1
|
Zhang Y, Bisaro DM, Wu J. Recent advances in viroid research. Virology 2025; 604:110424. [PMID: 39889478 DOI: 10.1016/j.virol.2025.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Viroids are circular, single-stranded non-coding RNAs that rely entirely on their sequences and structures for activity. Decades of research have uncovered molecular mechanisms of viroid infection, replication, and their interactions with host factors. Notably, viroid-derived small RNAs (vd-RNAs) activate host defenses, while essential host factors and RNA motifs linked to trafficking and quasispecies evolution have been well studied. In this review, we examine key aspects of viroid biology, including the structural motifs and host factors that influence the replication cycle, as well as the mechanisms behind intra- and intercellular movement. We explore the role of vd-RNAs in activating host defense responses. Additionally, we present current perspectives on viroid quasispecies evolution and address the emergence of viroid-like RNAs across various kingdoms. These insights are crucial for deepening our understanding of the viroid replication cycle and their complex interactions with host plants.
Collapse
Affiliation(s)
- Yuhong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - David M Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH, 43210, USA.
| | - Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Koonin E, Lee B. Diversity and evolution of viroids and viroid-like agents with circular RNA genomes revealed by metatranscriptome mining. Nucleic Acids Res 2025; 53:gkae1278. [PMID: 39727156 PMCID: PMC11797063 DOI: 10.1093/nar/gkae1278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/28/2024] Open
Abstract
Viroids, the agents of several plant diseases, are the smallest and simplest known replicators that consist of covalently closed circular (ccc) RNA molecules between 200 and 400 nucleotides in size. Viroids encode no proteins and rely on host RNA polymerases for replication, but some contain ribozymes involved in replication intermediate processing. Although other viroid-like agents with cccRNAs genomes, such as satellite RNAs, ribozyviruses and retrozymes, have been discovered, until recently, the spread of these agents in the biosphere appeared narrow, and their actual diversity and evolution remained poorly understood. Extensive, targeted metatranscriptome mining dramatically expanded the known diversity of cccRNAs genomes. These searches identified numerous, diverse viroid-like cccRNAs, many found in environments devoid of plant and animal material, suggesting replication in unicellular eukaryotic and/or prokaryotic hosts. Several cccRNAs are targeted by CRISPR systems, supporting their association with bacteria. In addition to small cccRNAs in the viroid size range, a broad variety of ribozyviruses and novel viruses with cccRNAs genomes, with genomes reaching nearly 5 kilobases, were discovered. Thus, metatranscriptome mining shows that the diversity of viroid-like cccRNAs genomes is far greater than previously suspected, prompting reassessment of the relevance of these replicators for understanding the primordial RNA world.
Collapse
Affiliation(s)
- Eugene V Koonin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Benjamin D Lee
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
3
|
Lezzhov AA, Atabekova AK, Chergintsev DA, Lazareva EA, Solovyev AG, Morozov SY. Viroids and Retrozymes: Plant Circular RNAs Capable of Autonomous Replication. PLANTS (BASEL, SWITZERLAND) 2024; 14:61. [PMID: 39795321 PMCID: PMC11722881 DOI: 10.3390/plants14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
Among the long non-coding RNAs that are currently recognized as important regulatory molecules influencing a plethora of processes in eukaryotic cells, circular RNAs (circRNAs) represent a distinct class of RNAs that are predominantly produced by back-splicing of pre-mRNA. The most studied regulatory mechanisms involving circRNAs are acting as miRNA sponges, forming R-loops with genomic DNA, and encoding functional proteins. In addition to circRNAs generated by back-splicing, two types of circRNAs capable of autonomous RNA-RNA replication and systemic transport have been described in plants: viroids, which are infectious RNAs that cause a number of plant diseases, and retrozymes, which are transcripts of retrotransposon genomic loci that are capable of circularization due to ribozymes. Based on a number of common features, viroids and retrozymes are considered to be evolutionarily related. Here, we provide an overview of the biogenesis mechanisms and regulatory functions of non-replicating circRNAs produced by back-splicing and further discuss in detail the currently available data on viroids and retrozymes, focusing on their structural features, replication mechanisms, interaction with cellular components, and transport in plants. In addition, biotechnological approaches involving replication-capable plant circRNAs are discussed, as well as their potential applications in research and agriculture.
Collapse
Affiliation(s)
| | | | | | | | | | - Sergey Y. Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia; (A.A.L.); (A.K.A.); (D.A.C.); (E.A.L.); (A.G.S.)
| |
Collapse
|
4
|
Chambers GA, Geering ADW, Bogema DR, Holford P, Vidalakis G, Donovan NJ. Characterisation of the genetic diversity of citrus viroid VII using amplicon sequencing. Arch Virol 2024; 170:12. [PMID: 39666118 PMCID: PMC11638337 DOI: 10.1007/s00705-024-06191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024]
Abstract
Viroids occur in plants as swarms of sequence variants clustered around a dominant variant, leading to adoption of the term 'quasispecies' to describe the viroid population in an individual host. The composition of the quasispecies can potentially change according to the age of the infection, the position of the leaf or branch in the canopy, and the host species. The primary aim of this study was to investigate the quasispecies concept for citrus viroid VII (CVd-VII), a recently discovered member of the family Pospiviroidae. Three experiments were conducted to determine factors affecting viroid variability (i) within different tissues of a lemon plant, (ii) among different plants of the same species (citron), and (iii) among different species and hybrids of citrus. Using two primer sets to produce amplicons for high-throughput sequencing, viroid population profiles were generated for each sample. The number of variants that were identified with both primer sets ranged from 2 to 13 per sample, and each sample comprised 1 to 4 major (> 10% sample) variants. The composition of variants differed in samples from different plants and among tissue types of a single plant. Single-nucleotide polymorphisms (SNPs), mostly in the form of substitutions, were the primary source of variation; in this study, SNPs were observed in approximately 10% of the viroid genome. The results of the three experiments indicate that CVd-VII follows the quasispecies model as reported for other viroids and that variability occurs in viroid populations in different tissue types and host species.
Collapse
Affiliation(s)
- Grant A Chambers
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Private Bag 4008, Narellan, NSW, 2567, Australia.
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, GPO Box 267, Brisbane, Queensland, 4001, Australia.
| | - Andrew D W Geering
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, GPO Box 267, Brisbane, Queensland, 4001, Australia
| | - Daniel R Bogema
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Private Bag 4008, Narellan, NSW, 2567, Australia
| | - Paul Holford
- School of Science, Western Sydney University, LB 1797, Penrith, 2751, NSW, Australia
| | - Georgios Vidalakis
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, 92521, CA, USA
| | - Nerida J Donovan
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Private Bag 4008, Narellan, NSW, 2567, Australia
| |
Collapse
|
5
|
Marquez-Molins J. Uncovered diversity of infectious circular RNAs: A new paradigm for the minimal parasites? NPJ VIRUSES 2024; 2:13. [PMID: 40295681 PMCID: PMC11721086 DOI: 10.1038/s44298-024-00023-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/05/2024] [Indexed: 04/30/2025]
Abstract
Infectious circular RNAs (circRNAs) have been considered as biological oddities only occurring in plants, with limited exceptions. However, a great diversity of viroid-like circRNAs has been recently uncovered by the high-throughput exploration of transcriptomic data of geographically and ecologically diverse niches. In my opinion, this suggests a change in basic assumptions regarding our knowledge about these minimal parasites. The potentially infectious circRNAs found are diverse in size, type of ribozymes, encoded proteins and potential host organisms. The distinction between viroids and RNA viruses has been blurred by the detection of circular mitoviruses and ambiviruses which encode for their own RNA-dependent RNA polymerase. Thus, their taxonomic classification might pose a challenge because of the apparent extensive horizontal transfer and recombination of sequences. Many aspects of the predicted circRNAs remain to be uncovered, such as their pathogenicity or host range, and experimental validations are essential. For example, viroid-like circRNAs similar in size to plant viroids have been found to replicate and cause symptoms in fungi, with an isolate being the smallest replicon characterized so far. Despite an ancestral prebiotic origin for viroid-like sequences has been proposed, their dependence of viral or cellular proteins seems, to my view, more compatible with a cellular escape and/or viral genome reduction. This wide variety of potentially infectious agents might pose a biohazard concern of which we were previously unaware, and thus it would be convenient that more efforts are assigned for their characterization.
Collapse
Affiliation(s)
- Joan Marquez-Molins
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden.
| |
Collapse
|
6
|
Wu J, Zhang Y, Nie Y, Yan F, Zirbel CL, Bisaro DM. RNA three-dimensional structure drives the sequence organization of potato spindle tuber viroid quasispecies. PLoS Pathog 2024; 20:e1012142. [PMID: 38574111 PMCID: PMC11020406 DOI: 10.1371/journal.ppat.1012142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/16/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024] Open
Abstract
RNA viruses and viroids exist and evolve as quasispecies due to error-prone replication. Quasispecies consist of a few dominant master sequences alongside numerous variants that contribute to genetic diversity. Upon environmental changes, certain variants within quasispecies have the potential to become the dominant sequences, leading to the emergence of novel infectious strains. However, the emergence of new infectious variants remains unpredictable. Using mutant pools prepared by saturation mutagenesis of selected stem and loop regions, our study of potato spindle tuber viroid (PSTVd) demonstrates that mutants forming local three-dimensional (3D) structures similar to the wild type (WT) are more likely to accumulate in PSTVd quasispecies. The selection mechanisms underlying this biased accumulation are likely associated with cell-to-cell movement and long-distance trafficking. Moreover, certain trafficking-defective PSTVd mutants can be spread by functional sister genomes in the quasispecies. Our study reveals that the RNA 3D structure of stems and loops constrains the evolution of viroid quasispecies. Mutants with a structure similar to WT have a higher likelihood of being maintained within the quasispecies and can potentially give rise to novel infectious variants. These findings emphasize the potential of targeting RNA 3D structure as a more robust approach to defend against viroid infections.
Collapse
Affiliation(s)
- Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Yuhong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yuxin Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Fei Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Craig L. Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio, United States of America
| | - David M. Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
7
|
Wu J, Bisaro DM. Cell-cell communication and initial population composition shape the structure of potato spindle tuber viroid quasispecies. THE PLANT CELL 2024; 36:1036-1055. [PMID: 38252648 PMCID: PMC10980348 DOI: 10.1093/plcell/koae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/24/2024]
Abstract
RNA viruses and viroids replicate with high mutation rates, forming quasispecies, population of variants centered around dominant sequences. The mechanisms governing quasispecies remain unclear. Plasmodesmata regulate viroid movement and were hypothesized to impact viroid quasispecies. Here, we sequenced the progeny of potato spindle tuber viroid intermediate (PSTVd-I) strain from mature guard cells lacking plasmodesmal connections and from in vitro-cultivated mesophyll cell protoplasts from systemic leaves of early-infected tomato (Solanum lycopersicum) plants. Remarkably, more variants accumulated in guard cells compared to whole leaves. Similarly, after extended cell culture, we observed more variants in cultivated mesophyll protoplasts. Coinfection and single-cell sequencing experiments demonstrated that the same plant cell can be infected multiple times by the same or different PSTVd sequences. To study the impact of initial population composition on PSTVd-I quasispecies, we conducted coinfections with PSTVd-I and variants. Two inoculum ratios (10:1 or 1:10) established quasispecies with or without PSTVd-I as the master sequence. In the absence of the master sequence, the percentage of novel variants initially increased. Moreover, a 1:1 PSTVd-I/variant RNA ratio resulted in PSTVd-I dominating (>50%), while the variants reached 20%. After PSTVd-I-only infection, the variants reached around 10%, while after variant-only infection, the variants were significantly more than 10%. These results emphasize the role of cell-to-cell communication and initial population composition in shaping PSTVd quasispecies.
Collapse
Affiliation(s)
- Jian Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agroproducts, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| | - David M Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Steger G, Riesner D, Prusiner SB. Viroids, Satellite RNAs and Prions: Folding of Nucleic Acids and Misfolding of Proteins. Viruses 2024; 16:360. [PMID: 38543726 PMCID: PMC10975798 DOI: 10.3390/v16030360] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 05/23/2024] Open
Abstract
Theodor ("Ted") Otto Diener (* 28 February 1921 in Zürich, Switzerland; † 28 March 2023 in Beltsville, MD, USA) pioneered research on viroids while working at the Plant Virology Laboratory, Agricultural Research Service, USDA, in Beltsville. He coined the name viroid and defined viroids' important features like the infectivity of naked single-stranded RNA without protein-coding capacity. During scientific meetings in the 1970s and 1980s, viroids were often discussed at conferences together with other "subviral pathogens". This term includes what are now called satellite RNAs and prions. Satellite RNAs depend on a helper virus and have linear or, in the case of virusoids, circular RNA genomes. Prions, proteinaceous infectious particles, are the agents of scrapie, kuru and some other diseases. Many satellite RNAs, like viroids, are non-coding and exert their function by thermodynamically or kinetically controlled folding, while prions are solely host-encoded proteins that cause disease by misfolding, aggregation and transmission of their conformations into infectious prion isoforms. In this memorial, we will recall the work of Ted Diener on subviral pathogens.
Collapse
Affiliation(s)
- Gerhard Steger
- Institut für Physikalische Biologie, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany;
| | - Detlev Riesner
- Institut für Physikalische Biologie, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany;
| | - Stanley B. Prusiner
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA;
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94158, USA
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
9
|
Serra P, Navarro B, Forment J, Gisel A, Gago-Zachert S, Di Serio F, Flores R. Expression of symptoms elicited by a hammerhead viroid through RNA silencing is related to population bottlenecks in the infected host. THE NEW PHYTOLOGIST 2023. [PMID: 37148189 DOI: 10.1111/nph.18934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
Chlorosis is frequently incited by viroids, small nonprotein-coding, circular RNAs replicating in nuclei (family Pospiviroidae) or chloroplasts (family Avsunviroidae). Here, we investigated how chrysanthemum chlorotic mottle viroid (CChMVd, Avsunviroidae) colonizes, evolves and initiates disease. Progeny variants of natural and mutated CChMVd sequence variants inoculated in chrysanthemum plants were characterized, and plant responses were assessed by molecular assays. We showed that: chlorotic mottle induced by CChMVd reflects the spatial distribution and evolutionary behaviour in the infected host of pathogenic (containing a UUUC tetranucleotide) and nonpathogenic (lacking such a pathogenic determinant) variants; and RNA silencing is involved in the initiation of the chlorosis in symptomatic leaf sectors through a viroid-derived small RNA containing the pathogenic determinant that directs AGO1-mediated cleavage of the mRNA encoding the chloroplastic transketolase. This study provides the first evidence that colonization of leaf tissues by CChMVd is characterized by segregating variant populations differing in pathogenicity and with the ability to colonize leaf sectors (bottlenecks) and exclude other variants (superinfection exclusion). Importantly, no specific pathogenic viroid variants were found in the chlorotic spots caused by chrysanthemum stunt viroid (Pospiviroidae), thus establishing a clear distinction on how members of the two viroid families trigger chlorosis in the same host.
Collapse
Affiliation(s)
- Pedro Serra
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022, Valencia, Spain
| | - Beatriz Navarro
- Institute for Sustainable Plant Protection, National Research Council, Bari, 70122, Italy
| | - Javier Forment
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022, Valencia, Spain
| | - Andreas Gisel
- Institute for Biomedical Technologies, National Research Council, Bari, 70122, Italy
- International Institute of Tropical Agriculture, 200001, Ibadan, Nigeria
| | - Selma Gago-Zachert
- Section Microbial Biotechnology, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Francesco Di Serio
- Institute for Sustainable Plant Protection, National Research Council, Bari, 70122, Italy
| | - Ricardo Flores
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València), 46022, Valencia, Spain
| |
Collapse
|
10
|
Lee BD, Neri U, Roux S, Wolf YI, Camargo AP, Krupovic M, Simmonds P, Kyrpides N, Gophna U, Dolja VV, Koonin EV. Mining metatranscriptomes reveals a vast world of viroid-like circular RNAs. Cell 2023; 186:646-661.e4. [PMID: 36696902 PMCID: PMC9911046 DOI: 10.1016/j.cell.2022.12.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/11/2022] [Accepted: 12/20/2022] [Indexed: 01/26/2023]
Abstract
Viroids and viroid-like covalently closed circular (ccc) RNAs are minimal replicators that typically encode no proteins and hijack cellular enzymes for replication. The extent and diversity of viroid-like agents are poorly understood. We developed a computational pipeline to identify viroid-like cccRNAs and applied it to 5,131 metatranscriptomes and 1,344 plant transcriptomes. The search yielded 11,378 viroid-like cccRNAs spanning 4,409 species-level clusters, a 5-fold increase compared to the previously identified viroid-like elements. Within this diverse collection, we discovered numerous putative viroids, satellite RNAs, retrozymes, and ribozy-like viruses. Diverse ribozyme combinations and unusual ribozymes within the cccRNAs were identified. Self-cleaving ribozymes were identified in ambiviruses, some mito-like viruses and capsid-encoding satellite virus-like cccRNAs. The broad presence of viroid-like cccRNAs in diverse transcriptomes and ecosystems implies that their host range is far broader than currently known, and matches to CRISPR spacers suggest that some cccRNAs replicate in prokaryotes.
Collapse
Affiliation(s)
- Benjamin D Lee
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Uri Neri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Simon Roux
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Antonio Pedro Camargo
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 75015 Paris, France
| | - Peter Simmonds
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Nikos Kyrpides
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Uri Gophna
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Valerian V Dolja
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
11
|
Marquez-Molins J, Juarez-Gonzalez VT, Gomez G, Pallas V, Martinez G. Occurrence of RNA post-transcriptional modifications in plant viruses and viroids and their correlation with structural and functional features. Virus Res 2023; 323:198958. [PMID: 36209921 PMCID: PMC10194119 DOI: 10.1016/j.virusres.2022.198958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Post-transcriptional modifications of RNA bases are widespread across all the tree of life and have been linked to RNA maturation, stability, and molecular interactions. RNA modifications have been extensively described in endogenous eukaryotic mRNAs, however, little is known about the presence of RNA modifications in plant viral and subviral RNAs. Here, we used a computational approach to infer RNA modifications in plant-pathogenic viruses and viroids using high-throughput annotation of modified ribonucleotides (HAMR), a software that predicts modified ribonucleotides using high-throughput RNA sequencing data. We analyzed datasets from representative members of different plant viruses and viroids and compared them to plant-endogenous mRNAs. Our approach was able to predict potential RNA chemical modifications (RCMs) in all analyzed pathogens. We found that both DNA and RNA viruses presented a wide range of RCM proportions while viroids had lowest values. Furthermore, we found that for viruses with segmented genomes, some genomic RNAs had a higher proportion of RCM. Interestingly, nuclear-replicating viroids showed most of the predicted modifications located in the pathogenesis region, pointing towards a possible functional role of RCMs in their infectious cycle. Thus, our results strongly suggest that plant viral and subviral RNAs might contain a variety of previously unreported RNA modifications, thus opening a new perspective in the multifaceted process of plant-pathogen interactions.
Collapse
Affiliation(s)
- Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, Paterna 46980, Spain; Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València, CPI 8E, Av. de los Naranjos s/n, Valencia 46022, Spain
| | - Vasti Thamara Juarez-Gonzalez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 750 07, Sweden
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, Paterna 46980, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València, CPI 8E, Av. de los Naranjos s/n, Valencia 46022, Spain
| | - German Martinez
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala 750 07, Sweden.
| |
Collapse
|
12
|
Tobacco mosaic virus movement protein complements a Potato spindle tuber viroid RNA mutant impaired for mesophyll entry but not mutants unable to enter the phloem. PLoS Pathog 2022; 18:e1011062. [PMID: 36574436 PMCID: PMC9829174 DOI: 10.1371/journal.ppat.1011062] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 01/09/2023] [Accepted: 12/12/2022] [Indexed: 12/29/2022] Open
Abstract
Tobacco mosaic virus movement protein (TMV MP) is essential for virus spread between cells. To accomplish its task, TMV MP binds viral RNA, interacts with components of the cytoskeleton, and increases the size exclusion limit (SEL) of plasmodesmata. Plasmodesmata are gated intercellular channels that allow passage of small molecules and macromolecules, including RNA and protein, between plant cells. Moreover, plasmodesmata are diverse and those connecting different cell types appear to have unique mechanisms to regulate macromolecular trafficking, which likely contributes to the establishment of distinct cell boundaries. Consequently, TMV MP might be competent to mediate RNA transport through some but not all plasmodesmal gates. Due to a lack of viral mutants defective for movement between specific cell types, the ability of TMV MP in this regard is incompletely understood. In contrast, a number of trafficking impaired Potato spindle tuber viroid (PSTVd) mutants have been identified. PSTVd is a systemically infectious non-coding RNA that nevertheless can perform all functions required for replication as well as cell-to-cell and systemic spread. Previous studies have shown that PSTVd employs different structure and sequence elements to move between diverse cell types in host plants, and mutants defective for transport between specific cell types have been identified. Therefore, PSTVd may serve as a tool to analyze the functions of MPs of viral and cellular origin. To probe the RNA transport activity of TMV MP, transgenic plants expressing the protein were inoculated with PSTVd mutants. Remarkably, TMV MP complemented a PSTVd mutant defective for mesophyll entry but could not support two mutants impaired for phloem entry, suggesting it fails to productively interface with plasmodesmata at the phloem boundary and that additional viral and host factors may be required. Consistent with this idea, TMV co-infection, but not the combination of MP and coat protein (CP) expression, was able to complement one of the phloem entry mutants. These observations suggest that phloem loading is a critical impediment to establishing systemic infection that could involve the entire ensemble of TMV proteins. They also demonstrate a novel strategy for analysis of MPs.
Collapse
|
13
|
Dissanayaka Mudiyanselage SD, Ma J, Pechan T, Pechanova O, Liu B, Wang Y. A remodeled RNA polymerase II complex catalyzing viroid RNA-templated transcription. PLoS Pathog 2022; 18:e1010850. [PMID: 36121876 PMCID: PMC9521916 DOI: 10.1371/journal.ppat.1010850] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/29/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Viroids, a fascinating group of plant pathogens, are subviral agents composed of single-stranded circular noncoding RNAs. It is well-known that nuclear-replicating viroids exploit host DNA-dependent RNA polymerase II (Pol II) activity for transcription from circular RNA genome to minus-strand intermediates, a classic example illustrating the intrinsic RNA-dependent RNA polymerase activity of Pol II. The mechanism for Pol II to accept single-stranded RNAs as templates remains poorly understood. Here, we reconstituted a robust in vitro transcription system and demonstrated that Pol II also accepts minus-strand viroid RNA template to generate plus-strand RNAs. Further, we purified the Pol II complex on RNA templates for nano-liquid chromatography-tandem mass spectrometry analysis and identified a remodeled Pol II missing Rpb4, Rpb5, Rpb6, Rpb7, and Rpb9, contrasting to the canonical 12-subunit Pol II or the 10-subunit Pol II core on DNA templates. Interestingly, the absence of Rpb9, which is responsible for Pol II fidelity, explains the higher mutation rate of viroids in comparison to cellular transcripts. This remodeled Pol II is active for transcription with the aid of TFIIIA-7ZF and appears not to require other canonical general transcription factors (such as TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, and TFIIS), suggesting a distinct mechanism/machinery for viroid RNA-templated transcription. Transcription elongation factors, such as FACT complex, PAF1 complex, and SPT6, were also absent in the reconstituted transcription complex. Further analyses of the critical zinc finger domains in TFIIIA-7ZF revealed the first three zinc finger domains pivotal for RNA template binding. Collectively, our data illustrated a distinct organization of Pol II complex on viroid RNA templates, providing new insights into viroid replication, the evolution of transcription machinery, as well as the mechanism of RNA-templated transcription.
Collapse
Affiliation(s)
| | - Junfei Ma
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Tibor Pechan
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Olga Pechanova
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Bin Liu
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
| | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, United States of America
| |
Collapse
|
14
|
de la Peña M, Gago-Zachert S. A life of research on circular RNAs and ribozymes: towards the origin of viroids, deltaviruses and life. Virus Res 2022; 314:198757. [PMID: 35346751 DOI: 10.1016/j.virusres.2022.198757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022]
Abstract
The first examples of circular RNAs (circRNAs) were reported in the '70s as a family of minimal infectious agents of flowering plants; the viroids and viral satellites of circRNA. In some cases, these small circular genomes encode self-cleaving RNA motifs or ribozymes, including an exceptional circRNA infecting not plants but humans: the Hepatitis Delta Virus. Autocatalytic ribozymes not only allowed to propose a common rolling-circle replication mechanism for all these subviral agents, but also a tentative link with the origin of life as molecular fossils of the so-called RNA world. Despite the weak biologic connection between angiosperm plants and the human liver, diverse scientists, and most notably Ricardo Flores, firmly supported an evolutionary relationship between plant viroids and human deltavirus agents. The tireless and inspiring work done by Ricardo's lab in the field of infectious circRNAs fuelled multiple hypotheses for the origin of these entities, allowing advances in other fields, from eukaryotic circRNAs to small ribozymes in genomes from all life kingdoms. The recent discovery of a plethora of viral-like circRNAs with ribozymes in disparate biological samples may finally allow us to connect plant and animal subviral agents, confirming again that Ricardo's eye for science was always a keen eye.
Collapse
Affiliation(s)
- Marcos de la Peña
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV). C/ Ingeniero Fausto Elio s/n, 46022, Valencia, Spain.
| | - Selma Gago-Zachert
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Section Microbial Biotechnology, Halle/Saale D-06120, Germany
| |
Collapse
|
15
|
Katsarou K, Adkar-Purushothama CR, Tassios E, Samiotaki M, Andronis C, Lisón P, Nikolaou C, Perreault JP, Kalantidis K. Revisiting the Non-Coding Nature of Pospiviroids. Cells 2022; 11:265. [PMID: 35053381 PMCID: PMC8773695 DOI: 10.3390/cells11020265] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/14/2022] Open
Abstract
Viroids are small, circular, highly structured pathogens that infect a broad range of plants, causing economic losses. Since their discovery in the 1970s, they have been considered as non-coding pathogens. In the last few years, the discovery of other RNA entities, similar in terms of size and structure, that were shown to be translated (e.g., cirRNAs, precursors of miRNA, RNA satellites) as well as studies showing that some viroids are located in ribosomes, have reignited the idea that viroids may be translated. In this study, we used advanced bioinformatic analysis, in vitro experiments and LC-MS/MS to search for small viroid peptides of the PSTVd. Our results suggest that in our experimental conditions, even though the circular form of PSTVd is found in ribosomes, no produced peptides were identified. This indicates that the presence of PSTVd in ribosomes is most probably not related to peptide production but rather to another unknown function that requires further study.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece; (E.T.); (C.N.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71110 Heraklion, Greece;
| | - Charith Raj Adkar-Purushothama
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; (C.R.A.-P.); (J.-P.P.)
| | - Emilios Tassios
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece; (E.T.); (C.N.)
- Biomedical Sciences Research Center “Alexander Fleming”, Institute for Bioinnovation, 16672 Vari, Greece;
| | - Martina Samiotaki
- Biomedical Sciences Research Center “Alexander Fleming”, Institute for Bioinnovation, 16672 Vari, Greece;
| | - Christos Andronis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71110 Heraklion, Greece;
| | - Purificación Lisón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain;
| | - Christoforos Nikolaou
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece; (E.T.); (C.N.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71110 Heraklion, Greece;
- Biomedical Sciences Research Center “Alexander Fleming”, Institute for Bioinnovation, 16672 Vari, Greece;
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada; (C.R.A.-P.); (J.-P.P.)
| | - Kriton Kalantidis
- Department of Biology, University of Crete, Vassilika Vouton, 71409 Heraklion, Greece; (E.T.); (C.N.)
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 71110 Heraklion, Greece;
| |
Collapse
|
16
|
Kochetov AV, Pronozin AY, Shatskaya NV, Afonnikov DA, Afanasenko OS. Potato spindle tuber viroid. Vavilovskii Zhurnal Genet Selektsii 2021; 25:269-275. [PMID: 34901723 PMCID: PMC8628614 DOI: 10.18699/vj21.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022] Open
Abstract
Viroids belong to a very interesting class of molecules attracting researchers in phytopathology and
molecular evolution. Here we review recent literature data concerning the genetics of Potato spindle tuber viroid
(PSTVd) and the mechanisms related to its pathological effect on the host plants. PSTVd can be transmitted vertically through microspores and macrospores, but not with pollen from another infected plant. The 359 nucleotidelong genomic RNA of PSTVd is highly structured and its 3D-conformation is responsible for interaction with host
cellular factors to mediate replication, transport between tissues during systemic infection and the severity of
pathological symptoms. RNA replication is prone to errors and infected plants contain a population of mutated
forms of the PSTVd genome. Interestingly, at 7 DAI, only 25 % of the newly synthesized RNAs were identical to
the master copy, but this proportion increased to up to 70 % at 14 DAI and remained the same afterwards. PSTVd
infection induces the immune response in host plants. There are PSTVd strains with a severe, a moderate or a mild
pathological effect. Interestingly, viroid replication itself does not necessarily induce strong morphological or
physiological symptoms. In the case of PSTVd, disease symptoms may occur due to RNA-interference, which decreases the expression levels of some important cellular regulatory factors, such as, for example, potato StTCP23
from the gibberellic acid pathway with a role in tuber morphogenesis or tomato FRIGIDA-like protein 3 with an
early flowering phenotype. This association between the small segments of viroid genomic RNAs complementary
to the untranslated regions of cellular mRNAs and disease symptoms provides a way for new resistant cultivars to
be developed by genetic editing. To conclude, viroids provide a unique model to reveal the fundamental features
of living systems, which appeared early in evolution and still remain undiscovered.
Collapse
Affiliation(s)
- A V Kochetov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - A Y Pronozin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - N V Shatskaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D A Afonnikov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - O S Afanasenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia All-Russian Institute of Plant Protection, Pushkin, St. Petersburg, Russia
| |
Collapse
|
17
|
Hataya T, Naoi T. Precisely Monomeric Linear RNAs of Viroids Belonging to Pospiviroid and Hostuviroid Genera Are Infectious Regardless of Transcription Initiation Site and 5'-Terminal Structure. Cells 2021; 10:cells10112971. [PMID: 34831194 PMCID: PMC8616387 DOI: 10.3390/cells10112971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Infectious dimeric RNA transcripts are a powerful tool for reverse genetic analyses in viroid studies. However, the construction of dimeric cDNA clones is laborious and time consuming, especially in mutational analyses by in vitro mutagenesis. In this study, we developed a system to synthesize a precisely monomeric linear RNA that could be transcribed in vitro directly from the cDNA clones of four viroid species. The cDNA clones were constructed such that RNA transcription was initiated at the guanine nucleotide of a predicted processing and ligation site in the viroid replication process. Although the transcribed RNAs were considered to possess 5′-triphosphate and 3′-hydroxyl termini, the RNA transcripts were infectious even without in vitro modifications. Additionally, infectivity was detected in the monomeric RNA transcripts, in which transcription was initiated at guanine nucleotides distinct from the predicted processing/ligation site. Moreover, monomeric viroid RNAs bearing 5′-monophosphate, 5′-hydroxyl, or 5′-capped termini were found to be infectious. Northern blot analysis of the pooled total RNA of the plants inoculated with the 5′-terminal modified RNA of potato spindle tuber viroid (PSTVd) indicated that maximum PSTVd accumulation occurred in plants with 5′-monophosphate RNA inoculation, followed by the plants with 5′-triphosphate RNA inoculation. Our system for synthesizing an infectious monomeric linear viroid RNA from a cDNA clone will facilitate mutational analyses by in vitro mutagenesis in viroid research.
Collapse
Affiliation(s)
- Tatsuji Hataya
- Pathogen-Plant Interactions, Research Faculty of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan
- Pathogen-Plant Interactions, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan;
- Correspondence:
| | - Takashi Naoi
- Pathogen-Plant Interactions, Graduate School of Agriculture, Hokkaido University, Kita 9, Nishi 9, Kita-ku, Sapporo 060-8589, Japan;
| |
Collapse
|
18
|
Marquez-Molins J, Navarro JA, Seco LC, Pallas V, Gomez G. Might exogenous circular RNAs act as protein-coding transcripts in plants? RNA Biol 2021; 18:98-107. [PMID: 34392787 PMCID: PMC8677015 DOI: 10.1080/15476286.2021.1962670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 01/23/2023] Open
Abstract
Circular RNAs (circRNAs) are regulatory molecules involved in the modulation of gene expression. Although originally assumed as non-coding RNAs, recent studies have evidenced that animal circRNAs can act as translatable transcripts. The study of plant-circRNAs is incipient, and no autonomous coding plant-circRNA has been described yet. Viroids are the smallest plant-pathogenic circRNAs known to date. Since their discovery 50 years ago, viroids have been considered valuable systems for the study of the structure-function relationships in RNA, essentially because they have not been shown to have coding capacity. We used two pathogenic circRNAs (Hop stunt viroid and Eggplant latent viroid) as experimental tools to explore the coding potential of plant-circRNAs. Our work supports that the analysed viroids contain putative ORFs able to encode peptides carrying subcellular localization signals coincident with the corresponding replication-specific organelle. Bioassays in well-established hosts revealed that mutations in these ORFs diminish their biological efficiency. Interestingly, circular forms of HSVd and ELVd were found to co-sediment with polysomes, revealing their physical interaction with the translational machinery of the plant cell. Based on this evidence we hypothesize about the possibility that plant circRNAs in general, and viroids in particular, can act, under certain cellular conditions, as non-canonical translatable transcripts.
Collapse
Affiliation(s)
- Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2sysbio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València, Parc Científic, Paterna, Spain
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València, Valencia, Spain
| | - José Antonio Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València, Valencia, Spain
| | - Luis Cervera Seco
- Institute for Integrative Systems Biology (I2sysbio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València, Parc Científic, Paterna, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat Politècnica de València, Valencia, Spain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2sysbio), Consejo Superior de Investigaciones Científicas (CSIC) - Universitat de València, Parc Científic, Paterna, Spain
| |
Collapse
|
19
|
Abstract
Viroids are small, single-stranded, circular RNAs infecting plants. Composed of only a few hundred nucleotides and being unable to code for proteins, viroids represent the lowest level of complexity for an infectious agent, even below that of the smallest known viruses. Despite the relatively small size, viroids contain RNA structural elements embracing all the information needed to interact with host factors involved in their infectious cycle, thus providing models for studying structure-function relationships of RNA. Viroids are specifically targeted to nuclei (family Pospiviroidae) or chloroplasts (family Avsunviroidae), where replication based on rolling-circle mechanisms takes place. They move locally and systemically through plasmodesmata and phloem, respectively, and may elicit symptoms in the infected host, with pathogenic pathways linked to RNA silencing and other plant defense responses. In this review, recent advances in the dissection of the complex interplay between viroids and plants are presented, highlighting knowledge gaps and perspectives for future research. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Beatriz Navarro
- Institute for Sustainable Plant Protection, National Research Council of Italy; I-70126 Bari, Italy;
| | - Ricardo Flores
- Institute of Molecular and Cellular Biology of Plants (UPV-CSIC), Polytechnic University of Valencia, 46022 Valencia, Spain
| | - Francesco Di Serio
- Institute for Sustainable Plant Protection, National Research Council of Italy; I-70126 Bari, Italy;
| |
Collapse
|
20
|
Adkar-Purushothama CR, Iyer PS, Sano T, Perreault JP. sRNA Profiler: A User-Focused Interface for Small RNA Mapping and Profiling. Cells 2021; 10:cells10071771. [PMID: 34359940 PMCID: PMC8303536 DOI: 10.3390/cells10071771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
Viroids are circular, highly structured, single-stranded, non-coding RNA pathogens known to infect and cause disease in several plant species. They are known to trigger the host plant’s RNA silencing machinery. The detection of viroid-derived small RNAs (vd-sRNA) in viroid-infected host plants opened a new avenue of study in host–viroid pathogenicity. Since then, several viroid research groups have studied the vd-sRNA retrieved from different host–viroid combinations. Such studies require the segregation of 21- to 24-nucleotide long small RNAs (sRNA) from a deep-sequencing databank, followed by separating the vd-sRNA from any sRNA within this group that showed sequence similarity with either the genomic or the antigenomic strands of the viroid. Such mapped vd-sRNAs are then profiled on both the viroid’s genomic and antigenomic strands for visualization. Although several commercial interfaces are currently available for this purpose, they are all programmed for linear RNA molecules. Hence, viroid researchers must develop a computer program that accommodates the sRNAs derived from the circular viroid genome. This is a laborious process, and consequently, it often creates a bottleneck for biologists. In order to overcome this constraint, and to help the research community in general, in this study, a python-based pattern matching interface was developed so as to be able to both profile and map sRNAs on a circular genome. A “matching tolerance” feature has been included in the program, thus permitting the mapping of the sRNAs derived from the quasi-species. Additionally, the “topology” feature allows the researcher to profile sRNA derived from both linear and circular RNA molecules. The efficiency of the program was tested using previously reported deep-sequencing data obtained from two independent studies. Clearly, this novel software should be a key tool with which to both evaluate the production of sRNA and to profile them on their target RNA species, irrespective of the topology of the target RNA molecule.
Collapse
Affiliation(s)
- Charith Raj Adkar-Purushothama
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada
- Correspondence: (C.R.A.-P.); (J.-P.P.)
| | - Pavithran Sridharan Iyer
- Département de Physique, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
| | - Teruo Sano
- Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan;
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, 3201 Rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada
- Correspondence: (C.R.A.-P.); (J.-P.P.)
| |
Collapse
|
21
|
Marquez‐Molins J, Gomez G, Pallas V. Hop stunt viroid: A polyphagous pathogenic RNA that has shed light on viroid-host interactions. MOLECULAR PLANT PATHOLOGY 2021; 22:153-162. [PMID: 33305492 PMCID: PMC7814962 DOI: 10.1111/mpp.13022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
TAXONOMY Hop stunt viroid (HSVd) is the type species of the genus Hostuviroid (family Pospiviroidae). The other species of this genus is Dahlia latent viroid, which presents an identical central conserved region (CCR) but lacks other structural hallmarks present in Hop stunt viroid. HSVd replication occurs in the nucleus through an asymmetric rolling-circle model as in the other members of the family Pospiviroidae, which also includes the genera Pospiviroid, Cocadviroid, Apscaviroid, and Coleoviroid. PHYSICAL PROPERTIES Hop stunt viroid consists of a single-stranded, circular RNA of 295-303 nucleotides depending on isolates and sequence variants. The most stable secondary structure is a rod-like or quasi-rod-like conformation with two characteristic domains: a CCR and a terminal conserved hairpin similar to that of cocadviroids. HSVd lacks a terminal conserved region. HOSTS AND SYMPTOMS HSVd infects a very broad range of natural hosts and has been reported to be the causal agent of five different diseases (citrus cachexia, cucumber pale fruit, peach and plum apple apricot distortion, and hop stunt). It is distributed worldwide. TRANSMISSION HSVd is transmitted mechanically and by seed.
Collapse
Affiliation(s)
- Joan Marquez‐Molins
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas, Universitat de ValènciaPaternaSpain
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas, Universitat Politècnica de ValènciaValenciaSpain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio)Consejo Superior de Investigaciones Científicas, Universitat de ValènciaPaternaSpain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de PlantasConsejo Superior de Investigaciones Científicas, Universitat Politècnica de ValènciaValenciaSpain
| |
Collapse
|
22
|
Wang Y. Current view and perspectives in viroid replication. Curr Opin Virol 2021; 47:32-37. [PMID: 33460914 DOI: 10.1016/j.coviro.2020.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022]
Abstract
Viroids are single-stranded circular noncoding RNAs that infect plants. The noncoding nature indicates that viroids must harness their RNA genomes to redirect host machinery for infection. Therefore, the viroid model provides invaluable opportunities for delineating fundamental principles of RNA structure-function relationships and for dissecting the composition and mechanism of RNA-related cellular machinery. There are two viroid families, Pospiviroidae and Avsunviroidae. Members of both families replicate via the RNA-based rolling-circle mechanism with some variations. Viroid replication is generally divided into three steps: transcription, cleavage, and ligation. Decades of studies have uncovered numerous viroid RNA structures with a regulatory role in replication and multiple enzymes critical for the three replication steps. This review discusses these findings and highlights the latest discoveries. Future studies will continue to elucidate regulatory factors and mechanism of host machinery exploited by viroids and provide new insights into host-viroid interactions in the context of pathogenesis.
Collapse
Affiliation(s)
- Ying Wang
- Department of Biological Sciences, Mississippi State University, Starkville, MS 39759, USA.
| |
Collapse
|
23
|
Wu J, Bisaro DM. Biased Pol II fidelity contributes to conservation of functional domains in the Potato spindle tuber viroid genome. PLoS Pathog 2020; 16:e1009144. [PMID: 33351860 PMCID: PMC7787683 DOI: 10.1371/journal.ppat.1009144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/06/2021] [Accepted: 11/10/2020] [Indexed: 01/25/2023] Open
Abstract
Accurate calculation of mutation rates for viruses and viroids is necessary for evolutionary studies and to evaluate adaptation potential. However, estimation of in vivo mutation rates is complicated by selection, which leads to loss or proliferation of certain mutations. To minimize this concern, lethal mutations, including nonsense and non-synonymous mutations, have been used to determine mutation rates for several viruses and viroids, including Potato spindle tuber viroid (PSTVd). However, this approach has limitations, including focus on a relatively small number of genome sites and the possibility that mutations may not actually be lethal or may be maintained by wild type individuals. To avoid selection bias altogether, we sequenced minus-strand PSTVd dimers from concatemeric replication intermediates. The underlying rationale is that mutations found in only one of the monomers were likely generated de novo during RNA polymerase II (Pol II) transcription of the circular plus-strand RNA genome. This approach yielded an apparent Pol II error rate of ~1/1837 nucleotides per transcription cycle, and an estimated mutation rate of ~1/919 nucleotides for a single replication cycle. Remarkably, de novo mutations were nearly absent from the most conserved, replication-critical regions of the PSTVd genome, suggesting that sequence conservation is a consequence of both essential function and template optimization for greater Pol II fidelity. Such biased fidelity may constitute a novel strategy to ensure population success while allowing abundant sampling of sequence space in other genome regions. Comparison with variants in progeny populations derived from a cloned, wild type PSTVd master sequence revealed that most de novo mutations were lost through selection. Polymerase errors are the major source of variation in virus and viroid genomes, and as a consequence polymerase error rates are major determinants of adaptation potential. Accurate calculation of in vivo mutation rates is complicated by selection. To circumvent this issue, dimeric PSTVd minus-strand replication intermediates generated in vivo by host RNA polymerase II (Pol II) were sequenced to identify de novo mutations. This analysis revealed a very high error rate for Pol II transcribing genomic PSTVd RNA, leading to an extremely high mutation rate. Remarkably, however, de novo mutations were rare in the most highly conserved, replication-critical genome regions, suggesting these sequences are selected for both function and enhanced transcription fidelity. This biased fidelity may reveal a novel strategy to ensure population survival while maximizing adaptation potential. Further, comparison of mutations identified by minus-strand dimer sequencing with mutations observed in progeny variants derived from wild type PSTVd showed that most de novo mutations were lost through selection.
Collapse
Affiliation(s)
- Jian Wu
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - David M. Bisaro
- Department of Molecular Genetics, Center for Applied Plant Sciences, Center for RNA Biology, and Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
24
|
Zhang Z, Xia C, Matsuda T, Taneda A, Murosaki F, Hou W, Owens RA, Li S, Sano T. Effects of Host-Adaptive Mutations on Hop Stunt Viroid Pathogenicity and Small RNA Biogenesis. Int J Mol Sci 2020; 21:ijms21197383. [PMID: 33036282 PMCID: PMC7582576 DOI: 10.3390/ijms21197383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 01/02/2023] Open
Abstract
Accidental transmission of hop stunt viroid (HSVd) from grapevine to hop has led to several epidemics of hop stunt disease with convergent evolution of HSVd-g(rape) into HSVd-h(op) containing five mutations. However, the biological function of these five mutations remains unknown. In this study, we compare the biological property of HSVd-g and HSVd-h by bioassay and analyze HSVd-specific small RNA (HSVd-sRNA) using high-throughput sequencing. The bioassay indicated an association of these five mutations with differences in infectivity, replication capacity, and pathogenicity between HSVd-g and HSVd-h, e.g., HSVd-g induced more severe symptoms than HSVd-h in cucumber. Site-directed mutagenesis of HSVd-g showed that the mutation at position 54 increased pathogenicity. HSVd-sRNA analysis of cucumber and hop plants infected with different HSVd variants showed that several sRNA species containing adaptive nucleotides were specifically down-regulated in plants infected with HSVd-h. Several HSVd-sRNAs containing adaptive mutations were predicted to target cucumber genes, but changes in the levels of these genes were not directly correlated with changes in symptom expression. Furthermore, expression levels of two other cucumber genes targeted by HSVd-RNAs, encoding ethylene-responsive transcription factor ERF011, and trihelix transcription factor GTL2, were altered by HSVd infection. The possible relationship between these two genes to HSVd pathogenicity is discussed.
Collapse
Affiliation(s)
- Zhixiang Zhang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (C.X.); (W.H.)
| | - Changjian Xia
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (C.X.); (W.H.)
| | - Takahiro Matsuda
- Plant Pathology Laboratory, Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan; (T.M.); (F.M.)
| | - Akito Taneda
- Graduate School of Science and Technology, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan;
| | - Fumiko Murosaki
- Plant Pathology Laboratory, Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan; (T.M.); (F.M.)
| | - Wanying Hou
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (C.X.); (W.H.)
| | - Robert A. Owens
- Molecular Plant Pathology Laboratory, USDA/ARS, Beltsville, MD 20705, USA;
| | - Shifang Li
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (C.X.); (W.H.)
- Environment and Plant Protection Institute of Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- Correspondence: (S.L.); (T.S.)
| | - Teruo Sano
- Plant Pathology Laboratory, Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho 3, Hirosaki 036-8561, Japan; (T.M.); (F.M.)
- Correspondence: (S.L.); (T.S.)
| |
Collapse
|
25
|
Adkar-Purushothama CR, Perreault JP. Impact of Nucleic Acid Sequencing on Viroid Biology. Int J Mol Sci 2020; 21:ijms21155532. [PMID: 32752288 PMCID: PMC7432327 DOI: 10.3390/ijms21155532] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
The early 1970s marked two breakthroughs in the field of biology: (i) The development of nucleotide sequencing technology; and, (ii) the discovery of the viroids. The first DNA sequences were obtained by two-dimensional chromatography which was later replaced by sequencing using electrophoresis technique. The subsequent development of fluorescence-based sequencing method which made DNA sequencing not only easier, but many orders of magnitude faster. The knowledge of DNA sequences has become an indispensable tool for both basic and applied research. It has shed light biology of viroids, the highly structured, circular, single-stranded non-coding RNA molecules that infect numerous economically important plants. Our understanding of viroid molecular biology and biochemistry has been intimately associated with the evolution of nucleic acid sequencing technologies. With the development of the next-generation sequence method, viroid research exponentially progressed, notably in the areas of the molecular mechanisms of viroids and viroid diseases, viroid pathogenesis, viroid quasi-species, viroid adaptability, and viroid–host interactions, to name a few examples. In this review, the progress in the understanding of viroid biology in conjunction with the improvements in nucleotide sequencing technology is summarized. The future of viroid research with respect to the use of third-generation sequencing technology is also briefly envisaged.
Collapse
|
26
|
Adkar-Purushothama CR, Bolduc F, Bru P, Perreault JP. Insights Into Potato Spindle Tuber Viroid Quasi-Species From Infection to Disease. Front Microbiol 2020; 11:1235. [PMID: 32719659 PMCID: PMC7349936 DOI: 10.3389/fmicb.2020.01235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/14/2020] [Indexed: 12/31/2022] Open
Abstract
Viroids are non-coding RNA plant pathogens that are characterized by their possession of a high mutation level. Although the sequence heterogeneity in viroid infected plants is well understood, shifts in viroid population dynamics due to mutations over the course of infection remain poorly understood. In this study, the ten most abundant sequence variants of potato spindle tuber viroid RG1 (PSTVd) expressed at different time intervals in PSTVd infected tomato plants were identified by high-throughput sequencing. The sequence variants, forming a quasi-species, were subjected to both the identification of the regions favoring mutations and the effect of the mutations on viroid secondary structure and viroid derived small RNAs (vd-sRNA). At week 1 of PSTVd infection, 25% of the sequence variants were similar to the "master" sequence (i.e., the sequence used for inoculation). The frequency of the master sequence within the population increased to 70% at week 2 after PSTVd infection, and then stabilized for the rest of the disease cycle (i.e., weeks 3 and 4). While some sequence variants were abundant at week 1 after PSTVd infection, they tended to decrease in frequency over time. For example, the variants with insertions at positions 253 or 254, positions that could affect the Loop E as well as the metastable hairpin I structure that has been shown important during replication and viroid infectivity, resulted in decreased frequency. Data obtained by in silico analysis of the viroid derived small RNAs (vd-sRNA) was also analyzed. A few mutants had the potential of positively affecting the viroid's accumulation by inducing the RNA silencing of the host's defense related genes. Variants with mutations that could negatively affect viroid abundance were also identified because their derived vd-sRNA were no longer capable of targeting any host mRNA or of changing its target sequence from a host defense gene to some other non-important host gene. Together, these findings open avenues into understanding the biological role of sequence variants, this viroid's interaction with host components, stable and metastable structures generated by mutants during the course of infection, and the influence of sequence variants on stabilizing viroid population dynamics.
Collapse
Affiliation(s)
- Charith Raj Adkar-Purushothama
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - François Bolduc
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Pierrick Bru
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Pierre Perreault
- RNA Group/Groupe ARN, Département de Biochimie, Faculté de Médecine des Sciences de la Santé, Pavillon de Recherche Appliquée au Cancer, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
27
|
Tangkanchanapas P, Haegeman A, Ruttink T, Höfte M, De Jonghe K. Whole-Genome Deep Sequencing Reveals Host-Driven in-planta Evolution of Columnea Latent Viroid (CLVd) Quasi-Species Populations. Int J Mol Sci 2020; 21:ijms21093262. [PMID: 32380694 PMCID: PMC7246631 DOI: 10.3390/ijms21093262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 01/06/2023] Open
Abstract
Columnea latent viroid (CLVd) is one of the most serious tomato diseases. In general, viroids have high mutation rates. This generates a population of variants (so-called quasi-species) that co-exist in their host and exhibit a huge level of genetic diversity. To study the population of CLVd in individual host plants, we used amplicon sequencing using specific CLVd primers linked with a sample-specific index sequence to amplify libraries. An infectious clone of a CLVd isolate Chaipayon-1 was inoculated on different solanaceous host plants. Six replicates of the amplicon sequencing results showed very high reproducibility. On average, we obtained 133,449 CLVd reads per PCR-replicate and 79 to 561 viroid sequence variants, depending on the plant species. We identified 19 major variants (>1.0% mean relative abundance) in which a total of 16 single-nucleotide polymorphisms (SNPs) and two single nucleotide insertions were observed. All major variants contained a combination of 4 to 6 SNPs. Secondary structure prediction clustered all major variants into a tomato/bolo maka group with four loops (I, II, IV and V), and a chili pepper group with four loops (I, III, IV and V) at the terminal right domain, compared to the CLVd Chaipayon-1 which consists of five loops (I, II, III, IV and V).
Collapse
Affiliation(s)
- Parichate Tangkanchanapas
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 96, 9820 Merelbeke, Belgium; (P.T.); (A.H.); (T.R.)
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium;
| | - Annelies Haegeman
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 96, 9820 Merelbeke, Belgium; (P.T.); (A.H.); (T.R.)
| | - Tom Ruttink
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 96, 9820 Merelbeke, Belgium; (P.T.); (A.H.); (T.R.)
| | - Monica Höfte
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, 9000 Ghent, Belgium;
| | - Kris De Jonghe
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 96, 9820 Merelbeke, Belgium; (P.T.); (A.H.); (T.R.)
- Correspondence: ; Tel.: +32-329-2722-448
| |
Collapse
|
28
|
Steger G, Riesner D. Viroid research and its significance for RNA technology and basic biochemistry. Nucleic Acids Res 2019; 46:10563-10576. [PMID: 30304486 PMCID: PMC6237808 DOI: 10.1093/nar/gky903] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/24/2018] [Indexed: 12/27/2022] Open
Abstract
Viroids were described 47 years ago as the smallest RNA molecules capable of infecting plants and autonomously self-replicating without an encoded protein. Work on viroids initiated the development of a number of innovative methods. Novel chromatographic and gelelectrophoretic methods were developed for the purification and characterization of viroids; these methods were later used in molecular biology, gene technology and in prion research. Theoretical and experimental studies of RNA folding demonstrated the general biological importance of metastable structures, and nuclear magnetic resonance spectroscopy of viroid RNA showed the partially covalent nature of hydrogen bonds in biological macromolecules. RNA biochemistry and molecular biology profited from viroid research, such as in the detection of RNA as template of DNA-dependent polymerases and in mechanisms of gene silencing. Viroids, the first circular RNA detected in nature, are important for studies on the much wider spectrum of circular RNAs and other non-coding RNAs.
Collapse
Affiliation(s)
- Gerhard Steger
- Department of Biology, Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Detlev Riesner
- Department of Biology, Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| |
Collapse
|
29
|
Chiumenti M, Navarro B, Venerito P, Civita F, Minafra A, Di Serio F. Molecular variability of apple hammerhead viroid from Italian apple varieties supports the relevance in vivo of its branched conformation stabilized by a kissing loop interaction. Virus Res 2019; 270:197644. [PMID: 31255643 DOI: 10.1016/j.virusres.2019.197644] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/05/2023]
Abstract
In the absence of protein-coding ability, viroid RNAs rely on direct interactions with host factors for their infectivity. RNA structural elements are likely involved in these interactions. Therefore, preservation of a structural element, despite the sequence variability existing between the variants of a viroid population, is considered a solid evidence of its relevant role in vivo. In this study, apple hammerhead viroid (AHVd) was first identified in the two apple cultivars 'Mela Rosa Guadagno' (MRG) and 'Agostinella' (AG), which are cultivated since long in Southern Italy, thus providing the first solid evidence of its presence in this country. Then, the natural variability of AHVd viroid populations infecting MRG and AG was studied. The sequence variants from the two Italian isolates shared only 82.1-87.7% sequence identity with those reported previously from other geographic areas, thus providing the possibility of exploring the impact of this sequence divergence on the proposed secondary structure. Interestingly, all the AHVd sequence variants considered in this study preserved a branched secondary structure stabilized by a kissing-loop interaction, resembling the conformation proposed previously for variants from other isolates. Indeed, most mutations did not modify the proposed conformation because they were co-variations, conversions of canonical into wobble base-pairs, or vice versa, as well as changes mapping at loops. Importantly, a cruciform structural element formed by four hairpins, one of which is implicated in the proposed kissing-loop interaction, was also preserved because several nucleotide changes actually resulted into two, three and up to five consecutive co-variations associated with other changes that did not affect the secondary structure. These data provide very strong evidence for the relevance in vivo of this cruciform structure which, together with kissing-loop interaction, likely contribute to further stabilizing the branched AHVd secondary structure.
Collapse
Affiliation(s)
- Michela Chiumenti
- Istituto per la Protezione Sostenibile delle Piante (CNR), Bari, Italy
| | - Beatriz Navarro
- Istituto per la Protezione Sostenibile delle Piante (CNR), Bari, Italy
| | - Pasquale Venerito
- Centro di Ricerca, Sperimentazione e Formazione in Agricoltura "Basile Caramia", Locorotondo, Italy
| | - Francesco Civita
- SINAGRI - Università degli Studi di Bari "Aldo Moro", Bari, Italy
| | | | | |
Collapse
|
30
|
Catalán P, Elena SF, Cuesta JA, Manrubia S. Parsimonious Scenario for the Emergence of Viroid-Like Replicons De Novo. Viruses 2019; 11:v11050425. [PMID: 31075860 PMCID: PMC6563258 DOI: 10.3390/v11050425] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/12/2023] Open
Abstract
Viroids are small, non-coding, circular RNA molecules that infect plants. Different hypotheses for their evolutionary origin have been put forward, such as an early emergence in a precellular RNA World or several de novo independent evolutionary origins in plants. Here, we discuss the plausibility of de novo emergence of viroid-like replicons by giving theoretical support to the likelihood of different steps along a parsimonious evolutionary pathway. While Avsunviroidae-like structures are relatively easy to obtain through evolution of a population of random RNA sequences of fixed length, rod-like structures typical of Pospiviroidae are difficult to fix. Using different quantitative approaches, we evaluated the likelihood that RNA sequences fold into a rod-like structure and bear specific sequence motifs facilitating interactions with other molecules, e.g., RNA polymerases, RNases, and ligases. By means of numerical simulations, we show that circular RNA replicons analogous to Pospiviroidae emerge if evolution is seeded with minimal circular RNAs that grow through the gradual addition of nucleotides. Further, these rod-like replicons often maintain their structure if independent functional modules are acquired that impose selective constraints. The evolutionary scenario we propose here is consistent with the structural and biochemical properties of viroids described to date.
Collapse
Affiliation(s)
- Pablo Catalán
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK.
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Paterna, 46980 València, Spain.
- The Santa Fe Institute, Santa Fe, NM 87501, USA.
| | - José A Cuesta
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
- Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911 Leganés, Spain.
- Instituto de Biocomputación y Física de Sistemas Complejos (BiFi), Universidad de Zaragoza, 50018 Zaragoza, Spain.
- Institute of Financial Big Data (IFiBiD), Universidad Carlos III de Madrid⁻Banco de Santander, 28903 Getafe, Spain.
| | - Susanna Manrubia
- Grupo Interdisciplinar de Sistemas Complejos (GISC), Madrid, Spain.
- National Biotechnology Centre (CSIC), 28049 Madrid, Spain.
| |
Collapse
|
31
|
Hadidi A. Next-Generation Sequencing and CRISPR/Cas13 Editing in Viroid Research and Molecular Diagnostics. Viruses 2019; 11:E120. [PMID: 30699972 PMCID: PMC6409718 DOI: 10.3390/v11020120] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022] Open
Abstract
Viroid discovery as well as the economic significance of viroids and biological properties are presented. Next-generation sequencing (NGS) technologies combined with informatics have been applied to viroid research and diagnostics for almost a decade. NGS provides highly efficient, rapid, low-cost high-throughput sequencing of viroid genomes and of the 21⁻24 nt vd-sRNAs generated by the RNA silencing defense of the host. NGS has been utilized in various viroid studies which are presented. The discovery during the last few years that prokaryotes have heritable adaptive immunity mediated through clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated Cas proteins, have led to transformative advances in molecular biology, notably genome engineering and most recently molecular diagnostics. The potential application of the CRISPR-Cas13a system for engineering viroid interference in plants is suggested by targeting specific motifs of three economically important viroids. The CRISPR-Cas13 system has been utilized recently for the accurate detection of human RNA viruses by visual read out in 90 min or less and by paper-based assay. Multitarget RNA tests by this technology have a good potential for application as a rapid and accurate diagnostic assay for known viroids. The CRISPR/Cas system will work only for known viroids in contrast to NGS, but it should be much faster.
Collapse
Affiliation(s)
- Ahmed Hadidi
- United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA.
| |
Collapse
|
32
|
Marquez-Molins J, Navarro JA, Pallas V, Gomez G. Highly efficient construction of infectious viroid-derived clones. PLANT METHODS 2019; 15:87. [PMID: 31388344 PMCID: PMC6670230 DOI: 10.1186/s13007-019-0470-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 07/24/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Viroid research generally relies on infectious cDNA clones that consist of dimers of the entire viroid sequence. At present, those dimers are generated by self-ligation of monomeric cDNA, a strategy that presents several disadvantages: (i) low efficiency, (ii) it is a non-oriented reaction requiring tedious screenings and (iii) additional steps are required for cloning into a binary vector for agroinfiltration or for in vitro RNA production. RESULTS We have developed a novel strategy for simultaneous construction of a viroid dimeric cDNA and cloning into a multipurpose binary vector ready for agroinfiltration or in vitro transcription. The assembly is based on IIs restriction enzymes and positive selection and supposes a universal procedure for obtaining infectious clones of a viroid independently of its sequence, with a high efficiency. Thus, infectious clones of one viroid of each family were obtained and its infectivity was analyzed by molecular hybridization. CONCLUSION This is a zero-background strategy for direct cloning into a binary vector, optimized for the generation of infectious viroids. As a result, this methodology constitutes a powerful tool for viroid research and exemplifies the applicability of type IIs restriction enzymes and the lethal gene ccdB to design efficient and affordable direct cloning approaches of PCR products into binary vectors.
Collapse
Affiliation(s)
- Joan Marquez-Molins
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980 Paterna, Spain
| | - Jose Antonio Navarro
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, CPI 8E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Vicente Pallas
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València, CPI 8E, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Gustavo Gomez
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas (CSIC), Universitat de València (UV), Parc Científic, Cat. Agustín Escardino 9, 46980 Paterna, Spain
| |
Collapse
|
33
|
Streamlined generation of plant virus infectious clones using the pLX mini binary vectors. J Virol Methods 2018; 262:48-55. [DOI: 10.1016/j.jviromet.2018.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/15/2018] [Accepted: 09/16/2018] [Indexed: 12/30/2022]
|
34
|
Allelic RNA Motifs in Regulating Systemic Trafficking of Potato Spindle Tuber Viroid. Viruses 2018; 10:v10040160. [PMID: 29601476 PMCID: PMC5923454 DOI: 10.3390/v10040160] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/28/2018] [Accepted: 03/29/2018] [Indexed: 01/07/2023] Open
Abstract
Intercellular RNA trafficking has been shown as a widely-existing phenomenon that has significant functions in many aspects of biology. Viroids, circular noncoding RNAs that cause plant diseases, have been a model to dissect the role of RNA structural motifs in regulating intercellular RNA trafficking in plants. Recent studies on potato spindle tuber viroid (PSTVd) showed that the RNA motif loop 19 is important for PSTVd to spread from palisade to spongy mesophyll in infected leaves. Here, we performed saturated mutational analysis to uncover all possible functional variants of loop 19 and exploit this data to pinpoint to a three-dimensional structural model of this motif. Interestingly, we found that two distinct structural motifs can replace loop 19 and retain the systemic trafficking capacity. One of the alternative structures rapidly emerged from the inoculation using a loop 19 abolished mutant that is not capable of systemic trafficking. Our observation indicates the flexibility of multiple structural arrangements interchangeably exerting similar function at a particular RNA locus. Taken together, this study deepens the understanding of RNA structural motifs-regulated viroid RNA trafficking, which has broad implications for studying RNA intercellular trafficking as well.
Collapse
|
35
|
Wang Y, Zirbel CL, Leontis NB, Ding B. RNA 3-dimensional structural motifs as a critical constraint of viroid RNA evolution. PLoS Pathog 2018; 14:e1006801. [PMID: 29470541 PMCID: PMC5823408 DOI: 10.1371/journal.ppat.1006801] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Ying Wang
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, United States of America
- * E-mail: (YW); (CLZ); (NBL)
| | - Craig L. Zirbel
- Department of Mathematics and Statistics, Bowling Green State University, Bowling Green, Ohio, United States of America
- * E-mail: (YW); (CLZ); (NBL)
| | - Neocles B. Leontis
- Department of Chemistry and Center for Biomolecular Sciences, Bowling Green State University, Bowling Green, Ohio, United States of America
- * E-mail: (YW); (CLZ); (NBL)
| | - Biao Ding
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- The Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|