1
|
Wang X, Liu K, Wang X, Liu X. Multidimensional Regulatory Mechanisms and Targeting Strategies of the eEF1 Family in RNA Virus Infection. Viruses 2025; 17:682. [PMID: 40431694 PMCID: PMC12115637 DOI: 10.3390/v17050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
The eukaryotic translation elongation factor 1 (eEF1) family exhibits critical roles in RNA viral infection beyond its canonical function in protein synthesis. This review analyzes the structural characteristics of eEF1A and the eEF1B complex, and their regulatory mechanisms during viral infection. eEF1A impacts viral replication by stabilizing viral RNA-dependent RNA polymerase (RdRp) complexes, modulating genomic RNA synthesis, and facilitating viral assembly through cytoskeletal regulation. eEF1B subunits contribute through enhancing viral mRNA translation, regulating nuclear transport of viral components, and mediating post-translational modifications. The high conservation of eEF1 proteins across species and their involvement in multiple stages of viral replication establish them as promising broad-spectrum antiviral targets. Current eEF1-targeting compounds like plitidepsin demonstrate efficacy against diverse viral families, though therapeutic development faces challenges in balancing antiviral activity with host toxicity. This review provides a theoretical foundation for developing novel antiviral strategies targeting host-virus interaction interfaces and offers insights into addressing emerging infectious diseases.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.W.); (X.L.)
| | - Kaituo Liu
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.W.); (X.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaoquan Wang
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.W.); (X.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiufan Liu
- Key Laboratory of Avian Bioproducts Development, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (X.W.); (X.L.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Zhang W, Wang J, Shan C. The eEF1A protein in cancer: Clinical significance, oncogenic mechanisms, and targeted therapeutic strategies. Pharmacol Res 2024; 204:107195. [PMID: 38677532 DOI: 10.1016/j.phrs.2024.107195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Eukaryotic elongation factor 1A (eEF1A) is among the most abundant proteins in eukaryotic cells. Evolutionarily conserved across species, eEF1A is in charge of translation elongation for protein biosynthesis as well as a plethora of non-translational moonlighting functions for cellular homeostasis. In malignant cells, however, eEF1A becomes a pleiotropic driver of cancer progression via a broad diversity of pathways, which are not limited to hyperactive translational output. In the past decades, mounting studies have demonstrated the causal link between eEF1A and carcinogenesis, gaining deeper insights into its multifaceted mechanisms and corroborating its value as a prognostic marker in various cancers. On the other hand, an increasing number of natural and synthetic compounds were discovered as anticancer eEF1A-targeting inhibitors. Among them, plitidepsin was approved for the treatment of multiple myeloma whereas metarrestin was currently under clinical development. Despite significant achievements in these two interrelated fields, hitherto there lacks a systematic examination of the eEF1A protein in the context of cancer research. Therefore, the present work aims to delineate its clinical implications, molecular oncogenic mechanisms, and targeted therapeutic strategies as reflected in the ever expanding body of literature, so as to deepen mechanistic understanding of eEF1A-involved tumorigenesis and inspire the development of eEF1A-targeted chemotherapeutics and biologics.
Collapse
Affiliation(s)
- Weicheng Zhang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| | - Jiyan Wang
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China
| | - Changliang Shan
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, People's Republic of China.
| |
Collapse
|
3
|
Chen S, Yan Y, Gao L, Gao S, Feng K, Li H, Zhang X, Chen W, Chen F, Xie Q. Proteomic profiling of purified avian leukosis virus subgroup J particles. Vet Microbiol 2023; 284:109821. [PMID: 37536160 DOI: 10.1016/j.vetmic.2023.109821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 08/05/2023]
Abstract
While the presence of host cell proteins in virions and their role in viral life cycles have been demonstrated in various viruses, such characteristics have remained largely unknown in avian leukosis virus (ALV). To investigate whether this is the case in ALV, we purified high-integrity and high-purity virions from the avian leukosis virus subgroup J (ALV-J) and subjected them to proteome analysis using nano LC-MS/MS. This analysis identified 53 cellular proteins that are incorporated into mature ALV-J virions, and we verified the reliability of the packaged cellular proteins through subtilisin digestion and immunoblot analysis. Functional annotation revealed the potential functions of these proteins in the viral life cycle and tumorigenesis. Overall, our findings have important implications for understanding the interaction between ALV-J and its host, and provide new insights into the cellular requirements that define ALV-J infection.
Collapse
Affiliation(s)
- Sheng Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, PR China
| | - Yiming Yan
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 510642, PR China
| | - Liguo Gao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Shuang Gao
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan 510642, PR China
| | - Keyu Feng
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Hongxin Li
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Weiguo Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China
| | - Feng Chen
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, PR China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology & Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou 510642, PR China; South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou 510642, PR China; Key Laboratory of Animal Health Aquaculture and Environmental Control, Guangzhou 510642, Guangdong, PR China.
| |
Collapse
|
4
|
Shen W, Liu C, Hu Y, Ding Q, Feng J, Liu Z, Kong X. Spastin is required for human immunodeficiency virus-1 efficient replication through cooperation with the endosomal sorting complex required for transport (ESCRT) protein. Virol Sin 2023:S1995-820X(23)00054-8. [PMID: 37172824 DOI: 10.1016/j.virs.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) encodes simply 15 proteins and thus depends on multiple host cellular factors for virus reproduction. Spastin, a microtubule severing protein, is an identified HIV-1 dependency factor, but the mechanism regulating HIV-1 is unclear. Here, the study showed that knockdown of spastin inhibited the production of the intracellular HIV-1 Gag protein and new virions through enhancing Gag lysosomal degradation. Further investigation showed that increased sodium tolerance 1 (IST1), the subunit of endosomal sorting complex required for transport (ESCRT), could interact with the MIT domain of spastin to regulate the intracellular Gag production. In summary, spastin is required for HIV-1 replication, while spastin-IST1 interaction facilitates virus production by regulating HIV-1 Gag intracellular trafficking and degradation. Spastin may serve as new target for HIV-1 prophylactic and therapy.
Collapse
Affiliation(s)
- Wenyuan Shen
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China; Department of Spine Surgery, the Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chang Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yue Hu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China; Department of Infectious Diseases, Tianjin Second People's Hospital, Tianjin 300192, China
| | - Qian Ding
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jiabin Feng
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhou Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaohong Kong
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
5
|
Aiken C, Rousso I. The HIV-1 capsid and reverse transcription. Retrovirology 2021; 18:29. [PMID: 34563203 PMCID: PMC8466977 DOI: 10.1186/s12977-021-00566-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/20/2021] [Indexed: 02/08/2023] Open
Abstract
The viral capsid plays a key role in HIV-1 reverse transcription. Recent studies have demonstrated that the small molecule IP6 dramatically enhances reverse transcription in vitro by stabilizing the viral capsid. Reverse transcription results in marked changes in the biophysical properties of the capsid, ultimately resulting in its breakage and disassembly. Here we review the research leading to these advances and describe hypotheses for capsid-dependent HIV-1 reverse transcription and a model for reverse transcription-primed HIV-1 uncoating.
Collapse
Affiliation(s)
- Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Itay Rousso
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
6
|
Dicker K, Järvelin AI, Garcia-Moreno M, Castello A. The importance of virion-incorporated cellular RNA-Binding Proteins in viral particle assembly and infectivity. Semin Cell Dev Biol 2021; 111:108-118. [PMID: 32921578 PMCID: PMC7482619 DOI: 10.1016/j.semcdb.2020.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 12/14/2022]
Abstract
RNA is a central molecule in RNA virus biology due to its dual function as messenger and genome. However, the small number of proteins encoded by viral genomes is insufficient to enable virus infection. Hence, viruses hijack cellular RNA-binding proteins (RBPs) to aid replication and spread. In this review we discuss the 'knowns' and 'unknowns' regarding the contribution of host RBPs to the formation of viral particles and the initial steps of infection in the newly infected cell. Through comparison of the virion proteomes of ten different human RNA viruses, we confirm that a pool of cellular RBPs are typically incorporated into viral particles. We describe here illustrative examples supporting the important functions of these RBPs in viral particle formation and infectivity and we propose that the role of host RBPs in these steps can be broader than previously anticipated. Understanding how cellular RBPs regulate virus infection can lead to the discovery of novel therapeutic targets against viruses.
Collapse
Affiliation(s)
- Kate Dicker
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Aino I Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Manuel Garcia-Moreno
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK; MRC-University of Glasgow Centre for Virus Research, University of Glasgow, 464 Bearsden Road, Glasgow, G61 1QH, Scotland, UK.
| |
Collapse
|
7
|
How HIV-1 Gag Manipulates Its Host Cell Proteins: A Focus on Interactors of the Nucleocapsid Domain. Viruses 2020; 12:v12080888. [PMID: 32823718 PMCID: PMC7471995 DOI: 10.3390/v12080888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022] Open
Abstract
The human immunodeficiency virus (HIV-1) polyprotein Gag (Group-specific antigen) plays a central role in controlling the late phase of the viral lifecycle. Considered to be only a scaffolding protein for a long time, the structural protein Gag plays determinate and specific roles in HIV-1 replication. Indeed, via its different domains, Gag orchestrates the specific encapsidation of the genomic RNA, drives the formation of the viral particle by its auto-assembly (multimerization), binds multiple viral proteins, and interacts with a large number of cellular proteins that are needed for its functions from its translation location to the plasma membrane, where newly formed virions are released. Here, we review the interactions between HIV-1 Gag and 66 cellular proteins. Notably, we describe the techniques used to evidence these interactions, the different domains of Gag involved, and the implications of these interactions in the HIV-1 replication cycle. In the final part, we focus on the interactions involving the highly conserved nucleocapsid (NC) domain of Gag and detail the functions of the NC interactants along the viral lifecycle.
Collapse
|
8
|
Chicken eEF1α is a Critical Factor for the Polymerase Complex Activity of Very Virulent Infectious Bursal Disease Virus. Viruses 2020; 12:v12020249. [PMID: 32102240 PMCID: PMC7077273 DOI: 10.3390/v12020249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/12/2022] Open
Abstract
Infectious bursal disease (IBD) is an immunosuppressive, highly contagious, and lethal disease of young chickens caused by IBD virus (IBDV). It results in huge economic loss to the poultry industry worldwide. Infection caused by very virulent IBDV (vvIBDV) strains results in high mortality in young chicken flocks. However, the replication characteristics of vvIBDV are not well studied. Publications have shown that virus protein 3 (VP3) binds to VP1 and viral double-stranded RNA, and together they form a ribonucleoprotein complex that plays a key role in virus replication. In this study, vvIBDV VP3 was used to identify host proteins potentially involved in modulating vvIBDV replication. Chicken eukaryotic translation elongation factor 1α (cheEF1α) was chosen to further investigate effects on vvIBDV replication. By small interfering RNA-mediated cheEF1α knockdown, we demonstrated the possibility of significantly reducing viral polymerase activity, with a subsequent reduction in virus yields. Conversely, over-expression of cheEF1α significantly increased viral polymerase activity and virus replication. Further study confirmed that cheEF1α interacted only with vvIBDV VP3 but not with attenuated IBDV (aIBDV) VP3. Furthermore, the amino acids at the N- and C-termini were important in the interaction between vvIBDV VP3 and cheEF1α. Domain III was essential for interactions between cheEF1α and vvIBDV VP3. In summary, cheEF1α enhances vvIBDV replication by promoting the activity of virus polymerase. Our study indicates cheEF1α is a potential target for limiting vvIBDV infection.
Collapse
|
9
|
Rawle DJ, Li D, Wu Z, Wang L, Choong M, Lor M, Reid RC, Fairlie DP, Harris J, Tachedjian G, Poulsen SA, Harrich D. Oxazole-Benzenesulfonamide Derivatives Inhibit HIV-1 Reverse Transcriptase Interaction with Cellular eEF1A and Reduce Viral Replication. J Virol 2019; 93:e00239-19. [PMID: 30918071 PMCID: PMC6613760 DOI: 10.1128/jvi.00239-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/20/2019] [Indexed: 12/14/2022] Open
Abstract
HIV-1 replication requires direct interaction between HIV-1 reverse transcriptase (RT) and cellular eukaryotic translation elongation factor 1A (eEF1A). Our previous work showed that disrupting this interaction inhibited HIV-1 uncoating, reverse transcription, and replication, indicating its potential as an anti-HIV-1 target. In this study, we developed a sensitive, live-cell split-luciferase complementation assay (NanoBiT) to quantitatively measure inhibition of HIV-1 RT interaction with eEF1A. We used this to screen a small molecule library and discovered small-molecule oxazole-benzenesulfonamides (C7, C8, and C9), which dose dependently and specifically inhibited the HIV-1 RT interaction with eEF1A. These compounds directly bound to HIV-1 RT in a dose-dependent manner, as assessed by a biolayer interferometry (BLI) assay, but did not bind to eEF1A. These oxazole-benzenesulfonamides did not inhibit enzymatic activity of recombinant HIV-1 RT in a homopolymer assay but did inhibit reverse transcription and infection of both wild-type (WT) and nonnucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV-1 in a dose-dependent manner in HEK293T cells. Infection of HeLa cells was significantly inhibited by the oxazole-benzenesulfonamides, and the antiviral activity was most potent against replication stages before 8 h postinfection. In human primary activated CD4+ T cells, C7 inhibited HIV-1 infectivity and replication up to 6 days postinfection. The data suggest a novel mechanism of HIV-1 inhibition and further elucidate how the RT-eEF1A interaction is important for HIV-1 replication. These compounds provide potential to develop a new class of anti-HIV-1 drugs to treat WT and NNRTI-resistant strains in people infected with HIV.IMPORTANCE Antiretroviral drugs protect many HIV-positive people, but their success can be compromised by drug-resistant strains. To combat these strains, the development of new classes of HIV-1 inhibitors is essential and a priority in the field. In this study, we identified small molecules that bind directly to HIV-1 reverse transcriptase (RT) and inhibit its interaction with cellular eEF1A, an interaction which we have previously identified as crucial for HIV-1 replication. These compounds inhibit intracellular HIV-1 reverse transcription and replication of WT HIV-1, as well as HIV-1 mutants that are resistant to current RT inhibitors. A novel mechanism of action involving inhibition of the HIV-1 RT-eEF1A interaction is an important finding and a potential new way to combat drug-resistant HIV-1 strains in infected people.
Collapse
Affiliation(s)
- Daniel J Rawle
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia
| | - Dongsheng Li
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Zhonglan Wu
- Ningxia Center for Disease Control and Prevention, Ningxia, China
| | - Lu Wang
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, QLD, Australia
| | - Marcus Choong
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
- School of Biomolecular Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Mary Lor
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Robert C Reid
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - David P Fairlie
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD, Australia
| | - Jonathan Harris
- School of Biomolecular Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Gilda Tachedjian
- Disease Elimination Program, Life Sciences Discipline, Burnet Institute, Melbourne, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC, Australia
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| |
Collapse
|
10
|
eEF1A demonstrates paralog specific effects on HIV-1 reverse transcription efficiency. Virology 2019; 530:65-74. [DOI: 10.1016/j.virol.2019.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 11/23/2022]
|
11
|
Snape N, Li D, Wei T, Jin H, Lor M, Rawle DJ, Spann KM, Harrich D. The eukaryotic translation elongation factor 1A regulation of actin stress fibers is important for infectious RSV production. Virol J 2018; 15:182. [PMID: 30477508 PMCID: PMC6260765 DOI: 10.1186/s12985-018-1091-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023] Open
Abstract
Cellular protein eukaryotic translation elongation factor 1A (eEF1A) is an actin binding protein that plays a role in the formation of filamentous actin (F-actin) bundles. F-Actin regulates multiple stages of respiratory syncytial virus (RSV) replication including assembly and budding. Our previous study demonstrated that eEF1A knock-down significantly reduced RSV replication. Here we investigated if the eEF1A function in actin bundle formation was important for RSV replication and release. To investigate this, eEF1A function was impaired in HEp-2 cells by either knock-down of eEF1A with siRNA, or treatment with an eEF1A inhibitor, didemnin B (Did B). Cell staining and confocal microscopy analysis showed that both eEF1A knock-down and treatment with Did B resulted in disruption of cellular stress fiber formation and elevated accumulation of F-actin near the plasma membrane. When treated cells were then infected with RSV, there was also reduced formation of virus-induced cellular filopodia. Did B treatment, similarly to eEF1A knock-down, reduced the release of infectious RSV, but unlike eEF1A knock-down, did not significantly affect RSV genome replication. The lower infectious virus production in Did B treated cells also reduced RSV-induced cell death. In conclusion, the cellular factor eEF1A plays an important role in the regulation of F-actin stress fiber formation required for RSV assembly and release.
Collapse
Affiliation(s)
- Natale Snape
- Faculty of Medicine, The University of Queensland Diamantina Institute, Brisbane, Australia
| | - Dongsheng Li
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Qld, Herston, 4029 Australia
| | - Ting Wei
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Qld, Herston, 4029 Australia
| | - Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Qld, Herston, 4029 Australia
| | - Mary Lor
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Qld, Herston, 4029 Australia
| | - Daniel J. Rawle
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Qld, Herston, 4029 Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Qld, St. Lucia, 4072 Australia
| | - Kirsten M. Spann
- School of Biomedical Science and Institute of Health and Biomedical Innovation at the Centre for Children’s Health Research, Queensland University of Technology, Qld, Brisbane, 4101 Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Qld, Herston, 4029 Australia
| |
Collapse
|
12
|
Rawle DJ, Harrich D. Toward the "unravelling" of HIV: Host cell factors involved in HIV-1 core uncoating. PLoS Pathog 2018; 14:e1007270. [PMID: 30286189 PMCID: PMC6171947 DOI: 10.1371/journal.ppat.1007270] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Daniel J. Rawle
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Australia
- * E-mail:
| |
Collapse
|
13
|
HIV-1 Uncoating and Reverse Transcription Require eEF1A Binding to Surface-Exposed Acidic Residues of the Reverse Transcriptase Thumb Domain. mBio 2018; 9:mBio.00316-18. [PMID: 29588400 PMCID: PMC5874916 DOI: 10.1128/mbio.00316-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Once HIV-1 enters a cell, the viral core is uncoated by a poorly understood mechanism and the HIV-1 genomic RNA is reverse transcribed into DNA. Host cell factors are essential for these processes, although very few reverse transcription complex binding host cell factors have been convincingly shown to affect uncoating or reverse transcription. We previously reported that cellular eukaryotic translation elongation factor 1A (eEF1A) interacts tightly and directly with HIV-1 reverse transcriptase (RT) for more efficient reverse transcription. Here we report that the surface-exposed acidic residues in the HIV-1 RT thumb domain alpha-J helix and flanking regions are important for interaction with eEF1A. Mutation of surface-exposed acidic thumb domain residues D250, E297, E298, and E300 to arginine resulted in various levels of impairment of the interaction between RT and eEF1A. This indicates that this negatively charged region in the RT thumb domain is important for interaction with the positively charged eEF1A protein. The impairment of RT and eEF1A interaction by the RT mutations correlated with the efficiency of reverse transcription, uncoating, and infectivity. The best example of this is the strictly conserved E300 residue, where mutation significantly impaired the interaction of RT with eEF1A and virus replication in CD4+ T cells without affecting in vitro RT catalytic activity, RT heterodimerization, or RNase H activity. This study demonstrated that the interaction between surface-exposed acidic residues of the RT thumb domain and eEF1A is important for HIV-1 uncoating, reverse transcription, and replication. HIV-1, like all viruses, requires host cell proteins for its replication. Understanding the mechanisms behind virus-host interactions can lay the foundation for future novel therapeutic developments. Our lab has identified eEF1A as a key HIV-1 RT binding host protein that is important for the reverse transcription of HIV-1 genomic RNA into DNA. Here we identify the first surface-exposed RT residues that underpin interactions with eEF1A. Mutation of one strictly conserved RT residue (E300R) delayed reverse transcription and viral core uncoating and strongly inhibited HIV-1 replication in CD4+ T cells. This study advances the structural and mechanistic detail of the key RT-eEF1A interaction in HIV-1 infection and indicates its importance in uncoating for the first time. This provides a further basis for the development of an RT-eEF1A interaction-inhibiting anti-HIV-1 drug and suggests that the surface-exposed acidic patch of the RT thumb domain may be an attractive drug target.
Collapse
|
14
|
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
Affiliation(s)
- Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| |
Collapse
|
15
|
HIV Genome-Wide Protein Associations: a Review of 30 Years of Research. Microbiol Mol Biol Rev 2016; 80:679-731. [PMID: 27357278 DOI: 10.1128/mmbr.00065-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
|