1
|
Abstract
Wolbachia are successful Gram-negative bacterial endosymbionts, globally infecting a large fraction of arthropod species and filarial nematodes. Efficient vertical transmission, the capacity for horizontal transmission, manipulation of host reproduction and enhancement of host fitness can promote the spread both within and between species. Wolbachia are abundant and can occupy extraordinary diverse and evolutionary distant host species, suggesting that they have evolved to engage and manipulate highly conserved core cellular processes. Here, we review recent studies identifying Wolbachia-host interactions at the molecular and cellular levels. We explore how Wolbachia interact with a wide array of host cytoplasmic and nuclear components in order to thrive in a diversity of cell types and cellular environments. This endosymbiont has also evolved the ability to precisely target and manipulate specific phases of the host cell cycle. The remarkable diversity of cellular interactions distinguishes Wolbachia from other endosymbionts and is largely responsible for facilitating its global propagation through host populations. Finally, we describe how insights into Wolbachia-host cellular interactions have led to promising applications in controlling insect-borne and filarial nematode-based diseases.
Collapse
Affiliation(s)
- Jillian Porter
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA
| | - William Sullivan
- Molecular, Cell and Developmental Biology, UC Santa Cruz, Santa Cruz, CA, USA.
| |
Collapse
|
2
|
Minwuyelet A, Petronio GP, Yewhalaw D, Sciarretta A, Magnifico I, Nicolosi D, Di Marco R, Atenafu G. Symbiotic Wolbachia in mosquitoes and its role in reducing the transmission of mosquito-borne diseases: updates and prospects. Front Microbiol 2023; 14:1267832. [PMID: 37901801 PMCID: PMC10612335 DOI: 10.3389/fmicb.2023.1267832] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Mosquito-borne diseases such as malaria, dengue fever, West Nile virus, chikungunya, Zika fever, and filariasis have the greatest health and economic impact. These mosquito-borne diseases are a major cause of morbidity and mortality in tropical and sub-tropical areas. Due to the lack of effective vector containment strategies, the prevalence and severity of these diseases are increasing in endemic regions. Nowadays, mosquito infection by the endosymbiotic Wolbachia represents a promising new bio-control strategy. Wild-infected mosquitoes had been developing cytoplasmic incompatibility (CI), phenotypic alterations, and nutrition competition with pathogens. These reduce adult vector lifespan, interfere with reproduction, inhibit other pathogen growth in the vector, and increase insecticide susceptibility of the vector. Wild, uninfected mosquitoes can also establish stable infections through trans-infection and have the advantage of adaptability through pathogen defense, thereby selectively infecting uninfected mosquitoes and spreading to the entire population. This review aimed to evaluate the role of the Wolbachia symbiont with the mosquitoes (Aedes, Anopheles, and Culex) in reducing mosquito-borne diseases. Global databases such as PubMed, Web of Sciences, Scopus, and pro-Quest were accessed to search for potentially relevant articles. We used keywords: Wolbachia, Anopheles, Aedes, Culex, and mosquito were used alone or in combination during the literature search. Data were extracted from 56 articles' texts, figures, and tables of the included article.
Collapse
Affiliation(s)
- Awoke Minwuyelet
- Department of Biology, College of Natural and Computational Sciences, Debre Markos University, Debre Markos, Ethiopia
| | | | - Delenasaw Yewhalaw
- Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
- Faculty of Health Sciences, School of Medical Laboratory Sciences, Jimma University, Jimma, Ethiopia
| | - Andrea Sciarretta
- Department of Agriculture, Environment and Food Sciences, Università degli Studi del Molise, Campobasso, Italy
| | - Irene Magnifico
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Daria Nicolosi
- Department of Pharmaceutical and Health Sciences, Università degli Studi di Catania, Catania, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences, University of Molise, Campobasso, Italy
| | - Getnet Atenafu
- Department of Biology, College of Natural and Computational Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
3
|
Medina P, Russell SL, Corbett-Detig R. Deep data mining reveals variable abundance and distribution of microbial reproductive manipulators within and among diverse host species. PLoS One 2023; 18:e0288261. [PMID: 37432953 DOI: 10.1371/journal.pone.0288261] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023] Open
Abstract
Bacterial symbionts that manipulate the reproduction of their hosts are important factors in invertebrate ecology and evolution, and are being leveraged for host biological control. Infection prevalence restricts which biological control strategies are possible and is thought to be strongly influenced by the density of symbiont infection within hosts, termed titer. Current methods to estimate infection prevalence and symbiont titers are low-throughput, biased towards sampling infected species, and rarely measure titer. Here we develop a data mining approach to estimate symbiont infection frequencies within host species and titers within host tissues. We applied this approach to screen ~32,000 publicly available sequence samples from the most common symbiont host taxa, discovering 2,083 arthropod and 119 nematode infected samples. From these data, we estimated that Wolbachia infects approximately 44% of all arthropod and 34% of all nematode species, while other reproductive manipulators only infect 1-8% of arthropod and nematode species. Although relative titers within hosts were highly variable within and between arthropod species, a combination of arthropod host species and Wolbachia strain explained approximately 36% of variation in Wolbachia titer across the dataset. To explore potential mechanisms for host control of symbiont titer, we leveraged population genomic data from the model system Drosophila melanogaster. In this host, we found a number of SNPs associated with titer in candidate genes potentially relevant to host interactions with Wolbachia. Our study demonstrates that data mining is a powerful tool to detect bacterial infections and quantify infection intensities, thus opening an array of previously inaccessible data for further analysis in host-symbiont evolution.
Collapse
Affiliation(s)
- Paloma Medina
- Genomics Institute, Department of Biomolecular Engineering UC Santa Cruz, Santa Cruz, CA, United States of America
| | - Shelbi L Russell
- Genomics Institute, Department of Biomolecular Engineering UC Santa Cruz, Santa Cruz, CA, United States of America
| | - Russell Corbett-Detig
- Genomics Institute, Department of Biomolecular Engineering UC Santa Cruz, Santa Cruz, CA, United States of America
| |
Collapse
|
4
|
Bordenstein SR, Bordenstein SR. Widespread phages of endosymbionts: Phage WO genomics and the proposed taxonomic classification of Symbioviridae. PLoS Genet 2022; 18:e1010227. [PMID: 35666732 PMCID: PMC9203015 DOI: 10.1371/journal.pgen.1010227] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 06/16/2022] [Accepted: 04/29/2022] [Indexed: 11/19/2022] Open
Abstract
Wolbachia are the most common obligate, intracellular bacteria in animals. They exist worldwide in arthropod and nematode hosts in which they commonly act as reproductive parasites or mutualists, respectively. Bacteriophage WO, the largest of Wolbachia’s mobile elements, includes reproductive parasitism genes, serves as a hotspot for genetic divergence and genomic rearrangement of the bacterial chromosome, and uniquely encodes a Eukaryotic Association Module with eukaryotic-like genes and an ensemble of putative host interaction genes. Despite WO’s relevance to genome evolution, selfish genetics, and symbiotic applications, relatively little is known about its origin, host range, diversification, and taxonomic classification. Here we analyze the most comprehensive set of 150 Wolbachia and phage WO assemblies to provide a framework for discretely organizing and naming integrated phage WO genomes. We demonstrate that WO is principally in arthropod Wolbachia with relatives in diverse endosymbionts and metagenomes, organized into four variants related by gene synteny, often oriented opposite the putative origin of replication in the Wolbachia chromosome, and the large serine recombinase is an ideal typing tool to distinguish the four variants. We identify a novel, putative lytic cassette and WO’s association with a conserved eleven gene island, termed Undecim Cluster, that is enriched with virulence-like genes. Finally, we evaluate WO-like Islands in the Wolbachia genome and discuss a new model in which Octomom, a notable WO-like Island, arose from a split with WO. Together, these findings establish the first comprehensive Linnaean taxonomic classification of endosymbiont phages, including non-Wolbachia phages from aquatic environments, that includes a new family and two new genera to capture the collective relatedness of these viruses.
Collapse
Affiliation(s)
- Sarah R. Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| | - Seth R. Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Microbiome Innovation Center, Vanderbilt University, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Infection, Immunology, and Inflammation, Vanderbilt University, Nashville, Tennessee, United States of America
| |
Collapse
|
5
|
Duarte EH, Carvalho A, López-Madrigal S, Costa J, Teixeira L. Forward genetics in Wolbachia: Regulation of Wolbachia proliferation by the amplification and deletion of an addictive genomic island. PLoS Genet 2021; 17:e1009612. [PMID: 34143770 PMCID: PMC8244876 DOI: 10.1371/journal.pgen.1009612] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/30/2021] [Accepted: 05/18/2021] [Indexed: 01/08/2023] Open
Abstract
Wolbachia is one of the most prevalent bacterial endosymbionts, infecting approximately 40% of terrestrial arthropod species. Wolbachia is often a reproductive parasite but can also provide fitness benefits to its host, as, for example, protection against viral pathogens. This protective effect is currently being applied to fight arboviruses transmission by releasing Wolbachia-transinfected mosquitoes. Titre regulation is a crucial aspect of Wolbachia biology. Higher titres can lead to stronger phenotypes and fidelity of transmission but can have a higher cost to the host. Since Wolbachia is maternally transmitted, its fitness depends on host fitness, and, therefore, its cost to the host may be under selection. Understanding how Wolbachia titres are regulated and other aspects of Wolbachia biology has been hampered by the lack of genetic tools. Here we developed a forward genetic screen to identify new Wolbachia over-proliferative mutant variants. We characterized in detail two new mutants, wMelPop2 and wMelOctoless, and show that the amplification or loss of the Octomom genomic region lead to over-proliferation. These results confirm previous data and expand on the complex role of this genomic region in the control of Wolbachia proliferation. Both new mutants shorten the host lifespan and increase antiviral protection. Moreover, we show that Wolbachia proliferation rate in Drosophila melanogaster depends on the interaction between Octomom copy number, the host developmental stage, and temperature. Our analysis also suggests that the life shortening and antiviral protection phenotypes of Wolbachia are dependent on different, but related, properties of the endosymbiont; the rate of proliferation and the titres near the time of infection, respectively. We also demonstrate the feasibility of a novel and unbiased experimental approach to study Wolbachia biology, which could be further adapted to characterize other genetically intractable bacterial endosymbionts.
Collapse
Affiliation(s)
- Elves H. Duarte
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculdade de Ciências e Tecnologia, Universidade de Cabo Verde, Palmarejo, Cabo Verde
| | - Ana Carvalho
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | | | - João Costa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Luís Teixeira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
6
|
Asselin AK, Villegas-Ospina S, Hoffmann AA, Brownlie JC, Johnson KN. Contrasting Patterns of Virus Protection and Functional Incompatibility Genes in Two Conspecific Wolbachia Strains from Drosophila pandora. Appl Environ Microbiol 2019; 85:e02290-18. [PMID: 30552191 PMCID: PMC6384105 DOI: 10.1128/aem.02290-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 12/10/2018] [Indexed: 12/16/2022] Open
Abstract
Wolbachia infections can present different phenotypes in hosts, including different forms of reproductive manipulation and antiviral protection, which may influence infection dynamics within host populations. In populations of Drosophila pandora two distinct Wolbachia strains coexist, each manipulating host reproduction: strain wPanCI causes cytoplasmic incompatibility (CI), whereas strain wPanMK causes male killing (MK). CI occurs when a Wolbachia-infected male mates with a female not infected with a compatible type of Wolbachia, leading to nonviable offspring. wPanMK can rescue wPanCI-induced CI but is unable to induce CI. The antiviral protection phenotypes provided by the wPanCI and wPanMK infections were characterized; the strains showed differential protection phenotypes, whereby cricket paralysis virus (CrPV)-induced mortality was delayed in flies infected with wPanMK but enhanced in flies infected with wPanCI compared to their respective Wolbachia-cured counterparts. Homologs of the cifA and cifB genes involved in CI identified in wPanMK and wPanCI showed a high degree of conservation; however, the CifB protein in wPanMK is truncated and is likely nonfunctional. The presence of a likely functional CifA in wPanMK and wPanMK's ability to rescue wPanCI-induced CI are consistent with the recent confirmation of CifA's involvement in CI rescue, and the absence of a functional CifB protein further supports its involvement as a CI modification factor. Taken together, these findings indicate that wPanCI and wPanMK have different relationships with their hosts in terms of their protective and CI phenotypes. It is therefore likely that different factors influence the prevalence and dynamics of these coinfections in natural Drosophila pandora hosts.IMPORTANCEWolbachia strains are common endosymbionts in insects, with multiple strains often coexisting in the same species. The coexistence of multiple strains is poorly understood but may rely on Wolbachia organisms having diverse phenotypic effects on their hosts. As Wolbachia is increasingly being developed as a tool to control disease transmission and suppress pest populations, it is important to understand the ways in which multiple Wolbachia strains persist in natural populations and how these might then be manipulated. We have therefore investigated viral protection and the molecular basis of cytoplasmic incompatibility in two coexisting Wolbachia strains with contrasting effects on host reproduction.
Collapse
Affiliation(s)
- Angelique K Asselin
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Simon Villegas-Ospina
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jeremy C Brownlie
- School of Environment and Science, Griffith University, Brisbane, Queensland, Australia
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Roshina NV, Symonenko AV, Krementsova AV, Tsybul’ko ЕA, Alatortsev VE, Pasyukova EG, Mukha DV. Drosophila melanogaster inhabiting northern regions of European Russia are infected with Wolbachia which adversely affects their life span. Vavilovskii Zhurnal Genet Selektsii 2018. [DOI: 10.18699/vj18.396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
8
|
Abstract
The power and ease of Drosophila genetics and the medical relevance of mosquito-transmitted viruses have made dipterans important model organisms in antiviral immunology. Studies of virus-host interactions at the molecular and population levels have illuminated determinants of resistance to virus infection. Here, we review the sources and nature of variation in antiviral immunity and virus susceptibility in model dipteran insects, specifically the fruit fly Drosophila melanogaster and vector mosquitoes of the genera Aedes and Culex. We first discuss antiviral immune mechanisms and describe the virus-specificity of these responses. In the following sections, we review genetic and microbiota-dependent variation in antiviral immunity. In the final sections, we explore less well-studied sources of variation, including abiotic factors, sexual dimorphism, infection history, and endogenous viral elements. We borrow from work on other pathogen types and non-dipteran species when it parallels or complements studies in dipterans. Understanding natural variation in virus-host interactions may lead to the identification of novel restriction factors and immune mechanisms and shed light on the molecular determinants of vector competence.
Collapse
Affiliation(s)
- William H Palmer
- Institute of Evolutionary Biology and Centre for Infection, Evolution and Immunity, University of Edinburgh, Edinburgh EH9 3FL UK.
| | - Finny S Varghese
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands.
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands.
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands.
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands.
| |
Collapse
|
9
|
The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathog 2018. [PMID: 29370307 DOI: 10.1371/journal.ppat.1006815.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Introduced transinfections of the inherited bacteria Wolbachia can inhibit transmission of viruses by Aedes mosquitoes, and in Ae. aegypti are now being deployed for dengue control in a number of countries. Only three Wolbachia strains from the large number that exist in nature have to date been introduced and characterized in this species. Here novel Ae. aegypti transinfections were generated using the wAlbA and wAu strains. In its native Ae. albopictus, wAlbA is maintained at lower density than the co-infecting wAlbB, but following transfer to Ae. aegypti the relative strain density was reversed, illustrating the strain-specific nature of Wolbachia-host co-adaptation in determining density. The wAu strain also reached high densities in Ae. aegypti, and provided highly efficient transmission blocking of dengue and Zika viruses. Both wAu and wAlbA were less susceptible than wMel to density reduction/incomplete maternal transmission resulting from elevated larval rearing temperatures. Although wAu does not induce cytoplasmic incompatibility (CI), it was stably combined with a CI-inducing strain as a superinfection, and this would facilitate its spread into wild populations. Wolbachia wAu provides a very promising new option for arbovirus control, particularly for deployment in hot tropical climates.
Collapse
|
10
|
Ant TH, Herd CS, Geoghegan V, Hoffmann AA, Sinkins SP. The Wolbachia strain wAu provides highly efficient virus transmission blocking in Aedes aegypti. PLoS Pathog 2018; 14:e1006815. [PMID: 29370307 PMCID: PMC5784998 DOI: 10.1371/journal.ppat.1006815] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 12/14/2017] [Indexed: 11/18/2022] Open
Abstract
Introduced transinfections of the inherited bacteria Wolbachia can inhibit transmission of viruses by Aedes mosquitoes, and in Ae. aegypti are now being deployed for dengue control in a number of countries. Only three Wolbachia strains from the large number that exist in nature have to date been introduced and characterized in this species. Here novel Ae. aegypti transinfections were generated using the wAlbA and wAu strains. In its native Ae. albopictus, wAlbA is maintained at lower density than the co-infecting wAlbB, but following transfer to Ae. aegypti the relative strain density was reversed, illustrating the strain-specific nature of Wolbachia-host co-adaptation in determining density. The wAu strain also reached high densities in Ae. aegypti, and provided highly efficient transmission blocking of dengue and Zika viruses. Both wAu and wAlbA were less susceptible than wMel to density reduction/incomplete maternal transmission resulting from elevated larval rearing temperatures. Although wAu does not induce cytoplasmic incompatibility (CI), it was stably combined with a CI-inducing strain as a superinfection, and this would facilitate its spread into wild populations. Wolbachia wAu provides a very promising new option for arbovirus control, particularly for deployment in hot tropical climates.
Collapse
Affiliation(s)
- Thomas H. Ant
- Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
- Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Christie S. Herd
- Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
- Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Vincent Geoghegan
- Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
- Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Steven P. Sinkins
- Centre for Virus Research, University of Glasgow, Glasgow, United Kingdom
- Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Chrostek E, Teixeira L. Within host selection for faster replicating bacterial symbionts. PLoS One 2018; 13:e0191530. [PMID: 29346449 PMCID: PMC5773213 DOI: 10.1371/journal.pone.0191530] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/05/2018] [Indexed: 01/24/2023] Open
Abstract
Wolbachia is a widespread, intracellular symbiont of arthropods, able to induce reproductive distortions and antiviral protection in insects. Wolbachia can also be pathogenic, as is the case with wMelPop, a virulent variant of the endosymbiont of Drosophila melanogaster. An extensive genomic amplification of the 20kb region encompassing eight Wolbachia genes, called Octomom, is responsible for wMelPop virulence. The Octomom copy number in wMelPop can be highly variable between individual D. melanogaster flies, even when comparing siblings arising from a single female. Moreover, Octomom copy number can change rapidly between generations. These data suggest an intra-host variability in Octomom copy number between Wolbachia cells. Since wMelPop Wolbachia with different Octomom copy numbers grow at different rates, we hypothesized that selection could act on this intra-host variability. Here we tested if total Octomom copy number changes during the lifespan of individual Drosophila hosts, revealing selection for different Wolbachia populations. We performed a time course analysis of Octomom amplification in flies whose mothers were controlled for Octomom copy number. We show that despite the Octomom copy number being relatively stable it increases slightly throughout D. melanogaster adult life. This indicates that there is selection acting on the intra-host variation in the Octomom copy number over the lifespan of individual hosts. This within host selection for faster replicating bacterial symbionts may be in conflict with between host selection against highly pathogenic Wolbachia.
Collapse
Affiliation(s)
- Ewa Chrostek
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Luis Teixeira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
12
|
Moghadam NN, Thorshauge PM, Kristensen TN, de Jonge N, Bahrndorff S, Kjeldal H, Nielsen JL. Strong responses of Drosophila melanogaster microbiota to developmental temperature. Fly (Austin) 2017; 12:1-12. [PMID: 29095113 DOI: 10.1080/19336934.2017.1394558] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Physiological responses to changes in environmental conditions such as temperature may partly arise from the resident microbial community that integrates a wide range of bio-physiological aspects of the host. In the present study, we assessed the effect of developmental temperature on the thermal tolerance and microbial community of Drosophila melanogaster. We also developed a bacterial transplantation protocol in order to examine the possibility of reshaping the host bacterial composition and assessed its influence on the thermotolerance phenotype. We found that the temperature during development affected thermal tolerance and the microbial composition of male D. melanogaster. Flies that developed at low temperature (13°C) were the most cold resistant and showed the highest abundance of Wolbachia, while flies that developed at high temperature (31°C) were the most heat tolerant and had the highest abundance of Acetobacter. In addition, feeding newly eclosed flies with bacterial suspensions from intestines of flies developed at low temperatures changed the heat tolerance of recipient flies. However, we were not able to link this directly to a change in the host bacterial composition.
Collapse
Affiliation(s)
- Neda N Moghadam
- a Department of Chemistry and Bioscience , Aalborg University , Fredrik Bajers Vej 7H, Aalborg E, Denmark
| | - Pia Mai Thorshauge
- a Department of Chemistry and Bioscience , Aalborg University , Fredrik Bajers Vej 7H, Aalborg E, Denmark
| | - Torsten N Kristensen
- a Department of Chemistry and Bioscience , Aalborg University , Fredrik Bajers Vej 7H, Aalborg E, Denmark.,b Department of Bioscience , Aarhus University , C.F. Møllers Allé, Aarhus C, Denmark
| | - Nadieh de Jonge
- a Department of Chemistry and Bioscience , Aalborg University , Fredrik Bajers Vej 7H, Aalborg E, Denmark
| | - Simon Bahrndorff
- a Department of Chemistry and Bioscience , Aalborg University , Fredrik Bajers Vej 7H, Aalborg E, Denmark
| | - Henrik Kjeldal
- a Department of Chemistry and Bioscience , Aalborg University , Fredrik Bajers Vej 7H, Aalborg E, Denmark
| | - Jeppe Lund Nielsen
- a Department of Chemistry and Bioscience , Aalborg University , Fredrik Bajers Vej 7H, Aalborg E, Denmark
| |
Collapse
|
13
|
Conner WR, Blaxter ML, Anfora G, Ometto L, Rota‐Stabelli O, Turelli M. Genome comparisons indicate recent transfer of wRi-like Wolbachia between sister species Drosophila suzukii and D. subpulchrella. Ecol Evol 2017; 7:9391-9404. [PMID: 29187976 PMCID: PMC5696437 DOI: 10.1002/ece3.3449] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/26/2017] [Accepted: 09/01/2017] [Indexed: 12/22/2022] Open
Abstract
Wolbachia endosymbionts may be acquired by horizontal transfer, by introgression through hybridization between closely related species, or by cladogenic retention during speciation. All three modes of acquisition have been demonstrated, but their relative frequency is largely unknown. Drosophila suzukii and its sister species D. subpulchrella harbor Wolbachia, denoted wSuz and wSpc, very closely related to wRi, identified in California populations of D. simulans. However, these variants differ in their induced phenotypes: wRi causes significant cytoplasmic incompatibility (CI) in D. simulans, but CI has not been detected in D. suzukii or D. subpulchrella. Our draft genomes of wSuz and wSpc contain full-length copies of 703 of the 734 single-copy genes found in wRi. Over these coding sequences, wSuz and wSpc differ by only 0.004% (i.e., 28 of 704,883 bp); they are sisters relative to wRi, from which each differs by 0.014%-0.015%. Using published data from D. melanogaster, Nasonia wasps and Nomada bees to calibrate relative rates of Wolbachia versus host nuclear divergence, we conclude that wSuz and wSpc are too similar-by at least a factor of 100-to be plausible candidates for cladogenic transmission. These three wRi-like Wolbachia, which differ in CI phenotype in their native hosts, have different numbers of orthologs of genes postulated to contribute to CI; and the CI loci differ at several nucleotides that may account for the CI difference. We discuss the general problem of distinguishing alternative modes of Wolbachia acquisition, focusing on the difficulties posed by limited knowledge of variation in absolute and relative rates of molecular evolution for host nuclear genomes, mitochondria, and Wolbachia.
Collapse
Affiliation(s)
- William R. Conner
- Department of Evolution and EcologyUniversity of CaliforniaDavisCAUSA
| | - Mark L. Blaxter
- Institute of Evolutionary Biology and Edinburgh Genomics FacilityUniversity of EdinburghEdinburghUK
| | - Gianfranco Anfora
- Chemical Ecology LaboratoryDepartment of Sustainable Agro‐Ecosystems and Bio‐ResourcesFondazione Edmund MachSan Michele all'AdigeTNItaly
- Centre Agriculture Food EnvironmentUniversity of TrentoSan Michele all'AdigeTNItaly
| | - Lino Ometto
- Chemical Ecology LaboratoryDepartment of Sustainable Agro‐Ecosystems and Bio‐ResourcesFondazione Edmund MachSan Michele all'AdigeTNItaly
- Present address:
MezzocoronaTNItaly
| | - Omar Rota‐Stabelli
- Chemical Ecology LaboratoryDepartment of Sustainable Agro‐Ecosystems and Bio‐ResourcesFondazione Edmund MachSan Michele all'AdigeTNItaly
| | - Michael Turelli
- Department of Evolution and EcologyUniversity of CaliforniaDavisCAUSA
| |
Collapse
|
14
|
Chrostek E, Teixeira L. Comment on Rohrscheib et al. 2016 "Intensity of mutualism breakdown is determined by temperature not amplification of Wolbachia genes". PLoS Pathog 2017; 13:e1006540. [PMID: 28892498 PMCID: PMC5593198 DOI: 10.1371/journal.ppat.1006540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/10/2017] [Indexed: 11/19/2022] Open
Affiliation(s)
- Ewa Chrostek
- Max Planck Institute for Infection Biology, Berlin, Germany
- * E-mail: (EC); (LT)
| | - Luis Teixeira
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Portugal
- * E-mail: (EC); (LT)
| |
Collapse
|
15
|
Rohrscheib CE, Frentiu FD, Horn E, Ritchie FK, van Swinderen B, Weible MW, O’Neill SL, Brownlie JC. Response to: Comment on Rohrscheib et al. 2016 "Intensity of mutualism breakdown is determined by temperature not amplification of Wolbachia genes". PLoS Pathog 2017; 13:e1006521. [PMID: 28892518 PMCID: PMC5593257 DOI: 10.1371/journal.ppat.1006521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/10/2017] [Indexed: 11/19/2022] Open
Affiliation(s)
- Chelsie E. Rohrscheib
- School of Natural Sciences, Griffith University, Nathan, Australia
- Griffith Research Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Francesca D. Frentiu
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Australia
| | - Emilie Horn
- School of Natural Sciences, Griffith University, Nathan, Australia
| | - Fiona K. Ritchie
- School of Natural Sciences, Griffith University, Nathan, Australia
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, St. Lucia, Australia
| | - Michael W. Weible
- School of Natural Sciences, Griffith University, Nathan, Australia
- Griffith Research Institute for Drug Discovery, Griffith University, Nathan, Australia
| | - Scott L. O’Neill
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Jeremy C. Brownlie
- School of Natural Sciences, Griffith University, Nathan, Australia
- Environmental Futures Research Institute, Griffith University, Nathan, Australia
- * E-mail:
| |
Collapse
|
16
|
Cytonuclear Epistasis Controls the Density of Symbiont Wolbachia pipientis in Nongonadal Tissues of Mosquito Culex quinquefasciatus. G3-GENES GENOMES GENETICS 2017; 7:2627-2635. [PMID: 28606944 PMCID: PMC5555468 DOI: 10.1534/g3.117.043422] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Wolbachia pipientis, a bacterial symbiont infecting arthropods and nematodes, is vertically transmitted through the female germline and manipulates its host's reproduction to favor infected females. Wolbachia also infects somatic tissues where it can cause nonreproductive phenotypes in its host, including resistance to viral pathogens. Wolbachia-mediated phenotypes are strongly associated with the density of Wolbachia in host tissues. Little is known, however, about how Wolbachia density is regulated in native or heterologous hosts. Here, we measure the broad-sense heritability of Wolbachia density among families in field populations of the mosquito Culex pipiens, and show that densities in ovary and nongonadal tissues of females in the same family are not correlated, suggesting that Wolbachia density is determined by distinct mechanisms in the two tissues. Using introgression analysis between two different strains of the closely related species C. quinquefasciatus, we show that Wolbachia densities in ovary tissues are determined primarily by cytoplasmic genotype, while densities in nongonadal tissues are determined by both cytoplasmic and nuclear genotypes and their epistatic interactions. Quantitative-trait-locus mapping identified two major-effect quantitative-trait loci in the C. quinquefasciatus genome explaining a combined 23% of variance in Wolbachia density, specifically in nongonadal tissues. A better understanding of how Wolbachia density is regulated will provide insights into how Wolbachia density can vary spatiotemporally in insect populations, leading to changes in Wolbachia-mediated phenotypes such as viral pathogen resistance.
Collapse
|