1
|
Cracco L, Puoti G, Cornacchia A, Glisic K, Lee SK, Wang Z, Cohen ML, Appleby BS, Cali I. Novel histotypes of sporadic Creutzfeldt-Jakob disease linked to 129MV genotype. Acta Neuropathol Commun 2023; 11:141. [PMID: 37653534 PMCID: PMC10469800 DOI: 10.1186/s40478-023-01631-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
The MV1 and MV2 subtypes of sporadic Creutzfeldt-Jakob disease (sCJD) are linked to the heterozygous methionine (M)/valine (V) polymorphism at codon 129 of the prion protein (PrP) gene. MV2 is phenotypically heterogeneous, whereas MV1, due to its low prevalence, is one of the least well characterized subtypes. In this study, we investigated the biochemical properties of PrPSc and phenotypic expression of cases diagnosed as sCJD MV1 and MV2. We describe four MV2 histotypes: 2C, with cortical (C) coarse pathology; 2K, with kuru (K) plaque deposits; 2C-K, with co-existing C and K histotypic features; and the novel histotype 2C-PL that mimics 2C in the cerebral cortex and cerebellum, but exhibits plaque-like (PL) PrP deposits in subcortical regions (e.g., basal nuclei, thalamus and midbrain). Histotype prevalence is highest for 2C-K (55%), intermediate for 2C (31%), and lowest for 2C-PL and 2K (7%). Nearly every MV2 case expressed both PrPSc types, with T2 being the predominant type ("MV2-1"). MV1 cases typically show a rapid disease course (≤ 4 months), and feature the 1C histotype, phenotypically identical to sCJDMM1. Co-existing PrPSc types, with T1 significantly exceeding T2 ("MV1-2"), are detected in patients diagnosed as MV1 with longer disease courses. We observed four histotypes among MV1-2 cases, including two novel histotypes: 1V, reminiscent of sCJDVV1; 1C-2C, resembling sCJDMM1-2 with predominant MM1 histotypic component; and novel histotypes 1C-2PL and 1C-2K, overall mimicking 1C in the cerebral cortex, but harboring T2 and plaque-like PrP deposits in subcortical regions (1C-2PL), and T2 and kuru plaques in the cerebellum (1C-2K). Lesion profiles of 1C, 1V, and 1C-2C are similar, but differ from 1C-2PL and 1C-2K, as the latter two groups show prominent hippocampal and nigral degeneration. We believe that the novel "C-PL" histotypes are distinct entities rather than intermediate forms between "C" and "C-K" groups, and that 1C-2PL and 1C-2K histotypes may be characterized by different T1 variants of the same size.
Collapse
Affiliation(s)
- Laura Cracco
- Department of Pathology and Laboratory Medicine, School of Medicine, Indiana University, Indianapolis, IN, 46202, USA
| | - Gianfranco Puoti
- Division of Neurology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Antonio Cornacchia
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Katie Glisic
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, 44106, USA
| | - Seong-Ki Lee
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Zerui Wang
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Mark L Cohen
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, 44106, USA
| | - Brian S Appleby
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, 44106, USA
- Department of Neurology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
- Department of Psychiatry, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Ignazio Cali
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA.
- National Prion Disease Pathology Surveillance Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
2
|
Nemani SK, Xiao X, Cali I, Cracco L, Puoti G, Nigro M, Lavrich J, Bharara Singh A, Appleby BS, Sim VL, Notari S, Surewicz WK, Gambetti P. A novel mechanism of phenotypic heterogeneity in Creutzfeldt-Jakob disease. Acta Neuropathol Commun 2020; 8:85. [PMID: 32560672 PMCID: PMC7304206 DOI: 10.1186/s40478-020-00966-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/10/2022] Open
Abstract
One of remarkable features of sporadic Creutzfeldt-Jakob disease (sCJD) is the great phenotypic variability. Understanding the molecular basis of this variability has important implications for the development of therapeutic approaches. It is well established that, in many cases, phenotypic heterogeneity of sCJD is under control of two determinants: the genotype at the methionine (M)/valine (V) polymorphic codon 129 of the human prion protein gene and the type, 1 or 2, of the pathogenic and disease-related form of the prion protein, PrPD. However, this scenario fails to explain the existence of distinct heterozygous sCJDMV2 subtypes, where heterogeneity occurs without any variation of the 129 allotype and PrPD type. One of these subtypes, denoted sCJDMV2C, associated with PrPD type 2, is characterized by widespread spongiform degeneration of the cerebral cortex (C). The second variant, denoted sCJDMV2K, features prominent deposition of PrPD amyloid forming kuru type (K) plaques. Here we used a mass spectrometry based approach to test the hypothesis that phenotypic variability within the sCJDMV2 subtype is at least partly determined by the abundance of 129 M and 129 V polymorphic forms of proteinase K-resistant PrPD (resPrPD). Consistent with this hypothesis, our data demonstrated a strong correlation of the MV2C and MV2K phenotypes with the relative populations of protease-resistant forms of the pathogenic prion proteins, resPrPD-129 M and resPrPD-129 V, where resPrPD-129 M dominated in the sCJDMV2C variant and resPrPD-129 V in the sCJDMV2K variant. This finding suggests an important, previously unrecognized mechanism for phenotypic determination in human prion diseases.
Collapse
Affiliation(s)
- Satish K. Nemani
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106 USA
| | - Xiangzhu Xiao
- grid.67105.350000 0001 2164 3847Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106 USA
| | - Ignazio Cali
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106 USA ,grid.67105.350000 0001 2164 3847National Prion Disease Pathology Surveillance Center, Case Western Reserve University, School of Medicine, Cleveland, OH 44106 USA
| | - Laura Cracco
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106 USA
| | - Gianfranco Puoti
- Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, 81100 Caserta, Italy
| | - Massimiliano Nigro
- Department of Mental Health and Emergency Psychiatry, P. O. “Maresca”, Asl Napoli 3 Sud, 80059 Torre del Greco, Italy
| | - Jody Lavrich
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106 USA
| | - Anuradha Bharara Singh
- grid.21925.3d0000 0004 1936 9000Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Brian S. Appleby
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106 USA ,grid.67105.350000 0001 2164 3847National Prion Disease Pathology Surveillance Center, Case Western Reserve University, School of Medicine, Cleveland, OH 44106 USA ,grid.67105.350000 0001 2164 3847Department of Neurology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106 USA ,grid.67105.350000 0001 2164 3847Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106 USA
| | - Valerie L. Sim
- grid.17089.37Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, T6G2M8 Canada
| | - Silvio Notari
- grid.67105.350000 0001 2164 3847Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106 USA
| | - Witold K. Surewicz
- grid.67105.350000 0001 2164 3847Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, OH 44106 USA
| | - Pierluigi Gambetti
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Ward A, Hollister JR, McNally K, Ritchie DL, Zanusso G, Priola SA. Transmission characteristics of heterozygous cases of Creutzfeldt-Jakob disease with variable abnormal prion protein allotypes. Acta Neuropathol Commun 2020; 8:83. [PMID: 32517816 PMCID: PMC7285538 DOI: 10.1186/s40478-020-00958-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/31/2022] Open
Abstract
In the human prion disease Creutzfeldt-Jakob disease (CJD), different CJD neuropathological subtypes are defined by the presence in normal prion protein (PrPC) of a methionine or valine at residue 129, by the molecular mass of the infectious prion protein PrPSc, by the pattern of PrPSc deposition, and by the distribution of spongiform change in the brain. Heterozygous cases of CJD potentially add another layer of complexity to defining CJD subtypes since PrPSc can have either a methionine (PrPSc-M129) or valine (PrPSc-V129) at residue 129. We have recently demonstrated that the relative amount of PrPSc-M129 versus PrPSc-V129, i.e. the PrPSc allotype ratio, varies between heterozygous CJD cases. In order to determine if differences in PrPSc allotype correlated with different disease phenotypes, we have inoculated 10 cases of heterozygous CJD (7 sporadic and 3 iatrogenic) into two transgenic mouse lines overexpressing PrPC with a methionine at codon 129. In one case, brain-region specific differences in PrPSc allotype appeared to correlate with differences in prion disease transmission and phenotype. In the other 9 cases inoculated, the presence of PrPSc-V129 was associated with plaque formation but differences in PrPSc allotype did not consistently correlate with disease incubation time or neuropathology. Thus, while the PrPSc allotype ratio may contribute to diverse prion phenotypes within a single brain, it does not appear to be a primary determinative factor of disease phenotype.
Collapse
|
4
|
Stevenson M, Uttley L, Oakley JE, Carroll C, Chick SE, Wong R. Interventions to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease: a cost-effective modelling review. Health Technol Assess 2020; 24:1-150. [PMID: 32122460 PMCID: PMC7103914 DOI: 10.3310/hta24110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Creutzfeldt-Jakob disease is a fatal neurological disease caused by abnormal infectious proteins called prions. Prions that are present on surgical instruments cannot be completely deactivated; therefore, patients who are subsequently operated on using these instruments may become infected. This can result in surgically transmitted Creutzfeldt-Jakob disease. OBJECTIVE To update literature reviews, consultation with experts and economic modelling published in 2006, and to provide the cost-effectiveness of strategies to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease. METHODS Eight systematic reviews were undertaken for clinical parameters. One review of cost-effectiveness was undertaken. Electronic databases including MEDLINE and EMBASE were searched from 2005 to 2017. Expert elicitation sessions were undertaken. An advisory committee, convened by the National Institute for Health and Care Excellence to produce guidance, provided an additional source of information. A mathematical model was updated focusing on brain and posterior eye surgery and neuroendoscopy. The model simulated both patients and instrument sets. Assuming that there were potentially 15 cases of surgically transmitted Creutzfeldt-Jakob disease between 2005 and 2018, approximate Bayesian computation was used to obtain samples from the posterior distribution of the model parameters to generate results. Heuristics were used to improve computational efficiency. The modelling conformed to the National Institute for Health and Care Excellence reference case. The strategies evaluated included neither keeping instruments moist nor prohibiting set migration; ensuring that instruments were kept moist; prohibiting instrument migration between sets; and employing single-use instruments. Threshold analyses were undertaken to establish prices at which single-use sets or completely effective decontamination solutions would be cost-effective. RESULTS A total of 169 papers were identified for the clinical review. The evidence from published literature was not deemed sufficiently strong to take precedence over the distributions obtained from expert elicitation. Forty-eight papers were identified in the review of cost-effectiveness. The previous modelling structure was revised to add the possibility of misclassifying surgically transmitted Creutzfeldt-Jakob disease as another neurodegenerative disease, and assuming that all patients were susceptible to infection. Keeping instruments moist was estimated to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease cases and associated costs. Based on probabilistic sensitivity analyses, keeping instruments moist was estimated to on average result in 2.36 (range 0-47) surgically transmitted Creutzfeldt-Jakob disease cases (across England) caused by infection occurring between 2019 and 2023. Prohibiting set migration or employing single-use instruments reduced the estimated risk of surgically transmitted Creutzfeldt-Jakob disease cases further, but at considerable cost. The estimated costs per quality-adjusted life-year gained of these strategies in addition to keeping instruments moist were in excess of £1M. It was estimated that single-use instrument sets (currently £350-500) or completely effective cleaning solutions would need to cost approximately £12 per patient to be cost-effective using a £30,000 per quality-adjusted life-year gained value. LIMITATIONS As no direct published evidence to implicate surgery as a cause of Creutzfeldt-Jakob disease has been found since 2005, the estimations of potential cases from elicitation are still speculative. A particular source of uncertainty was in the number of potential surgically transmitted Creutzfeldt-Jakob disease cases that may have occurred between 2005 and 2018. CONCLUSIONS Keeping instruments moist is estimated to reduce the risk of surgically transmitted Creutzfeldt-Jakob disease cases and associated costs. Further surgical management strategies can reduce the risks of surgically transmitted Creutzfeldt-Jakob disease but have considerable associated costs. STUDY REGISTRATION This study is registered as PROSPERO CRD42017071807. FUNDING This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 24, No. 11. See the NIHR Journals Library website for further project information.
Collapse
Affiliation(s)
- Matt Stevenson
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Lesley Uttley
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Jeremy E Oakley
- School of Mathematics and Statistics, University of Sheffield, Sheffield, UK
| | - Christopher Carroll
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | | | - Ruth Wong
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Prion propagation estimated from brain diffusion MRI is subtype dependent in sporadic Creutzfeldt-Jakob disease. Acta Neuropathol 2020; 140:169-181. [PMID: 32535770 PMCID: PMC7360647 DOI: 10.1007/s00401-020-02168-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/18/2022]
Abstract
Sporadic Creutzfeldt-Jakob disease (sCJD) is a transmissible brain proteinopathy. Five main clinicopathological subtypes (sCJD-MM(V)1, -MM(V)2C, -MV2K, -VV1, and -VV2) are currently distinguished. Histopathological evidence suggests that the localisation of prion aggregates and spongiform lesions varies among subtypes. Establishing whether there is an initial site with detectable imaging abnormalities (epicentre) and an order of lesion propagation would be informative for disease early diagnosis, patient staging, management and recruitment in clinical trials. Diffusion magnetic resonance imaging (MRI) is the most-used and most-sensitive test to detect spongiform degeneration. This study was designed to identify, in vivo and for the first time, subtype-dependent epicentre and lesion propagation in the brain using diffusion-weighted images (DWI), in the largest known cross-sectional dataset of autopsy-proven subjects with sCJD. We estimate lesion propagation by cross-sectional DWI using event-based modelling, a well-established data-driven technique. DWI abnormalities of 594 autopsy-diagnosed subjects (448 patients with sCJD) were scored in 12 brain regions by 1 neuroradiologist blind to the diagnosis. We used the event-based model to reconstruct sequential orderings of lesion propagation in each of five pure subtypes. Follow-up data from 151 patients validated the estimated sequences. Results showed that epicentre and ordering of lesion propagation are subtype specific. The two most common subtypes (-MM1 and -VV2) showed opposite ordering of DWI abnormality appearance: from the neocortex to subcortical regions, and vice versa, respectively. The precuneus was the most likely epicentre also in -MM2 and -VV1 although at variance with -MM1, abnormal signal was also detected early in cingulate and insular cortices. The caudal-rostral sequence of lesion propagation that characterises -VV2 was replicated in -MV2K. Combined, these data-driven models provide unprecedented dynamic insights into subtype-specific epicentre at onset and propagation of the pathologic process, which may also enhance early diagnosis and enable disease staging in sCJD.
Collapse
|
6
|
Silva CJ, Erickson-Beltran ML, Duque Velásquez C, Aiken JM, McKenzie D. A General Mass Spectrometry-Based Method of Quantitating Prion Polymorphisms from Heterozygous Chronic Wasting Disease-Infected Cervids. Anal Chem 2019; 92:1276-1284. [PMID: 31815434 DOI: 10.1021/acs.analchem.9b04449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chronic wasting disease (CWD) is the only prion disease naturally transmitted among farmed and free-ranging cervids (deer, elk, moose, etc.). These diseases are always fatal and have long asymptomatic incubation periods. By 2019, CWD-infected cervids had been detected in 26 states, three Canadian provinces, South Korea, Norway, Finland, and Sweden. Prions (PrPSc) replicate by inducing a normal cellular prion protein (PrPC) to adopt the prion conformation. This prion templated conformational conversion is influenced by PrPC polymorphisms. Cervid PrPC contains at least 20 different polymorphic sites. By using chymotrypsin, trypsin, or trypsin followed by chymotrypsin to digest denatured cervid PrP, 19 peptides suitable for multiple reaction monitoring (MRM)-based analysis and spanning positions 30-51, 61-112, and 114-231 of cervid PrP were identified. Ten of these peptides span polymorphism-containing regions of cervid PrP. The other nine contain no polymorphisms, so they can be used as internal standards. Calibration curves relating the area ratios of MRM signals from polymorphism-containing peptides to appropriate internal standard peptides were linear and had excellent correlation coefficients. Samples from heterozygous (G96/S96) white-tailed deer orally dosed with CWD from homozygous (G96/G96) deer were analyzed. The G96 polymorphism comprised 75 ± 5% of the total PrP from the G96/S96 heterozygotes. Heterozygous animals facilitate conversion of different PrPC polymorphisms into PrPSc. This approach can be used to quantitate the relative amounts of the polymorphisms present in other animal species and even humans.
Collapse
Affiliation(s)
- Christopher J Silva
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture , Agricultural Research Service , 800 Buchanan Street , Albany , California 94710 , United States of America
| | - Melissa L Erickson-Beltran
- Produce Safety and Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture , Agricultural Research Service , 800 Buchanan Street , Albany , California 94710 , United States of America
| | - Camilo Duque Velásquez
- University of Alberta , Centre for Prions and Protein Folding Diseases , 114 Brain and Aging Research Building , Edmonton , Alberta T6G 2M8 , Canada
| | - Judd M Aiken
- University of Alberta , Centre for Prions and Protein Folding Diseases , 114 Brain and Aging Research Building , Edmonton , Alberta T6G 2M8 , Canada
| | - Debbie McKenzie
- University of Alberta , Centre for Prions and Protein Folding Diseases , 114 Brain and Aging Research Building , Edmonton , Alberta T6G 2M8 , Canada
| |
Collapse
|
7
|
Minikel EV, Kuhn E, Cocco AR, Vallabh SM, Hartigan CR, Reidenbach AG, Safar JG, Raymond GJ, McCarthy MD, O'Keefe R, Llorens F, Zerr I, Capellari S, Parchi P, Schreiber SL, Carr SA. Domain-specific Quantification of Prion Protein in Cerebrospinal Fluid by Targeted Mass Spectrometry. Mol Cell Proteomics 2019; 18:2388-2400. [PMID: 31558565 PMCID: PMC6885701 DOI: 10.1074/mcp.ra119.001702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/16/2019] [Indexed: 01/11/2023] Open
Abstract
Therapies currently in preclinical development for prion disease seek to lower prion protein (PrP) expression in the brain. Trials of such therapies are likely to rely on quantification of PrP in cerebrospinal fluid (CSF) as a pharmacodynamic biomarker and possibly as a trial endpoint. Studies using PrP ELISA kits have shown that CSF PrP is lowered in the symptomatic phase of disease, a potential confounder for reading out the effect of PrP-lowering drugs in symptomatic patients. Because misfolding or proteolytic cleavage could potentially render PrP invisible to ELISA even if its concentration were constant or increasing in disease, we sought to establish an orthogonal method for CSF PrP quantification. We developed a multi-species targeted mass spectrometry method based on multiple reaction monitoring (MRM) of nine PrP tryptic peptides quantified relative to an isotopically labeled recombinant protein standard for human samples, or isotopically labeled synthetic peptides for nonhuman species. Analytical validation experiments showed process replicate coefficients of variation below 15%, good dilution linearity and recovery, and suitable performance for both CSF and brain homogenate and across humans as well as preclinical species of interest. In n = 55 CSF samples from individuals referred to prion surveillance centers with rapidly progressive dementia, all six human PrP peptides, spanning the N- and C-terminal domains of PrP, were uniformly reduced in prion disease cases compared with individuals with nonprion diagnoses. Thus, lowered CSF PrP concentration in prion disease is a genuine result of the disease process and not an artifact of ELISA-based measurement. As a result, dose-finding studies for PrP lowering drugs may need to be conducted in presymptomatic at-risk individuals rather than in symptomatic patients. We provide a targeted mass spectrometry-based method suitable for preclinical quantification of CSF PrP as a tool for drug development.
Collapse
Affiliation(s)
- Eric Vallabh Minikel
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115; Prion Alliance, Cambridge, MA 02139; Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142.
| | - Eric Kuhn
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115
| | - Alexandra R Cocco
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Sonia M Vallabh
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142; Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115; Prion Alliance, Cambridge, MA 02139
| | | | - Andrew G Reidenbach
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Jiri G Safar
- Departments of Pathology and Neurology Case Western Reserve University, Cleveland, OH 44106
| | - Gregory J Raymond
- Laboratory of Persistent Viral Diseases, NIAID Rocky Mountain Labs, Hamilton, MT 59840
| | - Michael D McCarthy
- Environmental Health and Safety, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Rhonda O'Keefe
- Environmental Health and Safety, Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Franc Llorens
- National Reference Center for TSE, Georg-August University, Göttingen, 37073, Germany; Biomedical Research Networking Center on Neurodegenerative Diseases (CIBERNED), L'Hospitalet de Llobregat, 08908, Barcelona, Spain
| | - Inga Zerr
- National Reference Center for TSE, Georg-August University, Göttingen, 37073, Germany
| | - Sabina Capellari
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, 40123, Italy
| | - Piero Parchi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, 40139, Italy; Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, 40138, Italy
| | - Stuart L Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142; Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Steven A Carr
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA 02142.
| |
Collapse
|
8
|
Otero A, Duque Velásquez C, Johnson C, Herbst A, Bolea R, Badiola JJ, Aiken J, McKenzie D. Prion protein polymorphisms associated with reduced CWD susceptibility limit peripheral PrP CWD deposition in orally infected white-tailed deer. BMC Vet Res 2019; 15:50. [PMID: 30717795 PMCID: PMC6360794 DOI: 10.1186/s12917-019-1794-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/22/2019] [Indexed: 01/01/2023] Open
Abstract
Background Chronic wasting disease (CWD) is a prion disease affecting members of the Cervidae family. PrPC primary structures play a key role in CWD susceptibility resulting in extended incubation periods and regulating the propagation of CWD strains. We analyzed the distribution of abnormal prion protein (PrPCWD) aggregates in brain and peripheral organs from orally inoculated white-tailed deer expressing four different PRNP genotypes: Q95G96/Q95G96 (wt/wt), S96/wt, H95/wt and H95/S96 to determine if there are substantial differences in the deposition pattern of PrPCWD between different PRNP genotypes. Results Although we detected differences in certain brain areas, globally, the different genotypes showed similar PrPCWD deposition patterns in the brain. However, we found that clinically affected deer expressing H95 PrPC, despite having the longest survival periods, presented less PrPCWD immunoreactivity in particular peripheral organs. In addition, no PrPCWD was detected in skeletal muscle of any of the deer. Conclusions Our data suggest that expression of H95-PrPC limits peripheral accumulation of PrPCWD as detected by immunohistochemistry. Conversely, infected S96/wt and wt/wt deer presented with similar PrPCWD peripheral distribution at terminal stage of disease, suggesting that the S96-PrPC allele, although delaying CWD progression, does not completely limit the peripheral accumulation of the infectious agent.
Collapse
Affiliation(s)
- Alicia Otero
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS, Universidad de Zaragoza, Zaragoza, Spain
| | - Camilo Duque Velásquez
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Chad Johnson
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, USA
| | - Allen Herbst
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS, Universidad de Zaragoza, Zaragoza, Spain
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, IA2, IIS, Universidad de Zaragoza, Zaragoza, Spain
| | - Judd Aiken
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada. .,Centre for Prions and Protein Folding Diseases, Edmonton, Alberta, Canada.
| |
Collapse
|
9
|
UK Iatrogenic Creutzfeldt-Jakob disease: investigating human prion transmission across genotypic barriers using human tissue-based and molecular approaches. Acta Neuropathol 2017; 133:579-595. [PMID: 27812793 PMCID: PMC5348565 DOI: 10.1007/s00401-016-1638-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 10/20/2016] [Accepted: 10/25/2016] [Indexed: 12/29/2022]
Abstract
Creutzfeldt–Jakob disease (CJD) is the prototypic human prion disease that occurs most commonly in sporadic and genetic forms, but it is also transmissible and can be acquired through medical procedures, resulting in iatrogenic CJD (iCJD). The largest numbers of iCJD cases that have occurred worldwide have resulted from contaminated cadaveric pituitary-derived human growth hormone (hGH) and its use to treat primary and secondary growth hormone deficiency. We report a comprehensive, tissue-based and molecular genetic analysis of the largest series of UK hGH-iCJD cases reported to date, including in vitro kinetic molecular modelling of genotypic factors influencing prion transmission. The results show the interplay of prion strain and host genotype in governing the molecular, pathological and temporal characteristics of the UK hGH-iCJD epidemic and provide insights into the adaptive mechanisms involved when prions cross genotypic barriers. We conclude that all of the available evidence is consistent with the hypothesis that the UK hGH-iCJD epidemic resulted from transmission of the V2 human prion strain, which is associated with the second most common form of sporadic CJD.
Collapse
|
10
|
Silva CJ, Erickson-Beltran ML, Hui C, Badiola JJ, Nicholson EM, Requena JR, Bolea R. Quantitating PrP Polymorphisms Present in Prions from Heterozygous Scrapie-Infected Sheep. Anal Chem 2016; 89:854-861. [PMID: 27936597 DOI: 10.1021/acs.analchem.6b03822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Scrapie is a prion (PrPSc) disease of sheep. The incubation period of sheep scrapie is strongly influenced by polymorphisms at positions 136, 154, and 171 of a sheep's normal cellular prion protein (PrPC). Chymotrypsin was used to digest sheep recombinant PrP to identify a set of characteristic peptides [M132LGSXMSRPL141 (X = A or V), Y153XENMY158 (X,= H or R), and Y166RPVDXY172 (X = H, K, Q, or R)] that could be used to detect and quantitate polymorphisms at positions 136, 154, and 171 of sheep PrPC or PrPSc. These peptides were used to develop a multiple reaction monitoring method (MRM) to detect the amounts of a particular polymorphism in a sample of PrPSc isolated from sheep heterozygous for their PrPC proteins. The limit of detection for these peptides was less than 50 attomole. Spinal cord tissue from heterozygous (ARQ/VRQ or ARH/ARQ) scrapie-infected Rasa Aragonesa sheep was analyzed using this MRM method. Both sets of heterozygotes show the presence of both polymorphisms in PrPSc. This was true for samples containing both proteinase K (PK)-sensitive and PK-resistant PrPSc and samples containing only the PK-resistant PrPSc. These results show that heterozygous animals contain PrPSc that is composed of significant amounts of both PrP polymorphisms.
Collapse
Affiliation(s)
- Christopher J Silva
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service , Albany, California 94710, United States
| | - Melissa L Erickson-Beltran
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service , Albany, California 94710, United States
| | - Colleen Hui
- Produce Safety & Microbiology Research Unit, Western Regional Research Center, United States Department of Agriculture, Agricultural Research Service , Albany, California 94710, United States
| | - Juan José Badiola
- Veterinary Faculty, Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes (CIEETE), Universidad de Zaragoza , 50013, Zaragoza Spain
| | - Eric M Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service , Ames, Iowa 50010, United States
| | - Jesús R Requena
- CIMUS Biomedical Research Institute, University of Santiago de Compostela-IDIS , Santiago de Compostela, 15782 Spain
| | - Rosa Bolea
- Veterinary Faculty, Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes (CIEETE), Universidad de Zaragoza , 50013, Zaragoza Spain
| |
Collapse
|
11
|
Moore RA, Choi YP, Head MW, Ironside JW, Faris R, Ritchie DL, Zanusso G, Priola SA. Relative Abundance of apoE and Aβ1–42 Associated with Abnormal Prion Protein Differs between Creutzfeldt-Jakob Disease Subtypes. J Proteome Res 2016; 15:4518-4531. [DOI: 10.1021/acs.jproteome.6b00633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Roger A. Moore
- Rocky Mountain Laboratories, National Institute of Allergy & Infectious Disease, National Institutes of Health, Hamilton, Montana 59840, United States
| | - Young Pyo Choi
- Laboratory
Animal Center, Research Division, Korea Brain Research Institute, Daegu 41068, Republic of Korea
| | - Mark W. Head
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - James W. Ironside
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - Robert Faris
- Rocky Mountain Laboratories, National Institute of Allergy & Infectious Disease, National Institutes of Health, Hamilton, Montana 59840, United States
| | - Diane L. Ritchie
- National CJD Research & Surveillance Unit, Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh EH8 9YL, U.K
| | - Gianluigi Zanusso
- Department
of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona 37129, Italy
| | - Suzette A. Priola
- Rocky Mountain Laboratories, National Institute of Allergy & Infectious Disease, National Institutes of Health, Hamilton, Montana 59840, United States
| |
Collapse
|
12
|
Moore RA, Head MW, Ironside JW, Ritchie DL, Zanusso G, Choi YP, Priola SA. Correction: The Distribution of Prion Protein Allotypes Differs Between Sporadic and Iatrogenic Creutzfeldt-Jakob Disease Patients. PLoS Pathog 2016; 12:e1005496. [PMID: 26954665 PMCID: PMC4783049 DOI: 10.1371/journal.ppat.1005496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
|