1
|
Stettler P, Schimanski B, Aeschlimann S, Schneider A. Molecular characterization of the permanent outer-inner membrane contact site of the mitochondrial genome segregation complex in trypanosomes. PLoS Pathog 2024; 20:e1012635. [PMID: 39621765 PMCID: PMC11637284 DOI: 10.1371/journal.ppat.1012635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/12/2024] [Accepted: 11/18/2024] [Indexed: 12/13/2024] Open
Abstract
The parasitic protozoan Trypanosoma brucei has a single unit mitochondrial genome linked to the basal body of the flagellum via the tripartite attachment complex (TAC). The TAC is crucial for mitochondrial genome segregation during cytokinesis. At the core of the TAC, the outer membrane protein TAC60 binds to the inner membrane protein p166, forming a permanent contact site between the two membranes. Although contact sites between mitochondrial membranes are common and serve various functions, their molecular architecture remains largely unknown. This study elucidates the interaction interface of the TAC60-p166 contact site. Using in silico, in vitro, and mutational in vivo analyses, we identified minimal binding segments between TAC60 and p166. The p166 binding site in TAC60 consists of a short kinked α-helix that interacts with the C-terminal α-helix of p166. Despite the presence of conserved charged residues in either protein, electrostatic interactions are not necessary for contact site formation. Instead, the TAC60-p166 interaction is driven by the hydrophobic effect, as converting conserved hydrophobic residues in either protein to hydrophilic amino acids disrupts the contact site.
Collapse
Affiliation(s)
- Philip Stettler
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Bernd Schimanski
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Salome Aeschlimann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Aeschlimann S, Stettler P, Schneider A. DNA segregation in mitochondria and beyond: insights from the trypanosomal tripartite attachment complex. Trends Biochem Sci 2023; 48:1058-1070. [PMID: 37775421 DOI: 10.1016/j.tibs.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 10/01/2023]
Abstract
The tripartite attachment complex (TAC) of the single mitochondrion of trypanosomes allows precise segregation of its single nucleoid mitochondrial genome during cytokinesis. It couples the segregation of the duplicated mitochondrial genome to the segregation of the basal bodies of the flagella. Here, we provide a model of the molecular architecture of the TAC that explains how its eight essential subunits connect the basal body, across the mitochondrial membranes, with the mitochondrial genome. We also discuss how the TAC subunits are imported into the mitochondrion and how they assemble to form a new TAC. Finally, we present a comparative analysis of the trypanosomal TAC with open and closed mitotic spindles, which reveals conserved concepts between these diverse DNA segregation systems.
Collapse
Affiliation(s)
- Salome Aeschlimann
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland
| | - Philip Stettler
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern CH-3012, Switzerland
| | - André Schneider
- Department of Chemistry, Biochemistry, and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, Bern CH-3012, Switzerland; Institute for Advanced Study (Wissenschaftskolleg) Berlin, D-14193 Berlin, Germany.
| |
Collapse
|
3
|
Amodeo S, Bregy I, Hoffmann A, Fradera-Sola A, Kern M, Baudouin H, Zuber B, Butter F, Ochsenreiter T. Characterization of two novel proteins involved in mitochondrial DNA anchoring in Trypanosoma brucei. PLoS Pathog 2023; 19:e1011486. [PMID: 37459364 PMCID: PMC10374059 DOI: 10.1371/journal.ppat.1011486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 07/27/2023] [Accepted: 06/14/2023] [Indexed: 07/28/2023] Open
Abstract
Trypanosoma brucei is a single celled eukaryotic parasite in the group of the Kinetoplastea. The parasite harbors a single mitochondrion with a singular mitochondrial genome that is known as the kinetoplast DNA (kDNA). The kDNA consists of a unique network of thousands of interlocked circular DNA molecules. To ensure proper inheritance of the kDNA to the daughter cells, the genome is physically linked to the basal body, the master organizer of the cell cycle in trypanosomes. The connection that spans, cytoplasm, mitochondrial membranes and the mitochondrial matrix is mediated by the Tripartite Attachment Complex (TAC). Using a combination of proteomics and RNAi we test the current model of hierarchical TAC assembly and identify TbmtHMG44 and TbKAP68 as novel candidates of a complex that connects the TAC to the kDNA. Depletion of TbmtHMG44 or TbKAP68 each leads to a strong kDNA loss but not missegregation phenotype as previously defined for TAC components. We demonstrate that the proteins rely on both the TAC and the kDNA for stable localization to the interface between these two structures. In vitro experiments suggest a direct interaction between TbmtHMG44 and TbKAP68 and that recombinant TbKAP68 is a DNA binding protein. We thus propose that TbmtHMG44 and TbKAP68 are part of a distinct complex connecting the kDNA to the TAC.
Collapse
Affiliation(s)
- Simona Amodeo
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Irina Bregy
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, Bern, Switzerland
- Institute for Anatomy, University of Bern, Bern, Switzerland
| | | | - Albert Fradera-Sola
- Quantitative Proteomics, Institute of Molecular Biology GmbH, Mainz, Germany
| | - Mara Kern
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Hélène Baudouin
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Benoît Zuber
- Institute for Anatomy, University of Bern, Bern, Switzerland
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology GmbH, Mainz, Germany
| | | |
Collapse
|
4
|
Tamura R, Kamiyama D. CRISPR-Cas9-Mediated Knock-In Approach to Insert the GFP 11 Tag into the Genome of a Human Cell Line. Methods Mol Biol 2023; 2564:185-201. [PMID: 36107342 PMCID: PMC11552087 DOI: 10.1007/978-1-0716-2667-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The protocol in this chapter describes a method to label endogenous proteins using a self-complementing split green fluorescent protein (split GFP1-10/11) in a human cell line. By directly delivering Cas9/sgRNA ribonucleoprotein (RNP) complexes through nucleofection, this protocol allows for the efficient integration of GFP11 into a specific genomic locus via CRISPR-Cas9-mediated homology-directed repair (HDR). We use the GFP11 sequence in the form of a single-stranded DNA (ssDNA) as an HDR template. Because the ssDNA with less than 200 nucleotides used here is commercially synthesized, this approach remains cloning-free. The integration of GFP11 is performed in cells stably expressing GFP1-10, thereby inducing fluorescence reconstitution. Subsequently, such a reconstituted signal is analyzed using fluorescence flow cytometry for estimating knock-in efficiencies and enriching the GFP-positive cell population. Finally, the enriched cells can be visualized using fluorescence microscopy.
Collapse
Affiliation(s)
- Ryo Tamura
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| | - Daichi Kamiyama
- Department of Cellular Biology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
5
|
Single p197 molecules of the mitochondrial genome segregation system of Trypanosoma brucei determine the distance between basal body and outer membrane. Proc Natl Acad Sci U S A 2022; 119:e2204294119. [PMID: 36161893 PMCID: PMC9546609 DOI: 10.1073/pnas.2204294119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Segregation of the replicated single unit mitochondrial genome of Trypanosoma brucei requires a large hardwired structure that connects the organellar DNA with the flagellar basal body. The cytosolic part of this structure consists of filaments made of p197 molecules, a protein with a molecular weight of approximately 660 kDa. The N terminus of p197 is anchored to the peripheral mitochondrial outer membrane protein TAC65, whereas its C terminus connects to the base of the basal body. The large α-helical central domain of p197 consists of approximately 26 repeats each 175 aa in length. It provides a flexible spacer that connects the outer membrane with the basal body and determines the distance between the two structures. The tripartite attachment complex (TAC) couples the segregation of the single unit mitochondrial DNA of trypanosomes with the basal body (BB) of the flagellum. Here, we studied the architecture of the exclusion zone filament (EZF) of the TAC, the only known component of which is p197, that connects the BB with the mitochondrial outer membrane (OM). We show that p197 has three domains that are all essential for mitochondrial DNA inheritance. The C terminus of p197 interacts with the mature and probasal body (pro-BB), whereas its N terminus binds to the peripheral OM protein TAC65. The large central region of p197 has a high α-helical content and likely acts as a flexible spacer. Ultrastructure expansion microscopy (U-ExM) of cell lines exclusively expressing p197 versions of different lengths that contain both N- and C-terminal epitope tags demonstrates that full-length p197 alone can bridge the ∼270-nm distance between the BB and the cytosolic face of the OM. Thus U-ExM allows the localization of distinct domains within the same molecules and suggests that p197 is the TAC subunit most proximal to the BB. In addition, U-ExM revealed that p197 acts as a spacer molecule, as two shorter versions of p197, with the repeat domain either removed or replaced by the central domain of the Trypanosoma cruzi p197 ortholog reduced the distance between the BB and the OM in proportion to their predicted molecular weight.
Collapse
|
6
|
Schimanski B, Aeschlimann S, Stettler P, Käser S, Gomez-Fabra Gala M, Bender J, Warscheid B, Vögtle FN, Schneider A. p166 links membrane and intramitochondrial modules of the trypanosomal tripartite attachment complex. PLoS Pathog 2022; 18:e1010207. [PMID: 35709300 PMCID: PMC9242489 DOI: 10.1371/journal.ppat.1010207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/29/2022] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
The protist parasite Trypanosoma brucei has a single mitochondrion with a single unit genome termed kinetoplast DNA (kDNA). Faithfull segregation of replicated kDNA is ensured by a complicated structure termed tripartite attachment complex (TAC). The TAC physically links the basal body of the flagellum with the kDNA spanning the two mitochondrial membranes. Here, we characterized p166 as the only known TAC subunit that is anchored in the inner membrane. Its C-terminal transmembrane domain separates the protein into a large N-terminal region that interacts with the kDNA-localized TAC102 and a 34 aa C-tail that binds to the intermembrane space-exposed loop of the integral outer membrane protein TAC60. Whereas the outer membrane region requires four essential subunits for proper TAC function, the inner membrane integral p166, via its interaction with TAC60 and TAC102, would theoretically suffice to bridge the distance between the OM and the kDNA. Surprisingly, non-functional p166 lacking the C-terminal 34 aa still localizes to the TAC region. This suggests the existence of additional TAC-associated proteins which loosely bind to non-functional p166 lacking the C-terminal 34 aa and keep it at the TAC. However, binding of full length p166 to these TAC-associated proteins alone would not be sufficient to withstand the mechanical load imposed by the segregating basal bodies.
Collapse
Affiliation(s)
- Bernd Schimanski
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Salome Aeschlimann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Philip Stettler
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sandro Käser
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Maria Gomez-Fabra Gala
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Freiburg, Germany
| | - Julian Bender
- Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Bettina Warscheid
- Biochemistry II, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - F.-Nora Vögtle
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS—Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Pedra-Rezende Y, Bombaça ACS, Menna-Barreto/ RFS. Is the mitochondrion a promising drug target in trypanosomatids? Mem Inst Oswaldo Cruz 2022; 117:e210379. [PMID: 35195164 PMCID: PMC8862782 DOI: 10.1590/0074-02760210379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
|
8
|
Tůmová P, Voleman L, Klingl A, Nohýnková E, Wanner G, Doležal P. Inheritance of the reduced mitochondria of Giardia intestinalis is coupled to the flagellar maturation cycle. BMC Biol 2021; 19:193. [PMID: 34493257 PMCID: PMC8422661 DOI: 10.1186/s12915-021-01129-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/20/2021] [Indexed: 01/13/2023] Open
Abstract
Background The presence of mitochondria is a distinguishing feature between prokaryotic and eukaryotic cells. It is currently accepted that the evolutionary origin of mitochondria coincided with the formation of eukaryotes and from that point control of mitochondrial inheritance was required. Yet, the way the mitochondrial presence has been maintained throughout the eukaryotic cell cycle remains a matter of study. Eukaryotes control mitochondrial inheritance mainly due to the presence of the genetic component; still only little is known about the segregation of mitochondria to daughter cells during cell division. Additionally, anaerobic eukaryotic microbes evolved a variety of genomeless mitochondria-related organelles (MROs), which could be theoretically assembled de novo, providing a distinct mechanistic basis for maintenance of stable mitochondrial numbers. Here, we approach this problem by studying the structure and inheritance of the protist Giardia intestinalis MROs known as mitosomes. Results We combined 2D stimulated emission depletion (STED) microscopy and focused ion beam scanning electron microscopy (FIB/SEM) to show that mitosomes exhibit internal segmentation and conserved asymmetric structure. From a total of about forty mitosomes, a small, privileged population is harnessed to the flagellar apparatus, and their life cycle is coordinated with the maturation cycle of G. intestinalis flagella. The orchestration of mitosomal inheritance with the flagellar maturation cycle is mediated by a microtubular connecting fiber, which physically links the privileged mitosomes to both axonemes of the oldest flagella pair and guarantees faithful segregation of the mitosomes into the daughter cells. Conclusion Inheritance of privileged Giardia mitosomes is coupled to the flagellar maturation cycle. We propose that the flagellar system controls segregation of mitochondrial organelles also in other members of this supergroup (Metamonada) of eukaryotes and perhaps reflects the original strategy of early eukaryotic cells to maintain this key organelle before mitochondrial fusion-fission dynamics cycle as observed in Metazoa was established. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01129-7.
Collapse
Affiliation(s)
- Pavla Tůmová
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic.
| | - Luboš Voleman
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Andreas Klingl
- Plant Development and Electron Microscopy, Department of Biology I, Biocenter of Ludwig-Maximilians University, Munich, Germany
| | - Eva Nohýnková
- Institute of Immunology and Microbiology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Gerhard Wanner
- Department of Biology I, Biocenter of Ludwig-Maximilians University, Munich, Germany
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic.
| |
Collapse
|
9
|
Amodeo S, Kalichava A, Fradera-Sola A, Bertiaux-Lequoy E, Guichard P, Butter F, Ochsenreiter T. Characterization of the novel mitochondrial genome segregation factor TAP110 in Trypanosoma brucei. J Cell Sci 2021; 134:jcs254300. [PMID: 33589495 PMCID: PMC7970207 DOI: 10.1242/jcs.254300] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/03/2021] [Indexed: 12/18/2022] Open
Abstract
Proper mitochondrial genome inheritance is important for eukaryotic cell survival. Trypanosoma brucei, a protozoan parasite, contains a singular mitochondrial genome, the kinetoplast (k)DNA. The kDNA is anchored to the basal body via the tripartite attachment complex (TAC) to ensure proper segregation. Several components of the TAC have been described; however, the connection of the TAC to the kDNA remains elusive. Here, we characterize the TAC-associated protein TAP110. We find that both depletion and overexpression of TAP110 leads to a delay in the separation of the replicated kDNA networks. Proteome analysis after TAP110 overexpression identified several kDNA-associated proteins that changed in abundance, including a TEX-like protein that dually localizes to the nucleus and the kDNA, potentially linking replication and segregation in the two compartments. The assembly of TAP110 into the TAC region seems to require the TAC but not the kDNA itself; however, once TAP110 has been assembled, it also interacts with the kDNA. Finally, we use ultrastructure expansion microscopy in trypanosomes for the first time, and reveal the precise position of TAP110 between TAC102 and the kDNA, showcasing the potential of this approach.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Simona Amodeo
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Ana Kalichava
- Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | | | - Eloïse Bertiaux-Lequoy
- Department of Cell Biology, University of Geneva, Sciences III, 1211 Geneva, Switzerland
| | - Paul Guichard
- Department of Cell Biology, University of Geneva, Sciences III, 1211 Geneva, Switzerland
| | - Falk Butter
- Institute of Molecular Biology, 55128 Mainz, Germany
| | | |
Collapse
|
10
|
Baudouin HCM, Pfeiffer L, Ochsenreiter T. A comparison of three approaches for the discovery of novel tripartite attachment complex proteins in Trypanosoma brucei. PLoS Negl Trop Dis 2020; 14:e0008568. [PMID: 32936798 PMCID: PMC7521757 DOI: 10.1371/journal.pntd.0008568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/28/2020] [Accepted: 07/07/2020] [Indexed: 11/19/2022] Open
Abstract
Trypanosoma brucei is a single celled eukaryotic parasite and the causative agent of human African trypanosomiasis and nagana in cattle. Aside from its medical relevance, T. brucei has also been key to the discovery of several general biological principles including GPI-anchoring, RNA-editing and trans-splicing. The parasite contains a single mitochondrion with a singular genome. Recent studies have identified several molecular components of the mitochondrial genome segregation machinery (tripartite attachment complex, TAC), which connects the basal body of the flagellum to the mitochondrial DNA of T. brucei. The TAC component in closest proximity to the mitochondrial DNA is TAC102. Here we apply and compare three different approaches (proximity labelling, immunoprecipitation and yeast two-hybrid) to identify novel interactors of TAC102 and subsequently verify their localisation. Furthermore, we establish the direct interaction of TAC102 and p166 in the unilateral filaments of the TAC. Trypanosoma brucei belongs to a group of organisms that exist as human, animal and plant parasites. T. brucei (a human and animal parasite) has been developed as a model system to study basic biological as well as disease related questions in this group of organisms. We study how the parasite duplicates and divides its mitochondrial genome, an essential component of its energy generating machinery. The structure involved in dividing the mitochondrial genome into the daughter cells during cell division is called the tripartite attachment complex (TAC). The TAC is likely a unique structure not present in the host and thus might provide a new avenue for drug development. In this manuscript, we compare different techniques that allow the identification of novel components of this structure and verify the localisation of some of them. Furthermore, we also establish the interaction of two previously identified protein components.
Collapse
Affiliation(s)
- Hélène Clémentine Margareta Baudouin
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Laura Pfeiffer
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
11
|
Schneider A. Evolution of mitochondrial protein import – lessons from trypanosomes. Biol Chem 2020; 401:663-676. [DOI: 10.1515/hsz-2019-0444] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/02/2020] [Indexed: 01/02/2023]
Abstract
AbstractThe evolution of mitochondrial protein import and the systems that mediate it marks the boundary between the endosymbiotic ancestor of mitochondria and a true organelle that is under the control of the nucleus. Protein import has been studied in great detail inSaccharomyces cerevisiae. More recently, it has also been extensively investigated in the parasitic protozoanTrypanosoma brucei, making it arguably the second best studied system. A comparative analysis of the protein import complexes of yeast and trypanosomes is provided. Together with data from other systems, this allows to reconstruct the ancestral features of import complexes that were present in the last eukaryotic common ancestor (LECA) and to identify which subunits were added later in evolution. How these data can be translated into plausible scenarios is discussed, providing insights into the evolution of (i) outer membrane protein import receptors, (ii) proteins involved in biogenesis of α-helically anchored outer membrane proteins, and (iii) of the intermembrane space import and assembly system. Finally, it is shown that the unusual presequence-associated import motor of trypanosomes suggests a scenario of how the two ancestral inner membrane protein translocases present in LECA evolved into the single bifunctional one found in extant trypanosomes.
Collapse
Affiliation(s)
- André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
12
|
Miller JC, Delzell SB, Concepción-Acevedo J, Boucher MJ, Klingbeil MM. A DNA polymerization-independent role for mitochondrial DNA polymerase I-like protein C in African trypanosomes. J Cell Sci 2020; 133:jcs.233072. [PMID: 32079654 DOI: 10.1242/jcs.233072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/10/2020] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial DNA of Trypanosoma brucei and related parasites is a catenated network containing thousands of minicircles and tens of maxicircles, called kinetoplast DNA (kDNA). Replication of a single nucleoid requires at least three DNA polymerase I-like proteins (i.e. POLIB, POLIC and POLID), each showing discrete localizations near the kDNA during S phase. POLIB and POLID have roles in minicircle replication but the specific role of POLIC in kDNA maintenance is less clear. Here, we use an RNA interference (RNAi)-complementation system to dissect the functions of two distinct POLIC regions, i.e. the conserved family A DNA polymerase (POLA) domain and the uncharacterized N-terminal region (UCR). While RNAi complementation with wild-type POLIC restored kDNA content and cell cycle localization of kDNA, active site point mutations in the POLA domain impaired minicircle replication similar to that of POLIB and POLID depletions. Complementation with POLA domain alone abolished the formation of POLIC foci and partially rescued the RNAi phenotype. Furthermore, we provide evidence that the UCR is crucial in cell cycle-dependent protein localization and facilitates proper distribution of progeny networks. This is the first report of a DNA polymerase that impacts on mitochondrial nucleoid distribution.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jonathan C Miller
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Stephanie B Delzell
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Jeniffer Concepción-Acevedo
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Michael J Boucher
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Michele M Klingbeil
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA .,Division of Foodborne,Waterborne, and Environmental Diseases, The Institute of Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
13
|
Eichenberger C, Oeljeklaus S, Bruggisser J, Mani J, Haenni B, Kaurov I, Niemann M, Zuber B, Lukeš J, Hashimi H, Warscheid B, Schimanski B, Schneider A. The highly diverged trypanosomal MICOS complex is organized in a nonessential integral membrane and an essential peripheral module. Mol Microbiol 2019; 112:1731-1743. [DOI: 10.1111/mmi.14389] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Claudia Eichenberger
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 Bern CH‐3012Switzerland
| | - Silke Oeljeklaus
- Department of Biochemistry and Functional Proteomics, Faculty of Biology University of Freiburg Freiburg 79104Germany
- Signalling Research Centres BIOSS and CIBSS University of Freiburg Freiburg 79104Germany
| | - Julia Bruggisser
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 Bern CH‐3012Switzerland
| | - Jan Mani
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 Bern CH‐3012Switzerland
| | - Beat Haenni
- Institute of Anatomy University of Bern Baltzerstrasse 2 Bern 3012Switzerland
| | - Iosif Kaurov
- Institute of Parasitology, Biology Center Czech Academy of Sciences České Budějovice (Budweis) Czech Republic
- Faculty of Science University of South Bohemia 370 05České Budějovice (Budweis) Czech Republic
| | - Moritz Niemann
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 Bern CH‐3012Switzerland
| | - Benoît Zuber
- Institute of Anatomy University of Bern Baltzerstrasse 2 Bern 3012Switzerland
| | - Julius Lukeš
- Institute of Parasitology, Biology Center Czech Academy of Sciences České Budějovice (Budweis) Czech Republic
- Faculty of Science University of South Bohemia 370 05České Budějovice (Budweis) Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Center Czech Academy of Sciences České Budějovice (Budweis) Czech Republic
- Faculty of Science University of South Bohemia 370 05České Budějovice (Budweis) Czech Republic
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Faculty of Biology University of Freiburg Freiburg 79104Germany
- Signalling Research Centres BIOSS and CIBSS University of Freiburg Freiburg 79104Germany
| | - Bernd Schimanski
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 Bern CH‐3012Switzerland
| | - André Schneider
- Department of Chemistry and Biochemistry University of Bern Freiestrasse 3 Bern CH‐3012Switzerland
| |
Collapse
|
14
|
Mensa-Wilmot K, Hoffman B, Wiedeman J, Sullenberger C, Sharma A. Kinetoplast Division Factors in a Trypanosome. Trends Parasitol 2019; 35:119-128. [PMID: 30638954 DOI: 10.1016/j.pt.2018.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 02/08/2023]
Abstract
Inheritance of the single mitochondrial nucleoid (kinetoplast) in the trypanosome requires numerous proteins, many of whose precise roles are unclear. By considering kinetoplast DNA (kDNA) as a template for cleavage into two equal-size networks, we predicted sets of mutant kinetoplasts associated with defects in each of the five steps in the kinetoplast cycle. Comparison of these kinetoplasts with those obtained after gene knockdowns enabled assignment of proteins to five classes - kDNA synthesis, site of scission selection, scission, separation, and partitioning. These studies highlight how analysis of mutant kinetoplast phenotypes may be used to predict functional categories of proteins involved in the biogenesis of kinetoplasts.
Collapse
Affiliation(s)
- Kojo Mensa-Wilmot
- Department of Cellular Biology, 724 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA.
| | - Benjamin Hoffman
- Department of Cellular Biology, 724 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Justin Wiedeman
- Department of Cellular Biology, 724 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| | - Catherine Sullenberger
- Department of Cellular Biology, 724 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA
| | - Amrita Sharma
- Department of Cellular Biology, 724 Biological Sciences Building, University of Georgia, Athens, Georgia 30602, USA; Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
15
|
Kaurov I, Vancová M, Schimanski B, Cadena LR, Heller J, Bílý T, Potěšil D, Eichenberger C, Bruce H, Oeljeklaus S, Warscheid B, Zdráhal Z, Schneider A, Lukeš J, Hashimi H. The Diverged Trypanosome MICOS Complex as a Hub for Mitochondrial Cristae Shaping and Protein Import. Curr Biol 2018; 28:3393-3407.e5. [PMID: 30415698 DOI: 10.1016/j.cub.2018.09.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/02/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022]
Abstract
The mitochondrial contact site and cristae organization system (MICOS) is a multiprotein complex responsible for cristae formation. Even though cristae are found in all mitochondria capable of oxidative phosphorylation, only Mic10 and Mic60 appear to be conserved throughout eukaryotes. The remaining 4 or 5 known MICOS subunits are specific to the supergroup Opisthokonta, which includes yeast and mammals that are the only organisms in which this complex has been analyzed experimentally. We have isolated the MICOS from Trypanosoma brucei, a member of the supergroup Excavata that is profoundly diverged from opisthokonts. We show that it is required for the maintenance of the unique discoidal cristae that typify excavates, such as euglenids and kinetoplastids, the latter of which include trypanosomes. The trypanosome MICOS consists of 9 subunits, most of which are essential for normal growth. Unlike in opisthokonts, it contains two distinct Mic10 orthologs and an unconventional putative Mic60 that lacks a mitofilin domain. Interestingly, one of the essential trypanosomatid-specific MICOS subunits called TbMic20 is a thioredoxin-like protein that appears to be involved in import of intermembrane space proteins, including respiratory chain complex assembly factors. This result points to trypanosome MICOS coordinating cristae shaping and population of its membrane with proteins involved in respiration, the latter via the catalytic activity of TbMic20. Thus, trypanosome MICOS allows us to define which of its features are conserved in all eukaryotes and decipher those that represent lineage-specific adaptations.
Collapse
Affiliation(s)
- Iosif Kaurov
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Marie Vancová
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Bernd Schimanski
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Lawrence Rudy Cadena
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Jiří Heller
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic
| | - Tomáš Bílý
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Claudia Eichenberger
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Hannah Bruce
- Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Silke Oeljeklaus
- Faculty of Biology, Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Faculty of Biology, Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - André Schneider
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Julius Lukeš
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic
| | - Hassan Hashimi
- Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 37005 České Budějovice, Czech Republic.
| |
Collapse
|
16
|
Schneider A, Ochsenreiter T. Failure is not an option - mitochondrial genome segregation in trypanosomes. J Cell Sci 2018; 131:131/18/jcs221820. [PMID: 30224426 DOI: 10.1242/jcs.221820] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Unlike most other model eukaryotes, Trypanosoma brucei and its relatives have a single mitochondrion with a single-unit mitochondrial genome that is termed kinetoplast DNA (kDNA). Replication of the kDNA is coordinated with the cell cycle. During binary mitochondrial fission and prior to cytokinesis, the replicated kDNA has to be faithfully segregated to the daughter organelles. This process depends on the tripartite attachment complex (TAC) that physically links the kDNA across the two mitochondrial membranes with the basal body of the flagellum. Thus, the TAC couples segregation of the replicated kDNA with segregation of the basal bodies of the old and the new flagellum. In this Review, we provide an overview of the role of the TAC in kDNA inheritance in T. brucei We focus on recent advances regarding the molecular composition of the TAC, and discuss how the TAC is assembled and how its subunits are targeted to their respective TAC subdomains. Finally, we will contrast the segregation of the single-unit kDNA in trypanosomes to mitochondrial genome inheritance in yeast and mammals, both of which have numerous mitochondria that each contain multiple genomes.
Collapse
Affiliation(s)
- André Schneider
- Department of Chemistry and Biochemistry, University of Bern, Freiestr. 3, CH-3012 Bern, Switzerland
| | - Torsten Ochsenreiter
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, Bern CH-3012, Switzerland
| |
Collapse
|
17
|
Amodeo S, Jakob M, Ochsenreiter T. Characterization of the novel mitochondrial genome replication factor MiRF172 in Trypanosoma brucei. J Cell Sci 2018; 131:jcs211730. [PMID: 29626111 PMCID: PMC5963845 DOI: 10.1242/jcs.211730] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
The unicellular parasite Trypanosoma brucei harbors one mitochondrial organelle with a singular genome called the kinetoplast DNA (kDNA). The kDNA consists of a network of concatenated minicircles and a few maxicircles that form the kDNA disc. More than 30 proteins involved in kDNA replication have been described. However, several mechanistic questions are only poorly understood. Here, we describe and characterize minicircle replication factor 172 (MiRF172), a novel mitochondrial genome replication factor that is essential for cell growth and kDNA maintenance. By performing super-resolution microscopy, we show that MiRF172 is localized to the kDNA disc, facing the region between the genome and the mitochondrial membranes. We demonstrate that depletion of MiRF172 leads to a loss of minicircles and maxicircles. Detailed analysis suggests that MiRF172 is involved in the reattachment of replicated minicircles to the kDNA disc. Furthermore, we provide evidence that the localization of the replication factor MiRF172 not only depends on the kDNA itself, but also on the mitochondrial genome segregation machinery, suggesting an interaction between the two essential entities.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Simona Amodeo
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern CH-3012, Switzerland
| | - Martin Jakob
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
18
|
Molecular model of the mitochondrial genome segregation machinery in Trypanosoma brucei. Proc Natl Acad Sci U S A 2018; 115:E1809-E1818. [PMID: 29434039 PMCID: PMC5828607 DOI: 10.1073/pnas.1716582115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Mitochondrial genome replication and segregation are essential processes in most eukaryotic cells. While replication has been studied in some detail, much less is known about the molecular machinery required to distribute the replicated genomes. Using superresolution microscopy in combination with molecular biology and biochemistry, we show in which order the segregation machinery is assembled and that it is likely assembled de novo rather than in a semiconservative fashion in the single-celled parasite Trypanosoma brucei. Furthermore, we demonstrate that the mitochondrial genome itself is not required for assembly to occur. It seems that the physical connection of the mitochondrial genome to cytoskeletal elements is a conserved feature in most eukaryotes; however, the molecular components are highly diverse. In almost all eukaryotes, mitochondria maintain their own genome. Despite the discovery more than 50 y ago, still very little is known about how the genome is correctly segregated during cell division. The protozoan parasite Trypanosoma brucei contains a single mitochondrion with a singular genome, the kinetoplast DNA (kDNA). Electron microscopy studies revealed the tripartite attachment complex (TAC) to physically connect the kDNA to the basal body of the flagellum and to ensure correct segregation of the mitochondrial genome via the basal bodies movement, during the cell cycle. Using superresolution microscopy, we precisely localize each of the currently known TAC components. We demonstrate that the TAC is assembled in a hierarchical order from the base of the flagellum toward the mitochondrial genome and that the assembly is not dependent on the kDNA itself. Based on the biochemical analysis, the TAC consists of several nonoverlapping subcomplexes, suggesting an overall size of the TAC exceeding 2.8 mDa. We furthermore demonstrate that the TAC is required for correct mitochondrial organelle positioning but not for organelle biogenesis or segregation.
Collapse
|