1
|
Okombo J, Fidock DA. Towards next-generation treatment options to combat Plasmodium falciparum malaria. Nat Rev Microbiol 2025; 23:178-191. [PMID: 39367132 PMCID: PMC11832322 DOI: 10.1038/s41579-024-01099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
Malaria, which is caused by infection of red blood cells with Plasmodium parasites, can be fatal in non-immune individuals if left untreated. The recent approval of the pre-erythrocytic vaccines RTS, S/AS01 and R21/Matrix-M has ushered in hope of substantial reductions in mortality rates, especially when combined with other existing interventions. However, the efficacy of these vaccines is partial, and chemotherapy remains central to malaria treatment and control. For many antimalarial drugs, clinical efficacy has been compromised by the emergence of drug-resistant Plasmodium falciparum strains. Therefore, there is an urgent need for new antimalarial medicines to complement the existing first-line artemisinin-based combination therapies. In this Review, we discuss various opportunities to expand the present malaria treatment space, appraise the current antimalarial drug development pipeline and highlight examples of promising targets. We also discuss other approaches to circumvent antimalarial resistance and how potency against drug-resistant parasites could be retained.
Collapse
Affiliation(s)
- John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA.
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Mok S, Yeo T, Hong D, Shears MJ, Ross LS, Ward KE, Dhingra SK, Kanai M, Bridgford JL, Tripathi AK, Mlambo G, Burkhard AY, Ansbro MR, Fairhurst KJ, Gil-Iturbe E, Park H, Rozenberg FD, Kim J, Mancia F, Fairhurst RM, Quick M, Uhlemann AC, Sinnis P, Fidock DA. Mapping the genomic landscape of multidrug resistance in Plasmodium falciparum and its impact on parasite fitness. SCIENCE ADVANCES 2023; 9:eadi2364. [PMID: 37939186 PMCID: PMC10631731 DOI: 10.1126/sciadv.adi2364] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
Drug-resistant Plasmodium falciparum parasites have swept across Southeast Asia and now threaten Africa. By implementing a P. falciparum genetic cross using humanized mice, we report the identification of key determinants of resistance to artemisinin (ART) and piperaquine (PPQ) in the dominant Asian KEL1/PLA1 lineage. We mapped k13 as the central mediator of ART resistance in vitro and identified secondary markers. Applying bulk segregant analysis, quantitative trait loci mapping using 34 recombinant haplotypes, and gene editing, our data reveal an epistatic interaction between mutant PfCRT and multicopy plasmepsins 2/3 in mediating high-grade PPQ resistance. Susceptibility and parasite fitness assays implicate PPQ as a driver of selection for KEL1/PLA1 parasites. Mutant PfCRT enhanced susceptibility to lumefantrine, the first-line partner drug in Africa, highlighting a potential benefit of opposing selective pressures with this drug and PPQ. We also identified that the ABCI3 transporter can operate in concert with PfCRT and plasmepsins 2/3 in mediating multigenic resistance to antimalarial agents.
Collapse
Affiliation(s)
- Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Davin Hong
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Melanie J. Shears
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Leila S. Ross
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Kurt E. Ward
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Satish K. Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Mariko Kanai
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Jessica L. Bridgford
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Abhai K. Tripathi
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Godfree Mlambo
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Anna Y. Burkhard
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Megan R. Ansbro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Kate J. Fairhurst
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Heekuk Park
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Felix D. Rozenberg
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Matthias Quick
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Columbia University Irving Medical Center, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
3
|
Mandt REK, Luth MR, Tye MA, Mazitschek R, Ottilie S, Winzeler EA, Lafuente-Monasterio MJ, Gamo FJ, Wirth DF, Lukens AK. Diverse evolutionary pathways challenge the use of collateral sensitivity as a strategy to suppress resistance. eLife 2023; 12:e85023. [PMID: 37737220 PMCID: PMC10695565 DOI: 10.7554/elife.85023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/21/2023] [Indexed: 09/23/2023] Open
Abstract
Drug resistance remains a major obstacle to malaria control and eradication efforts, necessitating the development of novel therapeutic strategies to treat this disease. Drug combinations based on collateral sensitivity, wherein resistance to one drug causes increased sensitivity to the partner drug, have been proposed as an evolutionary strategy to suppress the emergence of resistance in pathogen populations. In this study, we explore collateral sensitivity between compounds targeting the Plasmodium dihydroorotate dehydrogenase (DHODH). We profiled the cross-resistance and collateral sensitivity phenotypes of several DHODH mutant lines to a diverse panel of DHODH inhibitors. We focus on one compound, TCMDC-125334, which was active against all mutant lines tested, including the DHODH C276Y line, which arose in selections with the clinical candidate DSM265. In six selections with TCMDC-125334, the most common mechanism of resistance to this compound was copy number variation of the dhodh locus, although we did identify one mutation, DHODH I263S, which conferred resistance to TCMDC-125334 but not DSM265. We found that selection of the DHODH C276Y mutant with TCMDC-125334 yielded additional genetic changes in the dhodh locus. These double mutant parasites exhibited decreased sensitivity to TCMDC-125334 and were highly resistant to DSM265. Finally, we tested whether collateral sensitivity could be exploited to suppress the emergence of resistance in the context of combination treatment by exposing wildtype parasites to both DSM265 and TCMDC-125334 simultaneously. This selected for parasites with a DHODH V532A mutation which were cross-resistant to both compounds and were as fit as the wildtype parent in vitro. The emergence of these cross-resistant, evolutionarily fit parasites highlights the mutational flexibility of the DHODH enzyme.
Collapse
Affiliation(s)
- Rebecca EK Mandt
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Madeline R Luth
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California, San DiegoSan DiegoUnited States
| | - Mark A Tye
- Center for Systems Biology, Massachusetts General HospitalBostonUnited States
- Harvard Graduate School of Arts and SciencesCambridgeUnited States
| | - Ralph Mazitschek
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
- Center for Systems Biology, Massachusetts General HospitalBostonUnited States
| | - Sabine Ottilie
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California, San DiegoSan DiegoUnited States
| | - Elizabeth A Winzeler
- Division of Host Pathogen Systems and Therapeutics, Department of Pediatrics, University of California, San DiegoSan DiegoUnited States
- Skaggs School of Pharmaceutical Sciences, University of California, San DiegoLa JollaUnited States
| | | | - Francisco Javier Gamo
- Tres Cantos Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKlineMadridSpain
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
- Infectious Disease and Microbiome Program, The Broad InstituteCambridgeUnited States
| | - Amanda K Lukens
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public HealthBostonUnited States
- Infectious Disease and Microbiome Program, The Broad InstituteCambridgeUnited States
| |
Collapse
|
4
|
Okombo J, Mok S, Qahash T, Yeo T, Bath J, Orchard LM, Owens E, Koo I, Albert I, Llinás M, Fidock DA. Piperaquine-resistant PfCRT mutations differentially impact drug transport, hemoglobin catabolism and parasite physiology in Plasmodium falciparum asexual blood stages. PLoS Pathog 2022; 18:e1010926. [PMID: 36306287 PMCID: PMC9645663 DOI: 10.1371/journal.ppat.1010926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/09/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
The emergence of Plasmodium falciparum parasite resistance to dihydroartemisinin + piperaquine (PPQ) in Southeast Asia threatens plans to increase the global use of this first-line antimalarial combination. High-level PPQ resistance appears to be mediated primarily by novel mutations in the P. falciparum chloroquine resistance transporter (PfCRT), which enhance parasite survival at high PPQ concentrations in vitro and increase the risk of dihydroartemisinin + PPQ treatment failure in patients. Using isogenic Dd2 parasites expressing contemporary pfcrt alleles with differential in vitro PPQ susceptibilities, we herein characterize the molecular and physiological adaptations that define PPQ resistance in vitro. Using drug uptake and cellular heme fractionation assays we report that the F145I, M343L, and G353V PfCRT mutations differentially impact PPQ and chloroquine efflux. These mutations also modulate proteolytic degradation of host hemoglobin and the chemical inactivation of reactive heme species. Peptidomic analyses reveal significantly higher accumulation of putative hemoglobin-derived peptides in the PPQ-resistant mutant PfCRT isoforms compared to parental PPQ-sensitive Dd2. Joint transcriptomic and metabolomic profiling of late trophozoites from PPQ-resistant or -sensitive isogenic lines reveals differential expression of genes involved in protein translation and cellular metabolism. PPQ-resistant parasites also show increased susceptibility to an inhibitor of the P. falciparum M17 aminopeptidase that operates on short globin-derived peptides. These results reveal unique physiological changes caused by the gain of PPQ resistance and highlight the potential therapeutic value of targeting peptide metabolism in P. falciparum.
Collapse
Affiliation(s)
- John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Tarrick Qahash
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Jade Bath
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
| | - Lindsey M. Orchard
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Edward Owens
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Imhoi Koo
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Istvan Albert
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Huck Center for Malaria Research, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York, United States of America
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York, United States of America
| |
Collapse
|
5
|
Mechanistic basis for multidrug resistance and collateral drug sensitivity conferred to the malaria parasite by polymorphisms in PfMDR1 and PfCRT. PLoS Biol 2022; 20:e3001616. [PMID: 35507548 PMCID: PMC9067703 DOI: 10.1371/journal.pbio.3001616] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/31/2022] [Indexed: 01/16/2023] Open
Abstract
Polymorphisms in the Plasmodium falciparum multidrug resistance protein 1 (pfmdr1) gene and the Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene alter the malaria parasite’s susceptibility to most of the current antimalarial drugs. However, the precise mechanisms by which PfMDR1 contributes to multidrug resistance have not yet been fully elucidated, nor is it understood why polymorphisms in pfmdr1 and pfcrt that cause chloroquine resistance simultaneously increase the parasite’s susceptibility to lumefantrine and mefloquine—a phenomenon known as collateral drug sensitivity. Here, we present a robust expression system for PfMDR1 in Xenopus oocytes that enables direct and high-resolution biochemical characterizations of the protein. We show that wild-type PfMDR1 transports diverse pharmacons, including lumefantrine, mefloquine, dihydroartemisinin, piperaquine, amodiaquine, methylene blue, and chloroquine (but not the antiviral drug amantadine). Field-derived mutant isoforms of PfMDR1 differ from the wild-type protein, and each other, in their capacities to transport these drugs, indicating that PfMDR1-induced changes in the distribution of drugs between the parasite’s digestive vacuole (DV) and the cytosol are a key driver of both antimalarial resistance and the variability between multidrug resistance phenotypes. Of note, the PfMDR1 isoforms prevalent in chloroquine-resistant isolates exhibit reduced capacities for chloroquine, lumefantrine, and mefloquine transport. We observe the opposite relationship between chloroquine resistance-conferring mutations in PfCRT and drug transport activity. Using our established assays for characterizing PfCRT in the Xenopus oocyte system and in live parasite assays, we demonstrate that these PfCRT isoforms transport all 3 drugs, whereas wild-type PfCRT does not. We present a mechanistic model for collateral drug sensitivity in which mutant isoforms of PfMDR1 and PfCRT cause chloroquine, lumefantrine, and mefloquine to remain in the cytosol instead of sequestering within the DV. This change in drug distribution increases the access of lumefantrine and mefloquine to their primary targets (thought to be located outside of the DV), while simultaneously decreasing chloroquine’s access to its target within the DV. The mechanistic insights presented here provide a basis for developing approaches that extend the useful life span of antimalarials by exploiting the opposing selection forces they exert upon PfCRT and PfMDR1.
Collapse
|
6
|
Wichers JS, Mesén-Ramírez P, Fuchs G, Yu-Strzelczyk J, Stäcker J, von Thien H, Alder A, Henshall I, Liffner B, Nagel G, Löw C, Wilson D, Spielmann T, Gao S, Gilberger TW, Bachmann A, Strauss J. PMRT1, a Plasmodium-Specific Parasite Plasma Membrane Transporter, Is Essential for Asexual and Sexual Blood Stage Development. mBio 2022; 13:e0062322. [PMID: 35404116 PMCID: PMC9040750 DOI: 10.1128/mbio.00623-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 12/12/2022] Open
Abstract
Membrane transport proteins perform crucial roles in cell physiology. The obligate intracellular parasite Plasmodium falciparum, an agent of human malaria, relies on membrane transport proteins for the uptake of nutrients from the host, disposal of metabolic waste, exchange of metabolites between organelles, and generation and maintenance of transmembrane electrochemical gradients for its growth and replication within human erythrocytes. Despite their importance for Plasmodium cellular physiology, the functional roles of a number of membrane transport proteins remain unclear, which is particularly true for orphan membrane transporters that have no or limited sequence homology to transporter proteins in other evolutionary lineages. Therefore, in the current study, we applied endogenous tagging, targeted gene disruption, conditional knockdown, and knockout approaches to investigate the subcellular localization and essentiality of six membrane transporters during intraerythrocytic development of P. falciparum parasites. They are localized at different subcellular structures-the food vacuole, the apicoplast, and the parasite plasma membrane-and four out of the six membrane transporters are essential during asexual development. Additionally, the plasma membrane resident transporter 1 (PMRT1; PF3D7_1135300), a unique Plasmodium-specific plasma membrane transporter, was shown to be essential for gametocytogenesis and functionally conserved within the genus Plasmodium. Overall, we reveal the importance of four orphan transporters to blood stage P. falciparum development, which have diverse intracellular localizations and putative functions. IMPORTANCE Plasmodium falciparum-infected erythrocytes possess multiple compartments with designated membranes. Transporter proteins embedded in these membranes not only facilitate movement of nutrients, metabolites, and other molecules between these compartments, but also are common therapeutic targets and can confer antimalarial drug resistance. Orphan membrane transporters in P. falciparum without sequence homology to transporters in other evolutionary lineages and divergent from host transporters may constitute attractive targets for novel intervention approaches. Here, we localized six of these putative transporters at different subcellular compartments and probed their importance during asexual parasite growth by using reverse genetic approaches. In total, only two candidates turned out to be dispensable for the parasite, highlighting four candidates as putative targets for therapeutic interventions. This study reveals the importance of several orphan transporters to blood stage P. falciparum development.
Collapse
Affiliation(s)
- Jan Stephan Wichers
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | | | - Gwendolin Fuchs
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Jing Yu-Strzelczyk
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Jan Stäcker
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Heidrun von Thien
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Arne Alder
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Isabelle Henshall
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Benjamin Liffner
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Georg Nagel
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Danny Wilson
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, Australia
- Burnet Institute, Melbourne, Victoria, Australia
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Shiqiang Gao
- Institute of Physiology, Department of Neurophysiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Tim-Wolf Gilberger
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Anna Bachmann
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
| | - Jan Strauss
- Centre for Structural Systems Biology, Hamburg, Germany
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Biology Department, University of Hamburg, Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| |
Collapse
|
7
|
Identifying the major lactate transporter of Toxoplasma gondii tachyzoites. Sci Rep 2021; 11:6787. [PMID: 33762657 PMCID: PMC7991638 DOI: 10.1038/s41598-021-86204-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 03/10/2021] [Indexed: 11/09/2022] Open
Abstract
Toxoplasma gondii and Plasmodium falciparum parasites both extrude l-lactate, a byproduct of glycolysis. The P. falciparum Formate Nitrite Transporter, PfFNT, mediates l-lactate transport across the plasma membrane of P. falciparum parasites and has been validated as a drug target. The T. gondii genome encodes three FNTs that have been shown to transport l-lactate, and which are proposed to be the targets of several inhibitors of T. gondii proliferation. Here, we show that each of the TgFNTs localize to the T. gondii plasma membrane and are capable of transporting l-lactate across it, with TgFNT1 making the primary contribution to l-lactate transport during the disease-causing lytic cycle of the parasite. We use the Xenopus oocyte expression system to provide direct measurements of l-lactate transport via TgFNT1. We undertake a genetic analysis of the importance of the tgfnt genes for parasite proliferation, and demonstrate that all three tgfnt genes can be disrupted individually and together without affecting the lytic cycle under in vitro culture conditions. Together, our experiments identify the major lactate transporter in the disease causing stage of T. gondii, and reveal that this transporter is not required for parasite proliferation, indicating that TgFNTs are unlikely to be targets for anti-Toxoplasma drugs.
Collapse
|
8
|
Nyamwihura RJ, Zhang H, Collins JT, Crown O, Ogungbe IV. Nopol-Based Quinoline Derivatives as Antiplasmodial Agents. Molecules 2021; 26:1008. [PMID: 33673007 PMCID: PMC7917639 DOI: 10.3390/molecules26041008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 11/24/2022] Open
Abstract
Malaria remains a significant cause of morbidity and mortality in Sub-Saharan Africa and South Asia. While clinical antimalarials are efficacious when administered according to local guidelines, resistance to every class of antimalarials is a persistent problem. There is a constant need for new antimalarial therapeutics that complement parasite control strategies to combat malaria, especially in the tropics. In this work, nopol-based quinoline derivatives were investigated for their inhibitory activity against Plasmodium falciparum, one of the parasites that cause malaria. The nopyl-quinolin-8-yl amides (2-4) were moderately active against the asexual blood stage of chloroquine-sensitive strain Pf3D7 but inactive against chloroquine-resistant strains PfK1 and PfNF54. The nopyl-quinolin-4-yl amides and nopyl-quinolin-4-yl-acetates analogs were generally less active on all three strains. Interesting, the presence of a chloro substituent at C7 of the quinoline ring of amide 8 resulted in sub-micromolar EC50 in the PfK1 strain. However, 8 was more than two orders of magnitude less active against Pf3D7 and PfNF54. Overall, the nopyl-quinolin-8-yl amides appear to share similar antimalarial profile (asexual blood-stage) with previously reported 8-aminoquinolines like primaquine. Future work will focus on investigating the moderately active and selective nopyl-quinolin-8-yl amides on the gametocyte or liver stages of Plasmodium falciparum and Plasmodium vivax.
Collapse
Affiliation(s)
| | | | | | | | - Ifedayo Victor Ogungbe
- Department of Chemistry, Physics, and Atmospheric Sciences, Jackson State University, Jackson, MS 39217, USA; (R.J.N.); (H.Z.); (J.T.C.); (O.C.)
| |
Collapse
|
9
|
Relitti N, Federico S, Pozzetti L, Butini S, Lamponi S, Taramelli D, D'Alessandro S, Martin RE, Shafik SH, Summers RL, Babij SK, Habluetzel A, Tapanelli S, Caldelari R, Gemma S, Campiani G. Synthesis and biological evaluation of benzhydryl-based antiplasmodial agents possessing Plasmodium falciparum chloroquine resistance transporter (PfCRT) inhibitory activity. Eur J Med Chem 2021; 215:113227. [PMID: 33601312 DOI: 10.1016/j.ejmech.2021.113227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/18/2022]
Abstract
Due to the surge in resistance to common therapies, malaria remains a significant concern to human health worldwide. In chloroquine (CQ)-resistant (CQ-R) strains of Plasmodium falciparum, CQ and related drugs are effluxed from the parasite's digestive vacuole (DV). This process is mediated by mutant isoforms of a protein called CQ resistance transporter (PfCRT). CQ-R strains can be partially re-sensitized to CQ by verapamil (VP), primaquine (PQ) and other compounds, and this has been shown to be due to the ability of these molecules to inhibit drug transport via PfCRT. We have previously developed a series of clotrimazole (CLT)-based antimalarial agents that possess inhibitory activity against PfCRT (4a,b). In our endeavor to develop novel PfCRT inhibitors, and to perform a structure-activity relationship analysis, we synthesized a new library of analogues. When the benzhydryl system was linked to a 4-aminoquinoline group (5a-f) the resulting compounds exhibited good cytotoxicity against both CQ-R and CQ-S strains of P. falciparum. The most potent inhibitory activity against the PfCRT-mediated transport of CQ was obtained with compound 5k. When compared to the reference compound, benzhydryl analogues of PQ (5i,j) showed a similar activity against blood-stage parasites, and a stronger in vitro potency against liver-stage parasites. Unfortunately, in the in vivo transmission blocking assays, 5i,j were inactive against gametocytes.
Collapse
Affiliation(s)
- Nicola Relitti
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Stefano Federico
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Luca Pozzetti
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Stefania Butini
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Donatella Taramelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Pascal 36, 20133, Milan, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Sarah D'Alessandro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Via Pascal 36, 20133, Milan, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Rowena E Martin
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Sarah H Shafik
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Robert L Summers
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Simone K Babij
- Research School of Biology, Australian National University, Canberra, ACT, 2600, Australia
| | - Annette Habluetzel
- School of Pharmacy, University of Camerino, Piazza Cavour 19F, 62032, Camerino, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Sofia Tapanelli
- School of Pharmacy, University of Camerino, Piazza Cavour 19F, 62032, Camerino, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| | - Reto Caldelari
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Sandra Gemma
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy.
| | - Giuseppe Campiani
- Department of Biotechnology, Chemistry and Pharmacy (DoE 2018-2022), University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centro Interuniversitario di Ricerche Sulla Malaria (CIRM), University of Milan, Milano, Italy
| |
Collapse
|
10
|
Sailer ZR, Shafik SH, Summers RL, Joule A, Patterson-Robert A, Martin RE, Harms MJ. Inferring a complete genotype-phenotype map from a small number of measured phenotypes. PLoS Comput Biol 2020; 16:e1008243. [PMID: 32991585 PMCID: PMC7546491 DOI: 10.1371/journal.pcbi.1008243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 10/09/2020] [Accepted: 08/13/2020] [Indexed: 01/02/2023] Open
Abstract
Understanding evolution requires detailed knowledge of genotype-phenotype maps; however, it can be a herculean task to measure every phenotype in a combinatorial map. We have developed a computational strategy to predict the missing phenotypes from an incomplete, combinatorial genotype-phenotype map. As a test case, we used an incomplete genotype-phenotype dataset previously generated for the malaria parasite’s ‘chloroquine resistance transporter’ (PfCRT). Wild-type PfCRT (PfCRT3D7) lacks significant chloroquine (CQ) transport activity, but the introduction of the eight mutations present in the ‘Dd2’ isoform of PfCRT (PfCRTDd2) enables the protein to transport CQ away from its site of antimalarial action. This gain of a transport function imparts CQ resistance to the parasite. A combinatorial map between PfCRT3D7 and PfCRTDd2 consists of 256 genotypes, of which only 52 have had their CQ transport activities measured through expression in the Xenopus laevis oocyte. We trained a statistical model with these 52 measurements to infer the CQ transport activity for the remaining 204 combinatorial genotypes between PfCRT3D7 and PfCRTDd2. Our best-performing model incorporated a binary classifier, a nonlinear scale, and additive effects for each mutation. The addition of specific pairwise- and high-order-epistatic coefficients decreased the predictive power of the model. We evaluated our predictions by experimentally measuring the CQ transport activities of 24 additional PfCRT genotypes. The R2 value between our predicted and newly-measured phenotypes was 0.90. We then used the model to probe the accessibility of evolutionary trajectories through the map. Approximately 1% of the possible trajectories between PfCRT3D7 and PfCRTDd2 are accessible; however, none of the trajectories entailed eight successive increases in CQ transport activity. These results demonstrate that phenotypes can be inferred with known uncertainty from a partial genotype-phenotype dataset. We also validated our approach against a collection of previously published genotype-phenotype maps. The model therefore appears general and should be applicable to a large number of genotype-phenotype maps. Biological macromolecules are built from chains of building blocks. The function of a macromolecule depends on the specific chemical properties of the building blocks that make it up. Macromolecules evolve through mutations that swap one building block for another. Understanding how biomolecules work and evolve therefore requires knowledge of the effects of mutations. The effects of mutations can be measured experimentally; however, because there are a vast number of possible combinations of mutations, it is often difficult to make enough measurements to understand biomolecular function and evolution. In this paper, we describe a simple method to predict the effects of mutations on biomolecules from a small number of measurements. This method works by appropriately averaging the effects of mutations seen in different contexts. We test the method by predicting the effects of mutations on a PfCRT—a macromolecule from the malarial parasite that confers drug resistance. We find that our method is fast and effective. Using a small number of measurements, we were able to gain insight into the evolutionary steps by which this macromolecule conferred drug resistance. To make this method accessible to other researchers, we have released it as an open-source software package: https://gpseer.readthedocs.io.
Collapse
Affiliation(s)
- Zachary R. Sailer
- Institute for Molecular Biology, University of Oregon, Eugene, OR, United States of America
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, United States of America
| | - Sarah H. Shafik
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Robert L. Summers
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Alex Joule
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | | | - Rowena E. Martin
- Research School of Biology, Australian National University, Canberra, ACT, Australia
- * E-mail: (REM); (MJH)
| | - Michael J. Harms
- Institute for Molecular Biology, University of Oregon, Eugene, OR, United States of America
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, United States of America
- * E-mail: (REM); (MJH)
| |
Collapse
|
11
|
Shafik SH, Cobbold SA, Barkat K, Richards SN, Lancaster NS, Llinás M, Hogg SJ, Summers RL, McConville MJ, Martin RE. The natural function of the malaria parasite's chloroquine resistance transporter. Nat Commun 2020; 11:3922. [PMID: 32764664 PMCID: PMC7413254 DOI: 10.1038/s41467-020-17781-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 07/15/2020] [Indexed: 01/27/2023] Open
Abstract
The Plasmodium falciparum chloroquine resistance transporter (PfCRT) is a key contributor to multidrug resistance and is also essential for the survival of the malaria parasite, yet its natural function remains unresolved. We identify host-derived peptides of 4-11 residues, varying in both charge and composition, as the substrates of PfCRT in vitro and in situ, and show that PfCRT does not mediate the non-specific transport of other metabolites and/or ions. We find that drug-resistance-conferring mutations reduce both the peptide transport capacity and substrate range of PfCRT, explaining the impaired fitness of drug-resistant parasites. Our results indicate that PfCRT transports peptides from the lumen of the parasite's digestive vacuole to the cytosol, thereby providing a source of amino acids for parasite metabolism and preventing osmotic stress of this organelle. The resolution of PfCRT's native substrates will aid the development of drugs that target PfCRT and/or restore the efficacy of existing antimalarials.
Collapse
Affiliation(s)
- Sarah H Shafik
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Simon A Cobbold
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Kawthar Barkat
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Sashika N Richards
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Nicole S Lancaster
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology, Department of Chemistry, and Huck Center for Malaria Research, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Simon J Hogg
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Robert L Summers
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Malcolm J McConville
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Rowena E Martin
- Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.
| |
Collapse
|
12
|
Structural and evolutionary analyses of the Plasmodium falciparum chloroquine resistance transporter. Sci Rep 2020; 10:4842. [PMID: 32179795 PMCID: PMC7076037 DOI: 10.1038/s41598-020-61181-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) confer resistance to several antimalarial drugs such as chloroquine (CQ) or piperaquine (PPQ), a partner molecule in current artemisinin-based combination therapies. As a member of the Drug/Metabolite Transporter (DMT) superfamily, the vacuolar transporter PfCRT may translocate substrate molecule(s) across the membrane of the digestive vacuole (DV), a lysosome-like organelle. However, the physiological substrate(s), the transport mechanism and the functional regions of PfCRT remain to be fully characterized. Here, we hypothesized that identification of evolutionary conserved sites in a tertiary structural context could help locate putative functional regions of PfCRT. Hence, site-specific substitution rates were estimated over Plasmodium evolution at each amino acid sites, and the PfCRT tertiary structure was predicted in both inward-facing (open-to-vacuole) and occluded states through homology modeling using DMT template structures sharing <15% sequence identity with PfCRT. We found that the vacuolar-half and membrane-spanning domain (and especially the transmembrane helix 9) of PfCRT were more conserved, supporting that its physiological substrate is expelled out of the parasite DV. In the PfCRT occluded state, some evolutionary conserved sites, including positions related to drug resistance mutations, participate in a putative binding pocket located at the core of the PfCRT membrane-spanning domain. Through structural comparison with experimentally-characterized DMT transporters, we identified several conserved PfCRT amino acid sites located in this pocket as robust candidates for mediating substrate transport. Finally, in silico mutagenesis revealed that drug resistance mutations caused drastic changes in the electrostatic potential of the transporter vacuolar entry and pocket, facilitating the escape of protonated CQ and PPQ from the parasite DV.
Collapse
|
13
|
Du Z, Yang H, Lv WJ, Zhang XY, Zhai HL. Prediction of the inhibitory concentrations of chloroquine derivatives using deep neural networks models. J Biomol Struct Dyn 2020; 39:672-680. [PMID: 31918625 DOI: 10.1080/07391102.2020.1714486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In recent years, deep neural networks have begun to receive much attention, which has obvious advantages in feature extraction and modeling. However, in the using of deep neural networks for the QSAR modeling process, the selection of various parameters (number of neurons, hidden layers, transfer functions, data set partitioning, number of iterations, etc.) becomes difficult. Thus, we proposed a new and easy method for optimizing the model and selecting Deep Neural Networks (DNN) parameters through uniform design ideas and orthogonal design methods. By using this approach, 222 chloroquine (CQ) derivatives with half maximal inhibitory concentration values reported in different kinds of literature were selected to establish DNN models and a total number of 128,000 DNN models were built to determine the optimized parameters for selecting the better models. Comparing with linear and Artificial Neural Network (ANN) models, we found that DNN models showed better performance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Zhe Du
- Department of Chemistry, Lanzhou University, Lanzhou, PR China
| | - Hong Yang
- Department of Chemistry, Lanzhou University, Lanzhou, PR China
| | - Wen-Juan Lv
- Department of Chemistry, Lanzhou University, Lanzhou, PR China
| | - Xiao-Yun Zhang
- Department of Chemistry, Lanzhou University, Lanzhou, PR China
| | - Hong-Lin Zhai
- Department of Chemistry, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
14
|
Martin RE. The transportome of the malaria parasite. Biol Rev Camb Philos Soc 2019; 95:305-332. [PMID: 31701663 DOI: 10.1111/brv.12565] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022]
Abstract
Membrane transport proteins, also known as transporters, control the movement of ions, nutrients, metabolites, and waste products across the membranes of a cell and are central to its biology. Proteins of this type also serve as drug targets and are key players in the phenomenon of drug resistance. The malaria parasite has a relatively reduced transportome, with only approximately 2.5% of its genes encoding transporters. Even so, assigning functions and physiological roles to these proteins, and ascertaining their contributions to drug action and drug resistance, has been very challenging. This review presents a detailed critique and synthesis of the disruption phenotypes, protein subcellular localisations, protein functions (observed or predicted), and links to antimalarial drug resistance for each of the parasite's transporter genes. The breadth and depth of the gene disruption data are particularly impressive, with at least one phenotype determined in the parasite's asexual blood stage for each transporter gene, and multiple phenotypes available for 76% of the genes. Analysis of the curated data set revealed there to be relatively little redundancy in the Plasmodium transportome; almost two-thirds of the parasite's transporter genes are essential or required for normal growth in the asexual blood stage of the parasite, and this proportion increased to 78% when the disruption phenotypes available for the other parasite life stages were included in the analysis. These observations, together with the finding that 22% of the transportome is implicated in the parasite's resistance to existing antimalarials and/or drugs within the development pipeline, indicate that transporters are likely to serve, or are already serving, as drug targets. Integration of the different biological and bioinformatic data sets also enabled the selection of candidates for transport processes known to be essential for parasite survival, but for which the underlying proteins have thus far remained undiscovered. These include potential transporters of pantothenate, isoleucine, or isopentenyl diphosphate, as well as putative anion-selective channels that may serve as the pore component of the parasite's 'new permeation pathways'. Other novel insights into the parasite's biology included the identification of transporters for the potential development of antimalarial treatments, transmission-blocking drugs, prophylactics, and genetically attenuated vaccines. The syntheses presented herein set a foundation for elucidating the functions and physiological roles of key members of the Plasmodium transportome and, ultimately, to explore and realise their potential as therapeutic targets.
Collapse
Affiliation(s)
- Rowena E Martin
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
15
|
Zhang V, Kucharski R, Landers C, Richards SN, Bröer S, Martin RE, Maleszka R. Characterization of a Dopamine Transporter and Its Splice Variant Reveals Novel Features of Dopaminergic Regulation in the Honey Bee. Front Physiol 2019; 10:1375. [PMID: 31736791 PMCID: PMC6838227 DOI: 10.3389/fphys.2019.01375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/17/2019] [Indexed: 11/25/2022] Open
Abstract
Dopamine is an important neuromodulator involved in reward-processing, movement control, motivational responses, and other aspects of behavior in most animals. In honey bees (Apis mellifera), the dopaminergic system has been implicated in an elaborate pheromonal communication network between individuals and in the differentiation of females into reproductive (queen) and sterile (worker) castes. Here we have identified and characterized a honey bee dopamine transporter (AmDAT) and a splice variant lacking exon 3 (AmDATΔex3). Both transcripts are present in the adult brain and antennae as well as at lower levels within larvae and ovaries. When expressed separately in the Xenopus oocyte system, AmDAT localizes to the oocyte surface whereas the splice variant is retained at an internal membrane. Oocytes expressing AmDAT exhibit a 12-fold increase in the uptake of [3H]dopamine relative to non-injected oocytes, whereas the AmDATΔex3-expressing oocytes show no change in [3H]dopamine transport. Electrophysiological measurements of AmDAT activity revealed it to be a high-affinity, low-capacity transporter of dopamine. The transporter also recognizes noradrenaline as a major substrate and tyramine as a minor substrate, but does not transport octopamine, L-Dopa, or serotonin. Dopamine transport via AmDAT is inhibited by cocaine in a reversible manner, but is unaffected by octopamine. Co-expression of AmDAT and AmDATΔex3 in oocytes results in a substantial reduction in AmDAT-mediated transport, which was also detected as a significant decrease in the level of AmDAT protein. This down-regulatory effect is not attributable to competition with AmDATΔex3 for ER ribosomes, nor to a general inhibition of the oocyte's translational machinery. In vivo, the expression of both transcripts shows a high level of inter-individual variability. Gene-focused, ultra-deep amplicon sequencing detected methylation of the amdat locus at ten 5'-C-phosphate-G-3' dinucleotides (CpGs), but only in 5-10% of all reads in whole brains or antennae. These observations, together with the localization of the amdat transcript to a few clusters of dopaminergic neurons, imply that amdat methylation is positively linked to its transcription. Our findings suggest that multiple cellular mechanisms, including gene splicing and epigenomic communication systems, may be adopted to increase the potential of a conserved gene to contribute to lineage-specific behavioral outcomes.
Collapse
Affiliation(s)
- Vicky Zhang
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Robert Kucharski
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
- Faculty of Science and Technology, University of Canberra, Bruce, ACT, Australia
| | - Courtney Landers
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Sashika N. Richards
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Rowena E. Martin
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Ryszard Maleszka
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
16
|
Chan LY, Teo JDW, Tan KSW, Sou K, Kwan WL, Lee CLK. Near Infrared Fluorophore-Tagged Chloroquine in Plasmodium falciparum Diagnostic Imaging. Molecules 2018; 23:molecules23102635. [PMID: 30322183 PMCID: PMC6222297 DOI: 10.3390/molecules23102635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022] Open
Abstract
Chloroquine was among the first of several effective drug treatments against malaria until the onset of chloroquine resistance. In light of diminished clinical efficacy of chloroquine as an antimalarial therapeutic, there is potential in efforts to adapt chloroquine for other clinical applications, such as in combination therapies and in diagnostics. In this context, we designed and synthesized a novel asymmetrical squaraine dye coupled with chloroquine (SQR1-CQ). In this study, SQR1-CQ was used to label live Plasmodium falciparum (P. falciparum) parasite cultures of varying sensitivities towards chloroquine. SQR1-CQ positively stained ring, mature trophozoite and schizont stages of both chloroquine⁻sensitive and chloroquine⁻resistant P. falciparum strains. In addition, SQR1-CQ exhibited significantly higher fluorescence, when compared to the commercial chloroquine-BODIPY (borondipyrromethene) conjugate CQ-BODIPY. We also achieved successful SQR1-CQ labelling of P. falciparum directly on thin blood smear preparations. Drug efficacy experiments measuring half-maximal inhibitory concentration (IC50) showed lower concentration of effective inhibition against resistant strain K1 by SQR1-CQ compared to conventional chloroquine. Taken together, the versatile and highly fluorescent labelling capability of SQR1-CQ and promising preliminary IC50 findings makes it a great candidate for further development as diagnostic tool with drug efficacy against chloroquine-resistant P. falciparum.
Collapse
Affiliation(s)
- Li Yan Chan
- Department of Technology, Innovation and Enterprise (TIE), Singapore Polytechnic, 500 Dover Road, Singapore 139651, Singapore.
| | - Joshua Ding Wei Teo
- Department of Technology, Innovation and Enterprise (TIE), Singapore Polytechnic, 500 Dover Road, Singapore 139651, Singapore.
| | - Kevin Shyong-Wei Tan
- Laboratory of Molecular and Cellular Parasitology, Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2 Block MD4, Level 3, Singapore 117545, Singapore.
| | - Keitaro Sou
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Wei Lek Kwan
- Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Chi-Lik Ken Lee
- Department of Technology, Innovation and Enterprise (TIE), Singapore Polytechnic, 500 Dover Road, Singapore 139651, Singapore.
| |
Collapse
|
17
|
Evidence for Regulation of Hemoglobin Metabolism and Intracellular Ionic Flux by the Plasmodium falciparum Chloroquine Resistance Transporter. Sci Rep 2018; 8:13578. [PMID: 30206341 PMCID: PMC6134138 DOI: 10.1038/s41598-018-31715-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/22/2018] [Indexed: 11/30/2022] Open
Abstract
Plasmodium falciparum multidrug resistance constitutes a major obstacle to the global malaria elimination campaign. Specific mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) mediate resistance to the 4-aminoquinoline drug chloroquine and impact parasite susceptibility to several partner agents used in current artemisinin-based combination therapies, including amodiaquine. By examining gene-edited parasites, we report that the ability of the wide-spread Dd2 PfCRT isoform to mediate chloroquine and amodiaquine resistance is substantially reduced by the addition of the PfCRT L272F mutation, which arose under blasticidin selection. We also provide evidence that L272F confers a significant fitness cost to asexual blood stage parasites. Studies with amino acid-restricted media identify this mutant as a methionine auxotroph. Metabolomic analysis also reveals an accumulation of short, hemoglobin-derived peptides in the Dd2 + L272F and Dd2 isoforms, compared with parasites expressing wild-type PfCRT. Physiologic studies with the ionophores monensin and nigericin support an impact of PfCRT isoforms on Ca2+ release, with substantially reduced Ca2+ levels observed in Dd2 + L272F parasites. Our data reveal a central role for PfCRT in regulating hemoglobin catabolism, amino acid availability, and ionic balance in P. falciparum, in addition to its role in determining parasite susceptibility to heme-binding 4-aminoquinoline drugs.
Collapse
|
18
|
Mechanisms of resistance to the partner drugs of artemisinin in the malaria parasite. Curr Opin Pharmacol 2018; 42:71-80. [PMID: 30142480 DOI: 10.1016/j.coph.2018.07.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/19/2018] [Accepted: 07/26/2018] [Indexed: 01/24/2023]
Abstract
The deployment of artemisinin-based combination therapies (ACTs) has been, and continues to be, integral to reducing the number of malaria cases and deaths. However, their efficacy is being increasingly jeopardized by the emergence and spread of parasites that are resistant (or partially resistant) to the artemisinin derivatives and to their partner drugs, with the efficacy of the latter being especially crucial for treatment success. A detailed understanding of the genetic determinants of resistance to the ACT partner drugs, and the mechanisms by which they mediate resistance, is required for the surveillance of molecular markers and to optimize the efficacy and lifespan of the partner drugs through resistance management strategies. We summarize new insights into the molecular basis of parasite resistance to the ACTs, such as recently-uncovered determinants of parasite susceptibility to the artemisinin derivatives, piperaquine, lumefantrine, and mefloquine, and outline the mechanisms through which polymorphisms in these determinants may be conferring resistance.
Collapse
|
19
|
Emerging Southeast Asian PfCRT mutations confer Plasmodium falciparum resistance to the first-line antimalarial piperaquine. Nat Commun 2018; 9:3314. [PMID: 30115924 PMCID: PMC6095916 DOI: 10.1038/s41467-018-05652-0] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/11/2018] [Indexed: 11/16/2022] Open
Abstract
The widely used antimalarial combination therapy dihydroartemisinin + piperaquine (DHA + PPQ) has failed in Cambodia. Here, we perform a genomic analysis that reveals a rapid increase in the prevalence of novel mutations in the Plasmodium falciparum chloroquine resistance transporter PfCRT following DHA + PPQ implementation. These mutations occur in parasites harboring the K13 C580Y artemisinin resistance marker. By introducing PfCRT mutations into sensitive Dd2 parasites or removing them from resistant Cambodian isolates, we show that the H97Y, F145I, M343L, or G353V mutations each confer resistance to PPQ, albeit with fitness costs for all but M343L. These mutations sensitize Dd2 parasites to chloroquine, amodiaquine, and quinine. In Dd2 parasites, multicopy plasmepsin 2, a candidate molecular marker, is not necessary for PPQ resistance. Distended digestive vacuoles were observed in pfcrt-edited Dd2 parasites but not in Cambodian isolates. Our findings provide compelling evidence that emerging mutations in PfCRT can serve as a molecular marker and mediator of PPQ resistance. Increasing resistance of Plasmodium falciparum strains to piperaquine (PPQ) in Southeast Asia is of concern and resistance mechanisms are incompletely understood. Here, Ross et al. show that mutations in the P. falciparum chloroquine resistance transporter are rapidly increasing in prevalence in Cambodia and confer resistance to PPQ.
Collapse
|
20
|
Reiling SJ, Krohne G, Friedrich O, Geary TG, Rohrbach P. Chloroquine exposure triggers distinct cellular responses in sensitive versus resistant Plasmodium falciparum parasites. Sci Rep 2018; 8:11137. [PMID: 30042399 PMCID: PMC6057915 DOI: 10.1038/s41598-018-29422-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/06/2018] [Indexed: 11/25/2022] Open
Abstract
Chloroquine (CQ) treatment failure in Plasmodium falciparum parasites has been documented for decades, but the pharmacological explanation of this phenotype is not fully understood. Current concepts attribute CQ resistance to reduced accumulation of the drug at a given external CQ concentration ([CQ]ex) in resistant compared to sensitive parasites. The implication of this explanation is that the mechanisms of CQ-induced toxicity in resistant and sensitive strains are similar once lethal internal concentrations have been reached. To test this hypothesis, we investigated the mechanism of CQ-induced toxicity in CQ-sensitive (CQS) versus CQ-resistant (CQR) parasites by analyzing the time-course of cellular responses in these strains after exposure to varying [CQ]ex as determined in 72 h toxicity assays. Parasite killing was delayed in CQR parasites for up to 10 h compared to CQS parasites when exposed to equipotent [CQ]ex. In striking contrast, brief exposure (1 h) to lethal [CQ]ex in CQS but not CQR parasites caused the appearance of hitherto undescribed hemozoin (Hz)-containing compartments in the parasite cytosol. Hz-containing compartments were very rarely observed in CQR parasites even after CQ exposures sufficient to cause irreversible cell death. These findings challenge current concepts that CQ killing of malaria parasites is solely concentration-dependent, and instead suggest that CQS and CQR strains fundamentally differ in the consequences of CQ exposure.
Collapse
Affiliation(s)
- Sarah J Reiling
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue (Montréal), Québec, Canada
| | - Georg Krohne
- Theodor Boveri Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Oliver Friedrich
- Institute of Medical Biotechnology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Timothy G Geary
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue (Montréal), Québec, Canada
| | - Petra Rohrbach
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue (Montréal), Québec, Canada.
| |
Collapse
|
21
|
Tindall SM, Vallières C, Lakhani DH, Islahudin F, Ting KN, Avery SV. Heterologous Expression of a Novel Drug Transporter from the Malaria Parasite Alters Resistance to Quinoline Antimalarials. Sci Rep 2018; 8:2464. [PMID: 29410428 PMCID: PMC5802821 DOI: 10.1038/s41598-018-20816-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 01/22/2018] [Indexed: 12/15/2022] Open
Abstract
Antimalarial drug resistance hampers effective malaria treatment. Critical SNPs in a particular, putative amino acid transporter were recently linked to chloroquine (CQ) resistance in malaria parasites. Here, we show that this conserved protein (PF3D7_0629500 in Plasmodium falciparum; AAT1 in P. chabaudi) is a structural homologue of the yeast amino acid transporter Tat2p, which is known to mediate quinine uptake and toxicity. Heterologous expression of PF3D7_0629500 in yeast produced CQ hypersensitivity, coincident with increased CQ uptake. PF3D7_0629500-expressing cultures were also sensitized to related antimalarials; amodiaquine, mefloquine and particularly quinine. Drug sensitivity was reversed by introducing a SNP linked to CQ resistance in the parasite. Like Tat2p, PF3D7_0629500-dependent quinine hypersensitivity was suppressible with tryptophan, consistent with a common transport mechanism. A four-fold increase in quinine uptake by PF3D7_0629500 expressing cells was abolished by the resistance SNP. The parasite protein localised primarily to the yeast plasma membrane. Its expression varied between cells and this heterogeneity was used to show that high-expressing cell subpopulations were the most drug sensitive. The results reveal that the PF3D7_0629500 protein can determine the level of sensitivity to several major quinine-related antimalarials through an amino acid-inhibitable drug transport function. The potential clinical relevance is discussed.
Collapse
Affiliation(s)
- Sarah M Tindall
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Cindy Vallières
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Dev H Lakhani
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Farida Islahudin
- Faculty of Pharmacy, Universiti Kebangsaan, Kuala Lumpur, 50300, Malaysia
| | - Kang-Nee Ting
- Department of Biomedical Sciences, University of Nottingham Malaysia Campus, Semenyih, Malaysia
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
22
|
Abstract
In this Commentary, we highlight the latest findings in three active areas of malaria research: Plasmodium biology; host response; and malaria control, prevention and treatment.
Collapse
|
23
|
Blasco B, Leroy D, Fidock DA. Antimalarial drug resistance: linking Plasmodium falciparum parasite biology to the clinic. Nat Med 2017; 23:917-928. [PMID: 28777791 DOI: 10.1038/nm.4381] [Citation(s) in RCA: 361] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 06/30/2017] [Indexed: 02/08/2023]
Abstract
The global adoption of artemisinin-based combination therapies (ACTs) in the early 2000s heralded a new era in effectively treating drug-resistant Plasmodium falciparum malaria. However, several Southeast Asian countries have now reported the emergence of parasites that have decreased susceptibility to artemisinin (ART) derivatives and ACT partner drugs, resulting in increasing rates of treatment failures. Here we review recent advances in understanding how antimalarials act and how resistance develops, and discuss new strategies for effectively combatting resistance, optimizing treatment and advancing the global campaign to eliminate malaria.
Collapse
Affiliation(s)
| | - Didier Leroy
- Medicines for Malaria Venture, Geneva, Switzerland
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York, USA.,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
24
|
Bakouh N, Bellanca S, Nyboer B, Moliner Cubel S, Karim Z, Sanchez CP, Stein WD, Planelles G, Lanzer M. Iron is a substrate of the Plasmodium falciparum chloroquine resistance transporter PfCRT in Xenopus oocytes. J Biol Chem 2017; 292:16109-16121. [PMID: 28768767 DOI: 10.1074/jbc.m117.805200] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/01/2017] [Indexed: 01/01/2023] Open
Abstract
The chloroquine resistance transporter of the human malaria parasite Plasmodium falciparum, PfCRT, is an important determinant of resistance to several quinoline and quinoline-like antimalarial drugs. PfCRT also plays an essential role in the physiology of the parasite during development inside erythrocytes. However, the function of this transporter besides its role in drug resistance is still unclear. Using electrophysiological and flux experiments conducted on PfCRT-expressing Xenopus laevis oocytes, we show here that both wild-type PfCRT and a PfCRT variant associated with chloroquine resistance transport both ferrous and ferric iron, albeit with different kinetics. In particular, we found that the ability to transport ferrous iron is reduced by the specific polymorphisms acquired by the PfCRT variant as a result of chloroquine selection. We further show that iron and chloroquine transport via PfCRT is electrogenic. If these findings in the Xenopus model extend to P. falciparum in vivo, our data suggest that PfCRT might play a role in iron homeostasis, which is essential for the parasite's development in erythrocytes.
Collapse
Affiliation(s)
- Naziha Bakouh
- From INSERM, Centre de Recherche des Cordeliers, Unité 1138, CNRS ERL8228, Université Pierre et Marie Curie and Université Paris-Descartes, Paris 75006, France
| | - Sebastiano Bellanca
- the Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Britta Nyboer
- the Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Sonia Moliner Cubel
- the Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Zoubida Karim
- INSERM, UMR1149, CNRS ERL 8252, Université Paris Diderot Paris 75890, France, and
| | - Cecilia P Sanchez
- the Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany
| | - Wilfred D Stein
- Biological Chemistry, Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gabrielle Planelles
- From INSERM, Centre de Recherche des Cordeliers, Unité 1138, CNRS ERL8228, Université Pierre et Marie Curie and Université Paris-Descartes, Paris 75006, France,
| | - Michael Lanzer
- the Center of Infectious Diseases, Parasitology, Heidelberg University Hospital, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany,
| |
Collapse
|
25
|
A Variant PfCRT Isoform Can Contribute to Plasmodium falciparum Resistance to the First-Line Partner Drug Piperaquine. mBio 2017; 8:mBio.00303-17. [PMID: 28487425 PMCID: PMC5424201 DOI: 10.1128/mbio.00303-17] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Current efforts to reduce the global burden of malaria are threatened by the rapid spread throughout Asia of Plasmodium falciparum resistance to artemisinin-based combination therapies, which includes increasing rates of clinical failure with dihydroartemisinin plus piperaquine (PPQ) in Cambodia. Using zinc finger nuclease-based gene editing, we report that addition of the C101F mutation to the chloroquine (CQ) resistance-conferring PfCRT Dd2 isoform common to Asia can confer PPQ resistance to cultured parasites. Resistance was demonstrated as significantly higher PPQ concentrations causing 90% inhibition of parasite growth (IC90) or 50% parasite killing (50% lethal dose [LD50]). This mutation also reversed Dd2-mediated CQ resistance, sensitized parasites to amodiaquine, quinine, and artemisinin, and conferred amantadine and blasticidin resistance. Using heme fractionation assays, we demonstrate that PPQ causes a buildup of reactive free heme and inhibits the formation of chemically inert hemozoin crystals. Our data evoke inhibition of heme detoxification in the parasite’s acidic digestive vacuole as the primary mode of both the bis-aminoquinoline PPQ and the related 4-aminoquinoline CQ. Both drugs also inhibit hemoglobin proteolysis at elevated concentrations, suggesting an additional mode of action. Isogenic lines differing in their pfmdr1 copy number showed equivalent PPQ susceptibilities. We propose that mutations in PfCRT could contribute to a multifactorial basis of PPQ resistance in field isolates. The global agenda to eliminate malaria depends on the continued success of artemisinin-based combination therapies (ACTs), which target the asexual blood stages of the intracellular parasite Plasmodium. Partial resistance to artemisinin, however, is now established in Southeast Asia, exposing the partner drugs to increased selective pressure. Plasmodium falciparum resistance to the first-line partner piperaquine (PPQ) is now spreading rapidly in Cambodia, resulting in clinical treatment failures. Here, we report that a variant form of the Plasmodium falciparum chloroquine resistance transporter, harboring a C101F mutation edited into the chloroquine (CQ)-resistant Dd2 isoform prevalent in Asia, can confer PPQ resistance in cultured parasites. This was accompanied by a loss of CQ resistance. Biochemical assays showed that PPQ, like CQ, inhibits the detoxification of reactive heme that is formed by parasite-mediated catabolism of host hemoglobin. We propose that novel PfCRT variants emerging in the field could contribute to a multigenic basis of PPQ resistance.
Collapse
|
26
|
Hapuarachchi SV, Cobbold SA, Shafik SH, Dennis ASM, McConville MJ, Martin RE, Kirk K, Lehane AM. The Malaria Parasite's Lactate Transporter PfFNT Is the Target of Antiplasmodial Compounds Identified in Whole Cell Phenotypic Screens. PLoS Pathog 2017; 13:e1006180. [PMID: 28178359 PMCID: PMC5298231 DOI: 10.1371/journal.ppat.1006180] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/11/2017] [Indexed: 11/19/2022] Open
Abstract
In this study the ‘Malaria Box’ chemical library comprising 400 compounds with antiplasmodial activity was screened for compounds that perturb the internal pH of the malaria parasite, Plasmodium falciparum. Fifteen compounds induced an acidification of the parasite cytosol. Two of these did so by inhibiting the parasite’s formate nitrite transporter (PfFNT), which mediates the H+-coupled efflux from the parasite of lactate generated by glycolysis. Both compounds were shown to inhibit lactate transport across the parasite plasma membrane, and the transport of lactate by PfFNT expressed in Xenopus laevis oocytes. PfFNT inhibition caused accumulation of lactate in parasitised erythrocytes, and swelling of both the parasite and parasitised erythrocyte. Long-term exposure of parasites to one of the inhibitors gave rise to resistant parasites with a mutant form of PfFNT that showed reduced inhibitor sensitivity. This study provides the first evidence that PfFNT is a druggable antimalarial target. The emergence and spread of Plasmodium falciparum strains resistant to leading antimalarial drugs has intensified the need to discover and develop drugs that kill the parasite via new mechanisms. Here we screened compounds that are known to inhibit P. falciparum growth for their effects on the pH inside the parasite. We identified fifteen compounds that decrease the pH inside the parasite, and determined the mechanism by which two of these, MMV007839 and MMV000972, disrupt pH and kill the parasite. The two compounds were found to inhibit the P. falciparum formate nitrite transporter (PfFNT), a transport protein that is located on the parasite surface and that serves to remove the waste product lactic acid from the parasite. The compounds inhibited both the H+-coupled transport of lactate across the parasite plasma membrane and the transport of lactate by PfFNT expressed in Xenopus oocytes. In addition to disrupting pH, PfFNT inhibition led to a build-up of lactate in the parasite-infected red blood cell and the swelling of both the parasite and the infected red blood cell. Exposing parasites to MMV007839 over a prolonged time period gave rise to resistant parasites with a mutant form of PfFNT that was less sensitive to the compound. This study validates PfFNT as a novel antimalarial drug target.
Collapse
Affiliation(s)
| | - Simon A Cobbold
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Sarah H Shafik
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Adelaide S M Dennis
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Rowena E Martin
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Kiaran Kirk
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Adele M Lehane
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
27
|
Evolution of Fitness Cost-Neutral Mutant PfCRT Conferring P. falciparum 4-Aminoquinoline Drug Resistance Is Accompanied by Altered Parasite Metabolism and Digestive Vacuole Physiology. PLoS Pathog 2016; 12:e1005976. [PMID: 27832198 PMCID: PMC5104409 DOI: 10.1371/journal.ppat.1005976] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 10/03/2016] [Indexed: 11/19/2022] Open
Abstract
Southeast Asia is an epicenter of multidrug-resistant Plasmodium falciparum strains. Selective pressures on the subcontinent have recurrently produced several allelic variants of parasite drug resistance genes, including the P. falciparum chloroquine resistance transporter (pfcrt). Despite significant reductions in the deployment of the 4-aminoquinoline drug chloroquine (CQ), which selected for the mutant pfcrt alleles that halted CQ efficacy decades ago, the parasite pfcrt locus is continuously evolving. This is highlighted by the presence of a highly mutated allele, Cam734 pfcrt, which has acquired the singular ability to confer parasite CQ resistance without an associated fitness cost. Here, we used pfcrt-specific zinc-finger nucleases to genetically dissect this allele in the pathogenic setting of asexual blood-stage infection. Comparative analysis of drug resistance and growth profiles of recombinant parasites that express Cam734 or variants thereof, Dd2 (the most common Southeast Asian variant), or wild-type pfcrt, revealed previously unknown roles for PfCRT mutations in modulating parasite susceptibility to multiple antimalarial agents. These results were generated in the GC03 strain, used in multiple earlier pfcrt studies, and might differ in natural isolates harboring this allele. Results presented herein show that Cam734-mediated CQ resistance is dependent on the rare A144F mutation that has not been observed beyond Southeast Asia, and reveal distinct impacts of this and other Cam734-specific mutations on CQ resistance and parasite growth rates. Biochemical assays revealed a broad impact of mutant PfCRT isoforms on parasite metabolism, including nucleoside triphosphate levels, hemoglobin catabolism and disposition of heme, as well as digestive vacuole volume and pH. Results from our study provide new insights into the complex molecular basis and physiological impact of PfCRT-mediated antimalarial drug resistance, and inform ongoing efforts to characterize novel pfcrt alleles that can undermine the efficacy of first-line antimalarial drug regimens. Point mutations in the Plasmodium falciparum chloroquine resistance transporter (PfCRT) earlier thwarted the clinical efficacy of chloroquine, the former gold standard, and constitute a major determinant of parasite susceptibility to antimalarial drugs. Recently, we reported that the highly mutated Cambodian PfCRT isoform Cam734 is fitness-neutral in terms of parasite growth, unlike other less fit isoforms such as Dd2 that are outcompeted by wild-type parasites in the absence of CQ pressure. Using pfcrt-specific zinc-finger nucleases to genetically dissect the Cam734 allele, we report that its unique constituent mutations directly contribute to CQ resistance and collectively offset fitness costs associated with intermediate mutational steps. We also report that these mutations can contribute to resistance or increased sensitivity to multiple first-line partner drugs. Using isogenic parasite lines, we provide evidence of changes in parasite metabolism associated with the Cam734 allele compared to Dd2. We also observe a close correlation between CQ inhibition of hemozoin formation and parasite growth, and provide evidence that Cam734 PfCRT can modulate drug potency depending on its membrane electrochemical gradient. Our data highlight the capacity of PfCRT to evolve new states of antimalarial drug resistance and to offset associated fitness costs through its impact on parasite physiology and hemoglobin catabolism.
Collapse
|