1
|
Liu X, Li C, Meng Q, Chen C, Lai Y, Wang H, Yu Z, Li D, Chen Z, Hou T. Derazantinib Inhibits the Planktonic Growth and Biofilm Formation of Staphylococcus aureus by Binding Membrane Phospholipids and Disrupting the Cell Membrane. ACS Infect Dis 2025. [PMID: 40367508 DOI: 10.1021/acsinfecdis.4c01020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Derazantinib (DZB), a pan-fibroblast growth factor receptor (FGFR) inhibitor, exhibits potent activity against FGFR1-3 kinases and has been clinically approved for antitumor therapy. However, its antibacterial properties remain unknown. Here, we demonstrated that DZB displays broad-spectrum activity against Staphylococcus aureus (S. aureus), with minimum inhibitory concentrations (MICs) ranging from 6.25 to 25 μM. DZB exhibited more rapid and stronger bactericidal activity against planktonic cells of both MSSA and MRSA compared to vancomycin. DZB at 6.25 μM robustly inhibited biofilm formation and even eradicated mature biofilms. Global proteomic profiling revealed that DZB's antibacterial mechanism might involve disruption of microbial glycolysis/gluconeogenesis pathways. Furthermore, in vitro selection of DZB-induced resistant S. aureus resulted in a 2-fold increase in MIC, and whole-genome sequencing of this derivative isolate identified amino acid mutations in membrane-associated proteins. DZB was found to compromise bacterial membrane integrity, as evidenced by increased membrane permeability, and the membrane damage was also confirmed by scanning electron microscopy (SEM). The antibacterial activity of DZB was neutralized by the addition of exogenous phosphatidylglycerol and cardiolipin. Biolayer interferometry assays demonstrated a strong interaction between DZB and cardiolipin, suggesting membrane phospholipid targeting as a key mechanism. Lastly, DZB displayed a robust inhibitory effect against intracellular S. aureus SA113 and showed excellent in vivo anti-MRSA infection in both Galleria mellonella larvae and murine infection models. In summary, our findings established DZB as a promising anti-S. aureus agent with dual antibacterial and antibiofilm activities by disrupting the cell membrane through targeting membrane phospholipids.
Collapse
Affiliation(s)
- Xiaoju Liu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, No. 89 Taoyuan Road, Nanshan, Shenzhen 518052, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Nation Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, China
| | - Congcong Li
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, No. 89 Taoyuan Road, Nanshan, Shenzhen 518052, China
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Qingyin Meng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, No. 89 Taoyuan Road, Nanshan, Shenzhen 518052, China
| | - Chengchun Chen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, No. 89 Taoyuan Road, Nanshan, Shenzhen 518052, China
| | - Yingying Lai
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, No. 89 Taoyuan Road, Nanshan, Shenzhen 518052, China
| | - Hongyan Wang
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, No. 89 Taoyuan Road, Nanshan, Shenzhen 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, No. 89 Taoyuan Road, Nanshan, Shenzhen 518052, China
| | - Duoyun Li
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, No. 89 Taoyuan Road, Nanshan, Shenzhen 518052, China
| | - Zhong Chen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, No. 89 Taoyuan Road, Nanshan, Shenzhen 518052, China
| | - Tieying Hou
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Shenzhen University Medical School, No. 89 Taoyuan Road, Nanshan, Shenzhen 518052, China
| |
Collapse
|
2
|
Doing G, Shanbhag P, Bell I, Cassidy S, Motakis E, Aiken E, Oh J, Adams MD. TEAL-Seq: targeted expression analysis sequencing. mSphere 2025:e0098424. [PMID: 40261045 DOI: 10.1128/msphere.00984-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
Metagenome sequencing enables the genetic characterization of complex microbial communities. However, determining the activity of isolates within a community presents several challenges, including the wide range of organismal and gene expression abundances, the presence of host RNA, and low microbial biomass at many sites. To address these limitations, we developed "targeted expression analysis sequencing" or TEAL-seq, enabling sensitive species-specific analyses of gene expression using highly multiplexed custom probe pools. For proof of concept, we targeted about 1,700 core and accessory genes of Staphylococcus aureus and S. epidermidis, two key species of the skin microbiome. Two targeting methods were applied to laboratory cultures and human nasal swab specimens. Both methods showed a high degree of specificity, with >90% reads on target, even in the presence of complex microbial or human background DNA/RNA. Targeting using molecular inversion probes demonstrated excellent correlation in inferred expression levels with bulk RNA-seq. Furthermore, we show that a linear pre-amplification step to increase the number of nucleic acids for analysis yielded consistent and predictable results when applied to complex samples and enabled profiling of expression from as little as 1 ng of total RNA. TEAL-seq is much less expensive than bulk metatranscriptomic profiling, enables detection across a greater dynamic range, and uses a strategy that is readily configurable for determining the transcriptional status of organisms in any microbial community.IMPORTANCEThe gene expression patterns of bacteria in microbial communities reflect their activity and interactions with other community members. Measuring gene expression in complex microbiome contexts is challenging, however, due to the large dynamic range of microbial abundances and transcript levels. Here we describe an approach to assessing gene expression for specific species of interest using highly multiplexed pools of targeting probes. We show that an isothermal amplification step enables the profiling of low biomass samples. TEAL-seq should be widely adaptable to the study of microbial activity in natural environments.
Collapse
Affiliation(s)
- Georgia Doing
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Priya Shanbhag
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Isaac Bell
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Sara Cassidy
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Efthymios Motakis
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Elizabeth Aiken
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Mark D Adams
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| |
Collapse
|
3
|
Enroth TJ, Severn MM, Costa FG, Bovee AR, Wilkening RV, Nguyen DT, Langouët-Astrié C, Horswill AR. Global changes in Staphylococcus aureus virulence and metabolism during colonization of healthy skin. Infect Immun 2025; 93:e0002825. [PMID: 40116525 PMCID: PMC11977313 DOI: 10.1128/iai.00028-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/15/2025] [Indexed: 03/23/2025] Open
Abstract
Staphylococcus aureus and its antibiotic-resistant derivative, methicillin-resistant S. aureus (MRSA), are the leading causative agents of skin and soft tissue infections globally. S. aureus transiently colonizes the skin of healthy adults, and this transient colonization likely precedes an active infection. In recent years, there have been efforts to elucidate specific factors that help MRSA transition to an active infection, but the specific genetic determinants required for this transition following skin colonization are largely unknown. To address this question, we developed a model of asymptomatic colonization of mouse skin by MRSA. From this model, we could determine the MRSA and mouse transcriptional profiles by RNA sequencing (RNAseq) at 5- and 24-hour post-colonization. The fadXDEBA locus, required for fatty acid metabolism, was highly upregulated in our data, as were numerous virulence factors. RNAseq data were confirmed via functional in vitro and in vivo promoter-fusion assays using live bioluminescent imaging of the fadXDEBA locus promoter driving fadB transcription. We analyzed the functional capacity of members of the fadXDEBA locus, which encode crucial enzymatic components of the S. aureus β-oxidation pathway. The genes fadD and fadA modulate MRSA resistance to fosfomycin and other oxidative stressors during growth in the presence of the common skin fatty acid, palmitic acid. Overall, our data demonstrate that there are global changes to the MRSA transcriptome, priming the bacteria for survival by upregulation of known virulence factors and metabolic genes implicated in host skin-nutrient utilization.IMPORTANCEStaphylococcus aureus is a major global agent of skin and soft tissue infections. S. aureus colonizes the skin transiently, an important precursor to infection. However, little is known about how S. aureus adapts to the skin at the transcriptional level. This study provides an overview of the S. aureus transcriptome during mouse skin colonization via RNA sequencing. We identified that the most highly upregulated genes during colonization are related to fatty acid metabolism. The disruption of certain genes in the fatty acid degradation pathway altered resistance of S. aureus to the antibiotic fosfomycin. This study provides an important step in understanding the transcriptional changes that occur during S. aureus skin colonization and may reveal novel targets of therapeutic interest for preventing skin infections.
Collapse
Affiliation(s)
- Timothy J. Enroth
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Morgan M. Severn
- Department of Dermatology, Duke University, Durham, North Carolina, USA
| | - Flavia G. Costa
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Alyson R. Bovee
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Reid V. Wilkening
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Section of Pediatric Critical Care Medicine, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Dustin T. Nguyen
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern, Colorado Healthcare System, Grand Junction, Colorado, USA
| |
Collapse
|
4
|
Wang J, Fu P, He X, Liu Y, Zuo Y, Wei Z, Wang Y, Yang Y, Li C, Shen X, Zhu L. Fur-regulated urease contributes to the environmental adaptation of Yersinia pseudotuberculosis. Microbiol Spectr 2025; 13:e0275624. [PMID: 39998249 PMCID: PMC11960103 DOI: 10.1128/spectrum.02756-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Urease converts urea into ammonia and carbon dioxide, providing a nitrogen and carbon source for microbial growth and serving as an important mechanism for human bacterial pathogens to survive in acidic conditions, which can be regulated by many factors. As a global regulator, the ferric uptake regulator (Fur) regulates a series of genes and pathways involved in many different cellular processes and the virulence of the enteric bacterium Yersinia pseudotuberculosis (Yptb). However, whether Fur regulates the urease activity in Yptb was still unknown. In this study, we found that urease is positively regulated by Fur in response to manganese ions (Mn2+), and this regulation by Fur is mediated by specific recognition of the promoter region of urease in Yptb. Furthermore, urease is induced by Mn2+ via Fur under low nutrient conditions. Moreover, we provided evidence that urease plays an important role in acid and osmotic stress resistance, biofilm formation, and virulence of Yptb. Our findings provide insights into understanding the regulatory mechanism and multiple functions of urease in Yptb.IMPORTANCEUrease catalyzes the breakdown of urea into ammonia and carbamate, which are widely distributed among bacterial species and play an important role as an important acid resistance system and virulence factor. In most bacterial species, urease expression is tightly regulated in response to environmental cues such as nitrogen status, pH, growth phase, substrate availability, or transcriptional regulators. In this study, we found that urease from Yptb is positively regulated by Fur in response to Mn2+ under low nutrient conditions, which functions to combat acid and osmotic stress and enhance biofilm formation, and plays a crucial role in virulence. Importantly, this is the first demonstration of a direct role for Fur and Mn2+ in regulating urease expression in Yptb. This study provides a comprehensive understanding of the regulatory mechanisms and functions of urease from Yptb.
Collapse
Affiliation(s)
- Junyang Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Peishuai Fu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinquan He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuqi Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxin Zuo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiyan Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yantao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Changfu Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingfang Zhu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
5
|
Li Y, Song S, Song J, Gong R, Abbas G. Electrochemical pH Sensor Incorporated Wearables for State-of-the-Art Wound Care. ACS Sens 2025; 10:1690-1708. [PMID: 40036348 DOI: 10.1021/acssensors.4c03408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Nonhealing chronic wounds pose severe physiological and psychological distress to patients, making them a significant concern for global public health. Effective wound management strategies assisted by smart wearable pH monitoring have the potential to substantially alleviate both social and economic burdens. The pH of the wound exudate serves as a valuable indicator for predicting infections and assessing the healing status of wounds. This review comprehensively summarizes fundamental aspects related to wound pH, with a particular emphasis on the relationships between pH and healing status, infections, and other biochemical parameters that are crucial for wound health. It systematically discusses advancements in electrochemical pH sensors specifically designed for wearable devices, emphasizing their core performance in the care of chronic wounds. Additionally, the review outlines the challenges faced by this field and suggests future directions for research and development.
Collapse
Affiliation(s)
- Yiwei Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Shibo Song
- Endoscopy Center, Peking University First Hospital, Beijing 100034, China
| | - Jin Song
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
| | - Rui Gong
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen 518107, China
| | - Ghulam Abbas
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
6
|
Wen Y, Wu D, Zhang L, Ma S, Lv C. Sesamin targets ClpP which attenuates virulence of S. aureus and protects mice from fatal pneumonia induced by MRSA. J Appl Microbiol 2025; 136:lxaf003. [PMID: 39805732 DOI: 10.1093/jambio/lxaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
AIMS The aim of this study was to identify sesamin as a Casein hydrolase P (ClpP) inhibitor and to determine whether it could attenuate the virulence of methicillin-resistant Staphylococcus aureus (MRSA). METHODS AND RESULTS Through fluorescence resonance energy transfer screening, a natural compound sesamin demonstrated a significant inhibitory effect on ClpP enzyme activity with an IC50 of 20.62 μg/ml. Sesamin suppressed the expression of virulence factors of MRSA such as α-hemolysin (Hla) and Panton-Valentine leucocidin by protein immunoblotting. Thermal shift assay and cellular thermal shift assay showed that sesamin could bind to ClpP and enhance the thermal stability of ClpP. Furthermore, the binding affinity between sesamin and ClpP was determined by surface plasmon resonance with a KD value of 7.18 × 10-6 M. Molecular docking, dynamics simulations and point mutation analysis confirmed the stability of the sesamin-ClpP complex with a -10.184 kcal/mol total binding energy and identified PHE-174 in ClpP as a key binding site. In mice pneumonia model, sesamin combined vancomycin treatment markedly reduced the pathogenicity of MRSA-infected mice, offering protection against fatal lung infections. CONCLUSIONS Overall, these findings validate sesamin as a promising compound that targets ClpP, reducing virulence factor expression, that holds potential as a hit compound against MRSA infections.
Collapse
Affiliation(s)
- Yu Wen
- School of Basic Medicine, Jiamusi University, 258 Xuefu Street, Xiangyang District, Jiamusi 154000, China
| | - Duogeng Wu
- Clinical Medical College, Changchun University of Chinese Medicine, 1035 Boshuo Road, Jingyue District, Changchun 130117, China
| | - Luxin Zhang
- Clinical Medical College, Changchun University of Chinese Medicine, 1035 Boshuo Road, Jingyue District, Changchun 130117, China
| | - Shuxia Ma
- School of Basic Medicine, Jiamusi University, 258 Xuefu Street, Xiangyang District, Jiamusi 154000, China
| | - Chao Lv
- School of Basic Medicine, Jiamusi University, 258 Xuefu Street, Xiangyang District, Jiamusi 154000, China
| |
Collapse
|
7
|
Al-Fawares O, Bashabsheh RHF, Natsheh IY, Aburayyan W. Molecular investigation of Staphylococcus aureus isolated from inanimate surfaces in Jordanian hospitals. BRAZ J BIOL 2025; 84:e285397. [PMID: 39907330 DOI: 10.1590/1519-6984.285397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/01/2024] [Indexed: 02/06/2025] Open
Abstract
Staphylococcus aureus is a ubiquitous nosocomial bacterium, which confers hospital-associated infections ranging from moderate to life-threatening disorders. The pathogenicity of the microorganism is attributed to various camouflage mechanisms harbored in its genome. Methicillin-resistant Staphylococcus aureus strains have become significant pathogens in nosocomial and community settings. In the current study, we aimed to determine the prevalence of S. aureus, and more specifically, MRSA at different departments in four major hospitals in Jordan. A total of 500 inanimate surfaces located in the intensive care unit ICU, kidney department, surgery department, internal department, sterilization department, burn department, and operation department were swabbed. All isolates were identified by using routine bacterial culture, Gram staining, and a panel of biochemical tests such as; catalase, coagulase, DNase, urease, oxidase, and hemolysin production were performed. In terms of PCR, three main genes were screened, the 16S rRNA gene targeting Staphylococcus spp as a housekeeping gene, the coA gene was used as a specific gene to detect S. aureus, and the mecA gene used to identify MRSA isolates. Results revealed the prevalence of Staphylococcus spp was 212 (42.4%), S. aureus prevalence by coA gene 198 (39.6%), and MRSA by mecA gene in 81 samples (16.2%). There was a strong positive connection (P < 0.01) found between department site and bacterial contamination. It was concluded that inanimate hospital environments contain a relatively high number of S. aureus and MRSA. Proper sterilization techniques, infection prevention, and control management strategies should be implemented.
Collapse
Affiliation(s)
- O Al-Fawares
- Al-Balqa Applied University, Faculty of Science, Department of Medical Laboratory Sciences, Al-salt, Jordan
| | - R H F Bashabsheh
- Al-Balqa Applied University, Faculty of Science, Department of Medical Laboratory Sciences, Al-salt, Jordan
| | - I Y Natsheh
- Al-Balqa Applied University, Department of Allied Medical Sciences Zarqa College, Zarqa, Jordan
| | - W Aburayyan
- Al-Balqa Applied University, Faculty of Science, Department of Medical Laboratory Sciences, Al-salt, Jordan
| |
Collapse
|
8
|
Raethong N, Chamtim P, Thananusak R, Whanmek K, Santivarangkna C. Genome-wide transcriptomics revealed carbon source-mediated gamma-aminobutyric acid (GABA) production in a probiotic, Lactiplantibacillus pentosus 9D3. Heliyon 2025; 11:e41879. [PMID: 39897778 PMCID: PMC11782964 DOI: 10.1016/j.heliyon.2025.e41879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
GABA-producing probiotics present promising opportunities for developing functional foods. Carbon sources have been identified as a critical influence on GABA production. Therefore, this study investigated the holistic metabolic responses and GABA biosynthesis to various carbon sources of Lactiplantibacillus pentosus 9D3, a proficient GABA producer, using a genome-wide transcriptomic approach. The analysis revealed 414 genes with differential expression responses to altering carbon sources, i.e., glucose, sucrose, and lactose, notably sugar phosphotransferase systems (PTS) (11 genes), indicating carbon source-mediated transcriptional change patterns in L. pentosus 9D3. The integration of transcriptome data with a genome-scale metabolic network (GSMN) revealed that L. pentosus 9D3 displays adaptability by synthesizing GABA as an alternative acid-tolerant mechanism when lactose is used as a carbon source rather than depending on the fatty acid synthesis and the arginine catabolic pathway. The findings of this study offer valuable insights into optimal carbon source utilization and gene expression co-regulation, thereby enhancing the GABA-producing capability of a probiotic and broadening its potential applications in the functional food industry.
Collapse
Affiliation(s)
- Nachon Raethong
- Institute of Nutrition, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Pitakthai Chamtim
- Academic Service Division, National Laboratory Animal Center, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Roypim Thananusak
- Omics Center for Agriculture, Bioresource, Food and Health Kasetsart University (OmiKU), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Duckweed Holobiont Resource & Research Center (DHbRC), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Kanyawee Whanmek
- Institute of Nutrition, Mahidol University, Nakhon Pathom, 73170, Thailand
| | | |
Collapse
|
9
|
Coll F, Blane B, Bellis KL, Matuszewska M, Wonfor T, Jamrozy D, Toleman MS, Geoghegan JA, Parkhill J, Massey RC, Peacock SJ, Harrison EM. The mutational landscape of Staphylococcus aureus during colonisation. Nat Commun 2025; 16:302. [PMID: 39805814 PMCID: PMC11730646 DOI: 10.1038/s41467-024-55186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Staphylococcus aureus is an important human pathogen and a commensal of the human nose and skin. Survival and persistence during colonisation are likely major drivers of S. aureus evolution. Here we applied a genome-wide mutation enrichment approach to a genomic dataset of 3060 S. aureus colonization isolates from 791 individuals. Despite limited within-host genetic diversity, we observed an excess of protein-altering mutations in metabolic genes, in regulators of quorum-sensing (agrA and agrC) and in known antibiotic targets (fusA, pbp2, dfrA and ileS). We demonstrated the phenotypic effect of multiple adaptive mutations in vitro, including changes in haemolytic activity, antibiotic susceptibility, and metabolite utilisation. Nitrogen metabolism showed the strongest evidence of adaptation, with the assimilatory nitrite reductase (nasD) and urease (ureG) showing the highest mutational enrichment. We identified a nasD natural mutant with enhanced growth under urea as the sole nitrogen source. Inclusion of 4090 additional isolate genomes from 731 individuals revealed eight more genes including sasA/sraP, darA/pstA, and rsbU with signals of adaptive variation that warrant further characterisation. Our study provides a comprehensive picture of the heterogeneity of S. aureus adaptive changes during colonisation, and a robust methodological approach applicable to study in host adaptive evolution in other bacterial pathogens.
Collapse
Affiliation(s)
- Francesc Coll
- Applied Microbial Genomics Unit, Department of Molecular Basis of Disease, Institute of Biomedicine of Valencia (IBV-CSIC), Valencia, Spain.
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
- Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, UK.
| | - Beth Blane
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Katherine L Bellis
- Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Marta Matuszewska
- Department of Medicine, University of Cambridge, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Toska Wonfor
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
- Department of Microbes, Infection & Microbiomes, College of Medicine & Health, University of Birmingham, Birmingham, UK
| | - Dorota Jamrozy
- Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | | | - Joan A Geoghegan
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, UK
- Department of Microbes, Infection & Microbiomes, College of Medicine & Health, University of Birmingham, Birmingham, UK
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ruth C Massey
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Ewan M Harrison
- Parasites & Microbes Programme, Wellcome Sanger Institute, Hinxton, UK.
- Department of Medicine, University of Cambridge, Cambridge, UK.
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Yan Y, Cao M, Ma J, Suo J, Bai X, Ge W, Lü X, Zhang Q, Chen J, Cui S, Yang B. Mechanisms of thermal, acid, desiccation and osmotic tolerance of Cronobacter spp. Crit Rev Food Sci Nutr 2025:1-23. [PMID: 39749527 DOI: 10.1080/10408398.2024.2447304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Cronobacter spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions. Acid tolerance is achieved through internal pH regulation, acid efflux pumps, and acid tolerance proteins, allowing survival in acidic food matrices and the gastrointestinal tract. Desiccation tolerance is mediated by the accumulation of protective osmolytes like trehalose, stabilizing proteins and membranes to withstand dryness, especially in dry food products. Similarly, osmotic stress resilience is supported by compatible solutes such as trehalose and glycine betaine, along with metabolic adaptations to balance osmotic pressures. These mechanisms highlight the adaptability of Cronobacter spp. to diverse environments. Moreover, exposure to sublethal stresses, including heat, osmotic, dry, and pH stresses, may induce homologous or cross-resistance, complicating control strategies. Understanding these survival mechanisms is essential to mitigate the risks of Cronobacter spp., especially in powdered infant formula (PIF), and ensure food safety.
Collapse
Affiliation(s)
- Yanfei Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mengyuan Cao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jia Suo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiaobao Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wupeng Ge
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Qiang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jia Chen
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang, China
| | - Shenghui Cui
- National Institutes for Food and Drug Control, Beijing, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Kondakala S, Yoon S, Daddy Gaoh S, Kweon O, Kim SJ, Hart ME. Directional and Strain-Specific Interaction Between Lactobacillus plantarum and Staphylococcus aureus. Microorganisms 2024; 12:2432. [PMID: 39770635 PMCID: PMC11677646 DOI: 10.3390/microorganisms12122432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
The interaction between Lactobacillus plantarum and Staphylococcus aureus strains FRI-1169 and MN8, two original isolated strains from menstrual toxic shock syndrome (mTSS) cases, is a key focus for developing non-antibiotic strategies to control S. aureus-related infections. While the antagonistic effects of Lactobacilli species on S. aureus through mechanisms like organic acid and bacteriocin production are known, the molecular dynamics of these interactions remain underexplored. This study employs a proteomic approach to analyze the interactions between L. plantarum WCFS1 and S. aureus strains, FRI-1169 and MN8, during co-culture. We profiled differentially expressed proteins (DEPs) found in the spent media and cytosols of both bacteria, revealing distinct directional and strain-specific responses. The findings demonstrate that L. plantarum exerts a more pronounced effect on S. aureus, with more DEPs and upregulated proteins, while S. aureus showed fewer DEPs and more downregulated proteins. These strain-specific interactions highlight the complex metabolic and regulatory adjustments between these bacterial species. This research provides valuable insights into the molecular mechanisms of Lactobacillus-S. aureus antagonism and underscores the potential of proteomic analysis as a powerful tool for studying bacterial dynamics in co-culture systems.
Collapse
Affiliation(s)
- Sandeep Kondakala
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.K.); (S.Y.); (S.D.G.); (O.K.); (S.-J.K.)
| | - Sunghyun Yoon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.K.); (S.Y.); (S.D.G.); (O.K.); (S.-J.K.)
| | - Soumana Daddy Gaoh
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.K.); (S.Y.); (S.D.G.); (O.K.); (S.-J.K.)
| | - Ohgew Kweon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.K.); (S.Y.); (S.D.G.); (O.K.); (S.-J.K.)
| | - Seong-Jae Kim
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.K.); (S.Y.); (S.D.G.); (O.K.); (S.-J.K.)
| | - Mark E. Hart
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (S.K.); (S.Y.); (S.D.G.); (O.K.); (S.-J.K.)
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
12
|
Korshoj LE, Kielian T. Bacterial single-cell RNA sequencing captures biofilm transcriptional heterogeneity and differential responses to immune pressure. Nat Commun 2024; 15:10184. [PMID: 39580490 PMCID: PMC11585574 DOI: 10.1038/s41467-024-54581-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Biofilm formation is an important mechanism of survival and persistence for many bacterial pathogens. These multicellular communities contain subpopulations of cells that display metabolic and transcriptional diversity along with recalcitrance to antibiotics and host immune defenses. Here, we present an optimized bacterial single-cell RNA sequencing method, BaSSSh-seq, to study Staphylococcus aureus diversity during biofilm growth and transcriptional adaptations following immune cell exposure. BaSSSh-seq captures extensive transcriptional heterogeneity during biofilm compared to planktonic growth. We quantify and visualize transcriptional regulatory networks across heterogeneous biofilm subpopulations and identify gene sets that are associated with a trajectory from planktonic to biofilm growth. BaSSSh-seq also detects alterations in biofilm metabolism, stress response, and virulence induced by distinct immune cell populations. This work facilitates the exploration of biofilm dynamics at single-cell resolution, unlocking the potential for identifying biofilm adaptations to environmental signals and immune pressure.
Collapse
Affiliation(s)
- Lee E Korshoj
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
13
|
Khaleque HN, Fathollahzadeh H, Kaksonen AH, Valdés J, Vergara E, Holmes DS, Watkin ELJ. Genomic insights into key mechanisms for carbon, nitrogen, and phosphate assimilation by the acidophilic, halotolerant genus Acidihalobacter members. FEMS Microbiol Ecol 2024; 100:fiae145. [PMID: 39496518 PMCID: PMC11585279 DOI: 10.1093/femsec/fiae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/24/2024] [Accepted: 10/30/2024] [Indexed: 11/06/2024] Open
Abstract
In-depth comparative genomic analysis was conducted to predict carbon, nitrogen, and phosphate assimilation pathways in the halotolerant, acidophilic genus Acidihalobacter. The study primarily aimed to understand how the metabolic capabilities of each species can determine their roles and effects on the microbial ecology of their unique saline and acidic environments, as well as in their potential application to saline water bioleaching systems. All four genomes encoded the genes for the complete tricarboxylic acid cycle, including 2-oxoglutarate dehydrogenase, a key enzyme absent in obligate chemolithotrophic acidophiles. Genes for a unique carboxysome shell protein, csoS1D, typically found in halotolerant bacteria but not in acidophiles, were identified. All genomes contained lactate and malate utilization genes, but only A. ferrooxydans DSM 14175T contained genes for the metabolism of propionate. Genes for phosphate assimilation were present, though organized differently across species. Only A. prosperus DSM 5130T and A. aeolianus DSM 14174T genomes contained nitrogen fixation genes, while A. ferrooxydans DSM 14175T and A. yilgarnensis DSM 105917T possessed genes for urease transporters and respiratory nitrate reductases, respectively. The findings suggest that all species can fix carbon dioxide but can also potentially utilize exogenous carbon sources and that the non-nitrogen-fixing species rely on alternative nitrogen assimilation mechanisms.
Collapse
Affiliation(s)
- Himel Nahreen Khaleque
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
- CSIRO, Environment, Floreat, WA 6014, Australia
| | - Homayoun Fathollahzadeh
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | | | - Jorge Valdés
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Av. República 330, Santiago 8370146, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, 8420000, Chile
| | - David S Holmes
- Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, 8420000, Chile
| | - Elizabeth L J Watkin
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
14
|
Szuplewska M, Sentkowska D, Lasek R, Decewicz P, Hałucha M, Funk Ł, Chmielowska C, Bartosik D. Genome-wide comparative analysis of clinical and environmental strains of the opportunistic pathogen Paracoccus yeei ( Alphaproteobacteria). Front Microbiol 2024; 15:1483110. [PMID: 39568992 PMCID: PMC11578231 DOI: 10.3389/fmicb.2024.1483110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/14/2024] [Indexed: 11/22/2024] Open
Abstract
Introduction Paracoccus yeei is the first species in the genus Paracoccus to be implicated in opportunistic infections in humans. As a result, P. yeei strains provide a valuable model for exploring how bacteria shift from a saprophytic to a pathogenic lifestyle, as well as for investigating the role of horizontally transferred DNA in this transition. In order to gain deeper insights into the unique characteristics of this bacterium and the molecular mechanisms underlying its opportunistic behavior, a comparative physiological and genomic analysis of P. yeei strains was performed. Results Complete genomic sequences of 7 P. yeei isolates (both clinical and environmental) were obtained and analyzed. All genomes have a multipartite structure comprising numerous extrachromosomal replicons (59 different ECRs in total), including large chromids of the DnaA-like and RepB families. Within the mobile part of the P. yeei genomes (ECRs and transposable elements, TEs), a novel non-autonomous MITE-type element was identified. Detailed genus-wide comparative genomic analysis permitted the identification of P. yeei-specific genes, including several putative virulence determinants. One of these, the URE gene cluster, determines the ureolytic activity of P. yeei strains-a unique feature among Paracoccus spp. This activity is induced by the inclusion of urea in the growth medium and is dependent on the presence of an intact nikR regulatory gene, which presumably regulates expression of nickel (urease cofactor) transporter genes. Discussion This in-depth comparative analysis provides a detailed insight into the structure, composition and properties of P. yeei genomes. Several predicted virulence determinants (including URE gene clusters) were identified within ECRs, indicating an important role for the flexible genome in determining the opportunistic properties of this bacterium.
Collapse
Affiliation(s)
- Magdalena Szuplewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dorota Sentkowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Robert Lasek
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Przemysław Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Mateusz Hałucha
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Łukasz Funk
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Cora Chmielowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
15
|
Subbarayudu S, Snega Priya P, Rajagopal R, Alfarhan A, Guru A, Arockiaraj J. Impact of acidic and alkaline conditions on Staphylococcus aureus and Acinetobacter baumannii interactions and their biofilms. Arch Microbiol 2024; 206:426. [PMID: 39375235 DOI: 10.1007/s00203-024-04142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 10/09/2024]
Abstract
Bacterial biofilms pose significant challenges due to their association with antibiotic resistance, metabolic adaptation, and survival under harsh conditions. Among notable pathogens forming biofilms, Staphylococcus aureus and Acinetobacter baumannii are concerning pathogens in nosocomial settings. However, their behaviour under acidic (pH 4.5) and alkaline (pH10.5) conditions, especially in co-culture setups, remains insufficiently understood. This study investigates these aspects, by examining growth rates, biofilm formation, pH shifts, phenotypic analysis, and gene expression profiles. The results showed A. baumannii exhibited reduced growth and biofilm formation at pH 4.5, while S. aureus showed slow growth and low biofilm formation at pH10.5 in mono-cultures. S. aureus leaned towards an acidic pH (6-6.5), whereas A. baumannii shifted towards an alkaline pH (8-9). In co-culture environments, growth rates and biofilm formation increased across all pH conditions, converging towards a neutral pH over time. Phenotypic motility assays indicated that A. baumannii exhibited greater motility in alkaline conditions, while S. aureus showed increased staphyloxanthin production under acidic conditions. Gene expression analyses revealed that the fibronectin-binding protein A (FnbA) and N-acetylglucosaminyl-transferase (icaA) genes, responsible for initial attachment during biofilm formation, were highly expressed in acidic co-culture condition but poorly expressed in alkaline condition. In A. baumannii, the outer membrane protein A (OmpA) gene associated with adhesion and virulence, was upregulated in co-culture. The LuxR gene involved in quorum sensing was upregulated in acidic conditions and poorly expressed at pH 10.5. This study elucidates the metabolic adaptability and biofilm formation tendencies of S. aureus towards acidic conditions and A. baumannii towards alkaline conditions, providing insights for better management of biofilm-related infections.
Collapse
Affiliation(s)
- Suthi Subbarayudu
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - P Snega Priya
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
16
|
Fatima A, Choudhary MI, Siddiqui S, Zafar H, Hu K, Wahab AT. Insights into the molecular interactions between urease subunit gamma from MRSA and drugs: an integrative approach by STD-NMR and molecular docking studies. RSC Adv 2024; 14:30859-30872. [PMID: 39355333 PMCID: PMC11443414 DOI: 10.1039/d4ra01732c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/07/2024] [Indexed: 10/03/2024] Open
Abstract
Staphylococcus aureus, an important human pathogen, is developing resistance against a wide range of antibiotics. The antibiotic resistance in S. aureus has created the need to identify new drug targets, and to develop new drugs candidates. In the current study, urease subunit gamma from Methicillin Resistant Staphylococcus aureus (MRSA 252) was studied as a potential drug target, through protein-ligand interactions. Urease is the main virulence factor of MRSA, it catalyzes the conversion of urea into ammonia that is required for the survival of bacteria during acid stress. Its subunits and accessory proteins can serve as targets for drug discovery and development. Present study describes the cloning, expression, and purification of urease subunit gamma from MRSA 252. This was followed by screening of 100 US-FDA approved drugs against this protein using STD-NMR spectroscopy and among them, 15 drugs showed significant STD effects. In silico studies predicted that these drugs interacted mainly via non-covalent interactions, such as hydrogen bond, aromatic hydrogen bonding, π-π stacking, π-cation interactions, salt bridges, and halogen bonding. The thermal stability of UreA in the presence of these interacting drugs was evaluated using differential scanning fluorimetry (DSF), which revealed a significant effect on the T m of UreA. Additionally, the inhibitory effects of these drugs on urease activity were assessed using a urease inhibition assay with Jack bean urease. The results showed that these drugs possess enzyme inhibitory activity, potentially impacting the survival of S. aureus. These hits need further biochemical and mechanistic studies to validate their therapeutic potential against the MRSA infections.
Collapse
Affiliation(s)
- Anum Fatima
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - M Iqbal Choudhary
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University Jeddah-22254 Saudi Arabia
| | - Shezaib Siddiqui
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Humaira Zafar
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| | - Kaifeng Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine Chengdu Sichuan-611137 China
| | - Atia-Tul Wahab
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi Karachi-75270 Pakistan
| |
Collapse
|
17
|
Tetz V, Kardava K, Vecherkovskaya M, Khodadadi-Jamayran A, Tsirigos A, Tetz G. Previously unknown regulatory role of extracellular RNA on bacterial directional migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603110. [PMID: 39026763 PMCID: PMC11257571 DOI: 10.1101/2024.07.11.603110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Bacterial directional migration plays a significant role in bacterial adaptation. However, the regulation of this process, particularly in young biofilms, remains unclear. Here, we demonstrated the critical role of extracellular RNA as part of the Universal Receptive System in bacterial directional migration using a multidisciplinary approach, including bacterial culture, biochemistry, and genetics. We found that the destruction or inactivation of extracellular RNA with RNase or RNA-specific antibodies in the presence of the chemoattractant triggered the formation of bacterial "runner cells» in what we call a "panic state" capable of directional migration. These cells quickly migrated even on the surface of 1.5% agar and formed evolved colonies that were transcriptionally and biochemically different from the ancestral cells. We have also shown that cell-free DNA from blood plasma can act as a potent bacterial chemoattractant. Our data revealed a previously unknown role of bacterial extracellular RNA in the regulation of bacterial migration and have shown that its destruction or inhibition triggered the directional migration of developing and mature biofilms towards the chemoattractant.
Collapse
|
18
|
Korshoj LE, Kielian T. Bacterial single-cell RNA sequencing captures biofilm transcriptional heterogeneity and differential responses to immune pressure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.28.601229. [PMID: 38979200 PMCID: PMC11230364 DOI: 10.1101/2024.06.28.601229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Biofilm formation is an important mechanism of survival and persistence for many bacterial pathogens. These multicellular communities contain subpopulations of cells that display vast metabolic and transcriptional diversity along with high recalcitrance to antibiotics and host immune defenses. Investigating the complex heterogeneity within biofilm has been hindered by the lack of a sensitive and high-throughput method to assess stochastic transcriptional activity and regulation between bacterial subpopulations, which requires single-cell resolution. We have developed an optimized bacterial single-cell RNA sequencing method, BaSSSh-seq, to study Staphylococcus aureus diversity during biofilm growth and transcriptional adaptations following immune cell exposure. We validated the ability of BaSSSh-seq to capture extensive transcriptional heterogeneity during biofilm compared to planktonic growth. Application of new computational tools revealed transcriptional regulatory networks across the heterogeneous biofilm subpopulations and identification of gene sets that were associated with a trajectory from planktonic to biofilm growth. BaSSSh-seq also detected alterations in biofilm metabolism, stress response, and virulence that were tailored to distinct immune cell populations. This work provides an innovative platform to explore biofilm dynamics at single-cell resolution, unlocking the potential for identifying biofilm adaptations to environmental signals and immune pressure.
Collapse
|
19
|
Sychantha D, Chen X, Koteva K, Prehna G, Wright GD. Targeting bacterial nickel transport with aspergillomarasmine A suppresses virulence-associated Ni-dependent enzymes. Nat Commun 2024; 15:4036. [PMID: 38740750 DOI: 10.1038/s41467-024-48232-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 04/23/2024] [Indexed: 05/16/2024] Open
Abstract
Microbial Ni2+ homeostasis underpins the virulence of several clinical pathogens. Ni2+ is an essential cofactor in urease and [NiFe]-hydrogenases involved in colonization and persistence. Many microbes produce metallophores to sequester metals necessary for their metabolism and starve competing neighboring organisms. The fungal metallophore aspergillomarasmine A (AMA) shows narrow specificity for Zn2+, Ni2+, and Co2+. Here, we show that this specificity allows AMA to block the uptake of Ni2+ and attenuate bacterial Ni-dependent enzymes, offering a potential strategy for reducing virulence. Bacterial exposure to AMA perturbs H2 metabolism, ureolysis, struvite crystallization, and biofilm formation and shows efficacy in a Galleria mellonella animal infection model. The inhibition of Ni-dependent enzymes was aided by Zn2+, which complexes with AMA and competes with the native nickelophore for the uptake of Ni2+. Biochemical analyses demonstrated high-affinity binding of AMA-metal complexes to NikA, the periplasmic substrate-binding protein of the Ni2+ uptake system. Structural examination of NikA in complex with Ni-AMA revealed that the coordination geometry of Ni-AMA mimics the native ligand, Ni-(L-His)2, providing a structural basis for binding AMA-metal complexes. Structure-activity relationship studies of AMA identified regions of the molecule that improve NikA affinity and offer potential routes for further developing this compound as an anti-virulence agent.
Collapse
Affiliation(s)
- David Sychantha
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
- Department of Chemistry, University of Waterloo, Waterloo, ON, Canada
| | - Xuefei Chen
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Kalinka Koteva
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON, Canada
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Gerd Prehna
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Gerard D Wright
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON, Canada.
- M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada.
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
20
|
Yu M, Xie F, Xu C, Yu T, Wang Y, Liang S, Dong Q, Wang L. Characterization of cytotoxic Citrobacter braakii isolated from human stomach. FEBS Open Bio 2024; 14:487-497. [PMID: 38268325 PMCID: PMC10909985 DOI: 10.1002/2211-5463.13770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/25/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
Citrobacter braakii (C. braakii) is an anaerobic, gram-negative bacterium that has been isolated from the environment, food, and humans. Infection by C. braakii has been associated with acute mucosal inflammation in the intestine, respiratory tract, and urinary tract. However, the pathogenesis of C. braakii in the gastric mucosa has not yet been clarified. In this study, the bacterium was detected in 35.5% (61/172) of patients with chronic gastritis (CG) and was closely associated with the severity of mucosal inflammation. Citrobacter braakii P1 isolated from a patient with CG exhibited urease activity and acid resistance. It contained multiple secretion systems, including a complete type I secretion system (T1SS), T5aSS and T6SS. We then predicted the potential pilus-related adhesins. Citrobacter braakii P1 diffusely adhered to AGS cells and significantly increased lactate dehydrogenase (LDH) release; the adhesion rate and LDH release were much lower in HEp-2 cells. Strain P1 also induced markedly increased mRNA and protein expression of IL-8 and TNF-α in AGS cells, and the fold increase was much higher than that in HEp-2 cells. Our results demonstrate proinflammatory and cytotoxic role of C. braakii in gastric epithelial cells, indicating the bacterium is potentially involved in inducing gastric mucosa inflammation.
Collapse
Affiliation(s)
- Mengchao Yu
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Fangyu Xie
- Department of Cardiology, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Chengzhen Xu
- Department of Chinese MedicineQingdao No. 6 People's HospitalChina
| | - Ting Yu
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Yixuan Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Shuzhen Liang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Quanjiang Dong
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| | - Lili Wang
- Central Laboratories and Department of Gastroenterology, Qingdao Municipal HospitalUniversity of Health and Rehabilitation SciencesQingdaoChina
| |
Collapse
|
21
|
Zeden MS. mSphere of Influence: Targeting bacterial signaling and metabolism to overcome antimicrobial resistance. mSphere 2024; 9:e0063223. [PMID: 38305167 PMCID: PMC10900877 DOI: 10.1128/msphere.00632-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Dr Merve Suzan Zeden works in the field of molecular bacteriology and antibiotic resistance. In this mSphere of Influence article, she reflects on how three papers, entitled "c-di-AMP modulates Listeria monocytogenes central metabolism to regulate growth, antibiotic resistance and osmoregulation," "Amino acid catabolism in Staphylococcus aureus and the function of carbon catabolite repression," and "Evolving MRSA: high-level β-lactam resistance in Staphylococcus aureus is associated with RNA polymerase alterations and fine tuning of gene expression," made an impact on her work on bacterial metabolism and antimicrobial resistance and how it shaped her research in understanding the link in between.
Collapse
Affiliation(s)
- Merve S Zeden
- School of Biological and Chemical Sciences, College of Science and Engineering, University of Galway, Galway, Ireland
| |
Collapse
|
22
|
Gazel D, Akdoğan H, Büyüktaş Manay A, Erinmez M, Zer Y. The potential of therapeutic hyperthermia to eradicate Staphylococcus aureus bacteria; an in vitro study. J Therm Biol 2024; 120:103812. [PMID: 38447276 DOI: 10.1016/j.jtherbio.2024.103812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 03/08/2024]
Abstract
Staphylococcus aureus is one of the most common infectious agents, causing morbidity and mortality worldwide. Most pathogenic bacteria are classified in the group of mesophilic bacteria and the optimal growth temperature of these bacteria changes between 33 and 41 °C. Increased temperature can inhibit bacterial growth and mobility, which in turn, can trigger autolysis and cause cell wall damage. Hyperthermia treatment is defined as a heat-mediated treatment method applied using temperatures higher than body temperature. Nowadays, this treatment method is used especially in the treatment of tumours. Hyperthermia treatment is divided into two groups: mild hyperthermia and ablative or high-temperature hyperthermia. Mild hyperthermia is a therapeutic technique in which tumour tissue is heated above body temperature to produce a physiological or biological effect but is often not aimed at directly causing significant cell death. The goal of this method is to achieve temperatures of 40-45 °C in human tissues for up to 2 h. Hyperthermia can be used in the treatment of infections caused by such bacterial pathogens. In addition, using hyperthermia in combination with antimicrobial drugs may result in synergistic effects and reduce resistance issues. In our study, we used two different temperature levels (37 °C and 45 °C). We assessed growth inhibition, some virulence factors, alteration colony morphologies, and antimicrobial susceptibility for several antibiotics with three methods (Kirby-Bauer, E-test and broth microdilution) under hyperthermia. In the study, we observed that hyperthermia affected the urease enzyme, antibiotic sensitivity levels showed synergy with hyperthermia, and changes occurred in colony diameters and affected bacterial growth. We hypothesise that hyperthermia might be a new therapeutic option for infectious diseases as a sole agent or in combination with different antimicrobials.
Collapse
Affiliation(s)
- Deniz Gazel
- Gaziantep University, Faculty of Medicine, Department of Medical Microbiology, Gaziantep, Turkey.
| | - Hüseyin Akdoğan
- Gaziantep University, Faculty of Medicine, Department of Medical Microbiology, Gaziantep, Turkey
| | - Ayşe Büyüktaş Manay
- Gaziantep University, Faculty of Medicine, Department of Medical Microbiology, Gaziantep, Turkey
| | - Mehmet Erinmez
- Gaziantep University, Faculty of Medicine, Department of Medical Microbiology, Gaziantep, Turkey
| | - Yasemin Zer
- Gaziantep University, Faculty of Medicine, Department of Medical Microbiology, Gaziantep, Turkey
| |
Collapse
|
23
|
Quiroz LF, Ciosek T, Grogan H, McKeown PC, Spillane C, Brychkova G. Unravelling the Transcriptional Response of Agaricus bisporus under Lecanicillium fungicola Infection. Int J Mol Sci 2024; 25:1283. [PMID: 38279283 PMCID: PMC10815960 DOI: 10.3390/ijms25021283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Mushrooms are a nutritionally rich and sustainably-produced food with a growing global market. Agaricus bisporus accounts for 11% of the total world mushroom production and it is the dominant species cultivated in Europe. It faces threats from pathogens that cause important production losses, including the mycoparasite Lecanicillium fungicola, the causative agent of dry bubble disease. Through quantitative real-time polymerase chain reaction (qRT-PCR), we determine the impact of L. fungicola infection on the transcription patterns of A. bisporus genes involved in key cellular processes. Notably, genes related to cell division, fruiting body development, and apoptosis exhibit dynamic transcriptional changes in response to infection. Furthermore, A. bisporus infected with L. fungicola were found to accumulate increased levels of reactive oxygen species (ROS). Interestingly, the transcription levels of genes involved in the production and scavenging mechanisms of ROS were also increased, suggesting the involvement of changes to ROS homeostasis in response to L. fungicola infection. These findings identify potential links between enhanced cell proliferation, impaired fruiting body development, and ROS-mediated defence strategies during the A. bisporus (host)-L. fungicola (pathogen) interaction, and offer avenues for innovative disease control strategies and improved understanding of fungal pathogenesis.
Collapse
Affiliation(s)
- Luis Felipe Quiroz
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland; (L.F.Q.); (C.S.)
| | - Tessa Ciosek
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland; (L.F.Q.); (C.S.)
| | - Helen Grogan
- Teagasc, Horticulture Development Department, Ashtown Research Centre, D15 KN3K Dublin, Ireland;
| | - Peter C. McKeown
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland; (L.F.Q.); (C.S.)
| | - Charles Spillane
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland; (L.F.Q.); (C.S.)
| | - Galina Brychkova
- Agriculture and Bioeconomy Research Centre, Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland; (L.F.Q.); (C.S.)
| |
Collapse
|
24
|
Reed P, Sorg M, Alwardt D, Serra L, Veiga H, Schäper S, Pinho MG. A CRISPRi-based genetic resource to study essential Staphylococcus aureus genes. mBio 2024; 15:e0277323. [PMID: 38054745 PMCID: PMC10870820 DOI: 10.1128/mbio.02773-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Staphylococcus aureus is an important clinical pathogen that causes a high number of antibiotic-resistant infections. The study of S. aureus biology, and particularly of the function of essential proteins, is of particular importance to develop new approaches to combat this pathogen. We have optimized a clustered regularly interspaced short palindromic repeat interference (CRISPRi) system that allows efficient targeting of essential S. aureus genes. Furthermore, we have used that system to construct a library comprising 261 strains, which allows the depletion of essential proteins encoded by 200 genes/operons. This library, which we have named Lisbon CRISPRi Mutant Library, should facilitate the study of S. aureus pathogenesis and biology.
Collapse
Affiliation(s)
- Patricia Reed
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Moritz Sorg
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Dominik Alwardt
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Lúcia Serra
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Helena Veiga
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Simon Schäper
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mariana G. Pinho
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
25
|
Gudeta DD, Foley SL. Versatile allelic replacement and self-excising integrative vectors for plasmid genome mutation and complementation. Microbiol Spectr 2024; 12:e0338723. [PMID: 37991378 PMCID: PMC10782977 DOI: 10.1128/spectrum.03387-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE In spite of the dissemination of multidrug-resistant plasmids among Gram-negative pathogens, including those carrying virulence genes, vector tools for studying plasmid-born genes are lacking. The allelic replacement vectors can be used to generate plasmid or chromosomal mutations including markless point mutations. This is the first report describing a self-excising integrative vector that can be used as a stable single-copy complementing tool to study medically important pathogens including in vivo studies without the need for antibiotic selection. Overall, our newly developed vectors can be applied for the assessment of the function of plasmid-encoded genes by specifically creating mutations, moving large operons between plasmids and to/from the chromosome, and complementing phenotypes associated with gene mutation. Furthermore, the vectors express chromophores for the detection of target gene modification or colony isolation, avoiding time-consuming screening procedures.
Collapse
Affiliation(s)
- Dereje D. Gudeta
- Division of Microbiology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Steven L. Foley
- Division of Microbiology, National Center for Toxicological Research, Jefferson, Arkansas, USA
| |
Collapse
|
26
|
Hauserman MR, Ferraro MJ, Carroll RK, Rice KC. Altered quorum sensing and physiology of Staphylococcus aureus during spaceflight detected by multi-omics data analysis. NPJ Microgravity 2024; 10:2. [PMID: 38191486 PMCID: PMC10774393 DOI: 10.1038/s41526-023-00343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 12/15/2023] [Indexed: 01/10/2024] Open
Abstract
Staphylococcus aureus colonizes the nares of approximately 30% of humans, a risk factor for opportunistic infections. To gain insight into S. aureus virulence potential in the spaceflight environment, we analyzed RNA-Seq, cellular proteomics, and metabolomics data from the "Biological Research in Canisters-23" (BRIC-23) GeneLab spaceflight experiment, a mission designed to measure the response of S. aureus to growth in low earth orbit on the international space station. This experiment used Biological Research in Canisters-Petri Dish Fixation Units (BRIC-PDFUs) to grow asynchronous ground control and spaceflight cultures of S. aureus for 48 h. RNAIII, the effector of the Accessory Gene Regulator (Agr) quorum sensing system, was the most highly upregulated gene transcript in spaceflight relative to ground controls. The agr operon gene transcripts were also highly upregulated during spaceflight, followed by genes encoding phenol-soluble modulins and secreted proteases, which are positively regulated by Agr. Upregulated spaceflight genes/proteins also had functions related to urease activity, type VII-like Ess secretion, and copper transport. We also performed secretome analysis of BRIC-23 culture supernatants, which revealed that spaceflight samples had increased abundance of secreted virulence factors, including Agr-regulated proteases (SspA, SspB), staphylococcal nuclease (Nuc), and EsxA (secreted by the Ess system). These data also indicated that S. aureus metabolism is altered in spaceflight conditions relative to the ground controls. Collectively, these data suggest that S. aureus experiences increased quorum sensing and altered expression of virulence factors in response to the spaceflight environment that may impact its pathogenic potential.
Collapse
Affiliation(s)
- Matthew R Hauserman
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL, USA
| | - Mariola J Ferraro
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL, USA
| | - Ronan K Carroll
- Department of Biological Sciences, Ohio University, Athens, OH, USA
| | - Kelly C Rice
- Department of Microbiology and Cell Science, IFAS, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
27
|
Beetham CM, Schuster CF, Kviatkovski I, Santiago M, Walker S, Gründling A. Histidine transport is essential for the growth of Staphylococcus aureus at low pH. PLoS Pathog 2024; 20:e1011927. [PMID: 38227607 PMCID: PMC10817146 DOI: 10.1371/journal.ppat.1011927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/26/2024] [Accepted: 12/28/2023] [Indexed: 01/18/2024] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen capable of causing many different human diseases. During colonization and infection, S. aureus will encounter a range of hostile environments, including acidic conditions such as those found on the skin and within macrophages. However, little is known about the mechanisms that S. aureus uses to detect and respond to low pH. Here, we employed a transposon sequencing approach to determine on a genome-wide level the genes required or detrimental for growth at low pH. We identified 31 genes that were essential for the growth of S. aureus at pH 4.5 and confirmed the importance of many of them through follow up experiments using mutant strains inactivated for individual genes. Most of the genes identified code for proteins with functions in cell wall assembly and maintenance. These data suggest that the cell wall has a more important role than previously appreciated in promoting bacterial survival when under acid stress. We also identified several novel processes previously not linked to the acid stress response in S. aureus. These include aerobic respiration and histidine transport, the latter by showing that one of the most important genes, SAUSA300_0846, codes for a previously uncharacterized histidine transporter. We further show that under acid stress, the expression of the histidine transporter gene is increased in WT S. aureus. In a S. aureus SAUSA300_0846 mutant strain expression of the histidine biosynthesis genes is induced under acid stress conditions allowing the bacteria to maintain cytosolic histidine levels. This strain is, however, unable to maintain its cytosolic pH to the same extent as a WT strain, revealing an important function specifically for histidine transport in the acid stress response of S. aureus.
Collapse
Affiliation(s)
- Catrin M. Beetham
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Christopher F. Schuster
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Igor Kviatkovski
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Marina Santiago
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Angelika Gründling
- Section of Molecular Microbiology and Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
28
|
Mazzei L, Paul A, Cianci M, Devodier M, Mandelli D, Carloni P, Ciurli S. Kinetic and structural details of urease inactivation by thiuram disulphides. J Inorg Biochem 2024; 250:112398. [PMID: 37879152 DOI: 10.1016/j.jinorgbio.2023.112398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023]
Abstract
This paper reports on the molecular details of the reactivity of urease, a nickel-dependent enzyme that catalyses the last step of organic nitrogen mineralization, with thiuram disulphides, a class of molecules known to inactivate the enzyme with high efficacy but for which the mechanism of action had not been yet established. IC50 values of tetramethylthiuram disulphide (TMTD or Thiram) and tetraethylthiuram disulphide (TETD or Disulfiram) in the low micromolar range were determined for plant and bacterial ureases. The X-ray crystal structure of Sporosarcina pasteurii urease inactivated by Thiram, determined at 1.68 Å resolution, revealed the presence of a covalent modification of the catalytically essential cysteine residue. This is located on the flexible flap that modulates the size of the active site channel and cavity. Formation of a Cys-S-S-C(S)-N(CH3)2 functionality responsible for enzyme inactivation was observed. Quantum-mechanical calculations carried out to rationalise the large reactivity of the active site cysteine support the view that a conserved histidine residue, adjacent to the cysteine in the active site flap, modulates the charge and electron density along the thiol SH bond by shifting electrons towards the sulphur atom and rendering the thiol proton more reactive. We speculate that this proton could be transferred to the nickel-coordinated urea amide group to yield a molecule of ammonia from the generated Curea-NH3+ functionality during catalysis.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Viale Giuseppe Fanin 40, Bologna I-40127, Italy.
| | - Arundhati Paul
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Viale Giuseppe Fanin 40, Bologna I-40127, Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche 10, Ancona I-60131, Italy
| | - Marta Devodier
- Computational Biomedicine, Institute of Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich D-52428, Germany; Università degli Studi di Parma, Via Università 12, Parma I-43121, Italy
| | - Davide Mandelli
- Computational Biomedicine, Institute of Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich D-52428, Germany
| | - Paolo Carloni
- Computational Biomedicine, Institute of Advanced Simulations IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Jülich D-52428, Germany; Department of Physics and Universitätsklinikum, RWTH Aachen University, Aachen D-52074, Germany
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Viale Giuseppe Fanin 40, Bologna I-40127, Italy
| |
Collapse
|
29
|
Skaar EP. Biogeography of the genus Staphylococci on human skin. Proc Natl Acad Sci U S A 2023; 120:e2318509120. [PMID: 38019842 PMCID: PMC10722967 DOI: 10.1073/pnas.2318509120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Affiliation(s)
- Eric P. Skaar
- Division of Molecular Pathogenesis, Department of Pathology, Microbiology, and Immunology, Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN37232
| |
Collapse
|
30
|
Gao P, Wei Y, Hou S, Lai PM, Liu H, Tai SSC, Tang VYM, Prakash PH, Sze KH, Chen JHK, Sun H, Li X, Kao RYT. SaeR as a novel target for antivirulence therapy against Staphylococcus aureus. Emerg Microbes Infect 2023; 12:2254415. [PMID: 37671453 PMCID: PMC10494732 DOI: 10.1080/22221751.2023.2254415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Staphylococcus aureus is a major human pathogen responsible for a wide range of clinical infections. SaeRS is one of the two-component systems in S. aureus that modulate multiple virulence factors. Although SaeR is required for S. aureus to develop an infection, inhibitors have not been reported. Using an in vivo knockdown method, we demonstrated that SaeR is targetable for the discovery of antivirulence agent. HR3744 was discovered through a high-throughput screening utilizing a GFP-Lux dual reporter system driven by saeP1 promoter. The antivirulence efficacy of HR3744 was tested using Western blot, Quantitative Polymerase Chain Reaction, leucotoxicity, and haemolysis tests. In electrophoresis mobility shift assay, HR3744 inhibited SaeR-DNA probe binding. WaterLOGSY-NMR test showed HR3744 directly interacted with SaeR's DNA-binding domain. When SaeR was deleted, HR3744 lost its antivirulence property, validating the target specificity. Virtual docking and mutagenesis were used to confirm the target's specificity. When Glu159 was changed to Asn, the bacteria developed resistance to HR3744. A structure-activity relationship study revealed that a molecule with a slight modification did not inhibit SaeR, indicating the selectivity of HR3744. Interestingly, we found that SAV13, an analogue of HR3744, was four times more potent than HR3744 and demonstrated identical antivirulence properties and target specificity. In a mouse bacteraemia model, both HR3744 and SAV13 exhibited in vivo effectiveness. Collectively, we identified the first SaeR inhibitor, which exhibited in vitro and in vivo antivirulence properties, and proved that SaeR could be a novel target for developing antivirulence drugs against S. aureus infections.
Collapse
Affiliation(s)
- Peng Gao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yuanxin Wei
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Suying Hou
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Pok-Man Lai
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Han Liu
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Sherlock Shing Chiu Tai
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Victor Yat Man Tang
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Pradeep Halebeedu Prakash
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Kong-Hung Sze
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jonathan Hon Kwan Chen
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Hongzhe Sun
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Xuechen Li
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Richard Yi-Tsun Kao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| |
Collapse
|
31
|
Joglekar P, Conlan S, Lee-Lin SQ, Deming C, Kashaf SS, Kong HH, Segre JA. Integrated genomic and functional analyses of human skin-associated Staphylococcus reveal extensive inter- and intra-species diversity. Proc Natl Acad Sci U S A 2023; 120:e2310585120. [PMID: 37956283 PMCID: PMC10666031 DOI: 10.1073/pnas.2310585120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/11/2023] [Indexed: 11/15/2023] Open
Abstract
Human skin is stably colonized by a distinct microbiota that functions together with epidermal cells to maintain a protective physical barrier. Staphylococcus, a prominent genus of the skin microbiota, participates in colonization resistance, tissue repair, and host immune regulation in strain-specific manners. To unlock the potential of engineering skin microbial communities, we aim to characterize the diversity of this genus within the context of the skin environment. We reanalyzed an extant 16S rRNA amplicon dataset obtained from distinct body sites of healthy volunteers, providing a detailed biogeographic depiction of staphylococcal species that colonize our skin. S. epidermidis, S. capitis, and S. hominis were the most abundant staphylococcal species present in all volunteers and were detected at all body sites. Pan-genome analysis of isolates from these three species revealed that the genus-core was dominated by central metabolism genes. Species-restricted-core genes encoded known host colonization functions. The majority (~68%) of genes were detected only in a fraction of isolate genomes, underscoring the immense strain-specific gene diversity. Conspecific genomes grouped into phylogenetic clades, exhibiting body site preference. Each clade was enriched for distinct gene sets that are potentially involved in site tropism. Finally, we conducted gene expression studies of select isolates showing variable growth phenotypes in skin-like medium. In vitro expression revealed extensive intra- and inter-species gene expression variation, substantially expanding the functional diversification within each species. Our study provides an important resource for future ecological and translational studies to examine the role of shared and strain-specific staphylococcal genes within the skin environment.
Collapse
Affiliation(s)
- Payal Joglekar
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Sean Conlan
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Shih-Queen Lee-Lin
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Clay Deming
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | - Sara Saheb Kashaf
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| | | | - Heidi H. Kong
- Cutaneous Microbiome and Inflammation Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD20892
| | - Julia A. Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD20892
| |
Collapse
|
32
|
Subramaniyan Y, Khan A, Fathima F, Rekha PD. Differential expression of urease genes and ureolytic activity of uropathogenic Escherichia coli and Pseudomonas aeruginosa isolates in different nutritional conditions. Arch Microbiol 2023; 205:383. [PMID: 37973630 DOI: 10.1007/s00203-023-03722-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Uropathogens have adaptation strategies to survive in the host urinary tract by efficiently utilizing and tolerating the urinary metabolites. Many uropathogens harbour the enzyme urease for the breakdown of urea and the enzymatic breakdown of urea increases the pH and facilitate the struvite crystallization. In this study, the differential urease activity of uropathogenic Escherichia coli and Pseudomonas aeruginosa strains was investigated under different nutritional conditions. The experiments included measurement of growth, pH, urease activity, NH4-N generation and urease gene (ureC) expression among the bacterial strains under different conditions. Further, the implications of urea breakdown on the struvite crystallization in vitro and biofilm formation were also assessed. The study included urease positive isolates and for comparison urease negative isolates were included. Compared to the urease negative strains the urease positive strains formed higher biofilms and motility. The urease positive P. aeruginosa showed significantly higher (p < 0.01) pH and urease activity (A557-A630) compared to E. coli under experimental conditions. Further, supplementation of glucose to the growth media significantly increased the urease activity in P. aeruginosa and in contrast, it was significantly lower in E. coli. The expression profile of urease gene (ureC) was significantly higher (p < 0.001) in P. aeruginosa compared to E. coli and was consistent with the biochemical results of the urease activity under the nutritional conditions. The differential urease activity under two nutritional conditions influenced the biogenic struvite crystallization. It correlated with the urease activity showing higher crystallization rate in P. aeruginosa compared to E. coli. The results highlight the differential urease activity in two common uropathogens under different nutritional conditions that may have significant role on the regulation of virulence, pathogenicity and in the kidney stone disease.
Collapse
Affiliation(s)
- Yuvarajan Subramaniyan
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Altaf Khan
- Department of Urology, Yenepoya Medical College and Hospital, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Fida Fathima
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India
| | - Punchappady Devasya Rekha
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), University Road, Deralakatte, Mangalore, 575018, India.
| |
Collapse
|
33
|
Yurchenko AN, Nesterenko LE, Popov RS, Kirichuk NN, Chausova VE, Chingizova EA, Isaeva MP, Yurchenko EA. The Metabolite Profiling of Aspergillus fumigatus KMM4631 and Its Co-Cultures with Other Marine Fungi. Metabolites 2023; 13:1138. [PMID: 37999234 PMCID: PMC10673247 DOI: 10.3390/metabo13111138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
An Aspergillus fumigatus KMM 4631 strain was previously isolated from a Pacific soft coral Sinularia sp. sample and was found to be a source of a number of bioactive secondary metabolites. The aims of this work are the confirmation of this strain' identification based on ITS, BenA, CaM, and RPB2 regions/gene sequences and the investigation of secondary metabolite profiles of Aspergillus fumigatus KMM 4631 culture and its co-cultures with Penicillium hispanicum KMM 4689, Amphichorda sp. KMM 4639, Penicillium sp. KMM 4672, and Asteromyces cruciatus KMM 4696 from the Collection of Marine Microorganisms (PIBOC FEB RAS, Vladivostok, Russia). Moreover, the DPPH-radical scavenging activity, urease inhibition, and cytotoxicity of joint fungal cultures' extracts on HepG2 cells were tested. The detailed UPLC MS qTOF investigation resulted in the identification and annotation of indolediketopiperazine, quinazoline, and tryptoquivaline-related alkaloids as well as a number of polyketides (totally 20 compounds) in the extract of Aspergillus fumigatus KMM 4631. The metabolite profiles of the co-cultures of A. fumigatus with Penicillium hispanicum, Penicillium sp., and Amphichorda sp. were similar to those of Penicillium hispanicum, Penicillium sp., and Amphichorda sp. monocultures. The metabolite profile of the co-culture of A. fumigatus with Asteromyces cruciatus differed from that of each monoculture and may be more promising for the isolation of new compounds.
Collapse
Affiliation(s)
- Anton N. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (L.E.N.); (R.S.P.); (N.N.K.); (V.E.C.); (E.A.C.); (M.P.I.)
| | | | | | | | | | | | | | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (L.E.N.); (R.S.P.); (N.N.K.); (V.E.C.); (E.A.C.); (M.P.I.)
| |
Collapse
|
34
|
Loi VV, Busche T, Kuropka B, Müller S, Methling K, Lalk M, Kalinowski J, Antelmann H. Staphylococcus aureus adapts to the immunometabolite itaconic acid by inducing acid and oxidative stress responses including S-bacillithiolations and S-itaconations. Free Radic Biol Med 2023; 208:859-876. [PMID: 37793500 DOI: 10.1016/j.freeradbiomed.2023.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Staphylococcus aureus is a major pathogen, which has to defend against reactive oxygen and electrophilic species encountered during infections. Activated macrophages produce the immunometabolite itaconate as potent electrophile and antimicrobial upon pathogen infection. In this work, we used transcriptomics, metabolomics and shotgun redox proteomics to investigate the specific stress responses, metabolic changes and redox modifications caused by sublethal concentrations of itaconic acid in S. aureus. In the RNA-seq transcriptome, itaconic acid caused the induction of the GlnR, KdpDE, CidR, SigB, GraRS, PerR, CtsR and HrcA regulons and the urease-encoding operon, revealing an acid and oxidative stress response and impaired proteostasis. Neutralization using external urea as ammonium source improved the growth and decreased the expression of the glutamine synthetase-controlling GlnR regulon, indicating that S. aureus experienced ammonium starvation upon itaconic acid stress. In the extracellular metabolome, the amounts of acetate and formate were decreased, while secretion of pyruvate and the neutral product acetoin were strongly enhanced to avoid intracellular acidification. Exposure to itaconic acid affected the amino acid uptake and metabolism as revealed by the strong intracellular accumulation of lysine, threonine, histidine, aspartate, alanine, valine, leucine, isoleucine, cysteine and methionine. In the proteome, itaconic acid caused widespread S-bacillithiolation and S-itaconation of redox-sensitive antioxidant and metabolic enzymes, ribosomal proteins and translation factors in S. aureus, supporting its oxidative and electrophilic mode of action in S. aureus. In phenotype analyses, the catalase KatA, the low molecular weight thiol bacillithiol and the urease provided protection against itaconic acid-induced oxidative and acid stress in S. aureus. Altogether, our results revealed that under physiological infection conditions, such as in the acidic phagolysome, itaconic acid is a highly effective antimicrobial against multi-resistant S. aureus isolates, which acts as weak acid causing an acid, oxidative and electrophilic stress response, leading to S-bacillithiolation and itaconation.
Collapse
Affiliation(s)
- Vu Van Loi
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, D-33615, Bielefeld, Germany
| | - Benno Kuropka
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, D-14195, Berlin, Germany
| | - Susanne Müller
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany
| | - Karen Methling
- Department of Cellular Biochemistry and Metabolomics, University of Greifswald, 17487, Greifswald, Germany
| | - Michael Lalk
- Department of Cellular Biochemistry and Metabolomics, University of Greifswald, 17487, Greifswald, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, D-33615, Bielefeld, Germany
| | - Haike Antelmann
- Freie Universität Berlin, Institute of Biology-Microbiology, D-14195, Berlin, Germany.
| |
Collapse
|
35
|
Jin M, Zhu S, Tang Y, Kong X, Wang X, Li Y, Jiang S, Wei L, Hu C, Wang B, Song W. Ayanin, a natural flavonoid inhibitor of Caseinolytic protease, is a promising therapeutic agent to combat methicillin-resistant Staphylococcus aureus infections. Biochem Pharmacol 2023; 217:115814. [PMID: 37769713 DOI: 10.1016/j.bcp.2023.115814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/03/2023]
Abstract
Antimicrobial resistance (AMR) is a global health threat. The dramatic increase of Methicillin-resistant Staphylococcus aureus (MRSA) infections emphasizes the need to find new anti-infective agents with a novel mode of action. The Caseinolytic protease (ClpP) is a central virulence factor in stress survival, virulence, and antibiotic resistance of MRSA. Here, we found ayanin, a flavonoid isolated from Callicarpa nudiflora, was an inhibitor of MRSA ClpP with an IC50 of 19.63 μM. Using quantitative real-time PCR, ayanin reduced the virulence of Staphylococcus aureus (S. aureus) by down-regulating the level of some important virulence factors, including agrA, RNAⅢ, hla, pvl, psmα and spa. The results of cellular thermal shift assay and thermal shift assay revealed a binding between ayanin and ClpP. Molecular docking showed that ASP-168, ASN-173 and ARG-171 were the potential binding sites for ClpP binding to ayanin. ClpP mutagenesis study further indicated that ARG-171 and ASN-173 were the main active sites of ClpP. The affinity constant (KD) value of ayanin with ClpP was 3.15 × 10-5 M measured by surface plasmon resonance. In addition, ayanin exhibited a significant therapeutic effect on pneumonia infection induced by S. aureus in mice in vivo, especially in combination with vancomycin. This is the first report of ayanin with in vivo and in vitro efficacy against S. aureus infection. In conclusion, ayanin is a promising therapeutic agent to combat MRSA infections by targeting ClpP.
Collapse
Affiliation(s)
- Mengli Jin
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shuyue Zhu
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yating Tang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xiangri Kong
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Xingye Wang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yufen Li
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Shuang Jiang
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Lin Wei
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Chunjie Hu
- Changchun University of Chinese Medicine, Changchun 130117, China; Proctology Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, China.
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
36
|
Gehrke AKE, Giai C, Gómez MI. Staphylococcus aureus Adaptation to the Skin in Health and Persistent/Recurrent Infections. Antibiotics (Basel) 2023; 12:1520. [PMID: 37887220 PMCID: PMC10604630 DOI: 10.3390/antibiotics12101520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/28/2023] Open
Abstract
Staphylococcus aureus is a microorganism with an incredible capability to adapt to different niches within the human body. Approximately between 20 and 30% of the population is permanently but asymptomatically colonized with S. aureus in the nose, and another 30% may carry S. aureus intermittently. It has been established that nasal colonization is a risk factor for infection in other body sites, including mild to severe skin and soft tissue infections. The skin has distinct features that make it a hostile niche for many bacteria, therefore acting as a strong barrier against invading microorganisms. Healthy skin is desiccated; it has a low pH at the surface; the upper layer is constantly shed to remove attached bacteria; and several host antimicrobial peptides are produced. However, S. aureus is able to overcome these defenses and colonize this microenvironment. Moreover, this bacterium can very efficiently adapt to the stressors present in the skin under pathological conditions, as it occurs in patients with atopic dermatitis or suffering chronic wounds associated with diabetes. The focus of this manuscript is to revise the current knowledge concerning how S. aureus adapts to such diverse skin conditions causing persistent and recurrent infections.
Collapse
Affiliation(s)
- Ana-Katharina E. Gehrke
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Departamento de Investigaciones Biomédicas y Biotecnológicas, Universidad Maimónides, Buenos Aires C1405BCK, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
| | - Constanza Giai
- Instituto de Histología y Embriología de Mendoza, Universidad Nacional de Cuyo—(UNCuyo) CONICET, Mendoza M5502JMA, Argentina;
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza M5502JMA, Argentina
- Facultad de Farmacia y Bioquímica, Universidad Juan Agustín Maza, Mendoza C1006ACC, Argentina
| | - Marisa I. Gómez
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Departamento de Investigaciones Biomédicas y Biotecnológicas, Universidad Maimónides, Buenos Aires C1405BCK, Argentina;
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425FQB, Argentina
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1121A6B, Argentina
| |
Collapse
|
37
|
Vaskevicius L, Malunavicius V, Jankunec M, Lastauskiene E, Talaikis M, Mikoliunaite L, Maneikis A, Gudiukaite R. Insights in MICP dynamics in urease-positive Staphylococcus sp. H6 and Sporosarcina pasteurii bacterium. ENVIRONMENTAL RESEARCH 2023; 234:116588. [PMID: 37423368 DOI: 10.1016/j.envres.2023.116588] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Microbially induced calcite precipitation (MICP) is an efficient and eco-friendly technique that has attracted significant interest for resolving various problems in the soil (erosion, improving structural integrity and water retention, etc.), remediation of heavy metals, production of self-healing concrete or restoration of different concrete structures. The success of most common MICP methods depends on microorganisms degrading urea which leads to the formation of CaCO3 crystals. While Sporosarcina pasteurii is a well-known microorganism for MICP, other soil abundant microorganisms, such as Staphylococcus bacteria have not been thoroughly studied for its efficiency in bioconsolidation though MICP is a very important proccess which can ensure soil quality and health. This study aimed to analyze MICP process at the surface level in Sporosarcina pasteurii and a newly screened Staphylococcus sp. H6 bacterium as well as show the possibility of this new microorganism to perform MICP. It was observed that Staphylococcus sp. H6 culture precipitated 157.35 ± 3.3 mM of Ca2+ ions from 200 mM, compared to 176 ± 4.8 mM precipitated by S. pasteurii. The bioconsolidation of sand particles was confirmed by Raman spectroscopy and XRD analysis, which indicated the formation of CaCO3 crystals for both Staphylococcus sp. H6 and S. pasteurii cells. The water-flow test suggested a significant reduction in water permeability in bioconsolidated sand samples for both Staphylococcus sp. H6 and S. pasteurii. Notably, this study provides the first evidence that CaCO3 precipitation occurs on the surface of Staphylococcus and S. pasteurii cells within the initial 15-30 min after exposure to the biocementation solution. Furthermore, Atomic force microscopy (AFM) indicated rapid changes in cell roughness, with bacterial cells becoming completely coated with CaCO3 crystals after 90 min incubation with a biocementation solution. To our knowledge, this is the first time where atomic force microscopy was used to visualize the dynamic of MICP on cell surface.
Collapse
Affiliation(s)
- Laurynas Vaskevicius
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania
| | - Vilius Malunavicius
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania
| | - Marija Jankunec
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania
| | - Egle Lastauskiene
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania
| | - Martynas Talaikis
- Institute of Biochemistry, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania
| | - Lina Mikoliunaite
- Department of Physical Chemistry, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko St. 24, LT-03225, Vilnius, Lithuania; Laboratory of Spectroelectrochemistry, Department of Organic Chemistry, Center for Physical Sciences and Technology, Sauletekis Av. 3, LT-10257, Vilnius, Lithuania
| | - Andrius Maneikis
- Vilnius Gediminas Technical University, Sauletekis Av. 11, LT-10223, Vilnius, Lithuania
| | - Renata Gudiukaite
- Department of Microbiology and Biotechnology, Institute of Biosciences, Life Sciences Center, Vilnius University, Sauletekis Av. 7, LT-10257, Vilnius, Lithuania.
| |
Collapse
|
38
|
Sapkota A, Mondal A, Chug MK, Brisbois EJ. Biomimetic catheter surface with dual action NO-releasing and generating properties for enhanced antimicrobial efficacy. J Biomed Mater Res A 2023; 111:1627-1641. [PMID: 37209058 PMCID: PMC10524361 DOI: 10.1002/jbm.a.37560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/22/2023]
Abstract
Infection of indwelling catheters is a common healthcare problem, resulting in higher morbidity and mortality. The vulnerable population reliant on catheters post-surgery for food and fluid intake, blood transfusion, or urinary incontinence or retention is susceptible to hospital-acquired infection originating from the very catheter. Bacterial adhesion on catheters can take place during the insertion or over time when catheters are used for an extended period. Nitric oxide-releasing materials have shown promise in exhibiting antibacterial properties without the risk of antibacterial resistance which can be an issue with conventional antibiotics. In this study, 1, 5, and 10 wt % selenium (Se) and 10 wt % S-nitrosoglutathione (GSNO)-incorporated catheters were prepared through a layer-by-layer dip-coating method to demonstrate NO-releasing and NO-generating capability of the catheters. The presence of Se on the catheter interface resulted in a 5 times higher NO flux in 10% Se-GSNO catheter through catalytic NO generation. A physiological level of NO release was observed from 10% Se-GSNO catheters for 5 d, along with an enhanced NO generation via the catalytic activity as Se was able to increase NO availability. The catheters were also found to be compatible and stable when subjected to sterilization and storage, even at room temperature. Additionally, the catheters showed a 97.02% and 93.24% reduction in the adhesion of clinically relevant strains of Escherichia coli and Staphylococcus aureus, respectively. Cytocompatibility testing of the catheter with 3T3 mouse fibroblast cells supports the material's biocompatibility. These findings from the study establish the proposed catheter as a prospective antibacterial material that can be translated into a clinical setting to combat catheter-related infections.
Collapse
Affiliation(s)
- Aasma Sapkota
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Arnab Mondal
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Manjyot Kaur Chug
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| | - Elizabeth J. Brisbois
- School of Chemical, Materials & Biomedical Engineering, University of Georgia, Athens 30602, United States
| |
Collapse
|
39
|
Zhuravleva OI, Chingizova EA, Oleinikova GK, Starnovskaya SS, Antonov AS, Kirichuk NN, Menshov AS, Popov RS, Kim NY, Berdyshev DV, Chingizov AR, Kuzmich AS, Guzhova IV, Yurchenko AN, Yurchenko EA. Anthraquinone Derivatives and Other Aromatic Compounds from Marine Fungus Asteromyces cruciatus KMM 4696 and Their Effects against Staphylococcus aureus. Mar Drugs 2023; 21:431. [PMID: 37623712 PMCID: PMC10455474 DOI: 10.3390/md21080431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
New anthraquinone derivatives acruciquinones A-C (1-3), together with ten known metabolites, were isolated from the obligate marine fungus Asteromyces cruciatus KMM 4696. Acruciquinone C is the first member of anthraquinone derivatives with a 6/6/5 backbone. The structures of isolated compounds were established based on NMR and MS data. The absolute stereoconfigurations of new acruciquinones A-C were determined using ECD and quantum chemical calculations (TDDFT approach). A plausible biosynthetic pathway of the novel acruciquinone C was proposed. Compounds 1-4 and 6-13 showed a significant antimicrobial effects against Staphylococcus aureus growth, and acruciquinone A (1), dendryol B (4), coniothyrinone B (7), and ω-hydroxypachybasin (9) reduced the activity of a key staphylococcal enzyme, sortase A. Moreover, the compounds, excluding 4, inhibited urease activity. We studied the effects of anthraquinones 1, 4, 7, and 9 and coniothyrinone D (6) in an in vitro model of skin infection when HaCaT keratinocytes were cocultivated with S. aureus. Anthraquinones significantly reduce the negative impact of S. aureus on the viability, migration, and proliferation of infected HaCaT keratinocytes, and acruciquinone A (1) revealed the most pronounced effect.
Collapse
Affiliation(s)
- Olesya I. Zhuravleva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok 690922, Russia
| | - Ekaterina A. Chingizova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Galina K. Oleinikova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Sofya S. Starnovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Alexandr S. Antonov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Natalia N. Kirichuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Alexander S. Menshov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Roman S. Popov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Natalya Yu. Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Dmitrii V. Berdyshev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Artur R. Chingizov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Alexandra S. Kuzmich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Irina V. Guzhova
- Institute of Cytology Russian Academy of Sciences, Tikhoretskiy Ave. 4, St. Petersburg 194064, Russia;
| | - Anton N. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| | - Ekaterina A. Yurchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, Prospect 100-Letiya Vladivostoka, 159, Vladivostok 690022, Russia; (O.I.Z.); (E.A.C.)
| |
Collapse
|
40
|
Joglekar P, Conlan S, Lee-Lin SQ, Deming C, Kashaf SS, Kong HH, Segre JA. Integrated genomic and functional analyses of human skin-associated Staphylococcus reveals extensive inter- and intra-species diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.22.546190. [PMID: 37503282 PMCID: PMC10370188 DOI: 10.1101/2023.06.22.546190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Human skin is stably colonized by a distinct microbiota that functions together with epidermal cells to maintain a protective physical barrier. Staphylococcus, a prominent genus of the skin microbiota, participates in colonization resistance, tissue repair, and host immune regulation in strain specific manners. To unlock the potential of engineering skin microbial communities, we aim to fully characterize the functional diversity of this genus within the context of the skin environment. We conducted metagenome and pan-genome analyses of isolates obtained from distinct body sites of healthy volunteers, providing a detailed biogeographic depiction of staphylococcal species that colonize our skin. S. epidermidis, S. capitis, and S. hominis were the most abundant species present in all volunteers and were detected at all body sites. Pan-genome analysis of these three species revealed that the genus-core was dominated by central metabolism genes. Species-specific core genes were enriched in host colonization functions. The majority (~68%) of genes were detected only in a fraction of isolate genomes, underscoring the immense strain-specific gene diversity. Conspecific genomes grouped into phylogenetic clades, exhibiting body site preference. Each clade was enriched for distinct gene-sets that are potentially involved in site tropism. Finally, we conducted gene expression studies of select isolates showing variable growth phenotypes in skin-like medium. In vitro expression revealed extensive intra- and inter-species gene expression variation, substantially expanding the functional diversification within each species. Our study provides an important resource for future ecological and translational studies to examine the role of shared and strain-specific staphylococcal genes within the skin environment.
Collapse
Affiliation(s)
- Payal Joglekar
- Microbial Genomics Section, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, Maryland, USA
| | - Sean Conlan
- Microbial Genomics Section, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, Maryland, USA
| | - Shih-Queen Lee-Lin
- Microbial Genomics Section, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, Maryland, USA
| | - Clay Deming
- Microbial Genomics Section, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, Maryland, USA
| | - Sara Saheb Kashaf
- Microbial Genomics Section, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, Maryland, USA
| | | | - Heidi H. Kong
- Cutaneous Microbiome and Inflammation Section, NIAMS, NIH, Bethesda, Maryland, USA
| | - Julia A. Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, NHGRI, NIH, Bethesda, Maryland, USA
| |
Collapse
|
41
|
Xiong Z, Zhang N, Xu L, Deng Z, Limwachiranon J, Guo Y, Han Y, Yang W, Scharf DH. Urease of Aspergillus fumigatus Is Required for Survival in Macrophages and Virulence. Microbiol Spectr 2023; 11:e0350822. [PMID: 36916906 PMCID: PMC10100864 DOI: 10.1128/spectrum.03508-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/09/2023] [Indexed: 03/16/2023] Open
Abstract
The number of patients suffering from fungal diseases has constantly increased during the last decade. Among the fungal pathogens, the airborne filamentous fungus Aspergillus fumigatus can cause chronic and fatal invasive mold infections. So far, only three major classes of drugs (polyenes, azoles, and echinocandins) are available for the treatment of life-threatening fungal infections, and all present pharmacological drawbacks (e.g., low solubility or toxicity). Meanwhile, clinical antifungal-resistant isolates are continuously emerging. Therefore, there is a high demand for novel antifungal drugs, preferentially those that act on new targets. We studied urease and the accessory proteins in A. fumigatus to determine their biochemical roles and their influence on virulence. Urease is crucial for the growth on urea as the sole nitrogen source, and the transcript and protein levels are elevated on urea media. The urease deficient mutant displays attenuated virulence, and its spores are more susceptible to macrophage-mediated killing. We demonstrated that this observation is associated with an inability to prevent the acidification of the phagosome. Furthermore, we could show that a nickel-chelator inhibits growth on urea. The nickel chelator is also able to reverse the effects of urease on macrophage killing and phagosome acidification, thereby reducing virulence in systemic and trachea infection models. IMPORTANCE The development of antifungal drugs is an urgent task, but it has proven to be difficult due to many similarities between fungal and animal cells. Here, we characterized the urease system in A. fumigatus, which depends on nickel for activity. Notably, nickel is not a crucial element for humans. Therefore, we went further to explore the role of nickel-dependent urease in host-pathogen interactions. We were able to show that urease is important in preventing the acidification of the phagosome and therefore reduces the killing of conidia by macrophages. Furthermore, the deletion of urease shows reduced virulence in murine infection models. Taken together, we identified urease as an essential virulence factor of A. fumigatus. We were able to show that the application of the nickel-chelator dimethylglyoxime is effective in both in vitro and in vivo infection models. This suggests that nickel chelators or urease inhibitors are potential candidates for the development of novel antifungal drugs.
Collapse
Affiliation(s)
- Zhenzhen Xiong
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Zhang
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Liru Xu
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiduo Deng
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Jarukitt Limwachiranon
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaojie Guo
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Han
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Yang
- Department of Biophysics and Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Daniel H. Scharf
- Department of Microbiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
- The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Key Laboratory of Immunity and Inflammatory Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
42
|
Siddiqui H, Atia-Tul-Wahab, Ahmed A, Choudhary MI. Structural and Functional Analysis of Urease Accessory Protein E from Vancomycin-Resistance Staphylococcus aureus MU50 Strain. Protein Pept Lett 2023; 30:754-762. [PMID: 37533244 DOI: 10.2174/0929866530666230801163340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/10/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND An increasing prevalence of biofilm forming strains by vancomycinresistance Staphylococcus aureus (VRSA) is one of the most important causes of antimicrobial resistance. VRSA possesses various regulatory factors to form and sustain biofilm in biotic or abiotic conditions. Among them, ureolytic activity is an important factor in the stabilization of biofilms by neutralizing the acidic environment. Various urease accessory proteins are required to activate the urease enzyme inside the biofilm. OBJECTIVE To optimize the cloning, expression and purification of urease accessory protein E from VRSA for determination of the secondary structure, and functional characterization by using Berthelot's method. METHODS BAB58453.1 gene (which encodes possible urease accessory protein E), having 38% similarity to Bacillus pasteurii UreE protein, was cloned, expressed, and purified by single-step affinity chromatography for performing secondary structural studies using circular dichroism spectroscopy, and functional analysis using Berthelot's and crystal violet assay. RESULTS Structure elucidation using NMR and circular dichroism spectroscopy techniques revealed that UreE protein has a partially foldedα-helical structure. Using Berthelot's method, it was identified that the purified UreE protein has enhanced urease enzyme activity, in comparison to the control. From the results of Berthelot's and crystal violet assays, it was deduced that the selected gene (UreE protein) plays a key role in enhancing urease enzyme activity and contributes to biofilm stability. CONCLUSION Structural studies on VRSA urease accessory proteins could aid in the identification of new drug targets or the development of effective antibiofilm strategies (in combination with other drug targets) against infections caused by biofilm-producing strains.
Collapse
Affiliation(s)
- Humaira Siddiqui
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Atia-Tul-Wahab
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| | - Aftab Ahmed
- School of Pharmacy, Chapman University, Irvine, CA 92618, USA
| | - M Iqbal Choudhary
- H.E.J. Research-Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah-21412, Saudi Arabia
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi-75270, Pakistan
| |
Collapse
|
43
|
Xu K, Wang Y, Jian Y, Chen T, Liu Q, Wang H, Li M, He L. Staphylococcus aureus ST1 promotes persistent urinary tract infection by highly expressing the urease. Front Microbiol 2023; 14:1101754. [PMID: 36910215 PMCID: PMC9992547 DOI: 10.3389/fmicb.2023.1101754] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/24/2023] Open
Abstract
Staphylococcus aureus (SA) is a relatively uncommon cause of urinary tract infections (UTIs) in the general population. Although rare, S. aureus-induced UTIs are prone to potentially life-threatening invasive infections such as bacteremia. To investigate the molecular epidemiology, phenotypic characteristics, and pathophysiology of S. aureus-induced UTIs, we analyzed non-repetitive 4,405 S. aureus isolates collected from various clinical sources from 2008 to 2020 from a general hospital in Shanghai, China. Among these, 193 isolates (4.38%) were cultivated from the midstream urine specimens. Epidemiological analysis showed UTI-derived ST1 (UTI-ST1) and UTI-ST5 are the primary sequence types of UTI-SA. Furthermore, we randomly selected 10 isolates from each of the UTI-ST1, non-UTI-ST1 (nUTI-ST1), and UTI-ST5 groups to characterize their in vitro and in vivo phenotypes. The in vitro phenotypic assays revealed that UTI-ST1 exhibits an obvious decline in hemolysis of human red blood cells and increased biofilm and adhesion in the urea-supplemented medium, compared to the medium without urea, while UTI-ST5 and nUTI-ST1 did not show significant differences between the biofilm-forming and adhesion abilities. In addition, the UTI-ST1 displayed intense urease activities by highly expressing urease genes, indicating the potential role of urease in UTI-ST1 survival and persistence. Furthermore, in vitro virulence assays using the UTI-ST1 ureC mutant showed no significant difference in the hemolytic and biofilm-forming phenotypes in the presence or absence of urea in the tryptic soy broth (TSB) medium. The in vivo UTI model also showed that the CFU of the UTI-ST1 ureC mutant rapidly reduced during UTI pathogenesis 72 h post-infection, while UTI-ST1 and UTI-ST5 persisted in the urine of the infected mice. Furthermore, the phenotypes and the urease expression of UTI-ST1 were found to be potentially regulated by the Agr system with the change in environmental pH. In summary, our results provide important insights into the role of urease in S. aureus-induced UTI pathogenesis in promoting bacterial persistence in the nutrient-limiting urinary microenvironment.
Collapse
Affiliation(s)
- Kai Xu
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Wang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Jian
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianchi Chen
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Liu
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Wang
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Li
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Faculty of Medical Laboratory Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei He
- Department of Laboratory Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
44
|
Mazzei L, Cianci M, Ciurli S. Inhibition of Urease by Hydroquinones: A Structural and Kinetic Study. Chemistry 2022; 28:e202201770. [PMID: 35994380 PMCID: PMC9826003 DOI: 10.1002/chem.202201770] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 01/11/2023]
Abstract
Hydroquinones are a class of organic compounds abundant in nature that result from the full reduction of the corresponding quinones. Quinones are known to efficiently inhibit urease, a NiII -containing enzyme that catalyzes the hydrolysis of urea to yield ammonia and carbonate and acts as a virulence factor of several human pathogens, in addition to decreasing the efficiency of soil organic nitrogen fertilization. Here, we report the molecular characterization of the inhibition of urease from Sporosarcina pasteurii (SPU) and Canavalia ensiformis (jack bean, JBU) by 1,4-hydroquinone (HQ) and its methyl and tert-butyl derivatives. The 1.63-Å resolution X-ray crystal structure of the SPU-HQ complex discloses that HQ covalently binds to the thiol group of αCys322, a key residue located on a mobile protein flap directly involved in the catalytic mechanism. Inhibition kinetic data obtained for the three compounds on JBU reveals the occurrence of an irreversible inactivation process that involves a radical-based autocatalytic mechanism.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT)University of BolognaViale Giuseppe Fanin 4040127BolognaItaly
| | - Michele Cianci
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of MarcheVia Brecce Bianche 1060131AnconaItaly
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry Department of Pharmacy and Biotechnology (FaBiT)University of BolognaViale Giuseppe Fanin 4040127BolognaItaly
| |
Collapse
|
45
|
Chong CE, Bengtsson RJ, Horsburgh MJ. Comparative genomics of Staphylococcus capitis reveals species determinants. Front Microbiol 2022; 13:1005949. [PMID: 36246238 PMCID: PMC9563023 DOI: 10.3389/fmicb.2022.1005949] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/05/2022] [Indexed: 11/27/2022] Open
Abstract
Staphylococcus capitis is primarily described as a human skin commensal but is now emergent as an opportunistic pathogen isolated from the bloodstream and prosthetic joint infections, and neonatal intensive care unit (NICU)-associated sepsis. We used comparative genomic analyses of S. capitis to provide new insights into commensal scalp isolates from varying skin states (healthy, dandruff lesional, and non-lesional), and to expand our current knowledge of the species populations (scalp isolates, n = 59; other skin isolates, n = 7; publicly available isolates, n = 120). A highly recombinogenic population structure was revealed, with genomes including the presence of a range of previously described staphylococcal virulence factors, cell wall-associated proteins, and two-component systems. Genomic differences between the two described S. capitis subspecies were explored, which revealed the determinants associated exclusively with each subspecies. The subspecies ureolyticus was distinguished from subspecies capitis based on the differences in antimicrobial resistance genes, β-lactam resistance genes, and β-class phenol soluble modulins and gene clusters linked to biofilm formation and survival on skin. This study will aid further research into the classification of S. capitis and virulence-linked phylogroups to monitor the spread and evolution of S. capitis.
Collapse
|
46
|
Hinokiflavone Attenuates the Virulence of Methicillin-Resistant Staphylococcus aureus by Targeting Caseinolytic Protease P. Antimicrob Agents Chemother 2022; 66:e0024022. [PMID: 35862746 PMCID: PMC9380526 DOI: 10.1128/aac.00240-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Drug-resistant bacteria was the third leading cause of death worldwide in 2019, which sounds like a cautionary note for global public health. Therefore, developing novel strategies to combat Methicillin-resistant Staphylococcus aureus (MRSA) infections is the need of the hour. Caseinolytic protease P (ClpP) represents pivotal microbial degradation machinery in MRSA involved in bacterial homeostasis and pathogenicity, considered an ideal target for combating S. aureus infections. Herein, we identified a natural compound, hinokiflavone, that inhibited the activity of ClpP of MRSA strain USA300 with an IC50 of 34.36 μg/mL. Further assays showed that hinokiflavone reduced the virulence of S. aureus by inhibiting multiple virulence factors expression. Results obtained from cellular thermal transfer assay (CETSA), thermal shift assay (TSA), local surface plasmon resonance (LSPR) and molecular docking (MD) assay enunciated that hinokiflavone directly bonded to ClpP with confirmed docking sites, including SER-22, LYS-26 and ARG-28. In vivo, the evaluation of anti-infective activity showed that hinokiflavone in combination with vancomycin effectively protected mice from MRSA-induced fatal pneumonia, which was more potent than vancomycin alone. As mentioned above, hinokiflavone, as an inhibitor of ClpP, could be further developed into a promising adjuvant against S. aureus infections.
Collapse
|
47
|
Dysregulation of Cell Envelope Homeostasis in Staphylococcus aureus Exposed to Solvated Lignin. Appl Environ Microbiol 2022; 88:e0054822. [PMID: 35852361 PMCID: PMC9361832 DOI: 10.1128/aem.00548-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Lignin is an aromatic plant cell wall polymer that facilitates water transport through the vasculature of plants and is generated in large quantities as an inexpensive by-product of pulp and paper manufacturing and biorefineries. Although lignin's ability to reduce bacterial growth has been reported previously, its hydrophobicity complicates the ability to examine its biological effects on living cells in aqueous growth media. We recently described the ability to solvate lignin in Good's buffers with neutral pH, a breakthrough that allowed examination of lignin's antimicrobial effects against the human pathogen Staphylococcus aureus. These analyses showed that lignin damages the S. aureus cell membrane, causes increased cell clustering, and inhibits growth synergistically with tunicamycin, a teichoic acid synthesis inhibitor. In the present study, we examined the physiological and transcriptomic responses of S. aureus to lignin. Intriguingly, lignin restored the susceptibility of genetically resistant S. aureus isolates to penicillin and oxacillin, decreased intracellular pH, impaired normal cell division, and rendered cells more resistant to detergent-induced lysis. Additionally, transcriptome sequencing (RNA-Seq) differential expression (DE) analysis of lignin-treated cultures revealed significant gene expression changes (P < 0.05 with 5% false discovery rate [FDR]) related to the cell envelope, cell wall physiology, fatty acid metabolism, and stress resistance. Moreover, a pattern of concurrent up- and downregulation of genes within biochemical pathways involved in transmembrane transport and cell wall physiology was observed, which likely reflects an attempt to tolerate or compensate for lignin-induced damage. Together, these results represent the first comprehensive analysis of lignin's antibacterial activity against S. aureus. IMPORTANCE S. aureus is a leading cause of skin and soft tissue infections. The ability of S. aureus to acquire genetic resistance to antibiotics further compounds its ability to cause life-threatening infections. While the historical response to antibiotic resistance has been to develop new antibiotics, bacterial pathogens are notorious for rapidly acquiring genetic resistance mechanisms. As such, the development of adjuvants represents a viable way of extending the life span of current antibiotics to which pathogens may already be resistant. Here, we describe the phenotypic and transcriptomic response of S. aureus to treatment with lignin. Our results demonstrate that lignin extracted from sugarcane and sorghum bagasse restores S. aureus susceptibility to β-lactams, providing a premise for repurposing these antibiotics in treatment of resistant S. aureus strains, possibly in the form of topical lignin/β-lactam formulations.
Collapse
|
48
|
Zhou S, Rao Y, Li J, Huang Q, Rao X. Staphylococcus aureus small-colony variants: Formation, infection, and treatment. Microbiol Res 2022; 260:127040. [DOI: 10.1016/j.micres.2022.127040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|
49
|
Costa FG, Horswill AR. Overcoming pH defenses on the skin to establish infections. PLoS Pathog 2022; 18:e1010512. [PMID: 35617212 PMCID: PMC9135183 DOI: 10.1371/journal.ppat.1010512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Skin health is influenced by the composition and integrity of the skin barrier. The healthy skin surface is an acidic, hypertonic, proteinaceous, and lipid-rich environment that microorganisms must adapt to for survival, and disruption of this environment can result in dysbiosis and increase risk for infectious diseases. This work provides a brief overview of skin barrier function and skin surface composition from the perspective of how the most common skin pathogen, Staphylococcus aureus, combats acid stress. Advancements in replicating this environment in the laboratory setting for the study of S. aureus pathogenesis on the skin, as well as future directions in this field, are also discussed.
Collapse
Affiliation(s)
- Flavia G. Costa
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- Department of Veterans Affairs, Eastern Colorado Healthcare System, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
50
|
Mechanisms and Implications of Bacterial Invasion across the Human Skin Barrier. Microbiol Spectr 2022; 10:e0274421. [PMID: 35532353 PMCID: PMC9241919 DOI: 10.1128/spectrum.02744-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Atopic dermatitis (AD) is associated with a deficiency of skin lipids, increased populations of Staphylococcus aureus in the microbiome, and structural defects in the stratum corneum (SC), the outermost layer of human skin. However, the pathogenesis of AD is ambiguous, as it is unclear whether observed changes are the result of AD or contribute to the pathogenesis of the disease. Previous studies have shown that S. aureus is capable of permeating across isolated human SC tissue when lipids are depleted to levels consistent with AD conditions. In this study, we expand upon this discovery to determine the mechanisms and implications of bacterial penetration into the SC barrier. Specifically, we establish if bacteria are permeating intercellularly or employing a combination of both inter- and intracellular travel. The mechanical implications of bacterial invasion, lipid depletion, and media immersion are also evaluated using a newly developed, physiologically relevant, temperature-controlled drip chamber. Results reveal for the first time that S. aureus can be internalized by corneocytes, indicating transcellular movement through the tissue during permeation, consistent with previous theoretical models. S. aureus also degrades the mechanical integrity of human SC, particularly when the tissue is partially depleted of lipids. These observed mechanical changes are likely the cause of broken or ruptured tissue seen as exudative lesions in AD flares. This work further highlights the necessity of lipids in skin microbial barrier function. IMPORTANCE Millions of people suffer from the chronic inflammatory skin disease atopic dermatitis (AD), whose symptoms are associated with a deficiency of skin lipids that exhibit antimicrobial functions and increased populations of the opportunistic pathogen Staphylococcus aureus. However, the pathogenesis of AD is ambiguous, and it remains unclear if these observed changes are merely the result of AD or contribute to the pathogenesis of the disease. In this article, we demonstrate the necessity of skin lipids in preventing S. aureus from penetrating the outermost barrier of human skin, thereby causing a degradation in tissue integrity. This bacterial permeation into the viable epidermis could act as an inflammatory trigger of the disease. When coupled with delipidated AD tissue conditions, bacterial permeation can also explain increased tissue fragility, potentially causing lesion formation in AD patients that results in further enhancing bacterial permeability across the stratum corneum and the development of chronic conditions.
Collapse
|