We show that endosomal proteases are required even late in infection, when disassembly is complete, to induce an immune response to reovirus. Additionally, counter to dogma, our data demonstrate that at least some viral dsRNA genome is exposed and detectable during entry. We hypothesize that some proportion of reovirus particles remain trapped within endosomes, allowing for the breakdown of these particles and release of their genome. We show that rapidly uncoating mutants escape the endosome more rapidly and induce a diminished immune response. Further, we show that particles entering through dynamin-independent pathways evade detection by host sensors. Overall, our data provide new insight into how genomes from entering reovirus particles are detected by host cells. IMPORTANCE Viruses must infect host cells to replicate, often killing the host cell in the process. However, hosts can activate defenses to limit viral replication and protect the organism. To trigger these host defenses to viral infections, host cells must first recognize that they are infected. Mammalian orthoreovirus (reovirus) is a model system used to study host-virus interactions. This study identifies aspects of host and virus biology which determine the capacity of host cells to detect infection. Notably, entry of reovirus into host cells plays a critical role in determining the magnitude of immune response triggered during infection. Mutants of reovirus which can enter cells more rapidly are better at avoiding detection by the host. Additionally, reovirus can enter cells through multiple routes. Entry through some of these routes also helps reovirus evade detection.
Collapse
|
37
|
Norovirus 3C-Like protease antagonizes interferon-β production by cleaving NEMO. Virology 2022; 571:12-20. [DOI: 10.1016/j.virol.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022]
|
38
|
Qu C, Li Y, Li Y, Pan Y. Full-length MAVS, a mitochondrial antiviral-signaling protein, inhibits hepatitis E virus replication, requiring JAK-STAT signaling. Arch Virol 2022; 167:1293-1300. [PMID: 35322318 PMCID: PMC8942808 DOI: 10.1007/s00705-022-05415-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
Abstract
Hepatitis E virus (HEV) infection is the leading cause of acute hepatitis worldwide. The mitochondrial antiviral signaling protein (MAVS)-mediated interferon (IFN) response plays a pivotal role in hepatic antiviral immunity. However, little is known about the effect of overexpression of MAVS on HEV infection. Full-length MAVS (FL-MAVS) is the main form of MAVS that increases the production of IFNs. Here, we studied the effect of FL-MAVS on HEV infection. We found that overexpression of FL-MAVS profoundly inhibited HEV replication. Furthermore, we showed that the anti-HEV effect of FL-MAVS is largely dependent on JAK-STAT signaling activation.
Collapse
Affiliation(s)
- Changbo Qu
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yang Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3015CN, Rotterdam, The Netherlands
| | - Yunlong Li
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center, 3015CN, Rotterdam, The Netherlands
| | - Yihang Pan
- Tomas Lindahl Nobel Laureate Laboratory, Precision Medicine Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
39
|
Ferreira AR, Gouveia A, Magalhães AC, Valença I, Marques M, Kagan JC, Ribeiro D. Human Cytomegalovirus vMIA Inhibits MAVS Oligomerization at Peroxisomes in an MFF-Dependent Manner. Front Cell Dev Biol 2022; 10:871977. [PMID: 35445031 PMCID: PMC9014249 DOI: 10.3389/fcell.2022.871977] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/04/2022] [Indexed: 11/21/2022] Open
Abstract
Upon intracellular recognition of viral RNA, RIG-I-like proteins interact with MAVS at peroxisomes and mitochondria, inducing its oligomerization and the downstream production of direct antiviral effectors. The human cytomegalovirus (HCMV) is able to specifically evade this antiviral response, via its antiapoptotic protein vMIA. Besides suppressing the programmed cell death of infected cells, vMIA inhibits the antiviral signalling at mitochondria by inducing the organelle’s fragmentation, consequently hindering the interaction between MAVS and the endoplasmic reticulum protein STING. Here we demonstrate that vMIA interferes with the peroxisomal antiviral signalling via a distinct mechanism that is independent of the organelle’s morphology and does not affect STING. vMIA interacts with MAVS at peroxisomes and inhibits its oligomerization, restraining downstream signalling, in an MFF-dependent manner. This study also demonstrates that vMIA is totally dependent on the organelle’s fission machinery to induce peroxisomal fragmentation, while this dependency is not observed at mitochondria. Furthermore, although we demonstrate that vMIA is also able to inhibit MAVS oligomerization at mitochondria, our results indicate that this process, such as the whole vMIA-mediated inhibition of the mitochondrial antiviral response, is independent of MFF. These observed differences in the mechanisms of action of vMIA towards both organelles, likely reflect their intrinsic differences and roles throughout the viral infection. This study uncovers specific molecular mechanisms that may be further explored as targets for antiviral therapy and highlights the relevance of peroxisomes as platforms for antiviral signalling against HCMV.
Collapse
Affiliation(s)
- Ana Rita Ferreira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.,Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Ana Gouveia
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Ana Cristina Magalhães
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Isabel Valença
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mariana Marques
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Jonathan C Kagan
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Daniela Ribeiro
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
40
|
Chowdhury A, Witte S, Aich A. Role of Mitochondrial Nucleic Acid Sensing Pathways in Health and Patho-Physiology. Front Cell Dev Biol 2022; 10:796066. [PMID: 35223833 PMCID: PMC8873532 DOI: 10.3389/fcell.2022.796066] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/14/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria, in symbiosis with the host cell, carry out a wide variety of functions from generating energy, regulating the metabolic processes, cell death to inflammation. The most prominent function of mitochondria relies on the oxidative phosphorylation (OXPHOS) system. OXPHOS heavily influences the mitochondrial-nuclear communication through a plethora of interconnected signaling pathways. Additionally, owing to the bacterial ancestry, mitochondria also harbor a large number of Damage Associated Molecular Patterns (DAMPs). These molecules relay the information about the state of the mitochondrial health and dysfunction to the innate immune system. Consequently, depending on the intracellular or extracellular nature of detection, different inflammatory pathways are elicited. One group of DAMPs, the mitochondrial nucleic acids, hijack the antiviral DNA or RNA sensing mechanisms such as the cGAS/STING and RIG-1/MAVS pathways. A pro-inflammatory response is invoked by these signals predominantly through type I interferon (T1-IFN) cytokines. This affects a wide range of organ systems which exhibit clinical presentations of auto-immune disorders. Interestingly, tumor cells too, have devised ingenious ways to use the mitochondrial DNA mediated cGAS-STING-IRF3 response to promote neoplastic transformations and develop tumor micro-environments. Thus, mitochondrial nucleic acid-sensing pathways are fundamental in understanding the source and nature of disease initiation and development. Apart from the pathological interest, recent studies also attempt to delineate the structural considerations for the release of nucleic acids across the mitochondrial membranes. Hence, this review presents a comprehensive overview of the different aspects of mitochondrial nucleic acid-sensing. It attempts to summarize the nature of the molecular patterns involved, their release and recognition in the cytoplasm and signaling. Finally, a major emphasis is given to elaborate the resulting patho-physiologies.
Collapse
Affiliation(s)
- Arpita Chowdhury
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
| | - Steffen Witte
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging, from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
41
|
Banete A, Barilo J, Whittaker R, Basta S. The Activated Macrophage - A Tough Fortress for Virus Invasion: How Viruses Strike Back. Front Microbiol 2022; 12:803427. [PMID: 35087503 PMCID: PMC8787342 DOI: 10.3389/fmicb.2021.803427] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Macrophages (Mφ) are innate immune cells with a variety of functional phenotypes depending on the cytokine microenvironment they reside in. Mφ exhibit distinct activation patterns that are found within a wide array of activation states ranging from the originally discovered classical pro-inflammatory (M1) to the anti-inflammatory (M2) with their multi-facades. M1 cells are induced by IFNγ + LPS, while M2 are further subdivided into M2a (IL-4), M2b (Immune Complex) and M2c (IL-10) based on their inducing stimuli. Not surprisingly, Mφ activation influences the outcome of viral infections as they produce cytokines that in turn activate cells of the adaptive immune system. Generally, activated M1 cells tend to restrict viral replication, however, influenza and HIV exploit inflammation to support their replication. Moreover, M2a polarization inhibits HIV replication at the post-integration level, while HCMV encoded hrIL-10 suppresses inflammatory reactions by facilitating M2c formation. Additionally, viruses such as LCMV and Lassa Virus directly suppress Mφ activation leading to viral chronicity. Here we review how Mφ activation affects viral infection and the strategies by which viruses manipulate Mφ polarization to benefit their own fitness. An understanding of these mechanisms is important for the development of novel immunotherapies that can sway Mφ phenotype to inhibit viral replication.
Collapse
Affiliation(s)
- Andra Banete
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Department of Biological Sciences, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Julia Barilo
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Reese Whittaker
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
42
|
Poly(rC)-Binding Protein 1 Limits Hepatitis C Virus Virion Assembly and Secretion. Viruses 2022; 14:v14020291. [PMID: 35215884 PMCID: PMC8877974 DOI: 10.3390/v14020291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/16/2022] Open
Abstract
The hepatitis C virus (HCV) co-opts numerous cellular elements, including proteins, lipids, and microRNAs, to complete its viral life cycle. The cellular RNA-binding protein, poly(rC)-binding protein 1 (PCBP1), was previously reported to bind to the 5′ untranslated region (UTR) of the HCV genome; however, its importance in the viral life cycle has remained unclear. Herein, we sought to clarify the role of PCBP1 in the HCV life cycle. Using the HCV cell culture (HCVcc) system, we found that knockdown of endogenous PCBP1 resulted in an overall decrease in viral RNA accumulation, yet resulted in an increase in extracellular viral titers. To dissect PCBP1’s specific role in the HCV life cycle, we carried out assays for viral entry, translation, genome stability, RNA replication, as well as virion assembly and secretion. We found that PCBP1 knockdown did not directly affect viral entry, translation, RNA stability, or RNA replication, but resulted in an overall increase in infectious particle secretion. This increase in virion secretion was evident even when viral RNA synthesis was inhibited, and blocking virus secretion could partially restore the viral RNA accumulation decreased by PCBP1 knockdown. We therefore propose a model where endogenous PCBP1 normally limits virion assembly and secretion, which increases viral RNA accumulation in infected cells by preventing the departure of viral genomes packaged into virions. Overall, our findings improve our understanding of how cellular RNA-binding proteins influence viral genomic RNA utilization during the HCV life cycle.
Collapse
|
43
|
Farelo MA, Korrou-Karava D, Brooks KF, Russell TA, Maringer K, Mayerhofer PU. Dengue and Zika Virus Capsid Proteins Contain a Common PEX19-Binding Motif. Viruses 2022; 14:v14020253. [PMID: 35215846 PMCID: PMC8874546 DOI: 10.3390/v14020253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Flaviviruses such as dengue virus (DENV) and Zika virus (ZIKV) have evolved sophisticated mechanisms to suppress the host immune system. For instance, flavivirus infections were found to sabotage peroxisomes, organelles with an important role in innate immunity. The current model suggests that the capsid (C) proteins of DENV and ZIKV downregulate peroxisomes, ultimately resulting in reduced production of interferons by interacting with the host protein PEX19, a crucial chaperone in peroxisomal biogenesis. Here, we aimed to explore the importance of peroxisomes and the role of C interaction with PEX19 in the flavivirus life cycle. By infecting cells lacking peroxisomes we show that this organelle is required for optimal DENV replication. Moreover, we demonstrate that DENV and ZIKV C bind PEX19 through a conserved PEX19-binding motif, which is also commonly found in cellular peroxisomal membrane proteins (PMPs). However, in contrast to PMPs, this interaction does not result in the targeting of C to peroxisomes. Furthermore, we show that the presence of C results in peroxisome loss due to impaired peroxisomal biogenesis, which appears to occur by a PEX19-independent mechanism. Hence, these findings challenge the current model of how flavivirus C might downregulate peroxisomal abundance and suggest a yet unknown role of peroxisomes in flavivirus biology.
Collapse
Affiliation(s)
- Mafalda A. Farelo
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (M.A.F.); (D.K.-K.); (K.F.B.); (T.A.R.)
| | - Despoina Korrou-Karava
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (M.A.F.); (D.K.-K.); (K.F.B.); (T.A.R.)
| | - Katrina F. Brooks
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (M.A.F.); (D.K.-K.); (K.F.B.); (T.A.R.)
| | - Tiffany A. Russell
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (M.A.F.); (D.K.-K.); (K.F.B.); (T.A.R.)
| | - Kevin Maringer
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (M.A.F.); (D.K.-K.); (K.F.B.); (T.A.R.)
- The Pirbright Institute, Pirbright GU24 0NF, UK
- Correspondence: (K.M.); (P.U.M.)
| | - Peter U. Mayerhofer
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK; (M.A.F.); (D.K.-K.); (K.F.B.); (T.A.R.)
- Correspondence: (K.M.); (P.U.M.)
| |
Collapse
|
44
|
CD14 Is Involved in the Interferon Response of Human Macrophages to Rubella Virus Infection. Biomedicines 2022; 10:biomedicines10020266. [PMID: 35203475 PMCID: PMC8869353 DOI: 10.3390/biomedicines10020266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/11/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Macrophages (MΦ) as specialized immune cells are involved in rubella virus (RuV) pathogenesis and enable the study of its interaction with the innate immune system. A similar replication kinetics of RuV in the two human MΦ types, the pro-inflammatory M1-like (or GM-MΦ) and anti-inflammatory M2-like (M-MΦ), was especially in M-MΦ accompanied by a reduction in the expression of the innate immune receptor CD14. Similar to RuV infection, exogenous interferon (IFN) β induced a loss of glycolytic reserve in M-MΦ, but in contrast to RuV no noticeable influence on CD14 expression was detected. We next tested the contribution of CD14 to the generation of cytokines/chemokines during RuV infection of M-MΦ through the application of anti-CD14 blocking antibodies. Blockage of CD14 prior to RuV infection enhanced generation of virus progeny. In agreement with this observation, the expression of IFNs was significantly reduced in comparison to the isotype control. Additionally, the expression of TNF-α was slightly reduced, whereas the chemokine CXCL10 was not altered. In conclusion, the observed downmodulation of CD14 during RuV infection of M-MΦ appears to contribute to virus-host-adaptation through a reduction of the IFN response.
Collapse
|
45
|
Dowling JW, Forero A. Beyond Good and Evil: Molecular Mechanisms of Type I and III IFN Functions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:247-256. [PMID: 35017214 DOI: 10.4049/jimmunol.2100707] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022]
Abstract
IFNs are comprised of three families of cytokines that confer protection against pathogen infection and uncontrolled cellular proliferation. The broad role IFNs play in innate and adaptive immune regulation has placed them under heavy scrutiny to position them as "friend" or "foe" across pathologies. Genetic lesions in genes involving IFN synthesis and signaling underscore the disparate outcomes of aberrant IFN signaling. Abrogation of the response leads to susceptibility to microbial infections whereas unabated IFN induction underlies a variety of inflammatory diseases and tumor immune evasion. Type I and III IFNs have overlapping roles in antiviral protection, yet the mechanisms by which they are induced and promote the expression of IFN-stimulated genes and inflammation can distinguish their biological functions. In this review, we examine the molecular factors that shape the shared and distinct roles of type I and III IFNs in immunity.
Collapse
Affiliation(s)
- Jack W Dowling
- Biochemistry, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210; and.,Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| | - Adriana Forero
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
46
|
The Disease-Modifying Role of Taurine and Its Therapeutic Potential in Coronavirus Disease 2019 (COVID-19). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:3-21. [DOI: 10.1007/978-3-030-93337-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
47
|
Schilling E, Grahnert A, Pfeiffer L, Koehl U, Claus C, Hauschildt S. The Impact of Rubella Virus Infection on a Secondary Inflammatory Response in Polarized Human Macrophages. Front Immunol 2021; 12:772595. [PMID: 34975859 PMCID: PMC8716696 DOI: 10.3389/fimmu.2021.772595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
Macrophages (MΦ) are known to exhibit distinct responses to viral and bacterial infection, but how they react when exposed to the pathogens in succession is less well understood. Accordingly, we determined the effect of a rubella virus (RV)-induced infection followed by an LPS-induced challenge on cytokine production, signal transduction and metabolic pathways in human GM (M1-like)- and M (M2-like)-MΦ. We found that infection of both subsets with RV resulted in a low TNF-α and a high interferon (IFN, type I and type III) release whereby M-MΦ produced far more IFNs than GM-MΦ. Thus, TNF-α production in contrast to IFN production is not a dominant feature of RV infection in these cells. Upon addition of LPS to RV-infected MΦ compared to the addition of LPS to the uninfected cells the TNF-α response only slightly increased, whereas the IFN-response of both subtypes was greatly enhanced. The subset specific cytokine expression pattern remained unchanged under these assay conditions. The priming effect of RV was also observed when replacing RV by IFN-β one putative priming stimulus induced by RV. Small amounts of IFN-β were sufficient for phosphorylation of Stat1 and to induce IFN-production in response to LPS. Analysis of signal transduction pathways activated by successive exposure of MΦ to RV and LPS revealed an increased phosphorylation of NFκB (M-MΦ), but different to uninfected MΦ a reduced phosphorylation of ERK1/2 (both subtypes). Furthermore, metabolic pathways were affected; the LPS-induced increase in glycolysis was dampened in both subtypes after RV infection. In conclusion, we show that RV infection and exogenously added IFN-β can prime MΦ to produce high amounts of IFNs in response to LPS and that changes in glycolysis and signal transduction are associated with the priming effect. These findings will help to understand to what extent MΦ defense to viral infection is modulated by a following exposure to a bacterial infection.
Collapse
Affiliation(s)
- Erik Schilling
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Anja Grahnert
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Lukas Pfeiffer
- Institute of Medical Microbiology and Virology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Ulrike Koehl
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
- Fraunhofer Institute for Cellular Therapeutics and Immunology, Leipzig, Germany
- Institute for Cellular Therapeutics, Hannover Medical School, Hannover, Germany
| | - Claudia Claus
- Institute of Medical Microbiology and Virology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Sunna Hauschildt
- Institute of Biology, University of Leipzig, Leipzig, Germany
- *Correspondence: Sunna Hauschildt,
| |
Collapse
|
48
|
Infection of Glia by Human Pegivirus Suppresses Peroxisomal and Antiviral Signaling Pathways. J Virol 2021; 95:e0107421. [PMID: 34524914 DOI: 10.1128/jvi.01074-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Human pegivirus (HPgV) infects peripheral leukocytes but was recently shown to be a neurotropic virus associated with leukoencephalitis in humans. In the present study, we investigated the neural cell tropism of HPgV as well as its effects on host immune responses. HPgV wild type (WT) and a mutant virus with a deletion in the HPgV NS2 gene (ΔNS2) were able to productively infect human astrocytes and microglia but not neurons or an oligodendrocyte-derived cell line. Of note, the ΔNS2 virus replicated better than WT pegivirus in astrocytes, with both viruses being able to subsequently infect and spread in fresh human astrocyte cultures. Infection of human glia by HPgV WT and ΔNS2 viruses resulted in suppression of peroxisome-associated genes, including PEX11B, ABCD1, PEX7, ABCD3, PEX3, and PEX5L, during peak viral production, which was accompanied by reduced expression of IFNB, IRF3, IRF1, and MAVS, particularly in ΔNS2-infected cells. These data were consistent with analyses of brain tissue from patients infected with HPgV in which we observed suppression of peroxisome and type I interferon gene transcripts, including PEX11B, ABCD3, IRF1, and IRF3, with concurrent loss of PMP70 immunoreactivity in glia. Our data indicate that human astrocytes and microglia are permissive to HPgV infection, resulting in peroxisome injury and suppressed antiviral signaling that is influenced by viral diversity. IMPORTANCE Human pegiviruses are detected in 1 to 5% of the general population, principally infecting leukocytes, although their effects on human health remain uncertain. Here, we show that human pegivirus infects specific neural cell types in culture and human brain and, like other neurotropic flaviviruses, causes suppression of peroxisome and antiviral signaling pathways, which could favor ongoing viral infection and perhaps confer susceptibility to the development of neurological disease.
Collapse
|
49
|
Nicolay W, Moeller R, Kahl S, Vondran FWR, Pietschmann T, Kunz S, Gerold G. Characterization of RNA Sensing Pathways in Hepatoma Cell Lines and Primary Human Hepatocytes. Cells 2021; 10:3019. [PMID: 34831243 PMCID: PMC8616302 DOI: 10.3390/cells10113019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 11/23/2022] Open
Abstract
The liver is targeted by several human pathogenic RNA viruses for viral replication and dissemination; despite this, the extent of innate immune sensing of RNA viruses by human hepatocytes is insufficiently understood to date. In particular, for highly human tropic viruses such as hepatitis C virus, cell culture models are needed to study immune sensing. However, several human hepatoma cell lines have impaired RNA sensing pathways and fail to mimic innate immune responses in the human liver. Here we compare the RNA sensing properties of six human hepatoma cell lines, namely Huh-6, Huh-7, HepG2, HepG2-HFL, Hep3B, and HepaRG, with primary human hepatocytes. We show that primary liver cells sense RNA through retinoic acid-inducible gene I (RIG-I) like receptor (RLR) and Toll-like receptor 3 (TLR3) pathways. Of the tested cell lines, Hep3B cells most closely mimicked the RLR and TLR3 mediated sensing in primary hepatocytes. This was shown by the expression of RLRs and TLR3 as well as the expression and release of bioactive interferon in primary hepatocytes and Hep3B cells. Our work shows that Hep3B cells partially mimic RNA sensing in primary hepatocytes and thus can serve as in vitro model to study innate immunity to RNA viruses in hepatocytes.
Collapse
Affiliation(s)
- Wiebke Nicolay
- TWINCORE—Centre for Experimental and Clinical Infection Research, Institute for Experimental Virology, 30625 Hannover, Germany; (W.N.); (R.M.); (S.K.); (T.P.)
| | - Rebecca Moeller
- TWINCORE—Centre for Experimental and Clinical Infection Research, Institute for Experimental Virology, 30625 Hannover, Germany; (W.N.); (R.M.); (S.K.); (T.P.)
- Center for Emerging Infections and Zoonoses (RIZ), Institute of Biochemistry & Research, University of Veterinary Medicine Hannover, 30625 Hannover, Germany
| | - Sina Kahl
- TWINCORE—Centre for Experimental and Clinical Infection Research, Institute for Experimental Virology, 30625 Hannover, Germany; (W.N.); (R.M.); (S.K.); (T.P.)
| | - Florian W. R. Vondran
- Department of General, Visceral and Transplant Surgery, Hannover Medical School, 30625 Hannover, Germany;
- German Centre for Infection Research (DZIF), 30100 Braunschweig, Germany
| | - Thomas Pietschmann
- TWINCORE—Centre for Experimental and Clinical Infection Research, Institute for Experimental Virology, 30625 Hannover, Germany; (W.N.); (R.M.); (S.K.); (T.P.)
| | - Stefan Kunz
- Institute of Microbiology, Lausanne University Hospital, CH-1011 Lausanne, Switzerland;
| | - Gisa Gerold
- TWINCORE—Centre for Experimental and Clinical Infection Research, Institute for Experimental Virology, 30625 Hannover, Germany; (W.N.); (R.M.); (S.K.); (T.P.)
- Center for Emerging Infections and Zoonoses (RIZ), Institute of Biochemistry & Research, University of Veterinary Medicine Hannover, 30625 Hannover, Germany
- Department of Clinical Microbiology, Virology, Umeå University, SE-90185 Umeå, Sweden
- Wallenberg Centre for Molecular Medicine (WCMM), Umeå University, SE-90185 Umeå, Sweden
| |
Collapse
|
50
|
Chathuranga K, Weerawardhana A, Dodantenna N, Lee JS. Regulation of antiviral innate immune signaling and viral evasion following viral genome sensing. Exp Mol Med 2021; 53:1647-1668. [PMID: 34782737 PMCID: PMC8592830 DOI: 10.1038/s12276-021-00691-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/15/2021] [Accepted: 09/07/2021] [Indexed: 02/07/2023] Open
Abstract
A harmonized balance between positive and negative regulation of pattern recognition receptor (PRR)-initiated immune responses is required to achieve the most favorable outcome for the host. This balance is crucial because it must not only ensure activation of the first line of defense against viral infection but also prevent inappropriate immune activation, which results in autoimmune diseases. Recent studies have shown how signal transduction pathways initiated by PRRs are positively and negatively regulated by diverse modulators to maintain host immune homeostasis. However, viruses have developed strategies to subvert the host antiviral response and establish infection. Viruses have evolved numerous genes encoding immunomodulatory proteins that antagonize the host immune system. This review focuses on the current state of knowledge regarding key host factors that regulate innate immune signaling molecules upon viral infection and discusses evidence showing how specific viral proteins counteract antiviral responses via immunomodulatory strategies.
Collapse
Affiliation(s)
- Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Asela Weerawardhana
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Niranjan Dodantenna
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Korea.
| |
Collapse
|