1
|
Pashkov EA, Shikvin DA, Pashkov GA, Nagieva FG, Bogdanova EA, Bykov AS, Pashkov EP, Svitich OA, Zverev VV. Assessment of the preventive effect of knockdown of cellular genes NXF1, PRPS1 PRPS1 and NAA10 in influenza infection in an in vitro model. Vopr Virusol 2025; 70:66-77. [PMID: 40233338 DOI: 10.36233/0507-4088-289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Indexed: 04/17/2025]
Abstract
INTRODUCTION Influenza is an acute respiratory viral infectious disease caused by the influenza viruses. Current preventive and therapeutic approaches are of great anti-epidemic importance, but there are a number of problems, such as the rapid emergence of resistant strains, the lack of cross-immunity and the effectiveness of vaccines. One of the approaches to the development of anti-influenza agents is the use of RNA interference and small interfering RNAs complementary to the mRNA target of viral and cellular genes. Aim ‒ to evaluate the prophylactic anti-influenza effect of siRNAs directed to the cellular genes NXF1, PRPS1 and NAA10 in an in vitro model. MATERIALS AND METHODS Antigenic variants of influenza A virus: A/California/7/09 (H1N1), A/WSN/33 (H1N1) and A/Brisbane/59/07 (H1N1); cell cultures A549 and MDCK. The study was performed using molecular genetic (transfection, NC isolation, RT-PCR-RV) and virological (cell culture infection, titration by visual CPE, viral titer assessment using the Ramakrishnan method) methods. RESULTS It was shown that siRNAs targeting the cellular genes NXF1, PRPS1 and NAA10, when used prophylactically in cell culture at a concentration of 0.25 μg per well, during infection with influenza virus strains A/California/7/09 (H1N1), A/WSN/33 (H1N1) and A/Brisbane/59/07 (H1N1) at a multiplicity of infection of 0.01, reduced viral replication to a level of 220 TCID50 per 1 ml of cell medium, whereas in control untreated cells the viral yield was ~106 TCID50 per 1 ml of medium. CONCLUSIONS Reproduction of influenza A viruses directly depends on the protein products of the NXF1, PRPS1, and NAA10 genes. Reduced expression of these genes disrupts the life cycle and activity of influenza viruses. Such an approach can potentially be studied and used for closely and distantly related representatives of other virus families.
Collapse
Affiliation(s)
- E A Pashkov
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
| | - D A Shikvin
- Moscow State University of Fine Chemical Technologies
| | - G A Pashkov
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
| | - F G Nagieva
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
| | - E A Bogdanova
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
| | - A S Bykov
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
| | - E P Pashkov
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
| | - O A Svitich
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
| | - V V Zverev
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University)
- I.I. Mechnikov Scientific and Research Institute of Vaccines and Sera
| |
Collapse
|
2
|
Theerawatanasirikul S, Lueangaramkul V, Semkum P, Lekcharoensuk P. Antiviral mechanisms of sorafenib against foot-and-mouth disease virus via c-RAF and AKT/PI3K pathways. Vet Res Commun 2024; 48:329-343. [PMID: 37697209 DOI: 10.1007/s11259-023-10211-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
Foot-and-mouth disease virus (FMDV) is a highly contagious pathogen that poses a significant threat to the global livestock industry. However, specific antiviral treatments against FMDV are currently unavailable. This study aimed to evaluate the antiviral activity of anticancer drugs, including kinase and non-kinase inhibitors against FMDV replication in BHK-21 cells. Sorafenib, a multi-kinase inhibitor, demonstrated a significant dose-dependent reduction in FMDV replication. It exhibited a half maximal effective concentration (EC50) value of 2.46 µM at the pre-viral entry stage and 2.03 µM at the post-viral entry stage. Further intracellular assays revealed that sorafenib effectively decreased 3Dpol activity with a half maximal inhibitory concentration (IC50) of 155 nM, while not affecting 3Cpro function. The study indicates that sorafenib influences host protein pathways during FMDV infection, primarily by potentiating the c-RAF canonical pathway and AKT/PI3K pathway. Molecular docking analysis demonstrated specific binding of sorafenib to the active site of FMDV 3Dpol, interacting with crucial catalytic residues, including D245, D338, S298, and N307. Additionally, sorafenib exhibited significant binding affinity to the active site motifs of cellular kinases, namely c-RAF, AKT, and PI3K, which play critical roles in the viral life cycle. The findings suggest that sorafenib holds promise as a therapeutic agent against FMDV infection. Its mechanism of action may involve inhibiting FMDV replication by reducing 3Dpol activity and regulating cellular kinases. This study provides insights for the development of novel therapeutic strategies to combat FMDV infections.
Collapse
Affiliation(s)
- Sirin Theerawatanasirikul
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand.
| | - Varanya Lueangaramkul
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Ploypailin Semkum
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
- Center of Advanced Studies in Agriculture and Food, Kasetsart University, Bangkok, 10900, Thailand
| | - Porntippa Lekcharoensuk
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand.
- Center of Advanced Studies in Agriculture and Food, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
3
|
Hoffmann H, Ebensperger M, Schönsiegel A, Hamza H, Koch-Heier J, Schreiber A, Ludwig S, Schindler M, Planz O. Influenza A virus replication has a stronger dependency on Raf/MEK/ERK signaling pathway activity than SARS-CoV-2. Front Cell Infect Microbiol 2023; 13:1264983. [PMID: 37965261 PMCID: PMC10641236 DOI: 10.3389/fcimb.2023.1264983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
The recent COVID-19 pandemic again highlighted the urgent need for broad-spectrum antivirals, both for therapeutic use in acute viral infection and for pandemic preparedness in general. The targeting of host cell factors hijacked by viruses during their replication cycle presents one possible strategy for development of broad-spectrum antivirals. By inhibiting the Raf/MEK/ERK signaling pathway, a central kinase cascade of eukaryotic cells, which is being exploited by numerous viruses of different virus phyla, the small-molecule MEK inhibitor zapnometinib has the potential to address this need. We here performed a side-by-side comparison of the antiviral efficacy of zapnometinib against IAV and SARS-CoV-2 to determine the concentration leading to 50% of its effect on the virus (EC50) and the concentration leading to 50% reduction of ERK phosphorylation (IC50) in a comparable manner, using the same experimental conditions. Our results show that the EC50 value and IC50 value of zapnometinib are indeed lower for IAV compared to SARS-CoV-2 using one representative strain for each. The results suggest that IAV's replication has a stronger dependency on an active Raf/MEK/ERK pathway and, thus, that IAV is more susceptible to treatment with zapnometinib than SARS-CoV-2. With zapnometinib's favorable outcome in a recent phase II clinical trial in hospitalized COVID-19 patients, the present results are even more promising for an upcoming phase II clinical trial in severe influenza virus infection.
Collapse
Affiliation(s)
- Helen Hoffmann
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls Universitaet Tuebingen, Tuebingen, Germany
- Atriva Therapeutics GmbH, Tuebingen, Germany
| | | | - Annika Schönsiegel
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls Universitaet Tuebingen, Tuebingen, Germany
- Atriva Therapeutics GmbH, Tuebingen, Germany
| | - Hazem Hamza
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls Universitaet Tuebingen, Tuebingen, Germany
- Virology Laboratory, Environmental Research Division, National Research Centre, Giza, Egypt
| | - Julia Koch-Heier
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls Universitaet Tuebingen, Tuebingen, Germany
- Atriva Therapeutics GmbH, Tuebingen, Germany
| | - André Schreiber
- Institute of Virology (IVM), Westfaelische Wilhelms Universitaet, Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology (IVM), Westfaelische Wilhelms Universitaet, Muenster, Muenster, Germany
| | - Michael Schindler
- Department of Molecular Virology, Institute for Medical Virology and Epidemiology of Viral Disease, University Hospital Tuebingen, Tuebingen, Germany
| | - Oliver Planz
- Department of Immunology, Interfaculty Institute for Cell Biology, Eberhard Karls Universitaet Tuebingen, Tuebingen, Germany
| |
Collapse
|
4
|
Kumar N, Taily IM, Singh C, Kumar S, Rajmani RS, Chakraborty D, Sharma A, Singh P, Thakur KG, Varadarajan R, Ringe RP, Banerjee P, Banerjee I. Identification of diphenylurea derivatives as novel endocytosis inhibitors that demonstrate broad-spectrum activity against SARS-CoV-2 and influenza A virus both in vitro and in vivo. PLoS Pathog 2023; 19:e1011358. [PMID: 37126530 PMCID: PMC10174524 DOI: 10.1371/journal.ppat.1011358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/11/2023] [Accepted: 04/12/2023] [Indexed: 05/02/2023] Open
Abstract
Rapid evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) poses enormous challenge in the development of broad-spectrum antivirals that are effective against the existing and emerging viral strains. Virus entry through endocytosis represents an attractive target for drug development, as inhibition of this early infection step should block downstream infection processes, and potentially inhibit viruses sharing the same entry route. In this study, we report the identification of 1,3-diphenylurea (DPU) derivatives (DPUDs) as a new class of endocytosis inhibitors, which broadly restricted entry and replication of several SARS-CoV-2 and IAV strains. Importantly, the DPUDs did not induce any significant cytotoxicity at concentrations effective against the viral infections. Examining the uptake of cargoes specific to different endocytic pathways, we found that DPUDs majorly affected clathrin-mediated endocytosis, which both SARS-CoV-2 and IAV utilize for cellular entry. In the DPUD-treated cells, although virus binding on the cell surface was unaffected, internalization of both the viruses was drastically reduced. Since compounds similar to the DPUDs were previously reported to transport anions including chloride (Cl-) across lipid membrane and since intracellular Cl- concentration plays a critical role in regulating vesicular trafficking, we hypothesized that the observed defect in endocytosis by the DPUDs could be due to altered Cl- gradient across the cell membrane. Using in vitro assays we demonstrated that the DPUDs transported Cl- into the cell and led to intracellular Cl- accumulation, which possibly affected the endocytic machinery by perturbing intracellular Cl- homeostasis. Finally, we tested the DPUDs in mice challenged with IAV and mouse-adapted SARS-CoV-2 (MA 10). Treatment of the infected mice with the DPUDs led to remarkable body weight recovery, improved survival and significantly reduced lung viral load, highlighting their potential for development as broad-spectrum antivirals.
Collapse
Affiliation(s)
- Nirmal Kumar
- Cellular Virology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Mohali, India
| | - Irshad Maajid Taily
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab, India
| | - Charandeep Singh
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, India
| | - Sahil Kumar
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, India
| | - Raju S. Rajmani
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore (IISc), Bengaluru, India
| | - Debajyoti Chakraborty
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore (IISc), Bengaluru, India
| | - Anshul Sharma
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, India
| | - Priyanka Singh
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab, India
| | - Krishan Gopal Thakur
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, India
| | - Raghavan Varadarajan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore (IISc), Bengaluru, India
| | - Rajesh P. Ringe
- Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR-IMTECH), Chandigarh, India
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar (IIT Ropar), Rupnagar, Punjab, India
| | - Indranil Banerjee
- Cellular Virology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali (IISER Mohali), Mohali, India
| |
Collapse
|
5
|
Yang ML, Chen YC, Wang CT, Chong HE, Chung NH, Leu CH, Liu FT, Lai MMC, Ling P, Wu CL, Shiau AL. Upregulation of galectin-3 in influenza A virus infection promotes viral RNA synthesis through its association with viral PA protein. J Biomed Sci 2023; 30:14. [PMID: 36823664 PMCID: PMC9948428 DOI: 10.1186/s12929-023-00901-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/11/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Influenza is one of the most important viral infections globally. Viral RNA-dependent RNA polymerase (RdRp) consists of the PA, PB1, and PB2 subunits, and the amino acid residues of each subunit are highly conserved among influenza A virus (IAV) strains. Due to the high mutation rate and emergence of drug resistance, new antiviral strategies are needed. Host cell factors are involved in the transcription and replication of influenza virus. Here, we investigated the role of galectin-3, a member of the β-galactoside-binding animal lectin family, in the life cycle of IAV infection in vitro and in mice. METHODS We used galectin-3 knockout and wild-type mice and cells to study the intracellular role of galectin-3 in influenza pathogenesis. Body weight and survival time of IAV-infected mice were analyzed, and viral production in mouse macrophages and lung fibroblasts was examined. Overexpression and knockdown of galectin-3 in A549 human lung epithelial cells were exploited to assess viral entry, viral ribonucleoprotein (vRNP) import/export, transcription, replication, virion production, as well as interactions between galectin-3 and viral proteins by immunoblotting, immunofluorescence, co-immunoprecipitation, RT-qPCR, minireplicon, and plaque assays. We also employed recombinant galectin-3 proteins to identify specific step(s) of the viral life cycle that was affected by exogenously added galectin-3 in A549 cells. RESULTS Galectin-3 levels were increased in the bronchoalveolar lavage fluid and lungs of IAV-infected mice. There was a positive correlation between galectin-3 levels and viral loads. Notably, galectin-3 knockout mice were resistant to IAV infection. Knockdown of galectin-3 significantly reduced the production of viral proteins and virions in A549 cells. While intracellular galectin-3 did not affect viral entry, it increased vRNP nuclear import, RdRp activity, and viral transcription and replication, which were associated with the interaction of galectin-3 with viral PA subunit. Galectin-3 enhanced the interaction between viral PA and PB1 proteins. Moreover, exogenously added recombinant galectin-3 proteins also enhanced viral adsorption and promoted IAV infection in A549 cells. CONCLUSION We demonstrate that galectin-3 enhances viral infection through increases in vRNP nuclear import and RdRp activity, thereby facilitating viral transcription and replication. Our findings also identify galectin-3 as a potential therapeutic target for influenza.
Collapse
Affiliation(s)
- Mei-Lin Yang
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan ,grid.413878.10000 0004 0572 9327Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Yi-Cheng Chen
- grid.64523.360000 0004 0532 3255Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Chung-Teng Wang
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Hao-Earn Chong
- grid.64523.360000 0004 0532 3255Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Nai-Hui Chung
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Chia-Hsing Leu
- grid.64523.360000 0004 0532 3255Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Fu-Tong Liu
- grid.28665.3f0000 0001 2287 1366Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Michael M. C. Lai
- grid.254145.30000 0001 0083 6092Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan ,grid.28665.3f0000 0001 2287 1366Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Pin Ling
- grid.64523.360000 0004 0532 3255Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401 Taiwan
| | - Chao-Liang Wu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan. .,Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401, Taiwan.
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, 1, University Road, Tainan, 701401, Taiwan. .,Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan.
| |
Collapse
|
6
|
Li CC, Chi XJ, Wang J, Potter AL, Wang XJ, Yang CFJ. Small molecule RAF265 as an antiviral therapy acts against HSV-1 by regulating cytoskeleton rearrangement and cellular translation machinery. J Med Virol 2023; 95:e28226. [PMID: 36251738 DOI: 10.1002/jmv.28226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 01/11/2023]
Abstract
Host-targeting antivirals (HTAs) have received increasing attention for their potential as broad-spectrum antivirals that pose relatively low risk of developing drug resistance. The repurposing of pharmaceutical drugs for use as antivirals is emerging as a cost- and time- efficient approach to developing HTAs for the treatment of a variety of viral infections. In this study, we used a virus titer method to screen 30 small molecules for antiviral activity against Herpes simplex virus-1 (HSV-1). We found that the small molecule RAF265, an anticancer drug that has been shown to be a potent inhibitor of B-RAF V600E, reduced viral loads of HSV-1 by 4 orders of magnitude in Vero cells and reduced virus proliferation in vivo. RAF265 mediated cytoskeleton rearrangement and targeted the host cell's translation machinery, which suggests that the antiviral activity of RAF265 may be attributed to a dual inhibition strategy. This study offers a starting point for further advances toward clinical development of antivirals against HSV-1.
Collapse
Affiliation(s)
- Cui-Cui Li
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jing Chi
- Department of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Alexandra L Potter
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, Department of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chi-Fu Jeffrey Yang
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA.,Division of Thoracic Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Trimarco JD, Nelson SL, Chaparian RR, Wells AI, Murray NB, Azadi P, Coyne CB, Heaton NS. Cellular glycan modification by B3GAT1 broadly restricts influenza virus infection. Nat Commun 2022; 13:6456. [PMID: 36309510 PMCID: PMC9617049 DOI: 10.1038/s41467-022-34111-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
Communicable respiratory viral infections pose both epidemic and pandemic threats and broad-spectrum antiviral strategies could improve preparedness for these events. To discover host antiviral restriction factors that may act as suitable targets for the development of host-directed antiviral therapies, we here conduct a whole-genome CRISPR activation screen with influenza B virus (IBV). A top hit from our screen, beta-1,3-glucuronyltransferase 1 (B3GAT1), effectively blocks IBV infection. Subsequent studies reveal that B3GAT1 activity prevents cell surface sialic acid expression. Due to this mechanism of action, B3GAT1 expression broadly restricts infection with viruses that require sialic acid for entry, including Victoria and Yamagata lineage IBVs, H1N1/H3N2 influenza A viruses (IAVs), and the unrelated enterovirus D68. To understand the potential utility of B3GAT1 induction as an antiviral strategy in vivo, we specifically express B3GAT1 in the murine respiratory epithelium and find that overexpression is not only well-tolerated, but also protects female mice from a lethal viral challenge with multiple influenza viruses, including a pandemic-like H1N1 IAV. Thus, B3GAT1 may represent a host-directed broad-spectrum antiviral target with utility against clinically relevant respiratory viruses.
Collapse
Affiliation(s)
- Joseph D Trimarco
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Sarah L Nelson
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Ryan R Chaparian
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
| | - Alexandra I Wells
- Department of Pediatrics, Division of Infectious Diseases, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Nathan B Murray
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Carolyn B Coyne
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Nicholas S Heaton
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
8
|
Meineke R, Stelz S, Busch M, Werlein C, Kühnel M, Jonigk D, Rimmelzwaan GF, Elbahesh H. FDA-Approved Inhibitors of RTK/Raf Signaling Potently Impair Multiple Steps of In Vitro and Ex Vivo Influenza A Virus Infections. Viruses 2022; 14:2058. [PMID: 36146864 PMCID: PMC9504178 DOI: 10.3390/v14092058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Influenza virus (IV) infections pose a burden on global public health with significant morbidity and mortality. The limited range of currently licensed IV antiviral drugs is susceptible to the rapid rise of resistant viruses. In contrast, FDA-approved kinase inhibitors can be repurposed as fast-tracked host-targeted antivirals with a higher barrier of resistance. Extending our recent studies, we screened 21 FDA-approved small-molecule kinase inhibitors (SMKIs) and identified seven candidates as potent inhibitors of pandemic and seasonal IV infections. These SMKIs were further validated in a biologically and clinically relevant ex vivo model of human precision-cut lung slices. We identified steps of the virus infection cycle affected by these inhibitors (entry, replication, egress) and found that most SMKIs affected both entry and egress. Based on defined and overlapping targets of these inhibitors, the candidate SMKIs target receptor tyrosine kinase (RTK)-mediated activation of Raf/MEK/ERK pathways to limit influenza A virus infection. Our data and the established safety profiles of these SMKIs support further clinical investigations and repurposing of these SMKIs as host-targeted influenza therapeutics.
Collapse
Affiliation(s)
- Robert Meineke
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| | - Sonja Stelz
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| | - Maximilian Busch
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| | - Christopher Werlein
- Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Mark Kühnel
- Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Hannover Medical School (MHH), Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| | - Husni Elbahesh
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine in Hannover (TiHo), Bünteweg 17, 30559 Hannover, Germany
| |
Collapse
|
9
|
Pashkov EA, Pak AV, Pashkov EP, Bykov AS, Budanova EV, Poddubikov AV, Svitich OA, Zverev VV. [The prospects for the use of drugs based on the phenomenon of RNA interference against HIV infection]. Vopr Virusol 2022; 67:278-289. [PMID: 36097709 DOI: 10.36233/0507-4088-124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
The human immunodeficiency virus (HIV) is currently one of the most pressing global health problems. Since its discovery in 1978, HIV has claimed the lives of more than 35 million people, and the number of people infected today reaches 37 million. In the absence of highly active antiretroviral therapy (HAART), HIV infection is characterized by a steady decrease in the number of CD4+ T-lymphocytes, but its manifestations can affect the central nervous, cardiovascular, digestive, endocrine and genitourinary systems. At the same time, complications induced by representatives of pathogenic and opportunistic microflora, which can lead to the development of bacterial, fungal and viral concomitant infections, are of particular danger. It should be borne in mind that an important problem is the emergence of viruses resistant to standard therapy, as well as the toxicity of the drugs themselves for the body. In the context of this review, of particular interest is the assessment of the prospects for the creation and clinical use of drugs based on small interfering RNAs aimed at suppressing the reproduction of HIV, taking into account the experience of similar studies conducted earlier. RNA interference is a cascade of regulatory reactions in eukaryotic cells, which results in the degradation of foreign messenger RNA. The development of drugs based on the mechanism of RNA interference will overcome the problem of viral resistance. Along with this, this technology makes it possible to quickly respond to outbreaks of new viral diseases.
Collapse
Affiliation(s)
- E A Pashkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University); Federal State Budgetary Scientific Institution "I. Mechnikov Research Institute of Vaccines and Sera"
| | - A V Pak
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E P Pashkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A S Bykov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E V Budanova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A V Poddubikov
- Federal State Budgetary Scientific Institution "I. Mechnikov Research Institute of Vaccines and Sera"
| | - O A Svitich
- I.M. Sechenov First Moscow State Medical University (Sechenov University); Federal State Budgetary Scientific Institution "I. Mechnikov Research Institute of Vaccines and Sera"
| | - V V Zverev
- I.M. Sechenov First Moscow State Medical University (Sechenov University); Federal State Budgetary Scientific Institution "I. Mechnikov Research Institute of Vaccines and Sera"
| |
Collapse
|
10
|
Song Y, Huang H, Hu Y, Zhang J, Li F, Yin X, Shi J, Li Y, Li C, Zhao D, Chen H. A genome-wide CRISPR/Cas9 gene knockout screen identifies immunoglobulin superfamily DCC subclass member 4 as a key host factor that promotes influenza virus endocytosis. PLoS Pathog 2021; 17:e1010141. [PMID: 34871331 PMCID: PMC8675923 DOI: 10.1371/journal.ppat.1010141] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 12/16/2021] [Accepted: 11/24/2021] [Indexed: 12/18/2022] Open
Abstract
Influenza virus infection is dependent on host cellular factors, and identification of these factors and their underlying mechanisms can provide important information for the development of strategies to inhibit viral infection. Here, we used a highly pathogenic H5N1 influenza virus to perform a genome-wide CRISPR/Cas9 gene knockout screen in human lung epithelial cells (A549 cells), and found that knockout of transmembrane protein immunoglobulin superfamily DCC subclass member 4 (IGDCC4) significantly reduced the replication of the virus in A549 cells. Further studies showed that IGDCC4 interacted with the viral hemagglutinin protein and facilitated virus internalization into host cells. Animal infection studies showed that replication of H5N1 virus in the nasal turbinates, lungs, and kidneys of IGDCC4-knockout mice was significantly lower than that in the corresponding organs of wild-type mice. Half of the IGDCC4-knockout mice survived a lethal H5N1 virus challenge, whereas all of the wild-type mice died within 11 days of infection. Our study identifies a novel host factor that promotes influenza virus infection by facilitating internalization and provides insights that will support the development of antiviral therapies.
Collapse
Affiliation(s)
- Yangming Song
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, People’s Republic of China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Haixiang Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yuzhen Hu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jiwen Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Fang Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Xin Yin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Yanbing Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
| | - Dongming Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- * E-mail: (DZ); (HC)
| | - Hualan Chen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, People’s Republic of China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People’s Republic of China
- * E-mail: (DZ); (HC)
| |
Collapse
|
11
|
Martin-Sancho L, Tripathi S, Rodriguez-Frandsen A, Pache L, Sanchez-Aparicio M, McGregor MJ, Haas KM, Swaney DL, Nguyen TT, Mamede JI, Churas C, Pratt D, Rosenthal SB, Riva L, Nguyen C, Beltran-Raygoza N, Soonthornvacharin S, Wang G, Jimenez-Morales D, De Jesus PD, Moulton HM, Stein DA, Chang MW, Benner C, Ideker T, Albrecht RA, Hultquist JF, Krogan NJ, García-Sastre A, Chanda SK. Restriction factor compendium for influenza A virus reveals a mechanism for evasion of autophagy. Nat Microbiol 2021; 6:1319-1333. [PMID: 34556855 PMCID: PMC9683089 DOI: 10.1038/s41564-021-00964-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
The fate of influenza A virus (IAV) infection in the host cell depends on the balance between cellular defence mechanisms and viral evasion strategies. To illuminate the landscape of IAV cellular restriction, we generated and integrated global genetic loss-of-function screens with transcriptomics and proteomics data. Our multi-omics analysis revealed a subset of both IFN-dependent and independent cellular defence mechanisms that inhibit IAV replication. Amongst these, the autophagy regulator TBC1 domain family member 5 (TBC1D5), which binds Rab7 to enable fusion of autophagosomes and lysosomes, was found to control IAV replication in vitro and in vivo and to promote lysosomal targeting of IAV M2 protein. Notably, IAV M2 was observed to abrogate TBC1D5-Rab7 binding through a physical interaction with TBC1D5 via its cytoplasmic tail. Our results provide evidence for the molecular mechanism utilised by IAV M2 protein to escape lysosomal degradation and traffic to the cell membrane, where it supports IAV budding and growth.
Collapse
Affiliation(s)
- Laura Martin-Sancho
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Shashank Tripathi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Infectious Disease Research, Microbiology & Cell Biology Department, Indian Institute of Science, Bangalore, India
| | - Ariel Rodriguez-Frandsen
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lars Pache
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Maite Sanchez-Aparicio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael J McGregor
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Kelsey M Haas
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Thong T Nguyen
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - João I Mamede
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, USA
| | - Christopher Churas
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Dexter Pratt
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sara B Rosenthal
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Laura Riva
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Courtney Nguyen
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Nish Beltran-Raygoza
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Stephen Soonthornvacharin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Guojun Wang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Jimenez-Morales
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, CA, USA
| | - Paul D De Jesus
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Hong M Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - David A Stein
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR, USA
| | - Max W Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chris Benner
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Trey Ideker
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Randy A Albrecht
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judd F Hultquist
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, CA, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
12
|
O'Donovan SM, Imami A, Eby H, Henkel ND, Creeden JF, Asah S, Zhang X, Wu X, Alnafisah R, Taylor RT, Reigle J, Thorman A, Shamsaei B, Meller J, McCullumsmith RE. Identification of candidate repurposable drugs to combat COVID-19 using a signature-based approach. Sci Rep 2021; 11:4495. [PMID: 33627767 PMCID: PMC7904823 DOI: 10.1038/s41598-021-84044-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/21/2021] [Indexed: 02/08/2023] Open
Abstract
The COVID-19 pandemic caused by the novel SARS-CoV-2 is more contagious than other coronaviruses and has higher rates of mortality than influenza. Identification of effective therapeutics is a crucial tool to treat those infected with SARS-CoV-2 and limit the spread of this novel disease globally. We deployed a bioinformatics workflow to identify candidate drugs for the treatment of COVID-19. Using an "omics" repository, the Library of Integrated Network-Based Cellular Signatures (LINCS), we simultaneously probed transcriptomic signatures of putative COVID-19 drugs and publicly available SARS-CoV-2 infected cell lines to identify novel therapeutics. We identified a shortlist of 20 candidate drugs: 8 are already under trial for the treatment of COVID-19, the remaining 12 have antiviral properties and 6 have antiviral efficacy against coronaviruses specifically, in vitro. All candidate drugs are either FDA approved or are under investigation. Our candidate drug findings are discordant with (i.e., reverse) SARS-CoV-2 transcriptome signatures generated in vitro, and a subset are also identified in transcriptome signatures generated from COVID-19 patient samples, like the MEK inhibitor selumetinib. Overall, our findings provide additional support for drugs that are already being explored as therapeutic agents for the treatment of COVID-19 and identify promising novel targets that are worthy of further investigation.
Collapse
Affiliation(s)
- Sinead M O'Donovan
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Ali Imami
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Hunter Eby
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Nicholas D Henkel
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Justin Fortune Creeden
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Sophie Asah
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Xiaolu Zhang
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Xiaojun Wu
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - Rawan Alnafisah
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA
| | - R Travis Taylor
- Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH, USA
| | - James Reigle
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Alexander Thorman
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Behrouz Shamsaei
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jarek Meller
- Department of Biomedical Informatics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Electrical Engineering and Computing Systems, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Department of Informatics, Nicolaus Copernicus University, Torun, Poland
| | - Robert E McCullumsmith
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Health Science Campus, Mail Stop #1007, 3000 Arlington Avenue, Toledo, OH, 43614-2598, USA.
- Neurosciences Institute, Promedica, Toledo, OH, USA.
| |
Collapse
|
13
|
Raghuvanshi R, Bharate SB. Recent Developments in the Use of Kinase Inhibitors for Management of Viral Infections. J Med Chem 2021; 65:893-921. [PMID: 33539089 DOI: 10.1021/acs.jmedchem.0c01467] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Kinases are a group of therapeutic targets involved in the progression of numerous diseases, including cancer, rheumatoid arthritis, Alzheimer's disease, and viral infections. The majority of approved antiviral agents are inhibitors of virus-specific targets that are encoded by individual viruses. These inhibitors are narrow-spectrum agents that can cause resistance development. Viruses are dependent on host cellular proteins, including kinases, for progression of their life-cycle. Thus, targeting kinases is an important therapeutic approach to discovering broad-spectrum antiviral agents. As there are a large number of FDA approved kinase inhibitors for various indications, their repurposing for viral infections is an attractive and time-sparing strategy. Many kinase inhibitors, including baricitinib, ruxolitinib, imatinib, tofacitinib, pacritinib, zanubrutinib, and ibrutinib, are under clinical investigation for COVID-19. Herein, we discuss FDA approved kinase inhibitors, along with a repertoire of clinical/preclinical stage kinase inhibitors that possess antiviral activity or are useful in the management of viral infections.
Collapse
Affiliation(s)
- Rinky Raghuvanshi
- Medicinal Chemistry Division,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| | - Sandip B Bharate
- Medicinal Chemistry Division,CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.,Academy of Scientific & Innovative Research, Ghaziabad 201002, India
| |
Collapse
|
14
|
Chitalia VC, Munawar AH. A painful lesson from the COVID-19 pandemic: the need for broad-spectrum, host-directed antivirals. J Transl Med 2020; 18:390. [PMID: 33059719 PMCID: PMC7558548 DOI: 10.1186/s12967-020-02476-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
While the COVID-19 pandemic has spurred intense research and collaborative discovery worldwide, the development of a safe, effective, and targeted antiviral from the ground up is time intensive. Therefore, most antiviral discovery efforts are focused on the re-purposing of clinical stage or approved drugs. While emerging data on drugs undergoing COVID-19 repurpose are intriguing, there is an undeniable need to develop broad-spectrum antivirals to prevent future viral pandemics of unknown origin. The ideal drug to curtail rapid viral spread would be a broad-acting agent with activity against a wide range of viruses. Such a drug would work by modulating host-proteins that are often shared by multiple virus families thereby enabling preemptive drug development and therefore rapid deployment at the onset of an outbreak. Targeting host-pathways and cellular proteins that are hijacked by viruses can potentially offer broad-spectrum targets for the development of future antiviral drugs. Such host-directed antivirals are also likely to offer a higher barrier to the development and selection of drug resistant mutations. Given that most approved antivirals do not target host-proteins, we reinforce the need for the development of such antivirals that can be used in pre- and post-exposure populations.
Collapse
Affiliation(s)
- Vipul C Chitalia
- Boston University Medical Center, 625 Albany Street, Boston, MA, USA
- Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ali H Munawar
- Bisect Therapeutics, Inc., 45 Dan Road, Canton, MA, USA.
| |
Collapse
|
15
|
Pashkov EA, Faizuloev EB, Svitich OA, Sergeev OV, Zverev VV. [The potential of synthetic small interfering RNA-based antiviral drugs for influenza treatment]. Vopr Virusol 2020; 65:182-190. [PMID: 33533221 DOI: 10.36233/0507-4088-2020-65-4-182-190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/16/2020] [Indexed: 06/12/2023]
Abstract
Influenza is a worldwide public health problem. Annually, this infection affects up to 15% of the world population; and about half a million people die from this disease every year. Moreover, influenza A and B viruses tend to garner most of the attention, as these types are a major cause of the epidemics and pandemics. Although the influenza virus primarily affects the respiratory tract, it may also affect the cardiovascular and central nervous systems. Several antiviral drugs, that target various stages of viral reproduction, have been considered effective for the treatment and prevention of influenza, but some virus strains become resistant to these medications. Thus, new strategies and techniques should be developed to overcome the antiviral drug resistance. Recent studies suggest that new drugs based on RNA interference (RNAi) appear to be a promising therapeutic approach that regulates the activity of viral or cellular genes. As it is known, the RNAi is a eukaryotic gene regulatory mechanism that can be triggered by a foreign double-stranded RNA (dsRNA) and results in the cleavage of the target messenger RNA (mRNA). This review discusses the prospects, advantages, and disadvantages of using RNAi in carrying out a specific treatment for influenza infection. However, some viruses confer resistance to small interfering RNAs (siRNA) targeting viral genes. This problem can significantly reduce the effectiveness of RNAi. Therefore, applying siRNAs targeting host cell factors required for influenza virus reproduction can be a way to overcome the antiviral drug resistance.
Collapse
Affiliation(s)
- E A Pashkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University); I.I. Mechnikov Research Institute for Vaccines and Sera
| | - E B Faizuloev
- I.I. Mechnikov Research Institute for Vaccines and Sera
| | - O A Svitich
- I.M. Sechenov First Moscow State Medical University (Sechenov University); I.I. Mechnikov Research Institute for Vaccines and Sera
| | - O V Sergeev
- I.M. Sechenov First Moscow State Medical University (Sechenov University); National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya
| | - V V Zverev
- I.M. Sechenov First Moscow State Medical University (Sechenov University); I.I. Mechnikov Research Institute for Vaccines and Sera
| |
Collapse
|
16
|
Abstract
The current global pandemic COVID-19 caused by the SARS-CoV-2 virus has already inflicted insurmountable damage both to the human lives and global economy. There is an immediate need for identification of effective drugs to contain the disastrous virus outbreak. Global efforts are already underway at a war footing to identify the best drug combination to address the disease. In this review, an attempt has been made to understand the SARS-CoV-2 life cycle, and based on this information potential druggable targets against SARS-CoV-2 are summarized. Also, the strategies for ongoing and future drug discovery against the SARS-CoV-2 virus are outlined. Given the urgency to find a definitive cure, ongoing drug repurposing efforts being carried out by various organizations are also described. The unprecedented crisis requires extraordinary efforts from the scientific community to effectively address the issue and prevent further loss of human lives and health.
Collapse
Affiliation(s)
- Ambrish Saxena
- Indian Institute of Technology Tirupati, Tirupati, India
| |
Collapse
|
17
|
Development of small-molecule inhibitors against hantaviruses. Microbes Infect 2020; 22:272-277. [PMID: 32445882 DOI: 10.1016/j.micinf.2020.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 05/18/2020] [Indexed: 11/21/2022]
Abstract
Hantavirus (HV), a pathogen of animal infectious diseases that poses a threat to humans, has attracted extensive attention. Clinically, HV can cause hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS), between which HFRS is mostly in Eurasia, and HPS is mostly in the Americas. This paper reviews the research progress of small-molecule inhibitors of HV.
Collapse
|
18
|
O'Donovan SM, Eby H, Henkel ND, Creeden J, Imami A, Asah S, Zhang X, Wu X, Alnafisah R, Taylor RT, Reigle J, Thorman A, Shamsaei B, Meller J, McCullumsmith RE. Identification of new drug treatments to combat COVID19: A signature-based approach using iLINCS. RESEARCH SQUARE 2020:rs.3.rs-25643. [PMID: 32702077 PMCID: PMC7336712 DOI: 10.21203/rs.3.rs-25643/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The COVID-19 pandemic caused by the novel SARS-CoV-2 is more contagious than other coronaviruses and has higher rates of mortality than influenza. As no vaccine or drugs are currently approved to specifically treat COVID-19, identification of effective therapeutics is crucial to treat the afflicted and limit disease spread. We deployed a bioinformatics workflow to identify candidate drugs for the treatment of COVID-19. Using an "omics" repository, the Library of Integrated Network-Based Cellular Signatures (LINCS), we simultaneously probed transcriptomic signatures of putative COVID-19 drugs and signatures of coronavirus-infected cell lines to identify therapeutics with concordant signatures and discordant signatures, respectively. Our findings include three FDA approved drugs that have established antiviral activity, including protein kinase inhibitors, providing a promising new category of candidates for COVID-19 interventions.
Collapse
|
19
|
Ding M, Tyrchan C, Bäck E, Östling J, Schubert S, McCrae C. Combined siRNA and Small-Molecule Phenotypic Screening Identifies Targets Regulating Rhinovirus Replication in Primary Human Bronchial Epithelial Cells. SLAS DISCOVERY 2020; 25:634-645. [PMID: 32189556 DOI: 10.1177/2472555220909726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Human rhinovirus (RV) is the most common cause of acute upper respiratory tract infections and has recently been shown to play a significant role in exacerbations of asthma and chronic obstructive pulmonary disease (COPD). There is a significant unmet medical need for agents for the prevention and/or treatment of exacerbations triggered by human RV infection. Phenotypic drug discovery programs using different perturbation modalities, for example, siRNA, small-molecule compounds, and CRISPR, hold significant value for identifying novel drug targets. We have previously reported the identification of lanosterol synthase as a novel regulator of RV2 replication through a phenotypic screen of a library of siRNAs against druggable genes in normal human bronchial epithelial (NHBE) cells. Here, we describe a follow-up phenotypic screen of small-molecule compounds that are annotated to be pharmacological regulators of target genes that were identified to significantly affect RV2 replication in the siRNA primary screen of 10,500 druggable genes. Two hundred seventy small-molecule compounds selected for interacting with 122 target gene hits were screened in the primary RV2 assay in NHBE cells by quantifying viral replication via in situ hybridization followed by secondary quantitative PCR-based assays for RV2, RV14, and RV16. The described follow-up phenotypic screening allowed us to identify Fms-related tyrosine kinase 4 (FLT4) as a novel target regulating RV replication. We demonstrate that a combination of siRNA and small-molecule compound screening models is a useful phenotypic drug discovery approach for the identification of novel drug targets.
Collapse
Affiliation(s)
- Mei Ding
- Discovery Sciences, Research and Early Development, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Christian Tyrchan
- Medicinal Chemistry, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Elisabeth Bäck
- Discovery Sciences, Research and Early Development, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Jörgen Östling
- Bioscience, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | | | - Christopher McCrae
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory, Inflammation and Autoimmune (RIA), R&D BioPharmaceuticals, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
20
|
Huang F, Zhang C, Liu Q, Zhao Y, Zhang Y, Qin Y, Li X, Li C, Zhou C, Jin N, Jiang C. Identification of amitriptyline HCl, flavin adenine dinucleotide, azacitidine and calcitriol as repurposing drugs for influenza A H5N1 virus-induced lung injury. PLoS Pathog 2020; 16:e1008341. [PMID: 32176725 PMCID: PMC7075543 DOI: 10.1371/journal.ppat.1008341] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 12/15/2022] Open
Abstract
Infection with avian influenza A H5N1 virus results in acute lung injury (ALI) and has a high mortality rate (52.79%) because there are limited therapies available for treatment. Drug repositioning is an economical approach to drug discovery. We developed a method for drug repositioning based on high-throughput RNA sequencing and identified several drugs as potential treatments for avian influenza A H5N1 virus. Using high-throughput RNA sequencing, we identified a total of 1,233 genes differentially expressed in A549 cells upon H5N1 virus infection. Among these candidate genes, 79 drug targets (corresponding to 59 approved drugs) overlapped with the DrugBank target database. Twenty-two of the 41 commercially available small-molecule drugs reduced H5N1-mediated cell death in cultured A549 cells, and fifteen drugs that protected A549 cells when administered both pre- and post-infection were tested in an H5N1-infection mouse model. The results showed significant alleviation of acute lung injury by amitriptyline HCl (an antidepressant drug), flavin adenine dinucleotide (FAD; an ophthalmic agent for vitamin B2 deficiency), azacitidine (an anti-neoplastic drug) and calcitriol (an active form of vitamin D). All four agents significantly reduced the infiltrating cell count and decreased the lung injury score in H5N1 virus-infected mice based on lung histopathology, significantly improved mouse lung edema by reducing the wet-to-dry weight ratio of lung tissue and significantly improved the survival of H5N1 virus-infected mice. This study not only identifies novel potential therapies for influenza H5N1 virus-induced lung injury but also provides a highly effective and economical screening method for repurposing drugs that may be generalizable for the prevention and therapy of other diseases. Highly pathogenic avian influenza (HPAI) A virus H5N1 causes acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), with mortality as high as 52.79%. No vaccine for HPAI virus is available, and current treatments for influenza A H5N1 virus-induced ALI have limitations. Drug repurposing may be an effective approach for developing novel therapeutic strategies. In this study, we identified 4 drugs, the antidepressant amitriptyline HCl, the ophthalmic flavin adenine dinucleotide, the anti-neoplastic azacitidine and the vitamin D-deficiency treatment calcitriol, as being highly effective for the treatment of H5N1 virus-induced ALI using a transcriptomic-based high-throughput repurposing drug screening. These approved drugs might constitute novel potential remedies for treating influenza H5N1 virus infection, and this screening method may be generalizable for drug repositioning to identify new indications for other diseases.
Collapse
Affiliation(s)
- Fengming Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Anhui, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Department of Biochemistry, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Cong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Anhui, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Department of Biochemistry, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Qiang Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Department of Biochemistry, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yan Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Department of Biochemistry, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yuqing Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Department of Biochemistry, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Yuhao Qin
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Department of Biochemistry, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiao Li
- Genetic Engineering Laboratory, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Chang Li
- Genetic Engineering Laboratory, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
| | - Congzhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Anhui, China
- * E-mail: (CZ); (NJ); (CJ)
| | - Ningyi Jin
- Genetic Engineering Laboratory, Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun, China
- * E-mail: (CZ); (NJ); (CJ)
| | - Chengyu Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, Department of Biochemistry, School of Basic Medicine Peking Union Medical College, Beijing, China
- * E-mail: (CZ); (NJ); (CJ)
| |
Collapse
|