1
|
Caloian AD, Cristian M, Calin E, Pricop AR, Mociu SI, Seicaru L, Deacu S, Ciufu N, Suceveanu AI, Suceveanu AP, Mazilu L. Epigenetic Symphony in Diffuse Large B-Cell Lymphoma: Orchestrating the Tumor Microenvironment. Biomedicines 2025; 13:853. [PMID: 40299416 PMCID: PMC12024808 DOI: 10.3390/biomedicines13040853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
DLBCL is a testament to the complexity of nature. It is characterized by remarkable diversity in its molecular and pathological subtypes and clinical manifestations. Despite the strides made in DLBCL treatment and the introduction of innovative drugs, around one-third of patients face a relapse or develop refractory disease. Recent findings over the past ten years have highlighted the critical interplay between the evolution of DLBCL and various epigenetic mechanisms, including chromatin remodeling, DNA methylation, histone modifications, and the regulatory roles of non-coding RNAs. These epigenetic alterations are integral to the pathways of oncogenesis, tumor progression, and the development of therapeutic resistance. In the past decade, the identification of dysregulated epigenetic mechanisms in lymphomas has paved the way for an exciting field of epigenetic therapies. Crucially, these epigenetic transformations span beyond tumor cells to include the sophisticated network within the tumor microenvironment (TME). While the exploration of epigenetic dysregulation in lymphoma cells is thriving, the mechanisms affecting the functions of immune cells in the TME invite further investigation. This review is dedicated to weaving together the narrative of epigenetic alterations impacting both lymphoma cells with a focus on their infiltrating immune companions.
Collapse
Affiliation(s)
- Andreea-Daniela Caloian
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, 900470 Constanta, Romania;
| | - Miruna Cristian
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology-CEDMOG, “Ovidius” University of Constanta, 900470 Constanta, Romania
- Department of Forensic Medicine, “Sf. Apostol Andrei” Emergency County Hospital, 900439 Constanta, Romania
| | - Elena Calin
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, 900470 Constanta, Romania;
| | - Andreea-Raluca Pricop
- Department of Dermatology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania;
| | - Stelian-Ilie Mociu
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, 900470 Constanta, Romania;
| | - Liliana Seicaru
- Department of Clinical Patology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania;
| | - Sorin Deacu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Clinical Patology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania;
| | - Nicolae Ciufu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, 900470 Constanta, Romania;
| | - Andra-Iulia Suceveanu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Gastroenterology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Adrian-Paul Suceveanu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Gastroenterology, “Sf. Apostol Andrei” Emergency County Hospital, 900591 Constanta, Romania
| | - Laura Mazilu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania; (E.C.); (S.D.); (N.C.); (A.-I.S.); (A.-P.S.); (L.M.)
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, 900470 Constanta, Romania;
| |
Collapse
|
2
|
Sultan MH, Zhan Q, Jin H, Jia X, Wang Y. Epigenetic modulation by oncolytic viruses: Implications for cancer therapeutic efficacy. Biochim Biophys Acta Rev Cancer 2025; 1880:189270. [PMID: 39855579 DOI: 10.1016/j.bbcan.2025.189270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
Among various therapeutic agents, Oncolytic Viruses (OVs) are the most promising anticancer therapeutics because of their tumor-specific targeting and capability to mediate an antitumor immune response. In this review, we will discuss how epigenetic reprogramming of both the host and tumor can facilitate increased sensitivity of tumors to OV therapy. OVs infect tumor cells and modulate epigenetic landscapes, including DNA methylation, histone modifications, and chromatin remodeling, as well as non-coding RNA expression that consequently induces immune responses. These epigenetic changes, including hypermethylation of tumor-associated antigen genes and chromatin accessibility alterations, enhance the immunogenicity of tumors to facilitate recognition by the immune system. Here, we provide a general review addressing this question by discussing the potential benefits of combining OVs with epigenetic drugs to combat resistance and promote treatment efficacy. This information illustrates the importance of personalized OV therapy regarding epigenome in individual profiles and transitions. Still, it extends difficulty in inducing with acquisitions of viral-induced changes globally and making translatable steps by creating cancer-specific predictive treatment models.
Collapse
Affiliation(s)
- Muhammad Haris Sultan
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qi Zhan
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hao Jin
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaoyuan Jia
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yigang Wang
- Xinyuan Institute of Medicine and Biotechnology, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.
| |
Collapse
|
3
|
Singh RK, Vangala R, Torne AS, Bose D, Robertson ES. Epigenetic and epitranscriptomic regulation during oncogenic γ-herpesvirus infection. Front Microbiol 2025; 15:1484455. [PMID: 39839102 PMCID: PMC11747046 DOI: 10.3389/fmicb.2024.1484455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Oncogenic gamma herpesviruses, including Epstein-Barr Virus (EBV) and Kaposi's Sarcoma-associated Herpesvirus (KSHV), are opportunistic cancer-causing viruses and induces oncogenesis through complex mechanisms, which involves manipulation of cellular physiology as well as epigenetic and epitranscriptomic reprogramming. In this review, we describe the intricate processes by which these viruses interact with the epigenetic machinery, leading to alterations in DNA methylation, histone modifications, and the involvement of non-coding RNAs. The key viral proteins such as EBNA1 and LMP1 encoded by EBV; LANA and vGPCR encoded by KSHV; play pivotal roles in these modifications by interacting with host factors, and dysregulating signaling pathways. The resultant reprogramming can lead to activation of oncogenes, silencing of tumor suppressor genes, and evasion of the immune response, which ultimately contributes to the oncogenic potential of these viruses. Furthermore, in this review, we explore current therapeutic strategies targeting these epigenetic alterations and discuss future directions for research and treatment. Through this comprehensive examination of the epigenetic and epitranscriptomic reprogramming mechanisms employed by oncogenic gamma herpesviruses, we aim to provide valuable insights into potential avenues for novel therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | | | - Erle S. Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
4
|
Mund R, Whitehurst CB. Ubiquitin-Mediated Effects on Oncogenesis during EBV and KSHV Infection. Viruses 2024; 16:1523. [PMID: 39459858 PMCID: PMC11512223 DOI: 10.3390/v16101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
The Herpesviridae include the Epstein-Barr Virus (EBV) and the Kaposi Sarcoma-associated Herpesvirus (KSHV), both of which are oncogenic gamma-herpesviruses. These viruses manipulate host cellular mechanisms, including through ubiquitin-mediated pathways, to promote viral replication and oncogenesis. Ubiquitin, a regulatory protein which tags substrates for degradation or alters their function, is manipulated by both EBV and KSHV to facilitate viral persistence and cancer development. EBV infects approximately 90% of the global population and is implicated in malignancies including Burkitt lymphoma (BL), Hodgkin lymphoma (HL), post-transplant lymphoproliferative disorder (PTLD), and nasopharyngeal carcinoma. EBV latency proteins, notably LMP1 and EBNA3C, use ubiquitin-mediated mechanisms to inhibit apoptosis, promote cell proliferation, and interfere with DNA repair, contributing to tumorigenesis. EBV's lytic proteins, including BZLF1 and BPLF1, further disrupt cellular processes to favor oncogenesis. Similarly, KSHV, a causative agent of Kaposi's Sarcoma and lymphoproliferative disorders, has a latency-associated nuclear antigen (LANA) and other latency proteins that manipulate ubiquitin pathways to degrade tumor suppressors, stabilize oncogenic proteins, and evade immune responses. KSHV's lytic cycle proteins, such as RTA and Orf64, also use ubiquitin-mediated strategies to impair immune functions and promote oncogenesis. This review explores the ubiquitin-mediated interactions of EBV and KSHV proteins, elucidating their roles in viral oncogenesis. Understanding these mechanisms offers insights into the similarities between the viruses, as well as provoking thought about potential therapeutic targets for herpesvirus-associated cancers.
Collapse
Affiliation(s)
| | - Christopher B. Whitehurst
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, USA;
| |
Collapse
|
5
|
Bai Y, Wang Y, Qin J, Wang T, Zhou X, Ma Z, Wang A, Yang W, Wang J, Li J, Hu Y. Systematic pan-cancer analysis identified RASSF1 as an immunological and prognostic biomarker and validated in lung cancer. Heliyon 2024; 10:e33304. [PMID: 39022053 PMCID: PMC11253667 DOI: 10.1016/j.heliyon.2024.e33304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Background Ras association domain family member 1 (RASSF1) encodes the RASSF1A protein, serving as a scaffold protein situated at the intersection of a complex signalling network. Aims To evaluate the immunological and prognostic significance of RASSF1 expression in various types of human cancers, with a specific focus on lung cancer. Methods Differential expression analysis of RASSF1 was conducted based on data from The Cancer Genome Atlas, Genotype-Tissue Expression, and Cancer Cell Line Encyclopaedia databases. Prognostic analysis was performed using the Cox regression test and Kaplan-Meier test. Spearman's test was utilized for correlation analysis. Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) gene sets were employed to enrich the associated signaling pathways. Immunohistochemical staining and quantitative real-time PCR were employed to detect protein and mRNA expression levels, respectively. Results RASSF1 expression was significantly lower in tumour tissues than in normal tissues in most cancers, and Cox regression analysis demonstrated a significant correlation between RASSF1 expression and the prognosis of over 12 types of cancer. Specifically, high RASSF1 expression was associated with poor OS in nine cancer types, including GBMLGG (HR = 4.98, P = 1.2e-31), LGG (HR = 3.72, P = 2.5e-10), and LAML (HR = 1.48, P = 2.4e-3). Further analysis showed that RASSF1 expression was significantly correlated with immune checkpoint- and immune-related genes. Moreover, RASSF1 expression is involved in tumour microenvironment (TME), RNA modification, genomic heterogeneity, and tumour stemness. GO and KEGG analyses showed that RASSF1 was closely related to tumour immune-related pathways. Finally, RASSF1A was moderately correlated with PD-L1 (R = 0.556), and RASSF1A overexpression significantly affected the expression of several genes involved in the Th17 cell differentiation signalling pathway in lung cancer. Conclusions RASSF1 was differentially expressed in 29 human cancers and played a critical role in tumour immunity. Thus, RASSF1 has the potential to be used as a prognostic marker and reference for achieving more precise immunotherapy, particularly in lung cancer.
Collapse
Affiliation(s)
- Yibing Bai
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jiapei Qin
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Ting Wang
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Xin Zhou
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Zhiqiang Ma
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - An Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Wenyu Yang
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Jinliang Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| | - Jinfeng Li
- Institute of Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yi Hu
- Medical School of Chinese PLA, Beijing, China
- Department of Oncology, The First Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Shareena G, Kumar D. Epigenetics of Epstein Barr virus - A review. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166838. [PMID: 37544529 DOI: 10.1016/j.bbadis.2023.166838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Epstein Barr is the first-in-human oncogenic virus, closely related to numerous lymphoproliferative and malignant diseases, including HL, BL, NPC, and GC. EBV establishes life-long persistence infection portraying a biphasic viral life cycle: latent period and lytic replication. B-cells serve as critical regions for EBV latent genes, wherein viral gene expression is suppressed, promoting viral genome maintenance and immune recognition evasion. Upon its lytic reactivation, viral gene expression induces its replication, progeny production, and transmission. Dysregulations of epigenetic regulation in expressions of TSGs lead to carcinogenesis. Several studies reveal that EBV is associated with aberrant viral DNA and host genome methylation patterns, promoting immune monitoring, recognition evasiveness and host cell persistence. Among other epigenetic modifications, DNA methylation suppresses the majority of viral latent gene promoters, sparing a few, and acts as a prerequisite for activating EBV's lytic cycle, giving rise to viral progeny. It affects the host's epigenome via reprogramming cells to oncogenic, long-lasting phenotypes, as evident in several malignancies. At each phase of its life cycle, EBV exploits cellular mechanisms of epigenetic regulation, implying its unique host-pathogen relationship. This review summarized the DNA methylation's regulatory roles on several EBV-related promoter regions, along with the host genome in pathological conditions, highlights viral genes involved in a latent, lytic and latent-lytic phase of EBV infection. Moreover, it provides diagrammatic insights into methylation-based pathways in EBV.
Collapse
Affiliation(s)
- Gadde Shareena
- Poona College of Pharmacy, Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune 411038, Maharashtra, India
| | - Dileep Kumar
- Poona College of Pharmacy, Department of Pharmaceutical Chemistry, Bharati Vidyapeeth (Deemed to be University), Erandwane, Pune 411038, Maharashtra, India; UC Davis Comprehensive Cancer Center, Department of Entomology and Nematology, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Zhang C, Wu S. RUVBL1-modulated chromatin remodeling alters the transcriptional activity of oncogenic CTNNB1 in uveal melanoma. Cell Death Discov 2023; 9:132. [PMID: 37076452 PMCID: PMC10115834 DOI: 10.1038/s41420-023-01429-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/21/2023] Open
Abstract
Recent years have witnessed an increasing research interest in the therapeutic value of aberrant chromatin regulatory processes in carcinogenesis. Our study was performed to explore the possible carcinogenic mechanism of the chromatin regulator RuvB-like protein 1 (RUVBL1) in uveal melanoma (UVM). The expression pattern of RUVBL1 was retrieved in bioinformatics data. The correlation between RUVBL1 expression and the prognosis of patients with UVM was analyzed in publicly available database. The downstream target genes of RUVBL1 were predicted and further verified by co-immunoprecipitation. The bioinformatics analysis results showed that RUVBL1 may be associated with the transcriptional activity of CTNNB1 by regulating chromatin remodeling, and that RUVBL1 functioned as an independent prognostic factor for patients with UVM. The UVM cells manipulated with RUVBL1 knockdown were introduced for in vitro investigation. CCK-8 assay, flow cytometry, scratch assay, Transwell assay and Western blot analysis were used for detection on the resultant UVM cell proliferation, apoptosis, migration, invasion and cell cycle distribution. In vitro cell experimental data showed that RUVBL1 expression was significantly increased in UVM cells and RUVBL1 knockdown inhibited the proliferation, invasion and migration of UVM cells, accompanied by augmented apoptosis rate and blocked cell cycle progression. To sum up, RUVBL1 enhances the malignant biological characteristics of UVM cells by increasing the chromatin remodeling and subsequent transcription activity of CTNNB1.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Strabismus and Pediatric Ophthalmology, the Second Hospital of Jilin University, 130041, Changchun, P. R. China
| | - Shuai Wu
- Department of Orbital Disease and Ocular Plastic Surgery, the Second Hospital of Jilin University, 130041, Changchun, P. R. China.
| |
Collapse
|
8
|
Song H, Zhang Y, Liu J, Liu W, Luo B. Activation of DNA methyltransferase 3a by Epstein-Barr nuclear antigen 1 in gastric carcinoma. Dig Liver Dis 2022; 54:973-983. [PMID: 34215536 DOI: 10.1016/j.dld.2021.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Epstein-Barr nuclear antigen 1 (EBNA1) is expressed in all Epstein-Barr virus (EBV)-infected cells. It interacts with a variety of cellular proteins and activates the transcription of other EBV latency genes, which plays an important role in the persistence of the EBV genome during latent infection. AIM Several studies have shown that EBV infection induces the expression of DNA methyltransferases (DNMTs) and causes extensive methylation of the whole genome in EBV-associated gastric carcinoma (EBVaGC). However, the specific mechanism by which EBV regulates DNMTs expression is still unclear. METHODS AND RESULTS EBNA1 plasmid and siRNA were transfected to evaluate the effect of EBNA1 on DNMT3a expression. Molecular biology experiments were used to detect the biological function of DNMT3a and its effect on EBV latency in gastric carcinoma cells. We showed that EBNA1 upregulated DNMT3a expression through the E2F1 transcription factor (E2F1) in EBVaGC. DNMT3a knockdown restrained cell proliferation, induced cell cycle arrest, promoted cell apoptosis and suppressed cell migration in vitro. CONCLUSIONS Our results showed a new mechanism for EBV to regulate the expression of DNMT3a. Targeting the EBNA1/E2F1/DNMT3a axis may provide an alternative therapeutic strategy in the treatment of EBVaGC with high DNMT3a expression.
Collapse
Affiliation(s)
- Hui Song
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China; Department of Clinical Laboratory, Zibo Central Hospital, 54 Gongqingtuan Road, Zibo 255036, China
| | - Juanjuan Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No. 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
9
|
The roles of DNA methylation on the promotor of the Epstein–Barr virus (EBV) gene and the genome in patients with EBV-associated diseases. Appl Microbiol Biotechnol 2022; 106:4413-4426. [PMID: 35763069 PMCID: PMC9259528 DOI: 10.1007/s00253-022-12029-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/22/2022]
Abstract
Abstract Epstein–Barr virus (EBV) is an oncogenic virus that is closely associated with several malignant and lymphoproliferative diseases. Studies have shown that the typical characteristic of EBV-associated diseases is aberrant methylation of viral DNA and the host genome. EBV gene methylation helps EBV escape from immune monitoring and persist in host cells. EBV controls viral gene promoter methylation by hijacking host epigenetic machinery to regulate the expression of viral genes. EBV proteins also interact with host epigenetic regulatory factors to mediate the methylation of the host’s important tumour suppressor gene promoters, thereby participating in the occurrence of tumorigenesis. Since epigenetic modifications, including DNA methylation, are reversible in nature, drugs that target DNA methylation can be developed for epigenetic therapy against EBV-associated tumours. Various methylation modes in the host and EBV genomes may also be of diagnostic and prognostic value. This review summarizes the regulatory roles of DNA methylation on the promotor of EBV gene and host genome in EBV-associated diseases, proposes the application prospect of DNA methylation in early clinical diagnosis and treatment, and provides insight into methylation-based strategies against EBV-associated diseases. Key points • Methylation of both the host and EBV genomes plays an important role in EBV-associateddiseases. • The functions of methylation of the host and EBV genomes in the occurrence and development of EBV-associated diseases are diverse. • Methylation may be a therapeutic target or biomarker in EBV-associated diseases.
Collapse
|
10
|
Pietropaolo V, Prezioso C, Moens U. Role of Virus-Induced Host Cell Epigenetic Changes in Cancer. Int J Mol Sci 2021; 22:ijms22158346. [PMID: 34361112 PMCID: PMC8346956 DOI: 10.3390/ijms22158346] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor viruses human T-lymphotropic virus 1 (HTLV-1), hepatitis C virus (HCV), Merkel cell polyomavirus (MCPyV), high-risk human papillomaviruses (HR-HPVs), Epstein-Barr virus (EBV), Kaposi’s sarcoma-associated herpes virus (KSHV) and hepatitis B virus (HBV) account for approximately 15% of all human cancers. Although the oncoproteins of these tumor viruses display no sequence similarity to one another, they use the same mechanisms to convey cancer hallmarks on the infected cell. Perturbed gene expression is one of the underlying mechanisms to induce cancer hallmarks. Epigenetic processes, including DNA methylation, histone modification and chromatin remodeling, microRNA, long noncoding RNA, and circular RNA affect gene expression without introducing changes in the DNA sequence. Increasing evidence demonstrates that oncoviruses cause epigenetic modifications, which play a pivotal role in carcinogenesis. In this review, recent advances in the role of host cell epigenetic changes in virus-induced cancers are summarized.
Collapse
Affiliation(s)
- Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- Correspondence: (V.P.); (U.M.)
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy;
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00161 Rome, Italy
| | - Ugo Moens
- Molecular Inflammation Research Group, Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
- Correspondence: (V.P.); (U.M.)
| |
Collapse
|
11
|
Abstract
Among all of the known biological carcinogens, Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two of the classical oncogenic herpesviruses known to induce the oncogenic phenotype. Many studies have revealed important functions related to epigenetic alterations of the EBV and KSHV genomes that mediate oncogenesis, but the detailed mechanisms are not fully understood. It is also challenging to fully describe the critical cellular events that drive oncogenesis as well as a comprehensive map of the molecular contributors. This review introduces the roles of epigenetic modifications of these viral genomes, including DNA methylation, histone modification, chromatin remodeling, and noncoding RNA expression, and elucidates potential strategies utilized for inducing oncogenesis by these human gammaherpesviruses.
Collapse
Affiliation(s)
- Yonggang Pei
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Josiah Hiu-Yuen Wong
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| | - Erle S Robertson
- Departments of Otorhinolaryngology-Head and Neck Surgery and Microbiology, Tumor Virology Program, Abramson Comprehensive Cancer Center, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
12
|
Leong MML, Lung ML. The Impact of Epstein-Barr Virus Infection on Epigenetic Regulation of Host Cell Gene Expression in Epithelial and Lymphocytic Malignancies. Front Oncol 2021; 11:629780. [PMID: 33718209 PMCID: PMC7947917 DOI: 10.3389/fonc.2021.629780] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/18/2021] [Indexed: 12/29/2022] Open
Abstract
Epstein-Barr virus (EBV) infection is associated with a variety of malignancies including Burkitt's lymphoma (BL), Hodgkin's disease, T cell lymphoma, nasopharyngeal carcinoma (NPC), and ∼10% of cases of gastric cancer (EBVaGC). Disruption of epigenetic regulation in the expression of tumor suppressor genes or oncogenes has been considered as one of the important mechanisms for carcinogenesis. Global hypermethylation is a distinct feature in NPC and EBVaGC, whereas global reduction of H3K27me3 is more prevalent in EBVaGC and EBV-transformed lymphoblastoid cells. In BL, EBV may even usurp the host factors to epigenetically regulate its own viral gene expression to restrict latency and lytic switch, resulting in evasion of immunosurveillance. Furthermore, in BL and EBVaGC, the interaction between the EBV episome and the host genome is evident with respectively unique epigenetic features. While the interaction is associated with suppression of gene expression in BL, the corresponding activity in EBVaGC is linked to activation of gene expression. As EBV establishes a unique latency program in these cancer types, it is possible that EBV utilizes different latency proteins to hijack the epigenetic modulators in the host cells for pathogenesis. Since epigenetic regulation of gene expression is reversible, understanding the precise mechanisms about how EBV dysregulates the epigenetic mechanisms enables us to identify the potential targets for epigenetic therapies. This review summarizes the currently available epigenetic profiles of several well-studied EBV-associated cancers and the relevant distinct mechanisms leading to aberrant epigenetic signatures due to EBV.
Collapse
Affiliation(s)
- Merrin Man Long Leong
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Microbiology, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Maria Li Lung
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
13
|
Bin Y, Ding Y, Xiao W, Liao A. RASSF1A: A promising target for the diagnosis and treatment of cancer. Clin Chim Acta 2020; 504:98-108. [PMID: 31981586 DOI: 10.1016/j.cca.2020.01.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 02/07/2023]
Abstract
The Ras association domain family 1 isoform A (RASSF1A), a tumor suppressor, regulates several tumor-related signaling pathways and interferes with diverse cellular processes. RASSF1A is frequently demonstrated to be inactivated by hypermethylation in numerous types of solid cancers. It is also associated with lymph node metastasis, vascular invasion, and chemo-resistance. Therefore, reactivation of RASSF1A may be a viable strategy to block tumor progress and reverse drug resistance. In this review, we have summarized the clinical value of RASSF1A for screening, staging, and therapeutic management of human malignancies. We also highlighted the potential mechanism of RASSF1A in chemo-resistance, which may help identify novel drugs in the future.
Collapse
Affiliation(s)
- Yuling Bin
- Digestive System Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Yong Ding
- Department of Vascular Surgery, Zhongshan Hospital, Institue of Vascular Surgery, Fudan University, Shanghai 200032, China
| | - Weisheng Xiao
- Digestive System Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China
| | - Aijun Liao
- Digestive System Department, the First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
14
|
García-Gutiérrez L, McKenna S, Kolch W, Matallanas D. RASSF1A Tumour Suppressor: Target the Network for Effective Cancer Therapy. Cancers (Basel) 2020; 12:cancers12010229. [PMID: 31963420 PMCID: PMC7017281 DOI: 10.3390/cancers12010229] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
The RASSF1A tumour suppressor is a scaffold protein that is involved in cell signalling. Increasing evidence shows that this protein sits at the crossroad of a complex signalling network, which includes key regulators of cellular homeostasis, such as Ras, MST2/Hippo, p53, and death receptor pathways. The loss of expression of RASSF1A is one of the most common events in solid tumours and is usually caused by gene silencing through DNA methylation. Thus, re-expression of RASSF1A or therapeutic targeting of effector modules of its complex signalling network, is a promising avenue for treating several tumour types. Here, we review the main modules of the RASSF1A signalling network and the evidence for the effects of network deregulation in different cancer types. In particular, we summarise the epigenetic mechanism that mediates RASSF1A promoter methylation and the Hippo and RAF1 signalling modules. Finally, we discuss different strategies that are described for re-establishing RASSF1A function and how a multitargeting pathway approach selecting druggable nodes in this network could lead to new cancer treatments.
Collapse
Affiliation(s)
- Lucía García-Gutiérrez
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
| | - Stephanie McKenna
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
| | - Walter Kolch
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland; (L.G.-G.); (S.M.); (W.K.)
- School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Correspondence:
| |
Collapse
|