1
|
Muñoz-Sánchez JC, Lázaro JT, Hillung J, Olmo-Uceda MJ, Sardanyés J, Elena SF. Quasineutral multistability in an epidemiological-like model for defective-helper betacoronavirus infection in cell cultures. APPLIED MATHEMATICAL MODELLING 2025; 137:115673. [DOI: 10.1016/j.apm.2024.115673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
2
|
Budzyńska D, Minicka J, Olmo-Uceda MJ, Elena SF, Hasiów-Jaroszewska B. Population dynamics of defective viral genomes of tomato black ring virus during host-to-host transmission. J Virol 2024; 98:e0124424. [PMID: 39480089 PMCID: PMC11575242 DOI: 10.1128/jvi.01244-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Defective viral genomes (DVGs) emerge during error-prone replication of viral genomes and contain deletions, insertions, genomic rearrangements, and hypermutations. These large-effect mutations result in the inability of DVGs to complete an infectious cycle in the absence of a helper wild-type virus. It has been shown that in vitro DVGs usually accumulate in viral populations when a virus is serially passaged in the same host at a high multiplicity of infection. To investigate the impact of host-to-host transmission on DVG formation and population dynamics in vivo, we conducted evolution experiments with tomato black ring virus (TBRV). TBRV was sequentially passaged through a combination of four distinct host species: quinoa, tobacco, lettuce, and spinach. The host was changed every fifth passage. The diversity and population dynamics of DVGs were analyzed based on the RNA-Seq data obtained through sequencing of viral RNA after 20 passages. Our findings indicate the possibility of TBRV DVGs generation when the virus was passaged through different host species. The level of DVG abundance varied across host plant combinations, with a weak indication that the host species past sequence may play a role in DVGs generation. Most abundant DVGs in the TBRV evolved populations were derived from RNA1. Deletions were the most prevalent class of DVGs, followed by insertions. The deletion DVG subpopulation exhibited substantial diversity in species composition and the richness of the deletions species was correlated with their abundance. Longer DVGs characterized by small deletions were predominant, whereas those shorter than 1,000 nucleotides constituted less than 2%. IMPORTANCE Defective viral genomes (DVGs) have been identified in vivo and in vitro for different virus species infecting humans, animals, and plants. The ability to form DVGs during the passaging of virus in one host has been demonstrated, i.e., for tomato black ring virus (TBRV). In our research, RNA-Seq data obtained after TBRV passaging through a combination of four distinct host species were analyzed. Our results indicate that the level of DVG abundance varied across host plant combinations. Deletions were the most prevalent class of DVGs, with the domination of longer species. Additionally, the conserved junction sites in the TBRV genome were identified, resulting in the generation of identical deletions in independently evolved viral lineages. In summary, our findings provide significant insights into the origin and structure of DVGs of plant viruses. The obtained results will help in understanding viral evolution and host-virus interactions.
Collapse
Affiliation(s)
- Daria Budzyńska
- Department of Virology and Bacteriology, Institute of Plant Protection-National Research Institute, Poznan, Poland
| | - Julia Minicka
- Department of Virology and Bacteriology, Institute of Plant Protection-National Research Institute, Poznan, Poland
| | - María J Olmo-Uceda
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Valencia, Spain
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Valencia, Spain
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Beata Hasiów-Jaroszewska
- Department of Virology and Bacteriology, Institute of Plant Protection-National Research Institute, Poznan, Poland
| |
Collapse
|
3
|
Desai SK, Zhou Y, Dilawari R, Routh AL, Popov V, Kenney LJ. RpoS activates formation of Salmonella Typhi biofilms and drives persistence in the gall bladder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.26.564249. [PMID: 37961640 PMCID: PMC10634867 DOI: 10.1101/2023.10.26.564249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The development of strategies for targeting the asymptomatic carriage of Salmonella Typhi in chronic typhoid patients has suffered owing to our basic lack of understanding of the molecular mechanisms that enable the formation of S. Typhi biofilms. Traditionally, studies have relied on cholesterol-attached biofilms formed by a closely related serovar, Typhimurium, to mimic multicellular Typhi communities formed on human gallstones. In long-term infections, S. Typhi adopts the biofilm lifestyle to persist in vivo and survive in the carrier state, ultimately leading to the spread of infections via the fecal-oral route of transmission. In the present work, we studied S. Typhi biofilms directly, applied targeted as well as genome-wide genetic approaches to uncover unique biofilm components that do not conform to the CsgD-dependent pathway established in S. Typhimurium. We undertook a genome-wide Tn5 mutation screen in H58, a clinically relevant multidrug resistance strain of S. Typhi, in gallstone-mimicking conditions. We generated New Generation Sequencing libraries based on the ClickSeq technology to identify the key regulators, IraP and RpoS, and the matrix components Sth fimbriae, Vi capsule and lipopolysaccharide. We discovered that the starvation sigma factor, RpoS, was required for the transcriptional activation of matrix-encoding genes in vitro, and for S. Typhi colonization in persistent infections in vivo, using a heterologous fish larval model. An rpoS null mutant failed to colonize the gall bladder in chronic zebrafish infections. Overall, our work uncovered a novel RpoS-driven, CsgD-independent paradigm for the formation of cholesterol-attached Typhi biofilms, and emphasized the role(s) of stress signaling pathways for adaptation in chronic infections. Our identification of the biofilm regulators in S. Typhi paves the way for the development of drugs against typhoid carriage, which will ultimately control the increased incidence of gall bladder cancer in typhoid carriers.
Collapse
Affiliation(s)
- Stuti K. Desai
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Yiyang Zhou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Rahul Dilawari
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
| | - Andrew L. Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
- Department of Immunology and Microbiology, Scripps Research, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA
| | - Vsevolod Popov
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Linda J. Kenney
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
4
|
Le Huray KI, Wörner TP, Moreira T, Dembek M, Reinhardt-Szyba M, Devine PWA, Bond NJ, Fort KL, Makarov AA, Sobott F. To 200,000 m/ z and Beyond: Native Electron Capture Charge Reduction Mass Spectrometry Deconvolves Heterogeneous Signals in Large Biopharmaceutical Analytes. ACS CENTRAL SCIENCE 2024; 10:1548-1561. [PMID: 39220705 PMCID: PMC11363327 DOI: 10.1021/acscentsci.4c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Great progress has been made in the detection of large biomolecular analytes by native mass spectrometry; however, characterizing highly heterogeneous samples remains challenging due to the presence of many overlapping signals from complex ion distributions. Electron-capture charge reduction (ECCR), in which a protein cation captures free electrons without apparent dissociation, can separate overlapping signals by shifting the ions to lower charge states. The concomitant shift to higher m/z also facilitates the exploration of instrument upper m/z limits if large complexes are used. Here we perform native ECCR on the bacterial chaperonin GroEL and megadalton scale adeno-associated virus (AAV) capsid assemblies on a Q Exactive UHMR mass spectrometer. Charge reduction of AAV8 capsids by up to 90% pushes signals well above 100,000 m/z and enables charge state resolution and mean mass determination of these highly heterogeneous samples, even for capsids loaded with genetic cargo. With minor instrument modifications, the UHMR instrument can detect charge-reduced ion signals beyond 200,000 m/z. This work demonstrates the utility of ECCR for deconvolving heterogeneous signals in native mass spectrometry and presents the highest m/z signals ever recorded on an Orbitrap instrument, opening up the use of Orbitrap native mass spectrometry for heavier analytes than ever before.
Collapse
Affiliation(s)
- Kyle I.
P. Le Huray
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Tobias P. Wörner
- Thermo
Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199 Bremen, Germany
| | - Tiago Moreira
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| | - Marcin Dembek
- Purification
Process Sciences, Biopharmaceutical Development, Biopharmaceuticals
R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K.
| | | | - Paul W. A. Devine
- Analytical
Sciences, Biopharmaceutical Development, Biopharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K.
| | - Nicholas J. Bond
- Analytical
Sciences, Biopharmaceutical Development, Biopharmaceuticals R&D, AstraZeneca, 1 Francis Crick Avenue, Cambridge CB2 0AA, U.K.
| | - Kyle L. Fort
- Thermo
Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199 Bremen, Germany
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Alexander A. Makarov
- Thermo
Fisher Scientific (Bremen) GmbH, Hanna-Kunath Str. 11, 28199 Bremen, Germany
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Frank Sobott
- Astbury
Centre for Structural Molecular Biology, School of Molecular and Cellular
Biology, Faculty of Biological Sciences, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K.
| |
Collapse
|
5
|
Agu I, José I, Ram A, Oberbauer D, Albeck J, Díaz Muñoz SL. Influenza A defective viral genomes and non-infectious particles are increased by host PI3K inhibition via anti-cancer drug alpelisib. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.03.601932. [PMID: 39005364 PMCID: PMC11245024 DOI: 10.1101/2024.07.03.601932] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
RNA viruses produce abundant defective viral genomes during replication, setting the stage for interactions between viral genomes that alter the course of pathogenesis. Harnessing these interactions to develop antivirals has become a recent goal of intense research focus. Despite decades of research, the mechanisms that regulate the production and interactions of Influenza A defective viral genomes are still unclear. The role of the host is essentially unexplored; specifically, it remains unknown whether host metabolism can influence the formation of defective viral genomes and the particles that house them. To address this question, we manipulated host cell anabolic signaling activity and monitored the production of defective viral genomes and particles by A/H1N1 and A/H3N2 strains, using a combination of single-cell immunofluorescence quantification, third-generation long-read sequencing, and the cluster-forming assay, a method we developed to titer defective and fully-infectious particles simultaneously. Here we show that alpelisib (Piqray), a highly selective inhibitor of mammalian Class 1a phosphoinositide-3 kinase (PI3K) receptors, significantly changed the proportion of defective particles and viral genomes (specifically deletion-containing viral genomes) in a strain-specific manner, under conditions that minimize multiple cycles of replication. Alpelisib pre-treatment of cells led to an increase in defective particles in the A/H3N2 strain, while the A/H1N1 strain showed a decrease in total viral particles. In the same infections, we found that defective viral genomes of polymerase and antigenic segments increased in the A/H1N1 strain, while the total particles decreased suggesting defective interference. We also found that the average deletion size in polymerase complex viral genomes increased in both the A/H3N2 and A/H1N1 strains. The A/H1N1 strain, additionally showed a dose-dependent increase in total number of defective viral genomes. In sum, we provide evidence that host cell metabolism can increase the production of defective viral genomes and particles at an early stage of infection, shifting the makeup of the infection and potential interactions among virions. Given that Influenza A defective viral genomes can inhibit pathogenesis, our study presents a new line of investigation into metabolic states associated with less severe flu infection and the potential induction of these states with metabolic drugs.
Collapse
Affiliation(s)
- Ilechukwu Agu
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Ave, Davis CA 95616
| | - Ivy José
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Ave, Davis CA 95616
| | - Abhineet Ram
- Department of Molecular and Cellular Biology, University of California, Davis, One Shields Ave, Davis CA 95616
| | - Daniel Oberbauer
- Department of Molecular and Cellular Biology, University of California, Davis, One Shields Ave, Davis CA 95616
| | - John Albeck
- Department of Molecular and Cellular Biology, University of California, Davis, One Shields Ave, Davis CA 95616
| | - Samuel L. Díaz Muñoz
- Department of Microbiology and Molecular Genetics, University of California, Davis, One Shields Ave, Davis CA 95616
- Genome Center, University of California, Davis, One Shields Ave, Davis CA 95616
| |
Collapse
|
6
|
Hillung J, Olmo-Uceda MJ, Muñoz-Sánchez JC, Elena SF. Accumulation Dynamics of Defective Genomes during Experimental Evolution of Two Betacoronaviruses. Viruses 2024; 16:644. [PMID: 38675984 PMCID: PMC11053736 DOI: 10.3390/v16040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Virus-encoded replicases often generate aberrant RNA genomes, known as defective viral genomes (DVGs). When co-infected with a helper virus providing necessary proteins, DVGs can multiply and spread. While DVGs depend on the helper virus for propagation, they can in some cases disrupt infectious virus replication, impact immune responses, and affect viral persistence or evolution. Understanding the dynamics of DVGs alongside standard viral genomes during infection remains unclear. To address this, we conducted a long-term experimental evolution of two betacoronaviruses, the human coronavirus OC43 (HCoV-OC43) and the murine hepatitis virus (MHV), in cell culture at both high and low multiplicities of infection (MOI). We then performed RNA-seq at regular time intervals, reconstructed DVGs, and analyzed their accumulation dynamics. Our findings indicate that DVGs evolved to exhibit greater diversity and abundance, with deletions and insertions being the most common types. Notably, some high MOI deletions showed very limited temporary existence, while others became prevalent over time. We observed differences in DVG abundance between high and low MOI conditions in HCoV-OC43 samples. The size distribution of HCoV-OC43 genomes with deletions differed between high and low MOI passages. In low MOI lineages, short and long DVGs were the most common, with an additional cluster in high MOI lineages which became more prevalent along evolutionary time. MHV also showed variations in DVG size distribution at different MOI conditions, though they were less pronounced compared to HCoV-OC43, suggesting a more random distribution of DVG sizes. We identified hotspot regions for deletions that evolved at a high MOI, primarily within cistrons encoding structural and accessory proteins. In conclusion, our study illustrates the widespread formation of DVGs during betacoronavirus evolution, influenced by MOI and cell- and virus-specific factors.
Collapse
Affiliation(s)
- Julia Hillung
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Valencia, Spain; (J.H.); (M.J.O.-U.); (J.C.M.-S.)
| | - María J. Olmo-Uceda
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Valencia, Spain; (J.H.); (M.J.O.-U.); (J.C.M.-S.)
| | - Juan C. Muñoz-Sánchez
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Valencia, Spain; (J.H.); (M.J.O.-U.); (J.C.M.-S.)
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-UV, Catedrático Agustín Escardino Benlloch 9, 46980 Paterna, Valencia, Spain; (J.H.); (M.J.O.-U.); (J.C.M.-S.)
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| |
Collapse
|
7
|
Zhou Y, Routh AL. Bipartite viral RNA genome heterodimerization influences genome packaging and virion thermostability. J Virol 2024; 98:e0182023. [PMID: 38329331 PMCID: PMC10949487 DOI: 10.1128/jvi.01820-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/18/2023] [Indexed: 02/09/2024] Open
Abstract
Multi-segmented viruses often multimerize their genomic segments to ensure efficient and stoichiometric packaging of the correct genetic cargo. In the bipartite Nodaviridae family, genome heterodimerization is also observed and conserved among different species. However, the nucleotide composition and biological function for this heterodimer remain unclear. Using Flock House virus as a model system, we developed a next-generation sequencing approach ("XL-ClickSeq") to probe heterodimer site sequences. We identified an intermolecular base-pairing site which contributed to heterodimerization in both wild-type and defective virus particles. Mutagenic disruption of this heterodimer site exhibited significant deficiencies in genome packaging and encapsidation specificity to viral genomic RNAs. Furthermore, the disruption of this intermolecular interaction directly impacts the thermostability of the mature virions. These results demonstrate that the intermolecular RNA-RNA interactions within the encapsidated genome of an RNA virus have an important role on virus particle integrity and thus may impact its transmission to a new host.IMPORTANCEFlock House virus is a member of Nodaviridae family of viruses, which provides a well-studied model virus for non-enveloped RNA virus assembly, cell entry, and replication. The Flock House virus genome consists of two separate RNA molecules, which can form a heterodimer upon heating of virus particles. Although similar RNA dimerization is utilized by other viruses (such as retroviruses) as a packaging mechanism and is conserved among Nodaviruses, the role of heterodimerization in the Nodavirus replication cycle is unclear. In this research, we identified the RNA sequences contributing to Flock House virus genome heterodimerization and discovered that such RNA-RNA interaction plays an essential role in virus packaging efficiency and particle integrity. This provides significant insight into how the interaction of packaged viral RNA may have a broader impact on the structural and functional properties of virus particles.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Andrew L. Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
- Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
8
|
Achouri E, Felt SA, Hackbart M, Rivera-Espinal NS, López CB. VODKA2: a fast and accurate method to detect non-standard viral genomes from large RNA-seq data sets. RNA (NEW YORK, N.Y.) 2023; 30:16-25. [PMID: 37891004 PMCID: PMC10726161 DOI: 10.1261/rna.079747.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
During viral replication, viruses carrying an RNA genome produce non-standard viral genomes (nsVGs), including copy-back viral genomes (cbVGs) and deletion viral genomes (delVGs), that play a crucial role in regulating viral replication and pathogenesis. Because of their critical roles in determining the outcome of RNA virus infections, the study of nsVGs has flourished in recent years, exposing a need for bioinformatic tools that can accurately identify them within next-generation sequencing data obtained from infected samples. Here, we present our data analysis pipeline, Viral Opensource DVG Key Algorithm 2 (VODKA2), that is optimized to run on a parallel computing environment for fast and accurate detection of nsVGs from large data sets.
Collapse
Affiliation(s)
- Emna Achouri
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Sébastien A Felt
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Matthew Hackbart
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Nicole S Rivera-Espinal
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Carolina B López
- Department of Molecular Microbiology and Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
9
|
Leeks A, Bono LM, Ampolini EA, Souza LS, Höfler T, Mattson CL, Dye AE, Díaz-Muñoz SL. Open questions in the social lives of viruses. J Evol Biol 2023; 36:1551-1567. [PMID: 37975507 PMCID: PMC11281779 DOI: 10.1111/jeb.14203] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 06/12/2023] [Accepted: 06/21/2023] [Indexed: 11/19/2023]
Abstract
Social interactions among viruses occur whenever multiple viral genomes infect the same cells, hosts, or populations of hosts. Viral social interactions range from cooperation to conflict, occur throughout the viral world, and affect every stage of the viral lifecycle. The ubiquity of these social interactions means that they can determine the population dynamics, evolutionary trajectory, and clinical progression of viral infections. At the same time, social interactions in viruses raise new questions for evolutionary theory, providing opportunities to test and extend existing frameworks within social evolution. Many opportunities exist at this interface: Insights into the evolution of viral social interactions have immediate implications for our understanding of the fundamental biology and clinical manifestation of viral diseases. However, these opportunities are currently limited because evolutionary biologists only rarely study social evolution in viruses. Here, we bridge this gap by (1) summarizing the ways in which viruses can interact socially, including consequences for social evolution and evolvability; (2) outlining some open questions raised by viruses that could challenge concepts within social evolution theory; and (3) providing some illustrative examples, data sources, and conceptual questions, for studying the natural history of social viruses.
Collapse
Affiliation(s)
- Asher Leeks
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Quantitative Biology Institute, Yale University, New Haven, Connecticut, USA
| | - Lisa M. Bono
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, USA
| | - Elizabeth A. Ampolini
- Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lucas S. Souza
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA
| | - Thomas Höfler
- Institute of Virology, Freie Universität Berlin, Berlin, Germany
| | - Courtney L. Mattson
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, USA
| | - Anna E. Dye
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, USA
| | - Samuel L. Díaz-Muñoz
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, USA
- Genome Center, University of California Davis, Davis, California, USA
| |
Collapse
|
10
|
Achouri E, Felt SA, Hackbart M, Rivera-Espinal NS, López CB. VODKA2: A fast and accurate method to detect non-standard viral genomes from large RNA-seq datasets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.537842. [PMID: 37163001 PMCID: PMC10168208 DOI: 10.1101/2023.04.25.537842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
During viral replication, viruses carrying an RNA genome produce non-standard viral genomes (nsVGs), including copy-back viral genomes (cbVGs) and deletion viral genomes (delVGs), that play a crucial role in regulating viral replication and pathogenesis. Because of their critical roles in determining the outcome of RNA virus infections, the study of nsVGs has flourished in recent years exposing a need for bioinformatic tools that can accurately identify them within Next-Generation Sequencing data obtained from infected samples. Here, we present our data analysis pipeline, Viral Opensource DVG Key Algorithm2 (VODKA2), that is optimized to run on a High Performance Computing (HPC) environment for fast and accurate detection of nsVGs from large data sets.
Collapse
Affiliation(s)
- Emna Achouri
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| | - Sébastien A. Felt
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| | - Matthew Hackbart
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| | - Nicole S. Rivera-Espinal
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| | - Carolina B. López
- Department of Molecular Microbiology and Center for Women Infectious Disease Research, Washington University School of Medicine, St Louis, MO, USA
| |
Collapse
|
11
|
Zhou T, Gilliam NJ, Li S, Spandau S, Osborn RM, Connor S, Anderson CS, Mariani TJ, Thakar J, Dewhurst S, Mathews DH, Huang L, Sun Y. Generation and Functional Analysis of Defective Viral Genomes during SARS-CoV-2 Infection. mBio 2023; 14:e0025023. [PMID: 37074178 PMCID: PMC10294654 DOI: 10.1128/mbio.00250-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023] Open
Abstract
Defective viral genomes (DVGs) have been identified in many RNA viruses as a major factor influencing antiviral immune response and viral pathogenesis. However, the generation and function of DVGs in SARS-CoV-2 infection are less known. In this study, we elucidated DVG generation in SARS-CoV-2 and its relationship with host antiviral immune response. We observed DVGs ubiquitously from transcriptome sequencing (RNA-seq) data sets of in vitro infections and autopsy lung tissues of COVID-19 patients. Four genomic hot spots were identified for DVG recombination, and RNA secondary structures were suggested to mediate DVG formation. Functionally, bulk and single-cell RNA-seq analysis indicated the interferon (IFN) stimulation of SARS-CoV-2 DVGs. We further applied our criteria to the next-generation sequencing (NGS) data set from a published cohort study and observed a significantly higher amount and frequency of DVG in symptomatic patients than those in asymptomatic patients. Finally, we observed exceptionally diverse DVG populations in one immunosuppressive patient up to 140 days after the first positive test of COVID-19, suggesting for the first time an association between DVGs and persistent viral infections in SARS-CoV-2. Together, our findings strongly suggest a critical role of DVGs in modulating host IFN responses and symptom development, calling for further inquiry into the mechanisms of DVG generation and into how DVGs modulate host responses and infection outcome during SARS-CoV-2 infection. IMPORTANCE Defective viral genomes (DVGs) are generated ubiquitously in many RNA viruses, including SARS-CoV-2. Their interference activity to full-length viruses and IFN stimulation provide the potential for them to be used in novel antiviral therapies and vaccine development. SARS-CoV-2 DVGs are generated through the recombination of two discontinuous genomic fragments by viral polymerase complex, and this recombination is also one of the major mechanisms for the emergence of new coronaviruses. Focusing on the generation and function of SARS-CoV-2 DVGs, these studies identify new hot spots for nonhomologous recombination and strongly suggest that the secondary structures within viral genomes mediate the recombination. Furthermore, these studies provide the first evidence for IFN stimulation activity of de novo DVGs during natural SARS-CoV-2 infection. These findings set up the foundation for further mechanism studies of SARS-CoV-2 recombination and provide evidence to harness the immunostimulatory potential of DVGs in the development of a vaccine and antivirals for SARS-CoV-2.
Collapse
Affiliation(s)
- Terry Zhou
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Nora J. Gilliam
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
- Medical Scientist Training Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Translational Biomedical Sciences PhD Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sizhen Li
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, Oregon, USA
| | - Simone Spandau
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
| | - Raven M. Osborn
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
- Translational Biomedical Sciences PhD Program, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sarah Connor
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester, Rochester, New York, USA
| | - Christopher S. Anderson
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester, Rochester, New York, USA
| | - Thomas J. Mariani
- Department of Pediatrics and Center for Children’s Health Research, University of Rochester, Rochester, New York, USA
| | - Juilee Thakar
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
- Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Stephen Dewhurst
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
| | - David H. Mathews
- Department of Biochemistry & Biophysics and Center for RNA Biology, University of Rochester Medical Center, Rochester, New York, USA
| | - Liang Huang
- School of Electrical Engineering & Computer Science, Oregon State University, Corvallis, Oregon, USA
| | - Yan Sun
- Department of Immunology and Microbiology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
12
|
Sung PY, Zhou Y, Kao CC, Aburigh AA, Routh A, Roy P. A multidisciplinary approach to the identification of the protein-RNA connectome in double-stranded RNA virus capsids. Nucleic Acids Res 2023; 51:5210-5227. [PMID: 37070191 PMCID: PMC10250232 DOI: 10.1093/nar/gkad274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
How multi-segmented double-stranded RNA (dsRNA) viruses correctly incorporate their genomes into their capsids remains unclear for many viruses, including Bluetongue virus (BTV), a Reoviridae member, with a genome of 10 segments. To address this, we used an RNA-cross-linking and peptide-fingerprinting assay (RCAP) to identify RNA binding sites of the inner capsid protein VP3, the viral polymerase VP1 and the capping enzyme VP4. Using a combination of mutagenesis, reverse genetics, recombinant proteins and in vitro assembly, we validated the importance of these regions in virus infectivity. Further, to identify which RNA segments and sequences interact with these proteins, we used viral photo-activatable ribonucleoside crosslinking (vPAR-CL) which revealed that the larger RNA segments (S1-S4) and the smallest segment (S10) have more interactions with viral proteins than the other smaller segments. Additionally, using a sequence enrichment analysis we identified an RNA motif of nine bases that is shared by the larger segments. The importance of this motif for virus replication was confirmed by mutagenesis followed by virus recovery. We further demonstrated that these approaches could be applied to a related Reoviridae member, rotavirus (RV), which has human epidemic impact, offering the possibility of novel intervention strategies for a human pathogen.
Collapse
Affiliation(s)
- Po-yu Sung
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Yiyang Zhou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - C Cheng Kao
- Previously in the Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN, USA
| | - Ali A Aburigh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Polly Roy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
13
|
Gong B, Liang Y, Zhang Q, Li H, Xiao J, Wang L, Chen H, Yang W, Wang X, Wang Y, He Z. Epigenetic and transcriptional activation of the secretory kinase FAM20C as an oncogene in glioma. J Genet Genomics 2023; 50:422-433. [PMID: 36708808 DOI: 10.1016/j.jgg.2023.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/03/2023] [Accepted: 01/14/2023] [Indexed: 01/26/2023]
Abstract
Gliomas are the most prevalent and aggressive malignancies of the nervous system. Previous bioinformatic studies have revealed the crucial role of the secretory pathway kinase FAM20C in the prediction of glioma invasion and malignancy. However, little is known about the pathogenesis of FAM20C in the regulation of glioma. Here, we construct the full-length transcriptome atlas in paired gliomas and observe that 22 genes are upregulated by full-length transcriptome and differential APA analysis. Analysis of ATAC-seq data reveals that both FAM20C and NPTN are the hub genes with chromatin openness and differential expression. Further, in vitro and in vivo studies suggest that FAM20C stimulates the proliferation and metastasis of glioma cells. Meanwhile, NPTN, a novel cancer suppressor gene, counteracts the function of FAM20C by inhibiting both the proliferation and migration of glioma. The blockade of FAM20C by neutralizing antibodies results in the regression of xenograft tumors. Moreover, MAX, BRD4, MYC, and REST are found to be the potential trans-active factors for the regulation of FAM20C. Taken together, our results uncover the oncogenic role of FAM20C in glioma and shed new light on the treatment of glioma by abolishing FAM20C.
Collapse
Affiliation(s)
- Bo Gong
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yi Liang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Qian Zhang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Huan Li
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Jialing Xiao
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Liang Wang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Han Chen
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Wenjie Yang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Xiaoqing Wang
- Department of Pathology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| | - Zongze He
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| |
Collapse
|
14
|
Park H, Denha S, Higgs PG. Evolution of Bipartite and Segmented Viruses from Monopartite Viruses. Viruses 2023; 15:v15051135. [PMID: 37243221 DOI: 10.3390/v15051135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
RNA viruses may be monopartite (all genes on one strand), multipartite (two or more strands packaged separately) or segmented (two or more strands packaged together). In this article, we consider competition between a complete monopartite virus, A, and two defective viruses, D and E, that have complementary genes. We use stochastic models that follow gene translation, RNA replication, virus assembly, and transmission between cells. D and E multiply faster than A when stored in the same host as A or when together in the same host, but they cannot multiply alone. D and E strands are packaged as separate particles unless a mechanism evolves that allows assembly of D + E segmented particles. We show that if defective viruses assemble rapidly into separate particles, the formation of segmented particles is selected against. In this case, D and E spread as parasites of A, and the bipartite D + E combination eliminates A if the transmissibility is high. Alternatively, if defective strands do not assemble rapidly into separate particles, then a mechanism for assembly of segmented particles is selected for. In this case, the segmented virus can eliminate A if transmissibility is high. Conditions of excess protein resources favor bipartite viruses, while conditions of excess RNA resources favor segmented viruses. We study the error threshold behavior that arises when deleterious mutations are introduced. Relative to bipartite and segmented viruses, deleterious mutations favor monopartite viruses. A monopartite virus can give rise to either a bipartite or a segmented virus, but it is unlikely that both will originate from the same virus.
Collapse
Affiliation(s)
- Hyunjin Park
- Department of Physics and Astronomy, McMaster University, 1280 Main St. West, Hamilton, ON L8M 4S1, Canada
| | - Saven Denha
- Department of Physics and Astronomy, McMaster University, 1280 Main St. West, Hamilton, ON L8M 4S1, Canada
| | - Paul G Higgs
- Department of Physics and Astronomy, McMaster University, 1280 Main St. West, Hamilton, ON L8M 4S1, Canada
| |
Collapse
|
15
|
Sotcheff S, Zhou Y, Yeung J, Sun Y, Johnson JE, Torbett BE, Routh AL. ViReMa: a virus recombination mapper of next-generation sequencing data characterizes diverse recombinant viral nucleic acids. Gigascience 2023; 12:giad009. [PMID: 36939008 PMCID: PMC10025937 DOI: 10.1093/gigascience/giad009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/30/2022] [Accepted: 02/03/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Genetic recombination is a tremendous source of intrahost diversity in viruses and is critical for their ability to rapidly adapt to new environments or fitness challenges. While viruses are routinely characterized using high-throughput sequencing techniques, characterizing the genetic products of recombination in next-generation sequencing data remains a challenge. Viral recombination events can be highly diverse and variable in nature, including simple duplications and deletions, or more complex events such as copy/snap-back recombination, intervirus or intersegment recombination, and insertions of host nucleic acids. Due to the variable mechanisms driving virus recombination and the different selection pressures acting on the progeny, recombination junctions rarely adhere to simple canonical sites or sequences. Furthermore, numerous different events may be present simultaneously in a viral population, yielding a complex mutational landscape. FINDINGS We have previously developed an algorithm called ViReMa (Virus Recombination Mapper) that bootstraps the bowtie short-read aligner to capture and annotate a wide range of recombinant species found within virus populations. Here, we have updated ViReMa to provide an "error density" function designed to accurately detect recombination events in the longer reads now routinely generated by the Illumina platforms and provide output reports for multiple types of recombinant species using standardized formats. We demonstrate the utility and flexibility of ViReMa in different settings to report deletion events in simulated data from Flock House virus, copy-back RNA species in Sendai viruses, short duplication events in HIV, and virus-to-host recombination in an archaeal DNA virus.
Collapse
Affiliation(s)
- Stephanea Sotcheff
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yiyang Zhou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jason Yeung
- John Sealy School of Medicine, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Yan Sun
- Department of Microbiology and Immunology, The University of Rochester Medical Center, Rochester, NY 14642, USA
| | - John E Johnson
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA 92037, USA
| | - Bruce E Torbett
- Department of Pediatrics, School of Medicine, University of Washington, Seattle, WA 98105, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
16
|
Yeung J, Routh AL. ViReMaShiny: an interactive application for analysis of viral recombination data. Bioinformatics 2022; 38:4420-4422. [PMID: 35904541 PMCID: PMC9477530 DOI: 10.1093/bioinformatics/btac522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/15/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Recombination is an essential driver of virus evolution and adaption, giving rise to new chimeric viruses, structural variants, sub-genomic RNAs and defective RNAs. Next-generation sequencing (NGS) of virus samples, either from experimental or clinical settings, has revealed a complex distribution of recombination events that contributes to intrahost diversity. We and others have previously developed alignment tools to discover and map these diverse recombination events in NGS data. However, there is no standard for data visualization to contextualize events of interest, and downstream analysis often requires bespoke coding. RESULTS We present ViReMaShiny, a web-based application built using the R Shiny framework to allow interactive exploration and point-and-click visualization of viral recombination data provided in BED format generated by computational pipelines such as ViReMa (Viral-Recombination-Mapper). AVAILABILITY AND IMPLEMENTATION The application is hosted at https://routhlab.shinyapps.io/ViReMaShiny/ with associated documentation at https://jayeung12.github.io/. Code is available at https://github.com/routhlab/ViReMaShiny. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jason Yeung
- John Sealy School of Medicine, The University of Texas Medical Branch, Galveston, TX 77550, USA
| | | |
Collapse
|
17
|
Olmo-Uceda MJ, Muñoz-Sánchez JC, Lasso-Giraldo W, Arnau V, Díaz-Villanueva W, Elena SF. DVGfinder: A Metasearch Tool for Identifying Defective Viral Genomes in RNA-Seq Data. Viruses 2022; 14:1114. [PMID: 35632855 PMCID: PMC9144107 DOI: 10.3390/v14051114] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 02/05/2023] Open
Abstract
The generation of different types of defective viral genomes (DVG) is an unavoidable consequence of the error-prone replication of RNA viruses. In recent years, a particular class of DVGs, those containing long deletions or genome rearrangements, has gain interest due to their potential therapeutic and biotechnological applications. Identifying such DVGs in high-throughput sequencing (HTS) data has become an interesting computational problem. Several algorithms have been proposed to accomplish this goal, though all incur false positives, a problem of practical interest if such DVGs have to be synthetized and tested in the laboratory. We present a metasearch tool, DVGfinder, that wraps the two most commonly used DVG search algorithms in a single workflow for the identification of the DVGs in HTS data. DVGfinder processes the results of ViReMa-a and DI-tector and uses a gradient boosting classifier machine learning algorithm to reduce the number of false-positive events. The program also generates output files in user-friendly HTML format, which can help users to explore the DVGs identified in the sample. We evaluated the performance of DVGfinder compared to the two search algorithms used separately and found that it slightly improves sensitivities for low-coverage synthetic HTS data and DI-tector precision for high-coverage samples. The metasearch program also showed higher sensitivity on a real sample for which a set of copy-backs were previously validated.
Collapse
Affiliation(s)
- Maria J. Olmo-Uceda
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, 46980 Valencia, Spain; (M.J.O.-U.); (J.C.M.-S.); (W.L.-G.); (V.A.); (W.D.-V.)
| | - Juan C. Muñoz-Sánchez
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, 46980 Valencia, Spain; (M.J.O.-U.); (J.C.M.-S.); (W.L.-G.); (V.A.); (W.D.-V.)
| | - Wilberth Lasso-Giraldo
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, 46980 Valencia, Spain; (M.J.O.-U.); (J.C.M.-S.); (W.L.-G.); (V.A.); (W.D.-V.)
| | - Vicente Arnau
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, 46980 Valencia, Spain; (M.J.O.-U.); (J.C.M.-S.); (W.L.-G.); (V.A.); (W.D.-V.)
| | - Wladimiro Díaz-Villanueva
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, 46980 Valencia, Spain; (M.J.O.-U.); (J.C.M.-S.); (W.L.-G.); (V.A.); (W.D.-V.)
| | - Santiago F. Elena
- Instituto de Biología Integrativa de Sistemas (ISysBio), CSIC-Universitat de València, 46980 Valencia, Spain; (M.J.O.-U.); (J.C.M.-S.); (W.L.-G.); (V.A.); (W.D.-V.)
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
18
|
Zhou Y, Sotcheff SL, Routh AL. Next-generation sequencing: A new avenue to understand viral RNA-protein interactions. J Biol Chem 2022; 298:101924. [PMID: 35413291 PMCID: PMC8994257 DOI: 10.1016/j.jbc.2022.101924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 10/25/2022] Open
Abstract
The genomes of RNA viruses present an astonishing source of both sequence and structural diversity. From intracellular viral RNA-host interfaces to interactions between the RNA genome and structural proteins in virus particles themselves, almost the entire viral lifecycle is accompanied by a myriad of RNA-protein interactions that are required to fulfill their replicative potential. It is therefore important to characterize such rich and dynamic collections of viral RNA-protein interactions to understand virus evolution and their adaptation to their hosts and environment. Recent advances in next-generation sequencing technologies have allowed the characterization of viral RNA-protein interactions, including both transient and conserved interactions, where molecular and structural approaches have fallen short. In this review, we will provide a methodological overview of the high-throughput techniques used to study viral RNA-protein interactions, their biochemical mechanisms, and how they evolved from classical methods as well as one another. We will discuss how different techniques have fueled virus research to characterize how viral RNA and proteins interact, both locally and on a global scale. Finally, we will present examples on how these techniques influence the studies of clinically important pathogens such as HIV-1 and SARS-CoV-2.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA.
| | - Stephanea L Sotcheff
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, Texas, USA; Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, Texas, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
19
|
Wang S, Sotcheff SL, Gallardo CM, Jaworski E, Torbett B, Routh A. Covariation of viral recombination with single nucleotide variants during virus evolution revealed by CoVaMa. Nucleic Acids Res 2022; 50:e41. [PMID: 35018461 PMCID: PMC9023271 DOI: 10.1093/nar/gkab1259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022] Open
Abstract
Adaptation of viruses to their environments occurs through the acquisition of both novel single-nucleotide variants (SNV) and recombination events including insertions, deletions, and duplications. The co-occurrence of SNVs in individual viral genomes during their evolution has been well-described. However, unlike covariation of SNVs, studying the correlation between recombination events with each other or with SNVs has been hampered by their inherent genetic complexity and a lack of bioinformatic tools. Here, we expanded our previously reported CoVaMa pipeline (v0.1) to measure linkage disequilibrium between recombination events and SNVs within both short-read and long-read sequencing datasets. We demonstrate this approach using long-read nanopore sequencing data acquired from Flock House virus (FHV) serially passaged in vitro. We found SNVs that were either correlated or anti-correlated with large genomic deletions generated by nonhomologous recombination that give rise to Defective-RNAs. We also analyzed NGS data from longitudinal HIV samples derived from a patient undergoing antiretroviral therapy who proceeded to virological failure. We found correlations between insertions in the p6Gag and mutations in Gag cleavage sites. This report confirms previous findings and provides insights on novel associations between SNVs and specific recombination events within the viral genome and their role in viral evolution.
Collapse
Affiliation(s)
- Shiyi Wang
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Stephanea L Sotcheff
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Christian M Gallardo
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
| | - Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Bruce E Torbett
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Andrew L Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
20
|
Enhancing the Antiviral Potency of Nucleobases for Potential Broad-Spectrum Antiviral Therapies. Viruses 2021; 13:v13122508. [PMID: 34960780 PMCID: PMC8705664 DOI: 10.3390/v13122508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 11/16/2022] Open
Abstract
Broad-spectrum antiviral therapies hold promise as a first-line defense against emerging viruses by blunting illness severity and spread until vaccines and virus-specific antivirals are developed. The nucleobase favipiravir, often discussed as a broad-spectrum inhibitor, was not effective in recent clinical trials involving patients infected with Ebola virus or SARS-CoV-2. A drawback of favipiravir use is its rapid clearance before conversion to its active nucleoside-5′-triphosphate form. In this work, we report a synergistic reduction of flavivirus (dengue, Zika), orthomyxovirus (influenza A), and coronavirus (HCoV-OC43 and SARS-CoV-2) replication when the nucleobases favipiravir or T-1105 were combined with the antimetabolite 6-methylmercaptopurine riboside (6MMPr). The 6MMPr/T-1105 combination increased the C-U and G-A mutation frequency compared to treatment with T-1105 or 6MMPr alone. A further analysis revealed that the 6MMPr/T-1105 co-treatment reduced cellular purine nucleotide triphosphate synthesis and increased conversion of the antiviral nucleobase to its nucleoside-5′-monophosphate, -diphosphate, and -triphosphate forms. The 6MMPr co-treatment specifically increased production of the active antiviral form of the nucleobases (but not corresponding nucleosides) while also reducing levels of competing cellular NTPs to produce the synergistic effect. This in-depth work establishes a foundation for development of small molecules as possible co-treatments with nucleobases like favipiravir in response to emerging RNA virus infections.
Collapse
|
21
|
Lee JH, Kim HS. Current laboratory tests for diagnosis of hepatitis B virus infection. Int J Clin Pract 2021; 75:e14812. [PMID: 34487586 DOI: 10.1111/ijcp.14812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) has a long history in human infectious diseases. HBV infection can progress chronically, leading to cancer. After introduction of a vaccine, the overall incidence rate of HBV infection has decreased, although it remains a health problem in many countries. PURPOSE The aim of this review was to summarise current diagnostic efforts for HBV infection and future HBV diagnosis perspectives. METHODS We reviewed and summarised current laboratory diagnosis related with HBV infection in clinical practice. RESULTS There have been various serologic- and molecular-based methods to diagnose acute or chronic HBV infection. Since intrahepatic covalently closed circular DNAs (cccDNAs) function as robust HBV replication templates, cure of chronic HBV infection is limited. Recently, new biomarkers such as hepatitis B virus core-related antigen (HBcrAg) and HBV RNA have emerged that appear to reflect intrahepatic cccDNA status. These new biomarkers should be validated before clinical usage. CONCLUSION An effective diagnostic approach and current updated knowledge of treatment response monitoring are important for HBV infection management. Brand new ultrasensitive and accurate immunologic methods may pave the way to manage HBV infection in parallel with immunotherapy era.
Collapse
Affiliation(s)
- Jong-Han Lee
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, Republic of Korea
| | - Hyon-Suk Kim
- Department of Laboratory Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
22
|
Abstract
The success of many viruses depends upon cooperative interactions between viral genomes. However, whenever cooperation occurs, there is the potential for 'cheats' to exploit that cooperation. We suggest that: (1) the biology of viruses makes viral cooperation particularly susceptible to cheating; (2) cheats are common across a wide range of viruses, including viral entities that are already well studied, such as defective interfering genomes, and satellite viruses. Consequently, the evolutionary theory of cheating could help us understand and manipulate viral dynamics, while viruses also offer new opportunities to study the evolution of cheating.
Collapse
Affiliation(s)
- Asher Leeks
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK.
| | - Stuart A West
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| | - Melanie Ghoul
- Department of Zoology, University of Oxford, Oxford, OX1 3PS, UK
| |
Collapse
|
23
|
Li D, Lin MH, Rawle DJ, Jin H, Wu Z, Wang L, Lor M, Hussain M, Aaskov J, Harrich D. Dengue virus-free defective interfering particles have potent and broad anti-dengue virus activity. Commun Biol 2021; 4:557. [PMID: 33976375 PMCID: PMC8113447 DOI: 10.1038/s42003-021-02064-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/23/2021] [Indexed: 02/03/2023] Open
Abstract
Dengue virus (DENV) is spread from human to human through the bite of the female Aedes aegypti mosquito and leads to about 100 million clinical infections yearly. Treatment options and vaccine availability for DENV are limited. Defective interfering particles (DIPs) are considered a promising antiviral approach but infectious virus contamination has limited their development. Here, a DENV-derived DIP production cell line was developed that continuously produced DENV-free DIPs. The DIPs contained and could deliver to cells a DENV serotype 2 subgenomic defective-interfering RNA, which was originally discovered in DENV infected patients. The DIPs released into cell culture supernatant were purified and could potently inhibit replication of all DENV serotypes in cells. Antiviral therapeutics are limited for many viral infection. The DIP system described could be re-purposed to make antiviral DIPs for many other RNA viruses such as SARS-CoV-2, yellow fever, West Nile and Zika viruses.
Collapse
Affiliation(s)
- Dongsheng Li
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Min-Hsuan Lin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Daniel J Rawle
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Zhonglan Wu
- Ningxia Center for Disease Control and Prevention, Ningxia, China
| | - Lu Wang
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Mary Lor
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Mazhar Hussain
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - John Aaskov
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.
| |
Collapse
|
24
|
López CB. Defective Viral Particles. Virology 2021. [DOI: 10.1002/9781119818526.ch5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Defective viral genomes as therapeutic interfering particles against flavivirus infection in mammalian and mosquito hosts. Nat Commun 2021; 12:2290. [PMID: 33863888 PMCID: PMC8052367 DOI: 10.1038/s41467-021-22341-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 03/12/2021] [Indexed: 01/13/2023] Open
Abstract
Arthropod-borne viruses pose a major threat to global public health. Thus, innovative strategies for their control and prevention are urgently needed. Here, we exploit the natural capacity of viruses to generate defective viral genomes (DVGs) to their detriment. While DVGs have been described for most viruses, identifying which, if any, can be used as therapeutic agents remains a challenge. We present a combined experimental evolution and computational approach to triage DVG sequence space and pinpoint the fittest deletions, using Zika virus as an arbovirus model. This approach identifies fit DVGs that optimally interfere with wild-type virus infection. We show that the most fit DVGs conserve the open reading frame to maintain the translation of the remaining non-structural proteins, a characteristic that is fundamental across the flavivirus genus. Finally, we demonstrate that the high fitness DVG is antiviral in vivo both in the mammalian host and the mosquito vector, reducing transmission in the latter by up to 90%. Our approach establishes the method to interrogate the DVG fitness landscape, and enables the systematic identification of DVGs that show promise as human therapeutics and vector control strategies to mitigate arbovirus transmission and disease.
Collapse
|
26
|
Smith SC, Gribble J, Diller JR, Wiebe MA, Thoner TW, Denison MR, Ogden KM. Reovirus RNA recombination is sequence directed and generates internally deleted defective genome segments during passage. J Virol 2021; 95:JVI.02181-20. [PMID: 33472930 PMCID: PMC8103698 DOI: 10.1128/jvi.02181-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/14/2021] [Indexed: 12/12/2022] Open
Abstract
For viruses with segmented genomes, genetic diversity is generated by genetic drift, reassortment, and recombination. Recombination produces RNA populations distinct from full-length gene segments and can influence viral population dynamics, persistence, and host immune responses. Viruses in the Reoviridae family, including rotavirus and mammalian orthoreovirus (reovirus), have been reported to package segments containing rearrangements or internal deletions. Rotaviruses with RNA segments containing rearrangements have been isolated from immunocompromised and immunocompetent children and in vitro following serial passage at relatively high multiplicity. Reoviruses that package small, defective RNA segments have established chronic infections in cells and in mice. However, the mechanism and extent of Reoviridae RNA recombination are undefined. Towards filling this gap in knowledge, we determined the titers and RNA segment profiles for reovirus and rotavirus following serial passage in cultured cells. The viruses exhibited occasional titer reductions characteristic of interference. Reovirus strains frequently accumulated segments that retained 5' and 3' terminal sequences and featured large internal deletions, while similarly fragmented segments were rarely detected in rotavirus populations. Using next-generation RNA-sequencing to analyze RNA molecules packaged in purified reovirus particles, we identified distinct recombination sites within individual viral genome segments. Recombination junctions were frequently but not always characterized by short direct sequence repeats upstream and downstream that spanned junction sites. Taken together, these findings suggest that reovirus accumulates defective gene segments featuring internal deletions during passage and undergoes sequence-directed recombination at distinct sites.IMPORTANCE Viruses in the Reoviridae family include important pathogens of humans and other animals and have segmented RNA genomes. Recombination in RNA virus populations can facilitate novel host exploration and increased disease severity. The extent, patterns, and mechanisms of Reoviridae recombination and the functions and effects of recombined RNA products are poorly understood. Here, we provide evidence that mammalian orthoreovirus regularly synthesizes RNA recombination products that retain terminal sequences but contain internal deletions, while rotavirus rarely synthesizes such products. Recombination occurs more frequently at specific sites in the mammalian orthoreovirus genome, and short regions of identical sequence are often detected at junction sites. These findings suggest that mammalian orthoreovirus recombination events are directed in part by RNA sequences. An improved understanding of recombined viral RNA synthesis may enhance our capacity to engineer improved vaccines and virotherapies in the future.
Collapse
Affiliation(s)
- Sydni Caet Smith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Jennifer Gribble
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Julia R Diller
- Department of Pediatrics, Vanderbilt University Medical Center
| | - Michelle A Wiebe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Timothy W Thoner
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Mark R Denison
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
- Department of Pediatrics, Vanderbilt University Medical Center
| | - Kristen M Ogden
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
- Department of Pediatrics, Vanderbilt University Medical Center
| |
Collapse
|
27
|
Weaver SC, Forrester NL, Liu J, Vasilakis N. Population bottlenecks and founder effects: implications for mosquito-borne arboviral emergence. Nat Rev Microbiol 2021; 19:184-195. [PMID: 33432235 PMCID: PMC7798019 DOI: 10.1038/s41579-020-00482-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2020] [Indexed: 01/31/2023]
Abstract
Transmission of arthropod-borne viruses (arboviruses) involves infection and replication in both arthropod vectors and vertebrate hosts. Nearly all arboviruses are RNA viruses with high mutation frequencies, which leaves them vulnerable to genetic drift and fitness losses owing to population bottlenecks during vector infection, dissemination from the midgut to the salivary glands and transmission to the vertebrate host. However, despite these bottlenecks, they seem to avoid fitness declines that can result from Muller's ratchet. In addition, founder effects that occur during the geographic introductions of human-amplified arboviruses, including chikungunya virus and Zika virus, can affect epidemic and endemic circulation, as well as virulence. In this Review, we discuss the role of genetic drift following population bottlenecks and founder effects in arboviral evolution and spread, and the emergence of human disease.
Collapse
Affiliation(s)
- Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA.
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| | | | - Jianying Liu
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nikos Vasilakis
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
28
|
Fitzpatrick AH, Rupnik A, O'Shea H, Crispie F, Keaveney S, Cotter P. High Throughput Sequencing for the Detection and Characterization of RNA Viruses. Front Microbiol 2021; 12:621719. [PMID: 33692767 PMCID: PMC7938315 DOI: 10.3389/fmicb.2021.621719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
This review aims to assess and recommend approaches for targeted and agnostic High Throughput Sequencing of RNA viruses in a variety of sample matrices. HTS also referred to as deep sequencing, next generation sequencing and third generation sequencing; has much to offer to the field of environmental virology as its increased sequencing depth circumvents issues with cloning environmental isolates for Sanger sequencing. That said however, it is important to consider the challenges and biases that method choice can impart to sequencing results. Here, methodology choices from RNA extraction, reverse transcription to library preparation are compared based on their impact on the detection or characterization of RNA viruses.
Collapse
Affiliation(s)
- Amy H. Fitzpatrick
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
- Shellfish Microbiology, Marine Institute, Oranmore, Ireland
- Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Helen O'Shea
- Biological Sciences, Munster Technological University, Cork, Ireland
| | - Fiona Crispie
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | | | - Paul Cotter
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| |
Collapse
|
29
|
Gribble J, Stevens LJ, Agostini ML, Anderson-Daniels J, Chappell JD, Lu X, Pruijssers AJ, Routh AL, Denison MR. The coronavirus proofreading exoribonuclease mediates extensive viral recombination. PLoS Pathog 2021; 17:e1009226. [PMID: 33465137 PMCID: PMC7846108 DOI: 10.1371/journal.ppat.1009226] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/29/2021] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
Recombination is proposed to be critical for coronavirus (CoV) diversity and emergence of SARS-CoV-2 and other zoonotic CoVs. While RNA recombination is required during normal CoV replication, the mechanisms and determinants of CoV recombination are not known. CoVs encode an RNA proofreading exoribonuclease (nsp14-ExoN) that is distinct from the CoV polymerase and is responsible for high-fidelity RNA synthesis, resistance to nucleoside analogues, immune evasion, and virulence. Here, we demonstrate that CoVs, including SARS-CoV-2, MERS-CoV, and the model CoV murine hepatitis virus (MHV), generate extensive and diverse recombination products during replication in culture. We show that the MHV nsp14-ExoN is required for native recombination, and that inactivation of ExoN results in decreased recombination frequency and altered recombination products. These results add yet another critical function to nsp14-ExoN, highlight the uniqueness of the evolved coronavirus replicase, and further emphasize nsp14-ExoN as a central, completely conserved, and vulnerable target for inhibitors and attenuation of SARS-CoV-2 and future emerging zoonotic CoVs.
Collapse
Affiliation(s)
- Jennifer Gribble
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Laura J. Stevens
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Maria L. Agostini
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jordan Anderson-Daniels
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James D. Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Xiaotao Lu
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Andrea J. Pruijssers
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Andrew L. Routh
- Department of Biochemistry and Molecular Biology, University of Texas–Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas–Medical Branch, Galveston, Texas, United States of America
| | - Mark R. Denison
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
30
|
Differential Alphavirus Defective RNA Diversity between Intracellular and Extracellular Compartments Is Driven by Subgenomic Recombination Events. mBio 2020; 11:mBio.00731-20. [PMID: 32817101 PMCID: PMC7439471 DOI: 10.1128/mbio.00731-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Our understanding of viral defective RNAs (D-RNAs), or truncated viral genomes, comes largely from passaging studies in tissue culture under artificial conditions and/or packaged viral RNAs. Here, we show that specific populations of alphavirus D-RNAs arise de novo and that they are not packaged into virions, thus imposing a transmission bottleneck and impeding their prior detection. This raises important questions about the roles of D-RNAs, both in nature and in tissue culture, during viral infection and whether their influence is constrained by packaging requirements. Further, during the course of these studies, we found a novel type of alphavirus D-RNA that is enriched intracellularly; dubbed subgenomic D-RNAs (sgD-RNAs), they are defined by deletion boundaries between the capsid-E3 region and the E1-3′ untranslated region (UTR) and are common to chikungunya, Mayaro, Sindbis, and Aura viruses. These sgD-RNAs are enriched intracellularly and do not appear to be selectively packaged, and additionally, they may exist as subgenome-derived transcripts. Alphaviruses are positive-sense RNA arboviruses that can cause either a chronic arthritis or a potentially lethal encephalitis. Like other RNA viruses, alphaviruses produce truncated, defective viral RNAs featuring large deletions during replication. These defective RNAs (D-RNAs) have primarily been isolated from virions after high-multiplicity-of-infection passaging. Here, we aimed to characterize both intracellular and packaged viral D-RNA populations during early-passage infections under the hypothesis that D-RNAs arise de novo intracellularly that may not be packaged and thus have remained undetected. To this end, we generated next-generation sequencing libraries using RNA derived from passage 1 (P1) stock chikungunya virus (CHIKV) 181/clone 25, intracellular virus, and P2 virions and analyzed samples for D-RNA expression, followed by diversity and differential expression analyses. We found that the diversity of D-RNA species is significantly higher for intracellular D-RNA populations than P2 virions and that specific populations of D-RNAs are differentially expressed between intracellular and extracellular compartments. Importantly, these trends were likewise observed in a murine model of CHIKV AF15561 infection, as well as in vitro studies using related Mayaro, Sindbis, and Aura viruses. Additionally, we identified a novel subtype of subgenomic D-RNA that is conserved across arthritogenic alphaviruses. D-RNAs specific to intracellular populations were defined by recombination events specifically in the subgenomic region, which were confirmed by direct RNA nanopore sequencing of intracellular CHIKV RNAs. Together, these studies show that only a portion of D-RNAs generated intracellularly are packaged and D-RNAs readily arise de novo in the absence of transmitted template.
Collapse
|
31
|
Xu Z, Asakawa S. Physiological RNA dynamics in RNA-Seq analysis. Brief Bioinform 2020; 20:1725-1733. [PMID: 30010714 DOI: 10.1093/bib/bby045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/24/2018] [Indexed: 02/06/2023] Open
Abstract
Physiological RNA dynamics cause problems in transcriptome analysis. Physiological RNA accumulation affects the analysis of RNA quantification, and physiological RNA degradation affects the analysis of the RNA sequence length, feature site and quantification. In the present article, we review the effects of physiological degradation and accumulation of RNA on analysing RNA sequencing data. Physiological RNA accumulation and degradation probably led to such phenomena as incorrect estimations of transcription quantification, differential expressions, co-expressions, RNA decay rates, alternative splicing, boundaries of transcription, novel genes, new single-nucleotide polymorphisms, small RNAs and gene fusion. Thus, the transcriptomic data obtained up to date warrant further scrutiny. New and improved techniques and bioinformatics software are needed to produce accurate data in transcriptome research.
Collapse
Affiliation(s)
- Zhongneng Xu
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Shuichi Asakawa
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
32
|
Ziegler CM, Botten JW. Defective Interfering Particles of Negative-Strand RNA Viruses. Trends Microbiol 2020; 28:554-565. [PMID: 32544442 PMCID: PMC7298151 DOI: 10.1016/j.tim.2020.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 01/27/2020] [Accepted: 02/25/2020] [Indexed: 12/14/2022]
Abstract
Viral defective interfering particles (DIPs) were intensely studied several decades ago but research waned leaving open many critical questions. New technologies and other advances led to a resurgence in DIP studies for negative-strand RNA viruses. While DIPs have long been recognized, their exact contribution to the outcome of acute or persistent viral infections has remained elusive. Recent studies have identified defective viral genomes (DVGs) in human infections, including respiratory syncytial virus and influenza, and growing evidence indicates that DVGs influence disease severity and may contribute to viral persistence. Further, several studies have advanced our understanding of key viral and host factors that regulate DIP formation and activity. Here we review these discoveries and highlight key questions moving forward.
Collapse
Affiliation(s)
- Christopher M Ziegler
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, VT 05405, USA
| | - Jason W Botten
- Department of Medicine, Division of Immunobiology, University of Vermont, Burlington, VT 05405, USA; Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA; Vaccine Testing Center, University of Vermont, Burlington, VT 05405, USA.
| |
Collapse
|
33
|
Kautz TF, Jaworski E, Routh A, Forrester NL. A Low Fidelity Virus Shows Increased Recombination during the Removal of an Alphavirus Reporter Gene. Viruses 2020; 12:E660. [PMID: 32575413 PMCID: PMC7354468 DOI: 10.3390/v12060660] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 01/18/2023] Open
Abstract
Reporter genes for RNA viruses are well-known to be unstable due to putative RNA recombination events that excise inserted nucleic acids. RNA recombination has been demonstrated to be co-regulated with replication fidelity in alphaviruses, but it is unknown how recombination events at the minority variant level act, which is important for vaccine and trans-gene delivery design. Therefore, we sought to characterize the removal of a reporter gene by a low-fidelity alphavirus mutant over multiple replication cycles. To examine this, GFP was inserted into TC-83, a live-attenuated vaccine for the alphavirus Venezuelan equine encephalitis virus, as well as a low-fidelity variant of TC-83, and passaged until fluorescence was no longer observed. Short-read RNA sequencing using ClickSeq was performed to determine which regions of the viral genome underwent recombination and how this changed over multiple replication cycles. A rapid removal of the GFP gene was observed, where minority variants in the virus population accumulated small deletions that increased in size over the course of passaging. Eventually, these small deletions merged to fully remove the GFP gene. The removal was significantly enhanced during the passaging of low-fidelity TC-83, suggesting that increased levels of recombination are a defining characteristic of this mutant.
Collapse
Affiliation(s)
- Tiffany F Kautz
- Institute for Human Infections and Immunity, Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, University of Medical Branch, Galveston, TX 77555-0645, USA
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, University of Medical Branch, Galveston, TX 77555-0645, USA
| | - Naomi L Forrester
- Institute for Human Infections and Immunity, Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- School of Life Sciences, University of Keele, Keele ST5 5BG, UK
| |
Collapse
|
34
|
Zhou Y, Routh A. Mapping RNA-capsid interactions and RNA secondary structure within virus particles using next-generation sequencing. Nucleic Acids Res 2020; 48:e12. [PMID: 31799606 PMCID: PMC6954446 DOI: 10.1093/nar/gkz1124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/31/2019] [Accepted: 11/16/2019] [Indexed: 01/24/2023] Open
Abstract
To characterize RNA-capsid binding sites genome-wide within mature RNA virus particles, we have developed a Next-Generation Sequencing (NGS) platform: viral Photo-Activatable Ribonucleoside CrossLinking (vPAR-CL). In vPAR-CL, 4-thiouridine is incorporated into the encapsidated genomes of virus particles and subsequently UV-crosslinked to adjacent capsid proteins. We demonstrate that vPAR-CL can readily and reliably identify capsid binding sites in genomic viral RNA by detecting crosslink-specific uridine to cytidine transitions in NGS data. Using Flock House virus (FHV) as a model system, we identified highly consistent and significant vPAR-CL signals across virus RNA genome, indicating a clear tropism of the encapsidated RNA genome. Certain interaction sites coincide with previously identified functional RNA motifs. We additionally performed dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) to generate a high-resolution profile of single-stranded genomic RNA inside viral particles. Combining vPAR-CL and DMS-MaPseq reveals that the predominant RNA-capsid interaction sites favored double-stranded RNA regions. We disrupted secondary structures associated with vPAR-CL sites using synonymous mutations, resulting in varied effects to virus replication, propagation and packaging. Certain mutations showed substantial deficiency in virus replication, suggesting these RNA-capsid sites are multifunctional. These provide further evidence to support that FHV packaging and replication are highly coordinated and inter-dependent events.
Collapse
Affiliation(s)
- Yiyang Zhou
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX, USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
- To whom correspondence should be address. Tel: +1 409 772 3663;
| |
Collapse
|
35
|
Loiseau V, Herniou EA, Moreau Y, Lévêque N, Meignin C, Daeffler L, Federici B, Cordaux R, Gilbert C. Wide spectrum and high frequency of genomic structural variation, including transposable elements, in large double-stranded DNA viruses. Virus Evol 2020; 6:vez060. [PMID: 32002191 PMCID: PMC6983493 DOI: 10.1093/ve/vez060] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Our knowledge of the diversity and frequency of genomic structural variation segregating in populations of large double-stranded (ds) DNA viruses is limited. Here, we sequenced the genome of a baculovirus (Autographa californica multiple nucleopolyhedrovirus [AcMNPV]) purified from beet armyworm (Spodoptera exigua) larvae at depths >195,000× using both short- (Illumina) and long-read (PacBio) technologies. Using a pipeline relying on hierarchical clustering of structural variants (SVs) detected in individual short- and long-reads by six variant callers, we identified a total of 1,141 SVs in AcMNPV, including 464 deletions, 443 inversions, 160 duplications, and 74 insertions. These variants are considered robust and unlikely to result from technical artifacts because they were independently detected in at least three long reads as well as at least three short reads. SVs are distributed along the entire AcMNPV genome and may involve large genomic regions (30,496 bp on average). We show that no less than 39.9 per cent of genomes carry at least one SV in AcMNPV populations, that the vast majority of SVs (75%) segregate at very low frequency (<0.01%) and that very few SVs persist after ten replication cycles, consistent with a negative impact of most SVs on AcMNPV fitness. Using short-read sequencing datasets, we then show that populations of two iridoviruses and one herpesvirus are also full of SVs, as they contain between 426 and 1,102 SVs carried by 52.4–80.1 per cent of genomes. Finally, AcMNPV long reads allowed us to identify 1,757 transposable elements (TEs) insertions, 895 of which are truncated and occur at one extremity of the reads. This further supports the role of baculoviruses as possible vectors of horizontal transfer of TEs. Altogether, we found that SVs, which evolve mostly under rapid dynamics of gain and loss in viral populations, represent an important feature in the biology of large dsDNA viruses.
Collapse
Affiliation(s)
- Vincent Loiseau
- Laboratoire Evolution, Génomes, Comportement, Écologie, Unité Mixte de Recherche 9191 Centre National de la Recherche Scientifique et Unité Mixte de Recherche 247 Institut de Recherche pour le Développement, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, 37200 Tours, France
| | - Yannis Moreau
- Institut de Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS - Université de Tours, 37200 Tours, France
| | - Nicolas Lévêque
- Laboratoire de Virologie et Mycobactériologie, CHU de Poitiers, 86000 Poitiers, France.,Laboratoire Inflammation, Tissus Epithéliaux et Cytokines, EA 4331, Université de Poitiers, 86000 Poitiers, France
| | - Carine Meignin
- Modèles Insectes d'Immunité Innée (M3i), Université de Strasbourg, IBMC CNRS-UPR9022, Strasbourg F-67000, France
| | - Laurent Daeffler
- Modèles Insectes d'Immunité Innée (M3i), Université de Strasbourg, IBMC CNRS-UPR9022, Strasbourg F-67000, France
| | - Brian Federici
- Department of Entomology and Institute for Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Unité Mixte de Recherche 7267 Centre National de la Recherche Scientifique, Université de Poitiers, 86000 Poitiers, France
| | - Clément Gilbert
- Laboratoire Evolution, Génomes, Comportement, Écologie, Unité Mixte de Recherche 9191 Centre National de la Recherche Scientifique et Unité Mixte de Recherche 247 Institut de Recherche pour le Développement, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| |
Collapse
|
36
|
Kovalev N, Pogany J, Nagy PD. Interviral Recombination between Plant, Insect, and Fungal RNA Viruses: Role of the Intracellular Ca 2+/Mn 2+ Pump. J Virol 2019; 94:e01015-19. [PMID: 31597780 PMCID: PMC6912095 DOI: 10.1128/jvi.01015-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/07/2019] [Indexed: 01/18/2023] Open
Abstract
Recombination is one of the driving forces of viral evolution. RNA recombination events among similar RNA viruses are frequent, although RNA recombination could also take place among unrelated viruses. In this paper, we have established efficient interviral recombination systems based on yeast and plants. We show that diverse RNA viruses, including the plant viruses tomato bushy stunt virus, carnation Italian ringspot virus, and turnip crinkle virus-associated RNA; the insect plus-strand RNA [(+)RNA] viruses Flock House virus and Nodamura virus; and the double-stranded L-A virus of yeast, are involved in interviral recombination events. Most interviral recombinants are minus-strand recombinant RNAs, and the junction sites are not randomly distributed, but there are certain hot spot regions. Formation of interviral recombinants in yeast and plants is accelerated by depletion of the cellular SERCA-like Pmr1 ATPase-driven Ca2+/Mn2+ pump, regulating intracellular Ca2+ and Mn2+ influx into the Golgi apparatus from the cytosol. The interviral recombinants are generated by a template-switching mechanism during RNA replication by the viral replicase. Replication studies revealed that a group of interviral recombinants is replication competent in cell-free extracts, in yeast, and in the plant Nicotiana benthamiana We propose that there are major differences among the viral replicases to generate and maintain interviral recombinants. Altogether, the obtained data promote the model that host factors greatly contribute to the formation of recombinants among related and unrelated viruses. This is the first time that a host factor's role in affecting interviral recombination is established.IMPORTANCE Viruses with RNA genomes are abundant, and their genomic sequences show astonishing variation. Genetic recombination in RNA viruses is a major force behind their rapid evolution, enhanced pathogenesis, and adaptation to their hosts. We utilized a previously identified intracellular Ca2+/Mn2+ pump-deficient yeast to search for interviral recombinants. Noninfectious viral replication systems were used to avoid generating unwanted infectious interviral recombinants. Altogether, interviral RNA recombinants were observed between plant and insect viruses, and between a fungal double-stranded RNA (dsRNA) virus and an insect virus, in the yeast host. In addition, interviral recombinants between two plant virus replicon RNAs were identified in N. benthamiana plants, in which the intracellular Ca2+/Mn2+ pump was depleted. These findings underline the crucial role of the host in promoting RNA recombination among unrelated viruses.
Collapse
Affiliation(s)
- Nikolay Kovalev
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Judit Pogany
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| | - Peter D Nagy
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
37
|
Yang Y, Lyu T, Zhou R, He X, Ye K, Xie Q, Zhu L, Chen T, Shen C, Wu Q, Zhang B, Zhao W. The Antiviral and Antitumor Effects of Defective Interfering Particles/Genomes and Their Mechanisms. Front Microbiol 2019; 10:1852. [PMID: 31447826 PMCID: PMC6696905 DOI: 10.3389/fmicb.2019.01852] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Defective interfering particles (DIPs), derived naturally from viral particles, are not able to replicate on their own. Several studies indicate that DIPs exert antiviral effects via multiple mechanisms. DIPs are able to activate immune responses and suppress virus replication cycles, such as competing for viral replication products, impeding the packaging, release and invasion of viruses. Other studies show that DIPs can be used as a vaccine against viral infection. Moreover, DIPs/DI genomes display antitumor effects by inducing tumor cell apoptosis and promoting dendritic cell maturation. With genetic modified techniques, it is possible to improve its safety against both viruses and tumors. In this review, a comprehensive discussion on the effects exerted by DIPs is provided. We further highlight the clinical significance of DIPs and propose that DIPs can open up a new platform for antiviral and antitumor therapies.
Collapse
Affiliation(s)
- Yicheng Yang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China.,The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Taibiao Lyu
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Runing Zhou
- The First Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Xiaoen He
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Kaiyan Ye
- The Second Clinical Medical College, Southern Medical University, Guangzhou, China
| | - Qian Xie
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Li Zhu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Tingting Chen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chu Shen
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qinghua Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Bao Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Defective viral genomes are key drivers of the virus-host interaction. Nat Microbiol 2019; 4:1075-1087. [PMID: 31160826 PMCID: PMC7097797 DOI: 10.1038/s41564-019-0465-y] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 04/23/2019] [Indexed: 12/12/2022]
Abstract
Viruses survive often harsh host environments, yet we know little about the strategies they utilize to adapt and subsist given their limited genomic resources. We are beginning to appreciate the surprising versatility of viral genomes and how replication-competent and -defective virus variants can provide means for adaptation, immune escape and virus perpetuation. This Review summarizes current knowledge of the types of defective viral genomes generated during the replication of RNA viruses and the functions that they carry out. We highlight the universality and diversity of defective viral genomes during infections and discuss their predicted role in maintaining a fit virus population, their impact on human and animal health, and their potential to be harnessed as antiviral tools. This Review describes recent findings on the biogenesis and the role of defective viral genomes during replication of RNA viruses and discusses their impact on viral dynamics and evolution.
Collapse
|
39
|
Alnaji FG, Holmes JR, Rendon G, Vera JC, Fields CJ, Martin BE, Brooke CB. Sequencing Framework for the Sensitive Detection and Precise Mapping of Defective Interfering Particle-Associated Deletions across Influenza A and B Viruses. J Virol 2019; 93:e00354-19. [PMID: 30867305 PMCID: PMC6532088 DOI: 10.1128/jvi.00354-19] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/06/2019] [Indexed: 11/20/2022] Open
Abstract
The mechanisms and consequences of defective interfering particle (DIP) formation during influenza virus infection remain poorly understood. The development of next-generation sequencing (NGS) technologies has made it possible to identify large numbers of DIP-associated sequences, providing a powerful tool to better understand their biological relevance. However, NGS approaches pose numerous technical challenges, including the precise identification and mapping of deletion junctions in the presence of frequent mutation and base-calling errors, and the potential for numerous experimental and computational artifacts. Here, we detail an Illumina-based sequencing framework and bioinformatics pipeline capable of generating highly accurate and reproducible profiles of DIP-associated junction sequences. We use a combination of simulated and experimental control data sets to optimize pipeline performance and demonstrate the absence of significant artifacts. Finally, we use this optimized pipeline to reveal how the patterns of DIP-associated junction formation differ between different strains and subtypes of influenza A and B viruses and to demonstrate how these data can provide insight into mechanisms of DIP formation. Overall, this work provides a detailed roadmap for high-resolution profiling and analysis of DIP-associated sequences within influenza virus populations.IMPORTANCE Influenza virus defective interfering particles (DIPs) that harbor internal deletions within their genomes occur naturally during infection in humans and during cell culture. They have been hypothesized to influence the pathogenicity of the virus; however, their specific function remains elusive. The accurate detection of DIP-associated deletion junctions is crucial for understanding DIP biology but is complicated by an array of technical issues that can bias or confound results. Here, we demonstrate a combined experimental and computational framework for detecting DIP-associated deletion junctions using next-generation sequencing (NGS). We detail how to validate pipeline performance and provide the bioinformatics pipeline for groups interested in using it. Using this optimized pipeline, we detect hundreds of distinct deletion junctions generated during infection with a diverse panel of influenza viruses and use these data to test a long-standing hypothesis concerning the molecular details of DIP formation.
Collapse
Affiliation(s)
- Fadi G Alnaji
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jessica R Holmes
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Gloria Rendon
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - J Cristobal Vera
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher J Fields
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Brigitte E Martin
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher B Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
40
|
Abstract
Defective viral genomes (DVGs) are generated during viral replication and are unable to carry out a full replication cycle unless coinfected with a full-length virus. DVGs are produced by many viruses, and their presence correlates with alterations in infection outcomes. Historically, DVGs were studied for their ability to interfere with standard virus replication as well as for their association with viral persistence. More recently, a critical role for DVGs in inducing the innate immune response during infection was appreciated. Here we review the role of DVGs of RNA viruses in shaping outcomes of experimental as well as natural infections and explore the mechanisms by which DVGs impact infection outcome.
Collapse
Affiliation(s)
- Emmanuelle Genoyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Carolina B López
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
41
|
Leeks A, Sanjuán R, West SA. The evolution of collective infectious units in viruses. Virus Res 2019; 265:94-101. [PMID: 30894320 PMCID: PMC6470120 DOI: 10.1016/j.virusres.2019.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 12/21/2022]
Abstract
Many viruses disperse in groups, as part of collective infectious units (CIUs). We modelled different factors that could influence the evolution of CIUs. Group infectivity benefits favoured CIUs, especially if CIUs were more efficient. Defective genomes did not favour or disfavour CIUs. Defective interfering genomes disfavoured CIUs.
Viruses frequently spread among cells or hosts in groups, with multiple viral genomes inside the same infectious unit. These collective infectious units can consist of multiple viral genomes inside the same virion, or multiple virions inside a larger structure such as a vesicle. Collective infectious units deliver multiple viral genomes to the same cell simultaneously, which can have important implications for viral pathogenesis, antiviral resistance, and social evolution. However, little is known about why some viruses transmit in collective infectious units, whereas others do not. We used a simple evolutionary approach to model the potential costs and benefits of transmitting in a collective infectious unit. We found that collective infectious units could be favoured if cells infected by multiple viral genomes were significantly more productive than cells infected by just one viral genome, and especially if there were also efficiency benefits to packaging multiple viral genomes inside the same infectious unit. We also found that if some viral sequences are defective, then collective infectious units could evolve to become very large, but that if these defective sequences interfered with wild-type virus replication, then collective infectious units were disfavoured.
Collapse
Affiliation(s)
- Asher Leeks
- University of Oxford, Department of Zoology, Zoology Research and Administration, Oxford, OX1 3SZ, United Kingdom.
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València, València, Spain
| | - Stuart A West
- University of Oxford, Department of Zoology, Zoology Research and Administration, Oxford, OX1 3SZ, United Kingdom
| |
Collapse
|
42
|
Reyes-Ruiz JM, Osuna-Ramos JF, Bautista-Carbajal P, Jaworski E, Soto-Acosta R, Cervantes-Salazar M, Angel-Ambrocio AH, Castillo-Munguía JP, Chávez-Munguía B, De Nova-Ocampo M, Routh A, Del Ángel RM, Salas-Benito JS. Mosquito cells persistently infected with dengue virus produce viral particles with host-dependent replication. Virology 2019; 531:1-18. [PMID: 30844508 DOI: 10.1016/j.virol.2019.02.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 11/26/2022]
Abstract
Dengue viruses (DENV) are important arboviruses that can establish a persistent infection in its mosquito vector Aedes. Mosquitoes have a short lifetime in nature which makes trying to study the processes that take place during persistent viral infections in vivo. Therefore, C6/36 cells have been used to study this type of infection. C6/36 cells persistently infected with DENV 2 produce virions that cannot infect BHK -21 cells. We hypothesized that the following passages in mosquito cells have a deleterious impact on DENV fitness in vertebrate cells. Here, we demonstrated that the viral particles released from persistently infected cells were infectious to mosquito but not to vertebrate cells. This host restriction occurs at the replication level and is associated with several mutations in the DENV genome. In summary, our findings provide new information about viral replication fitness in a host-dependent manner.
Collapse
Affiliation(s)
- José Manuel Reyes-Ruiz
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - Juan Fidel Osuna-Ramos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - Patricia Bautista-Carbajal
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - Elizabeth Jaworski
- Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, Galveston, TX 77555, USA
| | - Rubén Soto-Acosta
- Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, Galveston, TX 77555, USA
| | - Margot Cervantes-Salazar
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | | | - Juan Pablo Castillo-Munguía
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico
| | - Bibiana Chávez-Munguía
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico
| | - Mónica De Nova-Ocampo
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, The University of Texas, Medical Branch, Galveston, TX 77555, USA; Sealy Center for Structural Biology and Molecular Biophysics, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rosa María Del Ángel
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico.
| | - Juan Santiago Salas-Benito
- Maestría en Ciencias en Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico; Doctorado en Ciencias en Biotecnología, Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico.
| |
Collapse
|
43
|
Petit MJ, Shah PS. Mapping Arbovirus-Vector Interactions Using Systems Biology Techniques. Front Cell Infect Microbiol 2019; 8:440. [PMID: 30666300 PMCID: PMC6330711 DOI: 10.3389/fcimb.2018.00440] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/10/2018] [Indexed: 01/13/2023] Open
Abstract
Studying how arthropod-borne viruses interact with their arthropod vectors is critical to understanding how these viruses replicate and are transmitted. Until recently, these types of studies were limited in scale because of the lack of classical tools available to study virus-host interaction for non-model viruses and non-model organisms. Advances in systems biology "-omics"-based techniques such as next-generation sequencing (NGS) and mass spectrometry can rapidly provide an unbiased view of arbovirus-vector interaction landscapes. In this mini-review, we discuss how arbovirus-vector interaction studies have been advanced by systems biology. We review studies of arbovirus-vector interactions that occur at multiple time and length scales, including intracellular interactions, interactions at the level of the organism, viral and vector populations, and how new techniques can integrate systems-level data across these different scales.
Collapse
Affiliation(s)
- Marine J. Petit
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| | - Priya S. Shah
- Department of Microbiology and Molecular Genetics, University of California, Davis, Davis, CA, United States
- Department of Chemical Engineering, University of California, Davis, Davis, CA, United States
| |
Collapse
|
44
|
Elrod ND, Jaworski EA, Ji P, Wagner EJ, Routh A. Development of Poly(A)-ClickSeq as a tool enabling simultaneous genome-wide poly(A)-site identification and differential expression analysis. Methods 2019; 155:20-29. [PMID: 30625385 DOI: 10.1016/j.ymeth.2019.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/20/2018] [Accepted: 01/04/2019] [Indexed: 12/25/2022] Open
Abstract
The use of RNA-seq as a generalized tool to measure the differential expression of genes has essentially replaced the use of the microarray. Despite the acknowledged technical advantages to this approach, RNA-seq library preparation remains mostly conducted by core facilities rather than in the laboratory due to the infrastructure, expertise and time required per sample. We have recently described two 'click-chemistry' based library construction methods termed ClickSeq and Poly(A)-ClickSeq (PAC-seq) as alternatives to conventional RNA-seq that are both cost effective and rely on straightforward reagents readily available to most labs. ClickSeq is random-primed and can sequence any (unfragmented) RNA template, while PAC-seq is targeted to poly(A) tails of mRNAs. Here, we further develop PAC-seq as a platform that allows for simultaneous mapping of poly(A) sites and the measurement of differential expression of genes. We provide a detailed protocol, descriptions of appropriate computational pipelines, and a proof-of-principle dataset to illustrate the technique. PAC-seq offers a unique advantage over other 3' end mapping protocols in that it does not require additional purification, selection, or fragmentation steps allowing sample preparation directly from crude total cellular RNA. We have shown that PAC-seq is able to accurately and sensitively count transcripts for differential gene expression analysis, as well as identify alternative poly(A) sites and determine the precise nucleotides of the poly(A) tail boundaries.
Collapse
Affiliation(s)
- Nathan D Elrod
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Elizabeth A Jaworski
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Ping Ji
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Eric J Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| | - Andrew Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA; Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
45
|
McNaughton AL, D'Arienzo V, Ansari MA, Lumley SF, Littlejohn M, Revill P, McKeating JA, Matthews PC. Insights From Deep Sequencing of the HBV Genome-Unique, Tiny, and Misunderstood. Gastroenterology 2019; 156:384-399. [PMID: 30268787 PMCID: PMC6347571 DOI: 10.1053/j.gastro.2018.07.058] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/27/2018] [Accepted: 07/23/2018] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) is a unique, tiny, partially double-stranded, reverse-transcribing DNA virus with proteins encoded by multiple overlapping reading frames. The substitution rate is surprisingly high for a DNA virus, but lower than that of other reverse transcribing organisms. More than 260 million people worldwide have chronic HBV infection, which causes 0.8 million deaths a year. Because of the high burden of disease, international health agencies have set the goal of eliminating HBV infection by 2030. Nonetheless, the intriguing HBV genome has not been well characterized. We summarize data on the HBV genome structure and replication cycle, explain and quantify diversity within and among infected individuals, and discuss advances that can be offered by application of next-generation sequencing technology. In-depth HBV genome analyses could increase our understanding of disease pathogenesis and allow us to better predict patient outcomes, optimize treatment, and develop new therapeutics.
Collapse
Affiliation(s)
- Anna L McNaughton
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - Valentina D'Arienzo
- Nuffield Department of Medicine, NDM Research Building, Oxford, United Kingdom
| | - M Azim Ansari
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom
| | - Sheila F Lumley
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom; Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom
| | - Margaret Littlejohn
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute of Infection and Immunity, Melbourne, Australia; Department of Microbiology and Immunology, University of Melbourne. Melbourne, Australia
| | - Peter Revill
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute of Infection and Immunity, Melbourne, Australia; Department of Microbiology and Immunology, University of Melbourne. Melbourne, Australia
| | - Jane A McKeating
- Nuffield Department of Medicine, NDM Research Building, Oxford, United Kingdom
| | - Philippa C Matthews
- Nuffield Department of Medicine, Peter Medawar Building for Pathogen Research, Oxford, United Kingdom; Department of Infectious Diseases and Microbiology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, United Kingdom.
| |
Collapse
|
46
|
Varsani A, Lefeuvre P, Roumagnac P, Martin D. Notes on recombination and reassortment in multipartite/segmented viruses. Curr Opin Virol 2018; 33:156-166. [PMID: 30237098 DOI: 10.1016/j.coviro.2018.08.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/07/2018] [Accepted: 08/28/2018] [Indexed: 11/29/2022]
Abstract
Besides evolving through nucleotide substitution, viruses frequently also evolve by genetic recombination which can occur when related viral variants co-infect the same cells. Viruses with segmented or multipartite genomes can additionally evolve via the reassortment of genomic components. Various computational techniques are now available for identifying and characterizing recombination and reassortment. While these techniques have revealed both that all well studied segmented and multipartite virus species show some capacity for reassortment, and that recombination is common in many multipartite species, they have indicated that recombination is either rare or does not occur in species with segmented genomes. Reassortment and recombination can make it very difficult to study segmented/multipartite viruses using metagenomics-based approaches. Notable challenges include, both the accurate identification and assignment of genomic components to individual genomes, and the differentiation between natural 'real' recombination events and artifactual 'fake' recombination events arising from the inaccurate de novo assembly of genome component sequences determined using short read sequencing.
Collapse
Affiliation(s)
- Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine and School of Life Sciences, Arizona State University, Tempe, AZ 85287-5001, USA; Structural Biology Research Unit, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| | | | - Philippe Roumagnac
- CIRAD, BGPI, Montpellier, France; BGPI, INRA, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Darren Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine. University of Cape Town, Observatory, 7925, South Africa
| |
Collapse
|
47
|
Abstract
Single-cell RNAseq and alternative splicing studies have recently become two of the most prominent applications of RNAseq. However, the combination of both is still challenging, and few research efforts have been dedicated to the intersection between them. Cell-level insight on isoform expression is required to fully understand the biology of alternative splicing, but it is still an open question to what extent isoform expression analysis at the single-cell level is actually feasible. Here, we establish a set of four conditions that are required for a successful single-cell-level isoform study and evaluate how these conditions are met by these technologies in published research.
Collapse
Affiliation(s)
- Ángeles Arzalluz-Luque
- Genomics of Gene Expression Laboratory, Centro de Investigación Principe Felipe (CIPF), 46012, Valencia, Spain
| | - Ana Conesa
- Genomics of Gene Expression Laboratory, Centro de Investigación Principe Felipe (CIPF), 46012, Valencia, Spain.
- Department of Microbiology and Cell Science, Institute for Food and Agricultural Sciences, Genetics Institute, University of Florida, Gainesville, Florida, 32611, USA.
| |
Collapse
|
48
|
Rezelj VV, Levi LI, Vignuzzi M. The defective component of viral populations. Curr Opin Virol 2018; 33:74-80. [PMID: 30099321 DOI: 10.1016/j.coviro.2018.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/16/2018] [Accepted: 07/21/2018] [Indexed: 01/22/2023]
Abstract
Particles containing degenerate forms of the viral genome which interfere with virus replication and are non-replicative per se are known as defective interfering particles (DIPs). DIPs are likely to be produced upon infection by any virus in vitro and in nature. Until recently, roles of these non-viable particles as members of a multi-component viral system have been overlooked. In this review, we cover the most recent studies that shed light on critical roles of DIPs during the course of infection, including: the modulation of virus replication, innate immune responses, disease outcome and virus persistence, as well as the evolution of the viral population. Together, these reports allow us to conceive a more complete picture of the virion population, and highlight the fact that DIPs are not a negligible subset of this population but instead can greatly influence the fate of infection.
Collapse
Affiliation(s)
- Veronica V Rezelj
- Unité Populations virales et pathogenèse, Institut Pasteur, Paris, France
| | - Laura I Levi
- Unité Populations virales et pathogenèse, Institut Pasteur, Paris, France
| | - Marco Vignuzzi
- Unité Populations virales et pathogenèse, Institut Pasteur, Paris, France.
| |
Collapse
|
49
|
ClickSeq: Replacing Fragmentation and Enzymatic Ligation with Click-Chemistry to Prevent Sequence Chimeras. Methods Mol Biol 2018; 1712:71-85. [PMID: 29224069 DOI: 10.1007/978-1-4939-7514-3_6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We recently reported a fragmentation-free method for the synthesis of Next-Generation Sequencing libraries called "ClickSeq" that uses biorthogonal click-chemistry in place of enzymes for the ligation of sequencing adaptors. We found that this approach dramatically reduces artifactual chimera formation, allowing the study of rare recombination events that include viral replication intermediates and defective-interfering viral RNAs. ClickSeq illustrates how robust, bio-orthogonal chemistry can be harnessed in vitro to capture and dissect complex biological processes. Here, we describe an updated protocol for the synthesis of "ClickSeq" libraries.
Collapse
|
50
|
Abstract
Reproduction of RNA viruses is typically error-prone due to the infidelity of their replicative machinery and the usual lack of proofreading mechanisms. The error rates may be close to those that kill the virus. Consequently, populations of RNA viruses are represented by heterogeneous sets of genomes with various levels of fitness. This is especially consequential when viruses encounter various bottlenecks and new infections are initiated by a single or few deviating genomes. Nevertheless, RNA viruses are able to maintain their identity by conservation of major functional elements. This conservatism stems from genetic robustness or mutational tolerance, which is largely due to the functional degeneracy of many protein and RNA elements as well as to negative selection. Another relevant mechanism is the capacity to restore fitness after genetic damages, also based on replicative infidelity. Conversely, error-prone replication is a major tool that ensures viral evolvability. The potential for changes in debilitated genomes is much higher in small populations, because in the absence of stronger competitors low-fit genomes have a choice of various trajectories to wander along fitness landscapes. Thus, low-fit populations are inherently unstable, and it may be said that to run ahead it is useful to stumble. In this report, focusing on picornaviruses and also considering data from other RNA viruses, we review the biological relevance and mechanisms of various alterations of viral RNA genomes as well as pathways and mechanisms of rehabilitation after loss of fitness. The relationships among mutational robustness, resilience, and evolvability of viral RNA genomes are discussed.
Collapse
|