1
|
Dias J, Cattin A, Bendoumou M, Dutilleul A, Lodge R, Goulet JP, Fert A, Raymond Marchand L, Wiche Salinas TR, Ngassaki Yoka CD, Gabriel EM, Caballero RE, Routy JP, Cohen ÉA, Van Lint C, Ancuta P. Retinoic acid enhances HIV-1 reverse transcription and transcription in macrophages via mTOR-modulated mechanisms. Cell Rep 2024; 43:114414. [PMID: 38943643 PMCID: PMC11341200 DOI: 10.1016/j.celrep.2024.114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/01/2024] Open
Abstract
The intestinal environment facilitates HIV-1 infection via mechanisms involving the gut-homing vitamin A-derived retinoic acid (RA), which transcriptionally reprograms CD4+ T cells for increased HIV-1 replication/outgrowth. Consistently, colon-infiltrating CD4+ T cells carry replication-competent viral reservoirs in people with HIV-1 (PWH) receiving antiretroviral therapy (ART). Intriguingly, integrative infection in colon macrophages, a pool replenished by monocytes, represents a rare event in ART-treated PWH, thus questioning the effect of RA on macrophages. Here, we demonstrate that RA enhances R5 but not X4 HIV-1 replication in monocyte-derived macrophages (MDMs). RNA sequencing, gene set variation analysis, and HIV interactor NCBI database interrogation reveal RA-mediated transcriptional reprogramming associated with metabolic/inflammatory processes and HIV-1 resistance/dependency factors. Functional validations uncover post-entry mechanisms of RA action including SAMHD1-modulated reverse transcription and CDK9/RNA polymerase II (RNAPII)-dependent transcription under the control of mammalian target of rapamycin (mTOR). These results support a model in which macrophages residing in the intestine of ART-untreated PWH contribute to viral replication/dissemination in an mTOR-sensitive manner.
Collapse
Affiliation(s)
- Jonathan Dias
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada; Centre de recherche du centre hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada
| | - Amélie Cattin
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada; Centre de recherche du centre hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada
| | - Maryam Bendoumou
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Antoine Dutilleul
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium
| | - Robert Lodge
- Institut de recherches cliniques de Montréal, Montréal, QC, Canada
| | | | - Augustine Fert
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada; Centre de recherche du centre hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada
| | - Laurence Raymond Marchand
- Centre de recherche du centre hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada
| | - Tomas Raul Wiche Salinas
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada; Centre de recherche du centre hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada
| | - Christ-Dominique Ngassaki Yoka
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada; Centre de recherche du centre hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada
| | - Etiene Moreira Gabriel
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada; Centre de recherche du centre hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada
| | - Ramon Edwin Caballero
- Centre de recherche du centre hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada; Department of Microbiology and Immunology, McGill University Health Centre, Montréal, QC, Canada
| | - Jean-Pierre Routy
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montréal, QC, Canada; Chronic Viral Illness Service, McGill University Health Centre, Montréal, QC, Canada; Division of Hematology, McGill University Health Centre, Montreal, QC, Canada
| | - Éric A Cohen
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada; Institut de recherches cliniques de Montréal, Montréal, QC, Canada
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology (DBM), Université libre de Bruxelles (ULB), 6041 Gosselies, Belgium.
| | - Petronela Ancuta
- Département de microbiologie, infectiologie et immunologie, Faculté de médecine, Université de Montréal, Montréal, QC, Canada; Centre de recherche du centre hospitalier de l'Université de Montréal (CR-CHUM), Montréal, QC, Canada.
| |
Collapse
|
2
|
Lin C, Kuffour EO, Li T, Gertzen CGW, Kaiser J, Luedde T, König R, Gohlke H, Münk C. The ISG15-Protease USP18 Is a Pleiotropic Enhancer of HIV-1 Replication. Viruses 2024; 16:485. [PMID: 38675828 PMCID: PMC11053637 DOI: 10.3390/v16040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
The innate immune response to viruses is formed in part by interferon (IFN)-induced restriction factors, including ISG15, p21, and SAMHD1. IFN production can be blocked by the ISG15-specific protease USP18. HIV-1 has evolved to circumvent host immune surveillance. This mechanism might involve USP18. In our recent studies, we demonstrate that HIV-1 infection induces USP18, which dramatically enhances HIV-1 replication by abrogating the antiviral function of p21. USP18 downregulates p21 by accumulating misfolded dominant negative p53, which inactivates wild-type p53 transactivation, leading to the upregulation of key enzymes involved in de novo dNTP biosynthesis pathways and inactivated SAMHD1. Despite the USP18-mediated increase in HIV-1 DNA in infected cells, it is intriguing to note that the cGAS-STING-mediated sensing of the viral DNA is abrogated. Indeed, the expression of USP18 or knockout of ISG15 inhibits the sensing of HIV-1. We demonstrate that STING is ISGylated at residues K224, K236, K289, K347, K338, and K370. The inhibition of STING K289-linked ISGylation suppresses its oligomerization and IFN induction. We propose that human USP18 is a novel factor that potentially contributes in multiple ways to HIV-1 replication.
Collapse
Affiliation(s)
- Chaohui Lin
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| | - Edmund Osei Kuffour
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| | - Taolan Li
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| | - Christoph G. W. Gertzen
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.G.W.G.); (J.K.); (H.G.)
| | - Jesko Kaiser
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.G.W.G.); (J.K.); (H.G.)
| | - Tom Luedde
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| | - Renate König
- Host-Pathogen Interactions, Paul-Ehrlich-Institut, 63225 Langen, Germany;
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.G.W.G.); (J.K.); (H.G.)
- Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Carsten Münk
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (C.L.); (E.O.K.); (T.L.); (T.L.)
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW This review aims to elucidate the multifaceted role of the tumor suppressor protein p53 in the context of HIV infection. We explore how p53, a pivotal regulator of cellular processes, interacts with various facets of the HIV life cycle. Understanding these interactions could provide valuable insights into potential therapeutic interventions and the broader implications of p53 in viral infections. RECENT FINDINGS Recent research has unveiled a complex interplay between p53 and HIV. Several reports have highlighted the involvement of p53 in restricting the replication of HIV within both immune and nonimmune cells. Various mechanisms have been suggested to unveil how p53 enforces this restriction on HIV replication. However, HIV has developed strategies to manipulate p53, benefiting its replication and evading host defenses. In summary, p53 plays a multifaceted role in HIV infection, impacting viral replication and disease progression. Recent findings underscore the importance of understanding the intricate interactions between p53 and HIV for the development of innovative therapeutic approaches. Manipulating p53 pathways may offer potential avenues to suppress viral replication and ameliorate immune dysfunction, ultimately contributing to the management of HIV/AIDS. Further research is warranted to fully exploit the therapeutic potential of p53 in the context of HIV infection.
Collapse
Affiliation(s)
- Mahmoud Mohammad Yaseen
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Nizar Mohammad Abuharfeil
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Homa Darmani
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
4
|
Pharmacological Inhibition of IKK to Tackle Latency and Hyperinflammation in Chronic HIV-1 Infection. Int J Mol Sci 2022; 23:ijms232315000. [PMID: 36499329 PMCID: PMC9741028 DOI: 10.3390/ijms232315000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
HIV latent infection may be associated with disrupted viral RNA sensing, interferon (IFN) signaling, and/or IFN stimulating genes (ISG) activation. Here, we evaluated the use of compounds selectively targeting at the inhibitor of nuclear factor-κB (IκB) kinase (IKK) complex subunits and related kinases (TBK1) as a novel pathway to reverse HIV-1 latency in latently infected non-clonal lymphoid and myeloid cell in vitro models. IKK inhibitors (IKKis) triggered up to a 1.8-fold increase in HIV reactivation in both, myeloid and lymphoid cell models. The best-in-class IKKis, targeting TBK-1 (MRT67307) and IKKβ (TCPA-1) respectively, were also able to significantly induce viral reactivation in CD4+ T cells from people living with HIV (PLWH) ex vivo. More importantly, although none of the compounds tested showed antiviral activity, the combination of the distinct IKKis with ART did not affect the latency reactivation nor blockade of HIV infection by ART. Finally, as expected, IKKis did not upregulate cell activation markers in primary lymphocytes and innate immune signaling was blocked, resulting in downregulation of inflammatory cytokines. Overall, our results support a dual role of IKKis as immune modulators being able to tackle the HIV latent reservoir in lymphoid and myeloid cellular models and putatively control the hyperinflammatory responses in chronic HIV-1 infection.
Collapse
|
5
|
Cui C, Tang X, Xing J, Sheng X, Chi H, Zhan W. Single-cell RNA-seq uncovered hemocyte functional subtypes and their differentiational characteristics and connectivity with morphological subpopulations in Litopenaeus vannamei. Front Immunol 2022; 13:980021. [PMID: 36177045 PMCID: PMC9513592 DOI: 10.3389/fimmu.2022.980021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/22/2022] [Indexed: 12/01/2022] Open
Abstract
Hemocytes play central roles in shrimp immune system, whereas whose subclasses have not yet been completely defined. At present, the morphological classification of hemocytes is inadequate to classify the complete hemocyte repertoire and elucidate the functions and differentiation and maturation processes. Based on single-cell RNA sequencing (scRNA-seq) of hemocytes in healthy Litopenaeus vannamei, combined with RNA-FISH and flow cytometric sorting, we identified three hemocyte clusters including TGase+ cells, CTL+ cells and Crustin+ cells, and further determined their functional properties, potential differentiation trajectory and correspondence with morphological subpopulations. The TGase+ cells were mainly responsible for the coagulation, exhibiting distinguishable characteristics of hyalinocyte, and appeared to be developmentally arrested at an early stage of hemocyte differentiation. The CTL+ cells and Crustin+ cells arrested at terminal stages of differentiation mainly participated in recognizing foreign pathogens and initiating immune defense responses, owning distinctive features of granule-containing hemocytes. Furthermore, we have revealed the functional sub-clusters of three hemocyte clusters and their potential differentiation pathways according to the expression of genes involved in cell cycle, cell differentiation and immune response, and the successive differentiation and maturation of hyalinocytes to granule-containing hemocytes have also mapped. The results revealed the diversity of shrimp hemocytes and provide new theoretical rationale for hemocyte classification, which also facilitate systematic research on crustacean immunity.
Collapse
Affiliation(s)
- Chuang Cui
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, The Key Laboratory of Mariculture, Ministry of Education (KLMME), Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
Ezeonwumelu IJ, García-Vidal E, Felip E, Puertas MC, Oriol-Tordera B, Gutiérrez-Chamorro L, Gohr A, Ruiz-Riol M, Massanella M, Clotet B, Martinez-Picado J, Badia R, Riveira-Muñoz E, Ballana E. IRF7 expression correlates with HIV latency reversal upon specific blockade of immune activation. Front Immunol 2022; 13:1001068. [PMID: 36131914 PMCID: PMC9484258 DOI: 10.3389/fimmu.2022.1001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The persistence of latent HIV reservoirs allows for viral rebound upon antiretroviral therapy interruption, hindering effective HIV-1 cure. Emerging evidence suggests that modulation of innate immune stimulation could impact viral latency and contribute to the clearing of HIV reservoir. Here, the latency reactivation capacity of a subclass of selective JAK2 inhibitors was characterized as a potential novel therapeutic strategy for HIV-1 cure. Notably, JAK2 inhibitors reversed HIV-1 latency in non-clonal lymphoid and myeloid in vitro models of HIV-1 latency and also ex vivo in CD4+ T cells from ART+ PWH, albeit its function was not dependent on JAK2 expression. Immunophenotypic characterization and whole transcriptomic profiling supported reactivation data, showing common gene expression signatures between latency reactivating agents (LRA; JAK2i fedratinib and PMA) in contrast to other JAK inhibitors, but with significantly fewer affected gene sets in the pathway analysis. In depth evaluation of differentially expressed genes, identified a significant upregulation of IRF7 expression despite the blockade of the JAK-STAT pathway and downregulation of proinflammatory cytokines and chemokines. Moreover, IRF7 expression levels positively correlated with HIV latency reactivation capacity of JAK2 inhibitors and also other common LRAs. Collectively, these results represent a promising step towards HIV eradication by demonstrating the potential of innate immune modulation for reducing the viral reservoir through a novel pathway driven by IRF7.
Collapse
Affiliation(s)
- Ifeanyi Jude Ezeonwumelu
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Edurne García-Vidal
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eudald Felip
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Medical Oncology Department, Catalan Institute of Oncology (ICO)-Badalona, B-ARGO (Badalona Applied Research Group in Oncology) and IGTP (Health Research Institute Germans Trias i Pujol), Universitat Autònoma de Barcelona, Badalona, Spain
| | - Maria C. Puertas
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Bruna Oriol-Tordera
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Lucía Gutiérrez-Chamorro
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - André Gohr
- Scientific Computing Facility, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Massanella
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Spain
| | - Javier Martinez-Picado
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
- Consorcio Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic – Central University of Catalonia (UVic – UCC), Vic, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Roger Badia
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eva Riveira-Muñoz
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Ester Ballana
- IrsiCaixa AIDS Research Institute – IrsiCaixa and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
7
|
Abstract
Chronic neuroinflammation is observed in HIV+ individuals on suppressive combination antiretroviral therapy (cART) and is thought to cause HIV-associated neurocognitive disorders. We have recently reported that expression of HIV intron-containing RNA (icRNA) in productively infected monocyte-derived macrophages induces pro-inflammatory responses. Microglia, yolk sac-derived brain-resident tissue macrophages, are the primary HIV-1 infected cell type in the central nervous system (CNS). In this study, we tested the hypothesis that persistent expression of HIV icRNA in primary human microglia induces innate immune activation. We established multiple orthogonal primary human microglia-like cell cultures including peripheral blood monocyte-derived microglia (MDMG) and induced pluripotent stem cell (iPSC)-derived microglia. Unlike MDMG, human iPSC-derived microglia (hiMG), which phenotypically mimic primary CNS microglia, were robustly infected with replication competent HIV-1, and establishment of productive HIV-1 infection and de novo viral gene expression led to pro-inflammatory cytokine production. Blocking of HIV-1 icRNA expression, but not multiply spliced viral RNA, either via infection with virus expressing a Rev-mutant deficient for HIV icRNA nuclear export or infection in the presence of small molecule inhibitor of CRM1-mediated viral icRNA nuclear export pathway, attenuated induction of innate immune responses. These studies suggest that Rev-CRM1-dependent nuclear export and cytosolic sensing of HIV-1 icRNA induces pro-inflammatory responses in productively infected microglia. Novel strategies targeting HIV icRNA expression specifically are needed to suppress HIV-induced neuroinflammation.
Collapse
|
8
|
Jiang S, Yang J, Fang DA. Transcriptome changes of Takifugu obscurus liver after acute exposure to the oxygenated-PAH 9,10-phenanthrenequione. Physiol Genomics 2020; 52:305-313. [PMID: 32538278 DOI: 10.1152/physiolgenomics.00022.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Contamination with polycyclic aromatic hydrocarbons (PAHs) causes noticeable ecological problems in aquatic ecosystems. 9,10-Phenanthrenequione (9,10-PQ) is an oxidized PAH and is highly toxic to aquatic animals. However, the effects of 9,10-PQ on the molecular metabolism of fish remain largely unknown. In this study, Takifugu obscurus juveniles were acutely exposed to 44.30 µg/L 9,10-PQ for 3 days. The transcriptome profile changes in their livers were compared between the 9,10-PQ treatment group and the control using T. rubripes as the reference genome. The results identified 22,414 genes in our transcriptome. Among them, 767 genes were differentially expressed after exposure to 9,10-PQ, which enriched 16 KEGG pathways. Among them, the glycolysis, phagosome, and FOXO signaling pathways were significantly activated in 9,10-PQ treatment compared with the control. These data indicate that 9,10-PQ increased the glycolysis capacity to produce more energy for resistance and harmed immune function. Moreover, several genes related to tumorigenesis were significantly upregulated in response to 9,10-PQ, displaying the carcinogenic toxicity of 9,10-PQ to T. obscurus. Genes in steroid biosynthesis pathways were downregulated in the 9,10-PQ treatment group, suggesting interference with the endocrine system. Overall, these findings provide information to help evaluate the environmental risks that oxygenated-PAHs present to T. obscurus.
Collapse
Affiliation(s)
- Shulun Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Jian Yang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Di-An Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, China
| |
Collapse
|
9
|
Huang LS, Kotha SR, Avasarala S, VanScoyk M, Winn RA, Pennathur A, Yashaswini PS, Bandela M, Salgia R, Tyurina YY, Kagan VE, Zhu X, Reddy SP, Sudhadevi T, Punathil-Kannan PK, Harijith A, Ramchandran R, Bikkavilli RK, Natarajan V. Lysocardiolipin acyltransferase regulates NSCLC cell proliferation and migration by modulating mitochondrial dynamics. J Biol Chem 2020; 295:13393-13406. [PMID: 32732285 DOI: 10.1074/jbc.ra120.012680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Lysocardiolipin acyltransferase (LYCAT), a cardiolipin (CL)-remodeling enzyme, is crucial for maintaining normal mitochondrial function and vascular development. Despite the well-characterized role for LYCAT in the regulation of mitochondrial dynamics, its involvement in lung cancer, if any, remains incompletely understood. In this study, in silico analysis of TCGA lung cancer data sets revealed a significant increase in LYCAT expression, which was later corroborated in human lung cancer tissues and immortalized lung cancer cell lines via indirect immunofluorescence and immunoblotting, respectively. Stable knockdown of LYCAT in NSCLC cell lines not only reduced CL and increased monolyso-CL levels but also reduced in vivo tumor growth, as determined by xenograft studies in athymic nude mice. Furthermore, blocking LYCAT activity using a LYCAT mimetic peptide attenuated cell migration, suggesting a novel role for LYCAT activity in promoting NSCLC. Mechanistically, the pro-proliferative effects of LYCAT were mediated by an increase in mitochondrial fusion and a G1/S cell cycle transition, both of which are linked to increased cell proliferation. Taken together, these results demonstrate a novel role for LYCAT in promoting NSCLC and suggest that targeting LYCAT expression or activity in NSCLC may provide new avenues for the therapeutic treatment of lung cancer.
Collapse
Affiliation(s)
- Long Shuang Huang
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA
| | - Sainath R Kotha
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA
| | | | - Michelle VanScoyk
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Robert A Winn
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Arjun Pennathur
- Department of Cardiothoracic Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | | | - Mounica Bandela
- Department of Medicine, University of Illinois, Chicago, Illinois, USA
| | - Ravi Salgia
- Beckman Research Institute, City of Hope, Los Angeles, California, USA
| | - Yulia Y Tyurina
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Valerian E Kagan
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Chemistry, Pharmacology, and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Laboratory of Navigational Redox Lipidomics, I. M. Sechenov Moscow State Medical University, Moscow, Russia
| | - Xiangdong Zhu
- Center for Cardiovascular Research and Department of Emergency Medicine, University of Illinois, Chicago, Illinois, USA
| | - Sekhar P Reddy
- Department of Pediatrics, University of Illinois, Chicago, Illinois, USA
| | - Tara Sudhadevi
- Department of Pediatrics, University of Illinois, Chicago, Illinois, USA
| | | | - Anantha Harijith
- Department of Pediatrics, University of Illinois, Chicago, Illinois, USA
| | | | | | - Viswanathan Natarajan
- Department of Pharmacology, University of Illinois, Chicago, Illinois, USA; Department of Medicine, University of Illinois, Chicago, Illinois, USA.
| |
Collapse
|
10
|
HIV-1 Persistence and Chronic Induction of Innate Immune Responses in Macrophages. Viruses 2020; 12:v12070711. [PMID: 32630058 PMCID: PMC7412260 DOI: 10.3390/v12070711] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
A hallmark of HIV-1 infection is chronic inflammation, which plays a significant role in disease pathogenesis. Acute HIV infection induces robust inflammatory responses, which are insufficient to prevent or eliminate virus in mucosal tissues. While establishment of viral set-point is coincident with downregulation of acute innate responses, systemic inflammatory responses persist during the course of chronic HIV infection. Since the introduction of combination antiviral therapy (cART), most HIV-1+ individuals can suppress viremia under detection levels for decades. However, chronic immune activation persists and has been postulated to cause HIV associated non-AIDS complications (HANA). Importantly, inflammatory cytokines and activation markers associated with macrophages are strongly and selectively correlated with the incidence of HIV-associated neurocognitive disorder (HAND), cardiovascular dysfunctions (CVD) and other HANA conditions. In this review, we discuss the roles of macrophages in facilitating viral persistence and contributing to generation of persistent inflammatory responses.
Collapse
|
11
|
Abstract
HIV-1 has evolved many strategies to circumvent the host’s antiviral innate immune responses and establishes disseminated infection; the molecular mechanisms of these strategies are not entirely clear. We showed previously that USP18 contributes to HIV-1 replication by abrogating p21 antiviral function. Here, we demonstrate a mechanism by which USP18 mediates p21 downregulation in myeloid cells. USP18, by its protease activity, accumulates misfolded p53, which requires ISG15 for clearance. Depletion of ISG15 causes accumulation of misfolded dominant negative p53, which supports HIV-1 replication. This work clarifies the function and consequences of p53 modification by ISG15 and implicates USP18 in HIV-1 infection and potentially in carcinogenesis. Macrophages and dendritic cells dominate early immune responses to lentiviruses. HIV-1 sensing by pathogen recognition receptors induces signaling cascades that culminate in type I alpha/beta interferon (IFN-α/β) induction. IFN-α/β signals back via the IFN-α/β receptors, inducing a plethora of IFN-stimulated gene (ISGs), including ISG15, p53, and p21Cip1. p21 inhibits HIV-1 replication by inactivating the deoxynucleoside triphosphate (dNTP) biosynthesis pathway and activating the restriction factor SAMHD1. p21 is induced by functional p53. ISG15-specific isopeptidase USP18 negatively regulates IFN signaling. We showed previously that USP18 contributes to HIV-1 replication by abrogating p21 antiviral function. Here, we demonstrate a mechanism by which USP18 mediates p21 downregulation in myeloid cells. USP18, by its protease activity, accumulates misfolded p53, which requires ISG15 for its degradation. Depletion of ISG15 causes accumulation of misfolded dominant negative p53, which enhances HIV-1 replication. This work clarifies the function and consequences of p53 modification by ISG15 and implicates USP18 in HIV-1 infection and potentially in carcinogenesis.
Collapse
|
12
|
Garcia-Vidal E, Badia R, Pujantell M, Castellví M, Felip E, Clotet B, Riveira-Muñoz E, Ballana E, Esté JA. Dual effect of the broad spectrum kinase inhibitor midostaurin in acute and latent HIV-1 infection. Antiviral Res 2019; 168:18-27. [PMID: 31077767 DOI: 10.1016/j.antiviral.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/03/2019] [Accepted: 05/07/2019] [Indexed: 01/26/2023]
Abstract
Midostaurin is a multi-kinase inhibitor with antineoplastic activity. We assessed the capacity of midostaurin to affect early and late steps of HIV-1 infection and to reactivate HIV-1 latently infected cells, alone or in combination with histone deacetylase inhibitors (HDACi) known to act as latency-reversing agents (LRA). Acute HIV-1 infection was assessed by flow cytometry in three cell types treated with midostaurin in the presence or absence of SAMHD1. Non-infected cells were treated with midostaurin and harvested for Western blot analysis. Macrophage infections were also measured by quantitative RT-PCR. HIV-1 latency reactivation was assessed in several latency models. Midostaurin induced G2/M arrest and inhibited CDK2, preventing the phosphorylation of SAMHD1 associated to inhibition of its dNTPase activity. In the presence of SAMHD1, midostaurin blocked HIV-1 DNA formation and viral replication. However, following Vpx-mediated SAMHD1 degradation, midostaurin increased viral transcripts and virus replication. In three out of four HIV-1 latency models, including primary CD4+ T cells, midostaurin effectively reversed HIV-1 latency and was synergistic in combination with LRA vorinostat and panobinostat. Our study describes a dual effect for midostaurin in HIV-1 infection, antiviral or proviral depending on SAMHD1 activation, and highlights a role for active SAMHD1 in regulating the activity of potential HIV-1 latency reversal agents.
Collapse
Affiliation(s)
- Edurne Garcia-Vidal
- AIDS Research Institute - IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Roger Badia
- AIDS Research Institute - IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Maria Pujantell
- AIDS Research Institute - IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Marc Castellví
- AIDS Research Institute - IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eudald Felip
- AIDS Research Institute - IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Bonaventura Clotet
- AIDS Research Institute - IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eva Riveira-Muñoz
- AIDS Research Institute - IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Ester Ballana
- AIDS Research Institute - IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| | - José A Esté
- AIDS Research Institute - IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| |
Collapse
|
13
|
Szaniawski MA, Spivak AM, Bosque A, Planelles V. Sex Influences SAMHD1 Activity and Susceptibility to Human Immunodeficiency Virus-1 in Primary Human Macrophages. J Infect Dis 2019; 219:777-785. [PMID: 30299483 PMCID: PMC6376916 DOI: 10.1093/infdis/jiy583] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 10/04/2018] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Macrophages are major targets for HIV-1, contribute to viral propagation in vivo, and are instrumental in the pathogenesis of HAND. While it is known that host sex affects HIV-1 viremia and influences the severity of HIV-1-associated neurocognitive disease, a cellular or molecular basis for these findings remains elusive. METHODS We explored whether sex affects HIV-1 infectivity of primary human macrophages and CD4+ T cells in vitro. RESULTS Macrophages derived from female donors were less susceptible to HIV-1 infection than those derived from males. This sex-dependent difference in macrophage infectivity was independent of the requirement for CD4/CCR5-mediated virus entry and was not observed in CD4+ T cells. Investigations into the mechanism governing these sex-dependent differences revealed that the host restriction factor SAMHD1 exists in a hyperphosphorylated, less active state in male-derived macrophages. In addition, the major kinase responsible for SAMHD1 phosphorylation, CDK1, exhibited lower levels of expression in female-derived macrophages in all tested donor pairs. The sex-dependent differences in viral restriction imposed by SAMHD1 were abrogated upon its depletion. CONCLUSIONS We conclude that SAMHD1 is an essential modulator of infectivity in a sex-dependent manner in macrophages, constituting a novel component of sex differences in innate immune control of HIV-1.
Collapse
Affiliation(s)
- Matthew A Szaniawski
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine
| | - Adam M Spivak
- Department of Medicine, University of Utah School of Medicine, Salt Lake City
| | - Alberto Bosque
- Department of Microbiology Immunology and Tropical Medicine, George Washington University, Washington, District of Columbia
| | - Vicente Planelles
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine
| |
Collapse
|
14
|
Cellular Determinants of HIV Persistence on Antiretroviral Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1075:213-239. [PMID: 30030795 DOI: 10.1007/978-981-13-0484-2_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The era of antiretroviral therapy has made HIV-1 infection a manageable chronic disease for those with access to treatment. Despite treatment, virus persists in tissue reservoirs seeded with long-lived infected cells that are resistant to cell death and immune recognition. Which cells contribute to this reservoir and which factors determine their persistence are central questions that need to be answered to achieve viral eradication. In this chapter, we describe how cell susceptibility to infection, resistance to cell death, and immune-mediated killing as well as natural cell life span and turnover potential are central components that allow persistence of different lymphoid and myeloid cell subsets that were recently identified as key players in harboring latent and actively replicating virus. The relative contribution of these subsets to persistence of viral reservoir is described, and the open questions are highlighted.
Collapse
|
15
|
Legionella pneumophila translocated translation inhibitors are required for bacterial-induced host cell cycle arrest. Proc Natl Acad Sci U S A 2019; 116:3221-3228. [PMID: 30718423 PMCID: PMC6386690 DOI: 10.1073/pnas.1820093116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cell cycle machinery controls diverse cellular pathways and is tightly regulated. Misregulation of cell division plays a central role in the pathogenesis of many disease processes. Various microbial pathogens interfere with the cell cycle machinery to promote host cell colonization. Although cell cycle modulation is a common theme among pathogens, the role this interference plays in promoting diseases is unclear. Previously, we demonstrated that the G1 and G2/M phases of the host cell cycle are permissive for Legionella pneumophila replication, whereas S phase provides a toxic environment for bacterial replication. In this study, we show that L. pneumophila avoids host S phase by blocking host DNA synthesis and preventing cell cycle progression into S phase. Cell cycle arrest upon Legionella contact is dependent on the Icm/Dot secretion system. In particular, we found that cell cycle arrest is dependent on the intact enzymatic activity of translocated substrates that inhibits host translation. Moreover, we show that, early in infection, the presence of these translation inhibitors is crucial to induce the degradation of the master regulator cyclin D1. Our results demonstrate that the bacterial effectors that inhibit translation are associated with preventing entry of host cells into a phase associated with restriction of L. pneumophila Furthermore, control of cyclin D1 may be a common strategy used by intracellular pathogens to manipulate the host cell cycle and promote bacterial replication.
Collapse
|
16
|
Abstract
HIV integrates into the host genome to create a persistent viral reservoir. Stimulation of CD4+ memory T lymphocytes with common γc-chain cytokines renders these cells more susceptible to HIV infection, making them a key component of the reservoir itself. IL-15 is up-regulated during primary HIV infection, a time when the HIV reservoir established. Therefore, we investigated the molecular and cellular impact of IL-15 on CD4+ T-cell infection. We found that IL-15 stimulation induces SAM domain and HD domain-containing protein 1 (SAMHD1) phosphorylation due to cell cycle entry, relieving an early block to infection. Perturbation of the pathways downstream of IL-15 receptor (IL-15R) indicated that SAMHD1 phosphorylation after IL-15 stimulation is JAK dependent. Treating CD4+ T cells with Ruxolitinib, an inhibitor of JAK1 and JAK2, effectively blocked IL-15-induced SAMHD1 phosphorylation and protected CD4+ T cells from HIV infection. Using high-resolution single-cell immune profiling using mass cytometry by TOF (CyTOF), we found that IL-15 stimulation altered the composition of CD4+ T-cell memory populations by increasing proliferation of memory CD4+ T cells, including CD4+ T memory stem cells (TSCM). IL-15-stimulated CD4+ TSCM, harboring phosphorylated SAMHD1, were preferentially infected. We propose that IL-15 plays a pivotal role in creating a self-renewing, persistent HIV reservoir by facilitating infection of CD4+ T cells with stem cell-like properties. Time-limited interventions with JAK1 inhibitors, such as Ruxolitinib, should prevent the inactivation of the endogenous restriction factor SAMHD1 and protect this long-lived CD4+ T-memory cell population from HIV infection.
Collapse
|
17
|
USP18 (UBP43) Abrogates p21-Mediated Inhibition of HIV-1. J Virol 2018; 92:JVI.00592-18. [PMID: 30068654 DOI: 10.1128/jvi.00592-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/25/2018] [Indexed: 12/17/2022] Open
Abstract
The host intrinsic innate immune system drives antiviral defenses and viral restriction, which includes the production of soluble factors, such as type I and III interferon (IFN), and activation of restriction factors, including SAMHD1, a deoxynucleoside triphosphohydrolase. Interferon-stimulated gene 15 (ISG15)-specific ubiquitin-like protease 43 (USP18) abrogates IFN signaling pathways. The cyclin-dependent kinase inhibitor p21 (CIP1/WAF1), which is involved in the differentiation and maturation of monocytes, inhibits human immunodeficiency virus type 1 (HIV-1) in macrophages and dendritic cells. p21 inhibition of HIV-1 replication is thought to occur at the reverse transcription step, likely by suppressing cellular deoxynucleoside triphosphate (dNTP) biosynthesis and increasing the amount of antivirally active form of SAMHD1. SAMHD1 strongly inhibits HIV-1 replication in myeloid and resting CD4+ T cells. Here, we studied how USP18 influences HIV-1 replication in human myeloid THP-1 cells. We found that USP18 has the novel ability to inhibit the antiviral function of p21 in differentiated THP-1 cells. USP18 enhanced reverse transcription of HIV-1 by downregulating p21 expression and upregulating intracellular dNTP levels. p21 downregulation by USP18 was associated with the active form of SAMHD1, phosphorylated at T592. USP18 formed a complex with the E3 ubiquitin ligase recognition factor SKP2 (S-phase kinase associated protein 2) and SAMHD1. CRISPR-Cas9 knockout of USP18 increased p21 protein expression and blocked HIV-1 replication. Overall, we propose USP18 as a regulator of p21 antiviral function in differentiated myeloid THP-1 cells.IMPORTANCE Macrophages and dendritic cells are usually the first point of contact with pathogens, including lentiviruses. Host restriction factors, including SAMHD1, mediate the innate immune response against these viruses. However, HIV-1 has evolved to circumvent the innate immune response and establishes disseminated infection. The cyclin-dependent kinase inhibitor p21, which is involved in differentiation and maturation of monocytes, blocks HIV-1 replication at the reverse transcription step. p21 is thought to suppress key enzymes involved in dNTP biosynthesis and activates SAMHD1 antiviral function. We report here that the human USP18 protein is a novel factor potentially contributing to HIV replication by blocking the antiviral function of p21 in differentiated human myeloid cells. USP18 downregulates p21 protein expression, which correlates with upregulated intracellular dNTP levels and the antiviral inactive form of SAMHD1. Depletion of USP18 stabilizes p21 protein expression, which correlates with dephosphorylated SAMHD1 and a block to HIV-1 replication.
Collapse
|
18
|
Bray M, Andrei G, Ballana E, Carter K, Durantel D, Gentry B, Janeba Z, Moffat J, Oomen CJ, Tarbet B, Riveira-Muñoz E, Esté JA. Meeting report: 31 st International Conference on Antiviral Research. Antiviral Res 2018; 158:88-102. [PMID: 30086336 PMCID: PMC7113893 DOI: 10.1016/j.antiviral.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 12/29/2022]
Abstract
The 31st International Conference on Antiviral Research (ICAR) was held in Porto, Portugal from June 11–15, 2018. In this report, volunteer rapporteurs provide their summaries of scientific presentations, hoping to effectively convey the speakers' goals and the results and conclusions of their talks. This report provides an overview of the invited keynote and award lectures and highlights of short oral presentations, from the perspective of experts in antiviral research. Of note, a session on human cytomegalovirus included an update on the introduction to the clinic of letermovir for the prevention of CMV infection and disease. The 31st ICAR successfully promoted new discoveries in antiviral research and drug development. The 32nd ICAR will be held in Baltimore, Maryland, USA, May 6–10, 2019. The 31st ICAR was held in Porto, Portugal, June 11–15, 2018. This article provides an overview of the invited keynote and award lectures and highlights of short oral presentations. ICAR provided an interdisciplinary forum to review recent developments in all areas of antiviral research. The 32nd ICAR will be held in Baltimore, Maryland, USA, May 6–10, 2019.
Collapse
Affiliation(s)
| | - Graciela Andrei
- KU Leuven, Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, B-3000 Leuven, Belgium
| | - Ester Ballana
- AIDS Research Institute - Irsicaixa, Hospital Germans Trias i Pujol, Universitat Autónoma de Barcelona, Badalona, Spain
| | | | - David Durantel
- Cancer Research Centre of Lyon (CRCL), INSERM, U1052, UMR_5286 CNRS/University of Lyon, Lyon, France
| | - Brian Gentry
- Drake University College of Pharmacy and Health Sciences, Des Moines, IA, USA
| | - Zlatko Janeba
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, CZ-16610 Prague 6, Czech Republic
| | | | - Clasien J Oomen
- Virology Division, Dept. of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bart Tarbet
- Institute for Antiviral Research, Utah State University, Logan, UT, USA
| | - Eva Riveira-Muñoz
- AIDS Research Institute - Irsicaixa, Hospital Germans Trias i Pujol, Universitat Autónoma de Barcelona, Badalona, Spain.
| | - José A Esté
- AIDS Research Institute - Irsicaixa, Hospital Germans Trias i Pujol, Universitat Autónoma de Barcelona, Badalona, Spain.
| |
Collapse
|
19
|
ADAR1 affects HCV infection by modulating innate immune response. Antiviral Res 2018; 156:116-127. [PMID: 29906476 DOI: 10.1016/j.antiviral.2018.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
The hepatitis C virus (HCV) is a globally prevalent infectious pathogen. As many as 80% of people infected with HCV do not control the virus and develop a chronic infection. Response to interferon (IFN) therapy is widely variable in chronic HCV infected patients, suggesting that HCV has evolved mechanisms to suppress and evade innate immunity responsible for its control and elimination. Adenosine deaminase acting on RNA 1 (ADAR1) is a relevant factor in the regulation of the innate immune response. The loss of ADAR1 RNA-editing activity and the resulting loss of inosine bases in RNA are critical in producing aberrant RLR-mediated innate immune response, mediated by RNA sensors MDA5 and RIG-I. Here, we describe ADAR1 role as a regulator of innate and antiviral immune function in HCV infection, both in vitro and in patients. Polymorphisms within ADAR1 gene were found significantly associated to poor clinical outcome to HCV therapy and advanced liver fibrosis in a cohort of HCV and HIV-1 coinfected patients. Moreover, ADAR1 knockdown in primary macrophages and Huh7 hepatoma cells enhanced IFN and IFN stimulated gene expression and increased HCV replication in vitro. Overall, our results demonstrate that ADAR1 regulates innate immune signaling and is an important contributor to the outcome of the HCV virus-host interaction. ADAR1 is a potential target to boost antiviral immune response in HCV infection.
Collapse
|
20
|
Lentiviral infection of proliferating brain macrophages in HIV and simian immunodeficiency virus encephalitis despite sterile alpha motif and histidine-aspartate domain-containing protein 1 expression. AIDS 2018; 32:965-974. [PMID: 29698322 PMCID: PMC5943146 DOI: 10.1097/qad.0000000000001793] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Objective: HIV-1 infection of the brain and related cognitive impairment remain prevalent in HIV-1-infected individuals despite combination antiretroviral therapy. Sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1) is a newly identified host restriction factor that blocks the replication of HIV-1 and other retroviruses in myeloid cells. Cell cycle-regulated phosphorylation at residue Thr592 and viral protein X (Vpx)-mediated degradation of SAMHD1 have been shown to bypass SAMHD1 restriction in vitro. Herein, we investigated expression and phosphorylation of SAMHD1 in vivo in relation to macrophage infection and proliferation during the neuropathogenesis of HIV-1 and simian immunodeficiency virus (SIV) encephalitis. Methods: Using brain and other tissues from uninfected and SIV-infected macaques with or without encephalitis, we performed immunohistochemistry, multilabel fluorescence microscopy and western blot to examine the expression, localization and phosphorylation of SAMHD1. Results: The number of SAMHD1+ nuclei increased in encephalitic brains despite the presence of Vpx. Many of these cells were perivascular macrophages, although subsets of SAMHD1+ microglia and endothelial cells were also observed. The SAMHD1+ macrophages were shown to be both infected and proliferating. Moreover, the presence of cycling SAMHD1+ brain macrophages was confirmed in the tissue of HIV-1-infected patients with encephalitis. Finally, western blot analysis of brain-protein extracts from SIV-infected macaques showed that SAMHD1 protein exists in the brain mainly as an inactive Thr592-phosphorylated form. Conclusion: The ability of SAMHD1 to act as a restriction factor for SIV/HIV in the brain is likely bypassed in proliferating brain macrophages through the phosphorylation-mediated inactivation, not Vpx-mediated degradation of SAMHD1.
Collapse
|
21
|
SAMHD1 Phosphorylation Coordinates the Anti-HIV-1 Response by Diverse Interferons and Tyrosine Kinase Inhibition. mBio 2018; 9:mBio.00819-18. [PMID: 29764952 PMCID: PMC5954222 DOI: 10.1128/mbio.00819-18] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Macrophages are susceptible to human immunodeficiency virus type 1 (HIV-1) infection despite abundant expression of antiviral proteins. Perhaps the most important antiviral protein is the restriction factor sterile alpha motif domain and histidine/aspartic acid domain-containing protein 1 (SAMHD1). We investigated the role of SAMHD1 and its phospho-dependent regulation in the context of HIV-1 infection in primary human monocyte-derived macrophages and the ability of various interferons (IFNs) and pharmacologic agents to modulate SAMHD1. Here we show that stimulation by type I, type II, and to a lesser degree, type III interferons share activation of SAMHD1 via dephosphorylation at threonine-592 as a consequence of signaling. Cyclin-dependent kinase 1 (CDK1), a known effector kinase for SAMHD1, was downregulated at the protein level by all IFN types tested. Pharmacologic inhibition or small interfering RNA (siRNA)-mediated knockdown of CDK1 phenocopied the effects of IFN on SAMHD1. A panel of FDA-approved tyrosine kinase inhibitors potently induced activation of SAMHD1 and subsequent HIV-1 inhibition. The viral restriction imposed via IFNs or dasatinib could be overcome through depletion of SAMHD1, indicating that their effects are exerted primarily through this pathway. Our results demonstrate that SAMHD1 activation, but not transcriptional upregulation or protein induction, is the predominant mechanism of HIV-1 restriction induced by type I, type II, and type III IFN signaling in macrophages. Furthermore, SAMHD1 activation presents a pharmacologically actionable target through which HIV-1 infection can be subverted. Our experimental results demonstrate that SAMHD1 dephosphorylation at threonine-592 represents a central mechanism of HIV-1 restriction that is common to the three known families of IFNs. While IFN types I and II were potent inhibitors of HIV-1, type III IFN showed modest to undetectable activity. Regulation of SAMHD1 by IFNs involved changes in phosphorylation status but not in protein levels. Phosphorylation of SAMHD1 in macrophages occurred at least in part via CDK1. Tyrosine kinase inhibitors similarly induced SAMHD1 dephosphorylation, which protects macrophages from HIV-1 in a SAMHD1-dependent manner. SAMHD1 is a critical restriction factor regulating HIV-1 infection of macrophages.
Collapse
|
22
|
Abstract
Monocyte-derived macrophages (MDMs) are an important target for HIV-1 despite SAMHD1, a myeloid restriction factor for which HIV-1 lacks a counteracting accessory protein. The antiviral activity of SAMHD1 is modulated by phosphorylation of T592 by cyclin-dependent kinases (CDK). We show that treatment of MDMs with neocarzinostatin, a compound that introduces double strand breaks (DBS) in genomic DNA, results in the decrease of phosphorylated SAMHD1, activating its antiviral activity and blocking HIV-1 infection. The effect was specific for DSB as DNA damage induced by UV light irradiation did not affect SAMHD1 phosphorylation and did not block infection. The block to infection was at reverse transcription and was counteracted by Vpx, demonstrating that it was caused by SAMHD1. Neocarzinostatin treatment also activated an innate immune response that induced interferon-stimulated genes but this was not involved in the block to HIV-1 infection, as it was not relieved by an interferon-blocking antibody. In response to Neocarzinostatin-induced DNA damage, the level of the CDK inhibitor p21cip1 increased which could account for the decrease of phosphorylated SAMHD1. The results show that the susceptibility of MDMs to HIV-1 infection can be affected by stimuli that alter the phosphorylation state of SAMHD1, one of which is the DNA damage response.
Collapse
Affiliation(s)
- Paula Jáuregui
- Department of Microbiology, NYU School of Medicine, Smilow Research Building, Rm. 1003, 550 First Avenue, New York, 10016, USA
| | - Nathaniel R Landau
- Department of Microbiology, NYU School of Medicine, Smilow Research Building, Rm. 1003, 550 First Avenue, New York, 10016, USA.
| |
Collapse
|
23
|
Mlcochova P, Caswell SJ, Taylor IA, Towers GJ, Gupta RK. DNA damage induced by topoisomerase inhibitors activates SAMHD1 and blocks HIV-1 infection of macrophages. EMBO J 2018; 37:50-62. [PMID: 29084722 PMCID: PMC5753034 DOI: 10.15252/embj.201796880] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 12/15/2022] Open
Abstract
We report that DNA damage induced by topoisomerase inhibitors, including etoposide (ETO), results in a potent block to HIV-1 infection in human monocyte-derived macrophages (MDM). SAMHD1 suppresses viral reverse transcription (RT) through depletion of cellular dNTPs but is naturally switched off by phosphorylation in a subpopulation of MDM found in a G1-like state. We report that SAMHD1 was activated by dephosphorylation following ETO treatment, along with loss of expression of MCM2 and CDK1, and reduction in dNTP levels. Suppression of infection occurred after completion of viral DNA synthesis, at the step of 2LTR circle and provirus formation. The ETO-induced block was completely rescued by depletion of SAMHD1 in MDM Concordantly, infection by HIV-2 and SIVsm encoding the SAMHD1 antagonist Vpx was insensitive to ETO treatment. The mechanism of DNA damage-induced blockade of HIV-1 infection involved activation of p53, p21, decrease in CDK1 expression, and SAMHD1 dephosphorylation. Therefore, topoisomerase inhibitors regulate SAMHD1 and HIV permissivity at a post-RT step, revealing a mechanism by which the HIV-1 reservoir may be limited by chemotherapeutic drugs.
Collapse
Affiliation(s)
| | - Sarah J Caswell
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, UK
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, UK
| | | | - Ravindra K Gupta
- Division of Infection and Immunity, UCL, London, UK
- Africa Health Research Institute, Durban, KwaZulu Natal, South Africa
| |
Collapse
|
24
|
Rodrigues V, Ruffin N, San-Roman M, Benaroch P. Myeloid Cell Interaction with HIV: A Complex Relationship. Front Immunol 2017; 8:1698. [PMID: 29250073 PMCID: PMC5714857 DOI: 10.3389/fimmu.2017.01698] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022] Open
Abstract
Cells of the myeloid lineage, particularly macrophages, serve as primary hosts for HIV in vivo, along with CD4 T lymphocytes. Macrophages are present in virtually every tissue of the organism, including locations with negligible T cell colonization, such as the brain, where HIV-mediated inflammation may lead to pathological sequelae. Moreover, infected macrophages are present in multiple other tissues. Recent evidence obtained in humanized mice and macaque models highlighted the capacity of macrophages to sustain HIV replication in vivo in the absence of T cells. Combined with the known resistance of the macrophage to the cytopathic effects of HIV infection, such data bring a renewed interest in this cell type both as a vehicle for viral spread as well as a viral reservoir. While our understanding of key processes of HIV infection of macrophages is far from complete, recent years have nevertheless brought important insight into the uniqueness of the macrophage infection. Productive infection of macrophages by HIV can occur by different routes including from phagocytosis of infected T cells. In macrophages, HIV assembles and buds into a peculiar plasma membrane-connected compartment that preexists to the infection. While the function of such compartment remains elusive, it supposedly allows for the persistence of infectious viral particles over extended periods of time and may play a role on viral transmission. As cells of the innate immune system, macrophages have the capacity to detect and respond to viral components. Recent data suggest that such sensing may occur at multiple steps of the viral cycle and impact subsequent viral spread. We aim to provide an overview of the HIV-macrophage interaction along the multiple stages of the viral life cycle, extending when pertinent such observations to additional myeloid cell types such as dendritic cells or blood monocytes.
Collapse
Affiliation(s)
- Vasco Rodrigues
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Nicolas Ruffin
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Mabel San-Roman
- Institut Curie, PSL Research University, UMR3216, Paris, France
| | | |
Collapse
|
25
|
p21 Restricts HIV-1 in Monocyte-Derived Dendritic Cells through the Reduction of Deoxynucleoside Triphosphate Biosynthesis and Regulation of SAMHD1 Antiviral Activity. J Virol 2017; 91:JVI.01324-17. [PMID: 28931685 DOI: 10.1128/jvi.01324-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/15/2017] [Indexed: 02/07/2023] Open
Abstract
HIV-1 infection of noncycling cells, such as dendritic cells (DCs), is impaired due to limited availability of deoxynucleoside triphosphates (dNTPs), which are needed for HIV-1 reverse transcription. The levels of dNTPs are tightly regulated during the cell cycle and depend on the balance between dNTP biosynthesis and degradation. SAMHD1 potently blocks HIV-1 replication in DCs, although the underlying mechanism is still unclear. SAMHD1 has been reported to be able to degrade dNTPs and viral nucleic acids, which may both hamper HIV-1 reverse transcription. The relative contribution of these activities may differ in cycling and noncycling cells. Here, we show that inhibition of HIV-1 replication in monocyte-derived DCs (MDDCs) is associated with an increased expression of p21cip1/waf, a cell cycle regulator that is involved in the differentiation and maturation of DCs. Induction of p21 in MDDCs decreases the pool of dNTPs and increases the antiviral active isoform of SAMHD1. Although both processes are complementary in inhibiting HIV-1 replication, the antiviral activity of SAMHD1 in our primary cell model appears to be, at least partially, independent of its dNTPase activity. The reduction in the pool of dNTPs in MDDCs appears rather mostly due to a p21-mediated suppression of several enzymes involved in dNTP synthesis (i.e., RNR2, TYMS, and TK-1). These results are important to better understand the interplay between HIV-1 and DCs and may inform the design of new therapeutic approaches to decrease viral dissemination and improve immune responses against HIV-1.IMPORTANCE DCs play a key role in the induction of immune responses against HIV. However, HIV has evolved ways to exploit these cells, facilitating immune evasion and virus dissemination. We have found that the expression of p21, a cyclin-dependent kinase inhibitor involved in cell cycle regulation and monocyte differentiation and maturation, potentially can contribute to the inhibition of HIV-1 replication in monocyte-derived DCs through multiple mechanisms. p21 decreased the size of the intracellular dNTP pool. In parallel, p21 prevented SAMHD1 phosphorylation and promoted SAMHD1 dNTPase-independent antiviral activity. Thus, induction of p21 resulted in conditions that allowed the effective inhibition of HIV-1 replication through complementary mechanisms. Overall, p21 appears to be a key regulator of HIV infection in myeloid cells.
Collapse
|
26
|
Garcia-Vidal E, Castellví M, Pujantell M, Badia R, Jou A, Gomez L, Puig T, Clotet B, Ballana E, Riveira-Muñoz E, Esté JA. Evaluation of the Innate Immune Modulator Acitretin as a Strategy To Clear the HIV Reservoir. Antimicrob Agents Chemother 2017; 61:e01368-17. [PMID: 28874382 PMCID: PMC5655051 DOI: 10.1128/aac.01368-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/31/2017] [Indexed: 02/07/2023] Open
Abstract
The persistence of HIV despite suppressive antiretroviral therapy is a major roadblock to HIV eradication. Current strategies focused on inducing the expression of latent HIV fail to clear the persistent reservoir, prompting the development of new approaches for killing HIV-positive cells. Recently, acitretin was proposed as a pharmacological enhancer of the innate cellular defense network that led to virus reactivation and preferential death of infected cells. We evaluated the capacity of acitretin to reactivate and/or to facilitate immune-mediated clearance of HIV-positive cells. Acitretin did not induce HIV reactivation in latently infected cell lines (J-Lat and ACH-2). We could observe only modest induction of HIV reactivation by acitretin in latently green fluorescent protein-HIV-infected Jurkat cells, comparable to suboptimal concentrations of vorinostat, a known latency-reversing agent (LRA). Acitretin induction was insignificant, however, compared to optimal concentrations of LRAs. Acitretin failed to reactivate HIV in a model of latently infected primary CD4+ T cells but induced retinoic acid-inducible gene I (RIG-I) and mitochondrial antiviral signaling (MAVS) expression in infected and uninfected cells, confirming the role of acitretin as an innate immune modulator. However, this effect was not associated with selective killing of HIV-positive cells. In conclusion, acitretin-mediated stimulation of the RIG-I pathway for HIV reactivation is modest and thus may not meaningfully affect the HIV reservoir. Stimulation of the RIG-I-dependent interferon (IFN) cascade by acitretin may not significantly affect the selective destruction of latently infected HIV-positive cells.
Collapse
Affiliation(s)
- Edurne Garcia-Vidal
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Marc Castellví
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Maria Pujantell
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Roger Badia
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Antoni Jou
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Lucia Gomez
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Teresa Puig
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Bonaventura Clotet
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Ester Ballana
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Eva Riveira-Muñoz
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - José A Esté
- AIDS Research Institute IrsiCaixa, AIDS Unit and Health Research Institute Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| |
Collapse
|
27
|
RNA editing by ADAR1 regulates innate and antiviral immune functions in primary macrophages. Sci Rep 2017; 7:13339. [PMID: 29042669 PMCID: PMC5645456 DOI: 10.1038/s41598-017-13580-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022] Open
Abstract
ADAR1-dependent A-to-I editing has recently been recognized as a key process for marking dsRNA as self, therefore, preventing innate immune activation and affecting the development and resolution of immune-mediated diseases and infections. Here, we have determined the role of ADAR1 as a regulator of innate immune activation and modifier of viral susceptibility in primary myeloid and lymphoid cells. We show that ADAR1 knockdown significantly enhanced interferon, cytokine and chemokine production in primary macrophages that function as antiviral paracrine factors, rendering them resistant to HIV-1 infection. ADAR1 knockdown induced deregulation of the RLRs-MAVS signaling pathway, by increasing MDA5, RIG-I, IRF7 and phospho-STAT1 expression, an effect that was partially rescued by pharmacological blockade of the pathway. In summary, our results demonstrate a role of ADAR1 in regulating innate immune function in primary macrophages, suggesting that macrophages may play an essential role in disease associated to ADAR1 dysfunction. We also show that viral inhibition is exclusively dependent on innate immune activation consequence of ADAR1 knockdown, pointing towards ADAR1 as a potential target to boost antiviral immune response.
Collapse
|
28
|
Badia R, Pujantell M, Torres-Torronteras J, Menéndez-Arias L, Martí R, Ruzo A, Pauls E, Clotet B, Ballana E, Esté JA, Riveira-Muñoz E. SAMHD1 is active in cycling cells permissive to HIV-1 infection. Antiviral Res 2017; 142:123-135. [PMID: 28359840 DOI: 10.1016/j.antiviral.2017.03.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/24/2017] [Accepted: 03/25/2017] [Indexed: 12/19/2022]
Abstract
SAMHD1 is a triphosphohydrolase that restricts HIV-1 by limiting the intracellular dNTP pool required for reverse transcription. Although SAMHD1 is expressed and active/unphosphorylated in most cell lines, its restriction activity is thought to be relevant only in non-cycling cells. However, an in depth evaluation of SAMHD1 function and relevance in cycling cells is required. Here, we show that SAMHD1-induced degradation by HIV-2 Vpx affects the dNTP pool and HIV-1 replication capacity in the presence of the 3'-azido-3'-deoxythymidine (AZT) in cycling cells. Similarly, in SAMHD1 knockout cells, HIV-1 showed increased replicative capacity in the presence of nucleoside inhibitors, especially AZT, that was reverted by re-expression of wild type SAMHD1. Sensitivity to non-nucleoside inhibitors (nevirapine and efavirenz) or the integrase inhibitor raltegravir was not affected by SAMHD1. Combination of three mutations (S18A, T21A, T25A) significantly prevented SAMHD1 phosphorylation but did not significantly affect HIV-1 replication in the presence of AZT. Our results demonstrate that SAMHD1 is active in HIV-1 permissive cells, does not modify susceptibility to HIV-1 infection but strongly affects sensitivity to nucleoside inhibitors.
Collapse
Affiliation(s)
- Roger Badia
- AIDS Research Institute - IrsiCaixa and Health Research, Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Maria Pujantell
- AIDS Research Institute - IrsiCaixa and Health Research, Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Javier Torres-Torronteras
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain
| | - Luis Menéndez-Arias
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ramón Martí
- Research Group on Neuromuscular and Mitochondrial Disorders, Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Biomedical Network Research Centre on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Spain
| | - Albert Ruzo
- Laboratory of Molecular Embryology, The Rockefeller University, New York, NY, USA
| | - Eduardo Pauls
- AIDS Research Institute - IrsiCaixa and Health Research, Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain; Joint IRB-BSC-CRG Program in Computational Biology, Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia, Spain
| | - Bonaventura Clotet
- AIDS Research Institute - IrsiCaixa and Health Research, Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Ester Ballana
- AIDS Research Institute - IrsiCaixa and Health Research, Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - José A Esté
- AIDS Research Institute - IrsiCaixa and Health Research, Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| | - Eva Riveira-Muñoz
- AIDS Research Institute - IrsiCaixa and Health Research, Institute Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| |
Collapse
|
29
|
Mlcochova P, Sutherland KA, Watters SA, Bertoli C, de Bruin RA, Rehwinkel J, Neil SJ, Lenzi GM, Kim B, Khwaja A, Gage MC, Georgiou C, Chittka A, Yona S, Noursadeghi M, Towers GJ, Gupta RK. A G1-like state allows HIV-1 to bypass SAMHD1 restriction in macrophages. EMBO J 2017; 36:604-616. [PMID: 28122869 PMCID: PMC5331754 DOI: 10.15252/embj.201696025] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 01/09/2023] Open
Abstract
An unresolved question is how HIV-1 achieves efficient replication in terminally differentiated macrophages despite the restriction factor SAMHD1. We reveal inducible changes in expression of cell cycle-associated proteins including MCM2 and cyclins A, E, D1/D3 in macrophages, without evidence for DNA synthesis or mitosis. These changes are induced by activation of the Raf/MEK/ERK kinase cascade, culminating in upregulation of CDK1 with subsequent SAMHD1 T592 phosphorylation and deactivation of its antiviral activity. HIV infection is limited to these G1-like phase macrophages at the single-cell level. Depletion of SAMHD1 in macrophages decouples the association between infection and expression of cell cycle-associated proteins, with terminally differentiated macrophages becoming highly susceptible to HIV-1. We observe both embryo-derived and monocyte-derived tissue-resident macrophages in a G1-like phase at frequencies approaching 20%, suggesting how macrophages sustain HIV-1 replication in vivo Finally, we reveal a SAMHD1-dependent antiretroviral activity of histone deacetylase inhibitors acting via p53 activation. These data provide a basis for host-directed therapeutic approaches aimed at limiting HIV-1 burden in macrophages that may contribute to curative interventions.
Collapse
Affiliation(s)
- Petra Mlcochova
- Division of Infection and Immunity, University College London, London, UK
| | | | - Sarah A Watters
- Division of Infection and Immunity, University College London, London, UK
| | - Cosetta Bertoli
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Rob Am de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Radcliffe Department of Medicine, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Stuart J Neil
- Division of Immunology, Infection and Inflammatory Disease, King's College, London, UK
| | - Gina M Lenzi
- Department of Pediatrics, Center for Drug Discovery, Emory School of Medicine, Atlanta, GA, USA
| | - Baek Kim
- Department of Pediatrics, Center for Drug Discovery, Emory School of Medicine, Atlanta, GA, USA
| | - Asim Khwaja
- Research Department of Haematology, UCL, London, UK
| | - Matthew C Gage
- Division of Medicine, University College London, London, UK
| | | | | | - Simon Yona
- Division of Medicine, University College London, London, UK
| | - Mahdad Noursadeghi
- Division of Infection and Immunity, University College London, London, UK
| | - Greg J Towers
- Division of Infection and Immunity, University College London, London, UK
| | - Ravindra K Gupta
- Division of Infection and Immunity, University College London, London, UK
- Africa Health Research Institute, KwaZulu Natal, South Africa
| |
Collapse
|
30
|
Ordonez P, Kunzelmann S, Groom HCT, Yap MW, Weising S, Meier C, Bishop KN, Taylor IA, Stoye JP. SAMHD1 enhances nucleoside-analogue efficacy against HIV-1 in myeloid cells. Sci Rep 2017; 7:42824. [PMID: 28220857 PMCID: PMC5318888 DOI: 10.1038/srep42824] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/16/2017] [Indexed: 11/17/2022] Open
Abstract
SAMHD1 is an intracellular enzyme that specifically degrades deoxynucleoside triphosphates into component nucleoside and inorganic triphosphate. In myeloid-derived dendritic cells and macrophages as well as resting T-cells, SAMHD1 blocks HIV-1 infection through this dNTP triphosphohydrolase activity by reducing the cellular dNTP pool to a level that cannot support productive reverse transcription. We now show that, in addition to this direct effect on virus replication, manipulating cellular SAMHD1 activity can significantly enhance or decrease the anti-HIV-1 efficacy of nucleotide analogue reverse transcription inhibitors presumably as a result of modulating dNTP pools that compete for recruitment by viral polymerases. Further, a variety of other nucleotide-based analogues, not normally considered antiretrovirals, such as the anti-herpes drugs Aciclovir and Ganciclovir and the anti-cancer drug Clofarabine are now revealed as potent anti-HIV-1 agents, under conditions of low dNTPs. This in turn suggests novel uses for nucleotide analogues to inhibit HIV-1 in differentiated cells low in dNTPs.
Collapse
Affiliation(s)
- Paula Ordonez
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, London, UK
| | - Simone Kunzelmann
- Structural Biology Science Technology Platform, The Francis Crick Institute, London, UK
| | - Harriet C. T. Groom
- Infection and Replication of Retroviruses Laboratory, The Francis Crick Institute, London, UK
| | - Melvyn W. Yap
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, London, UK
| | - Simon Weising
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, University of Hamburg, Germany
| | - Chris Meier
- Organic Chemistry, Department of Chemistry, Faculty of Sciences, University of Hamburg, Germany
| | - Kate N. Bishop
- Infection and Replication of Retroviruses Laboratory, The Francis Crick Institute, London, UK
| | - Ian A. Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, London, UK
| | - Jonathan P. Stoye
- Retrovirus-Host Interactions Laboratory, The Francis Crick Institute, London, UK
- Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
31
|
St Gelais C, Kim SH, Ding L, Yount JS, Ivanov D, Spearman P, Wu L. A Putative Cyclin-binding Motif in Human SAMHD1 Contributes to Protein Phosphorylation, Localization, and Stability. J Biol Chem 2016; 291:26332-26342. [PMID: 27815502 DOI: 10.1074/jbc.m116.753947] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/26/2016] [Indexed: 01/01/2023] Open
Abstract
SAMHD1 (sterile α motif and HD domain-containing protein 1) is a mammalian protein that regulates intracellular dNTP levels through its hydrolysis of dNTPs. SAMHD1 functions as an important retroviral restriction factor through a mechanism relying on its dNTPase activity. We and others have reported that human SAMHD1 interacts with the cell cycle regulatory proteins cyclin A, CDK1, and CDK2, which mediates phosphorylation of SAMHD1 at threonine 592, a post-translational modification that has been implicated in abrogating SAMHD1 restriction function and ability to form stable tetramers. Utilizing co-immunoprecipitation and co-localization approaches, we show that endogenous SAMHD1 is able to interact with the cyclin A-CDK1-CDK2 complexin monocytic THP-1 cells and primary monocyte-derived macrophages. Sequence analysis of SAMHD1 identifies a putative cyclin-binding motif found in many cyclin-CDK complex substrates. Using a mutagenesis-based approach, we demonstrate that the conserved residues in the putative cyclin-binding motif are important for protein expression, protein half-life, and optimal phosphorylation of SAMHD1 at Thr592 Furthermore, we observed that SAMHD1 mutants of the cyclin-binding motif mislocalized to a nuclear compartment and had reduced ability to interact with cyclin A-CDK complexes and to form the tetramer. These findings help define the mechanisms by which SAMHD1 is phosphorylated and suggest the contribution of cyclin binding to SAMHD1 expression and stability in dividing cells.
Collapse
Affiliation(s)
- Corine St Gelais
- From the Center of Retrovirus Research, Department of Veterinary Biosciences and
| | - Sun Hee Kim
- From the Center of Retrovirus Research, Department of Veterinary Biosciences and
| | - Lingmei Ding
- the Department of Pediatrics, Emory University, Atlanta, Georgia 30322
| | - Jacob S Yount
- the Department of Microbial Infection and Immunity, Ohio State University, Columbus, Ohio 43210
| | - Dmitri Ivanov
- the Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Paul Spearman
- the Department of Pediatrics, Emory University, Atlanta, Georgia 30322.,Children's Healthcare of Atlanta, Atlanta, Georgia 30322, and
| | - Li Wu
- From the Center of Retrovirus Research, Department of Veterinary Biosciences and .,the Department of Microbial Infection and Immunity, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|