1
|
Collier SL, Farrell SN, Goodman CD, McFadden GI. Modes and mechanisms for the inheritance of mitochondria and plastids in pathogenic protists. PLoS Pathog 2025; 21:e1012835. [PMID: 39847585 PMCID: PMC11756805 DOI: 10.1371/journal.ppat.1012835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025] Open
Abstract
Pathogenic protists are responsible for many diseases that significantly impact human and animal health across the globe. Almost all protists possess mitochondria or mitochondrion-related organelles, and many contain plastids. These endosymbiotic organelles are crucial to survival and provide well-validated and widely utilised drug targets in parasitic protists such as Plasmodium and Toxoplasma. However, mutations within the organellar genomes of mitochondria and plastids can lead to drug resistance. Such mutations ultimately challenge our ability to control and eradicate the diseases caused by these pathogenic protists. Therefore, it is important to understand how organellar genomes, and the resistance mutations encoded within them, are inherited during protist sexual reproduction and how this may impact the spread of drug resistance and future therapeutic approaches to target these organelles. In this review, we detail what is known about mitochondrial and plastid inheritance during sexual reproduction across different pathogenic protists, often turning to their better studied, nonpathogenic relatives for insight.
Collapse
Affiliation(s)
- Sophie L. Collier
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah N. Farrell
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | | | - Geoffrey I. McFadden
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
2
|
Sullivan SA, Orosco JC, Callejas-Hernández F, Blow F, Lee H, Ranallo-Benavidez T, Peters A, Raidal S, Girard YA, Johnson CK, Rogers K, Gerhold R, Mangelson H, Liachko I, Srivastava H, Chandler C, Berenberg D, Bonneau RA, Huang PJ, Yeh YM, Lee CC, Liu H, Tang P, Chen TW, Schatz MC, Carlton JM. Comparative genomics of the sexually transmitted parasite Trichomonas vaginalis reveals relaxed and convergent evolution and genes involved in spillover from birds to humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.22.629724. [PMID: 39763951 PMCID: PMC11703204 DOI: 10.1101/2024.12.22.629724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Trichomonas vaginalis is the causative agent of the venereal disease trichomoniasis which infects men and women globally and is associated with serious outcomes during pregnancy and cancers of the human reproductive tract. Trichomonads parasitize a range of hosts in addition to humans including birds, livestock, and domesticated animals. Recent genetic analysis of trichomonads recovered from columbid birds has provided evidence that these parasite species undergo frequent host-switching, and that a current epoch spillover event from columbids likely gave rise to T. vaginalis in humans. We undertook a comparative evolutionary genomics study of seven trichomonad species, generating chromosome-scale reference genomes for T. vaginalis and its avian sister species Trichomonas stableri, and assemblies of five other species that infect birds and mammals. Human-infecting trichomonad lineages have undergone recent and convergent genome size expansions compared to their avian sister species, and the major contributor to their increased genome size is increased repeat expansions, especially multicopy gene families and transposable elements, with genetic drift likely a driver due to relaxed selection. Trichomonads have independently host-switched twice from birds to humans, and genes implicated in the transition to the human host include those associated with host tissue adherence and phagocytosis, extracellular vesicles, and CAZyme virulence factors.
Collapse
Affiliation(s)
- Steven A. Sullivan
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jordan C. Orosco
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Francisco Callejas-Hernández
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Frances Blow
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Hayan Lee
- Department of Computer Science, Johns Hopkins Whiting School of Engineering, 3400 N Charles St Malone Hall 323, Baltimore, MD 21211, USA
| | - Timothy Ranallo-Benavidez
- Department of Computer Science, Johns Hopkins Whiting School of Engineering, 3400 N Charles St Malone Hall 323, Baltimore, MD 21211, USA
| | - Andrew Peters
- Charles Sturt University, The Grange Chancellery, Panorama Avenue, Bathurst, New South Wales, Australia 2795
| | - Shane Raidal
- Charles Sturt University, The Grange Chancellery, Panorama Avenue, Bathurst, New South Wales, Australia 2795
| | - Yvette A. Girard
- One Health Institute, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Christine K. Johnson
- One Health Institute, School of Veterinary Medicine, University of California, Davis, 1089 Veterinary Medicine Drive, Davis, CA, 95616, USA
| | - Krysta Rogers
- Wildlife Health Laboratory, California Department of Fish & Wildlife, 1701 Nimbus Road, Suite D Rancho Cordova, CA 95670, USA
| | - Richard Gerhold
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN, 37996, USA
| | | | - Ivan Liachko
- Phase Genomics, 1617 8th Ave N, Seattle, WA 98109, USA
| | - Harsh Srivastava
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Chris Chandler
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Daniel Berenberg
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Richard A. Bonneau
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
| | - Po-Jung Huang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yuan-Ming Yeh
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Chi-Ching Lee
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Hsuan Liu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Petrus Tang
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 333, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Ting-Wen Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Michael C. Schatz
- Department of Computer Science, Johns Hopkins Whiting School of Engineering, 3400 N Charles St Malone Hall 323, Baltimore, MD 21211, USA
| | - Jane M. Carlton
- Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Iturrieta-Gonzalez I, Olivares-Ferretti P, Hidalgo A, Zambrano F, Ossa X, Fonseca-Salamanca F, Melo A. High frequency of point mutations in the nitroreductase 4 and 6 genes of Trichomonas vaginalis associated with metronidazole resistance. Folia Parasitol (Praha) 2024; 71:2024.021. [PMID: 39584737 DOI: 10.14411/fp.2024.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/17/2024] [Indexed: 11/26/2024]
Abstract
Trichomoniasis, a globally distributed sexually transmitted infection, is caused by the urogenital parasite Trichomonas vaginalis Donné, 1836 affecting both women and men. The treatment of choice is metronidazole (MTZ). In the present study, 15 samples of vaginal discharge and urine were analysed by sequencing nitroreductase genes (ntr4 and ntr6). An in silico model was structured to illustrate the location of point mutations (PM) in the protein. The ntr4 gene presented four PMs: G76C (10/10), C213G (9/10), C318A (5/10) and G424A (1/10), while the ntr6 gene had eight PMs; G593A (13/13) the most frequent, G72T and G627C, both in 8/13. The PM C213G and A438T generated a stop codon causing a truncated nitroreductase 4 and 6 protein. Docking analysis demonstrated that some models had a decrease in binding affinity to MTZ (p < 0.0001). A high frequency of mutations was observed in the samples analysed that could be associated with resistance to MTZ in Chile.
Collapse
Affiliation(s)
- Isabel Iturrieta-Gonzalez
- Centre of Excellence in Translational Medicine, Nucleus of Scientific and Technological Bioresources (CEMT-BIOREN), Faculty of Medicine. Universidad de La Frontera, Temuco, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera. Temuco, Chile
| | - Pamela Olivares-Ferretti
- Centre of Excellence in Translational Medicine, Nucleus of Scientific and Technological Bioresources (CEMT-BIOREN), Faculty of Medicine. Universidad de La Frontera, Temuco, Chile
| | - Alejandro Hidalgo
- Centre of Excellence in Translational Medicine, Nucleus of Scientific and Technological Bioresources (CEMT-BIOREN), Faculty of Medicine. Universidad de La Frontera, Temuco, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera. Temuco, Chile
| | - Fabiola Zambrano
- Centre of Excellence in Translational Medicine, Nucleus of Scientific and Technological Bioresources (CEMT-BIOREN), Faculty of Medicine. Universidad de La Frontera, Temuco, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera. Temuco, Chile
| | - Ximena Ossa
- Public Health Department, Centre of Excellence Training, Research and Management for Evidence-Based Health (CIGES), Universidad de La Frontera, Temuco, Chile
| | - Flery Fonseca-Salamanca
- Centre of Excellence in Translational Medicine, Nucleus of Scientific and Technological Bioresources (CEMT-BIOREN), Faculty of Medicine. Universidad de La Frontera, Temuco, Chile
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera. Temuco, Chile
| | - Angelica Melo
- Centre of Excellence in Translational Medicine, Nucleus of Scientific and Technological Bioresources (CEMT-BIOREN), Faculty of Medicine. Universidad de La Frontera, Temuco, Chile
- Department of Pathological Anatomy, Faculty of Medicine. Universidad de La Frontera. Temuco, Chile *Address for correspondence: Angelica Melo Angermeyer. Universidad de La Frontera, Faculty of Medicine, Edificio Biociencias, Av. Alemania 0458 Temuco, Chile. E-mail: ; ORCID-iD: 0000-0002-3576-1745
| |
Collapse
|
4
|
Popovic A, Cao EY, Han J, Nursimulu N, Alves-Ferreira EVC, Burrows K, Kennard A, Alsmadi N, Grigg ME, Mortha A, Parkinson J. Commensal protist Tritrichomonas musculus exhibits a dynamic life cycle that induces extensive remodeling of the gut microbiota. THE ISME JOURNAL 2024; 18:wrae023. [PMID: 38366179 PMCID: PMC10944700 DOI: 10.1093/ismejo/wrae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/19/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Commensal protists and gut bacterial communities exhibit complex relationships, mediated at least in part through host immunity. To improve our understanding of this tripartite interplay, we investigated community and functional dynamics between the murine protist Tritrichomonas musculus and intestinal bacteria in healthy and B-cell-deficient mice. We identified dramatic, protist-driven remodeling of resident microbiome growth and activities, in parallel with Tritrichomonas musculus functional changes, which were accelerated in the absence of B cells. Metatranscriptomic data revealed nutrient-based competition between bacteria and the protist. Single-cell transcriptomics identified distinct Tritrichomonas musculus life stages, providing new evidence for trichomonad sexual replication and the formation of pseudocysts. Unique cell states were validated in situ through microscopy and flow cytometry. Our results reveal complex microbial dynamics during the establishment of a commensal protist in the gut, and provide valuable data sets to drive future mechanistic studies.
Collapse
Affiliation(s)
- Ana Popovic
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Eric Y Cao
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Joanna Han
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Nirvana Nursimulu
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, M5S 2E4, Canada
| | - Eliza V C Alves-Ferreira
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD 20892, United States
| | - Kyle Burrows
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Andrea Kennard
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD 20892, United States
| | - Noor Alsmadi
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - Michael E Grigg
- Molecular Parasitology Section, Laboratory of Parasitic Diseases, NIAID, National Institutes of Health, Bethesda, MD 20892, United States
| | - Arthur Mortha
- Department of Immunology, University of Toronto, Toronto, ON, M5S 1A8, Canada
| | - John Parkinson
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON, M5S 1A8, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1A8, Canada
| |
Collapse
|
5
|
Kenarkoohi A, Abdoli A, Rostamzad A, Rashnavadi M, Naserifar R, Abdi J, Shams M, Bozorgomid A, Saeb S, Al-Fahad D, Khezri K, Falahi S. Presence of CRISPR CAS-Like Sequences as a Proposed Mechanism for Horizontal Genetic Exchanges between Trichomonas vaginalis and Its Associated Virus: A Comparative Genomic Analysis with the First Report of a Putative CRISPR CAS Structures in Eukaryotic Cells. BIOMED RESEARCH INTERNATIONAL 2023; 2023:8069559. [PMID: 38058394 PMCID: PMC10696477 DOI: 10.1155/2023/8069559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/04/2023] [Accepted: 09/07/2023] [Indexed: 12/08/2023]
Abstract
Introduction Trichomonas vaginalis genome is among the largest genome size and coding capacities. Combinations of gene duplications, transposon, repeated sequences, and lateral gene transfers (LGTs) have contributed to the unexpected large genomic size and diversity. This study is aimed at investigating genomic exchange and seeking for presence of the CRISPR CAS system as one of the possible mechanisms for some level of genetic exchange. Material and Methods. In this comparative analysis, 398 publicly available Trichomonas vaginalis complete genomes were investigated for the presence of CRISPR CAS. Spacer sequences were also analyzed for their origin using BLAST. Results We identified a CRISPR CAS (Cas3). CRISPR spacers are highly similar to transposable genetic elements such as viruses of protozoan parasites, especially megavirals, some transposons, and, interestingly, papillomavirus and HIV-1 in a few cases. Discussion. There is a striking similarity between the prokaryotes/Archaean CRISPR and what we find as eukaryotic CRISPR. About 5-10% of the 398 T. vaginalis possess a CRISPR structure. Conclusion According to sequences and their organization, we assume that these repeated sequences and spacer, along with their mentioned features, could be the eukaryotic homolog of prokaryotes and Archaean CRISPR systems and may involve in a process similar to the CRISPR function.
Collapse
Affiliation(s)
- Azra Kenarkoohi
- Department of Laboratory Sciences, School of Allied Medical Sciences, Iran
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Amir Abdoli
- Zoonoses Research Centre, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Arman Rostamzad
- Department of Biology, Faculty of Sciences, Ilam University, Ilam, Iran
| | | | - Razi Naserifar
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Jahangir Abdi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Arezoo Bozorgomid
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sepideh Saeb
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Dhurgham Al-Fahad
- Pharmaceutical Department, College of Pharmacy, University of Thi-Qar, Iraq
| | - Kosar Khezri
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
6
|
Popovic A, Cao EY, Han J, Nursimulu N, Alves-Ferreira EVC, Burrows K, Kennard A, Alsmadi N, Grigg ME, Mortha A, Parkinson J. The commensal protist Tritrichomonas musculus exhibits a dynamic life cycle that induces extensive remodeling of the gut microbiota. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.528774. [PMID: 37090671 PMCID: PMC10120700 DOI: 10.1101/2023.03.06.528774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Commensal protists and gut bacterial communities exhibit complex relationships, mediated at least in part through host immunity. To improve our understanding of this tripartite interplay, we investigated community and functional dynamics between the murine protist Tritrichomonas musculus ( T. mu ) and intestinal bacteria in healthy and B cell-deficient mice. We identified dramatic, protist-driven remodeling of resident microbiome growth and activities, in parallel with T. mu functional changes, accelerated in the absence of B cells. Metatranscriptomic data revealed nutrient-based competition between bacteria and the protist. Single cell transcriptomics identified distinct T. mu life stages, providing new evidence for trichomonad sexual replication and the formation of pseudocysts. Unique cell states were validated in situ through microscopy and flow cytometry. Our results reveal complex microbial dynamics during the establishment of a commensal protist in the gut, and provide valuable datasets to drive future mechanistic studies.
Collapse
|
7
|
Lactate dehydrogenase and malate dehydrogenase: Potential antiparasitic targets for drug development studies. Bioorg Med Chem 2021; 50:116458. [PMID: 34687983 DOI: 10.1016/j.bmc.2021.116458] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/27/2021] [Accepted: 10/05/2021] [Indexed: 12/24/2022]
Abstract
Parasitic diseases remain a major public health concern for humans, claiming millions of lives annually. Although different treatments are required for these diseases, drug usage is limited due to the development of resistance and toxicity, which necessitate alternative therapies. It has been shown in the literature that parasitic lactate dehydrogenases (LDH) and malate dehydrogenases (MDH) have unique pharmacological selective and specificity properties compared to other isoforms, thus highlighting them as viable therapeutic targets involved in aerobic and anaerobic glycolytic pathways. LDH and MDH are important therapeutic targets for invasive parasites because they play a critical role in the progression and development of parasitic diseases. Any strategy to impede these enzymes would be fatal to the parasites, paving the way to develop and discover novel antiparasitic agents. This review aims to highlight the importance of parasitic LDH and MDH as therapeutic drug targets in selected obligate apicoplast parasites. To the best of our knowledge, this review presents the first comprehensive review of LDH and MDH as potential antiparasitic targets for drug development studies.
Collapse
|
8
|
Peixoto JF, dos Santos DG, Ribeiro L, de Oliveira VSC, Nunes-da-Fonseca R, Nepomuceno-Silva JL. Establishment of suitable reference genes for studying relative gene expression during the transition from trophozoites to cyst-like stages and first evidences of stress-induced expression of meiotic genes in Trichomonas vaginalis. Parasitology 2021; 148:934-946. [PMID: 33827719 PMCID: PMC11010144 DOI: 10.1017/s0031182021000585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/07/2022]
Abstract
Trichomonas vaginalis is a parasite of the human urogenital tract and the causative agent of trichomoniasis, a sexually transmitted disease of worldwide importance. This parasite is usually found as a motile flagellated trophozoite. However, when subjected to stressful microenvironmental conditions, T. vaginalis trophozoites can differentiate into peculiar cyst-like stages, which exhibit notable physiological resistance to unfavourable conditions. Although well documented in morphological and proteomic terms, patterns of gene expression changes involved in the cellular differentiation into cyst-like stages are mostly unknown. The real-time reverse transcription polymerase chain reaction (RT-qPCR) is recognized as a sensitive and accurate method for quantification of gene expression, providing fluorescence-based data that are proportional to the amount of a target RNA. However, the reliability of relative expression studies depends on the validation of suitable reference genes, which RNAs exhibit a minimum of variation between tested conditions. Here, we attempt to determine suitable reference genes to be used as controls of invariant expression during cold-induced in vitro differentiation of T. vaginalis trophozoites into cyst-like forms. Furthermore, we reveal that the mRNA from the meiotic recombinase Dmc1 is upregulated during this process, indicating that cryptic sexual events may take place in cyst-like stages of T. vaginalis.
Collapse
Affiliation(s)
- Juliana Figueiredo Peixoto
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
| | - Daniele Graças dos Santos
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
| | - Lupis Ribeiro
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
| | - Vitor Silva Cândido de Oliveira
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
| | - Rodrigo Nunes-da-Fonseca
- Laboratório Integrado de Ciências Morfofuncionais (LICM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
| | - José Luciano Nepomuceno-Silva
- Laboratório Integrado de Bioquímica Hatisaburo Masuda (LIBHM), Instituto de Biodiversidade e Sustentabilidade (NUPEM/UFRJ), Universidade Federal do Rio de Janeiro, Macaé/RJ, Brazil
| |
Collapse
|
9
|
Gibson W. The sexual side of parasitic protists. Mol Biochem Parasitol 2021; 243:111371. [PMID: 33872659 DOI: 10.1016/j.molbiopara.2021.111371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/26/2021] [Accepted: 04/13/2021] [Indexed: 01/09/2023]
Abstract
Much of the vast evolutionary landscape occupied by Eukaryotes is dominated by protists. Though parasitism has arisen in many lineages, there are three main groups of parasitic protists of relevance to human and livestock health: the Apicomplexa, including the malaria parasite Plasmodium and coccidian pathogens of livestock such as Eimeria; the excavate flagellates, encompassing a diverse range of protist pathogens including trypanosomes, Leishmania, Giardia and Trichomonas; and the Amoebozoa, including pathogenic amoebae such as Entamoeba. These three groups represent separate, deep branches of the eukaryote tree, underlining their divergent evolutionary histories. Here, I explore what is known about sex in these three main groups of parasitic protists.
Collapse
Affiliation(s)
- Wendy Gibson
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol, BS8 1TQ, United Kingdom.
| |
Collapse
|
10
|
Abstract
Trichomonas vaginalis is an anaerobic/microaerophilic protist parasite which causes trichomoniasis, one of the most prevalent sexually transmitted diseases worldwide. T. vaginalis not only is important as a human pathogen but also is of great biological interest because of its peculiar cell biology and metabolism, in earlier times fostering the erroneous notion that this microorganism is at the root of eukaryotic evolution. This review summarizes the major advances in the last five years in the T. vaginalis field with regard to genetics, molecular biology, ecology, and pathogenicity of the parasite.
Collapse
Affiliation(s)
- David Leitsch
- Department of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Population structure and genetic diversity of Trichomonas vaginalis clinical isolates in Australia and Ghana. INFECTION GENETICS AND EVOLUTION 2020; 82:104318. [PMID: 32278146 DOI: 10.1016/j.meegid.2020.104318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022]
Abstract
Population genetic studies of Trichomonas vaginalis have detected high genetic diversity associated with phenotypic differences in clinical presentations. In this study, microscopy and next generation-multi-locus sequence typing (NG-MLST) were used to identify and genetically characterise T. vaginalis isolates from patients in Australia and Ghana. Seventy-one polymorphic nucleotide sites, 36 different alleles, 48 sequence types, 24 of which were novel, were identified among 178 isolates, revealing a geneticallly diverse T. vaginalis population. Polymorphism was found at most loci, clustering genotypes into eight groups among both Australian and Ghanaian isolates, although there was some variation between countries. The number of alleles for each locus ranged from two to nine. Study results confirmed geographic expansion and diversity of the T. vaginalis population. Two-type populations in almost equal frequencies and a third unassigned group were identified in this study. Linkage disequilibrium was observed, suggesting T. vaginalis population is highly clonal. Multillocus disequilibrium was observed even when analysing clades separately, as well as widespread clonal genotypes, suggesting that there is no evidence of recent recombination. A more comprehensive study to assess the extent of genetic diversity and population structure of T. vaginalis and their potential impact on varied pathology observed among infected individuals is recommended.
Collapse
|