1
|
Bracha S, Johnson HJ, Pranckevicius NA, Catto F, Economides AE, Litvinov S, Hassi K, Rigoli MT, Cheroni C, Bonfanti M, Valenti A, Stucchi S, Attreya S, Ross PD, Walsh D, Malachi N, Livne H, Eshel R, Krupalnik V, Levin D, Cobb S, Koumoutsakos P, Caporale N, Testa G, Aguzzi A, Koshy AA, Sheiner L, Rechavi O. Engineering Toxoplasma gondii secretion systems for intracellular delivery of multiple large therapeutic proteins to neurons. Nat Microbiol 2024; 9:2051-2072. [PMID: 39075233 PMCID: PMC11306108 DOI: 10.1038/s41564-024-01750-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/05/2024] [Indexed: 07/31/2024]
Abstract
Delivering macromolecules across biological barriers such as the blood-brain barrier limits their application in vivo. Previous work has demonstrated that Toxoplasma gondii, a parasite that naturally travels from the human gut to the central nervous system (CNS), can deliver proteins to host cells. Here we engineered T. gondii's endogenous secretion systems, the rhoptries and dense granules, to deliver multiple large (>100 kDa) therapeutic proteins into neurons via translational fusions to toxofilin and GRA16. We demonstrate delivery in cultured cells, brain organoids and in vivo, and probe protein activity using imaging, pull-down assays, scRNA-seq and fluorescent reporters. We demonstrate robust delivery after intraperitoneal administration in mice and characterize 3D distribution throughout the brain. As proof of concept, we demonstrate GRA16-mediated brain delivery of the MeCP2 protein, a putative therapeutic target for Rett syndrome. By characterizing the potential and current limitations of the system, we aim to guide future improvements that will be required for broader application.
Collapse
Affiliation(s)
- Shahar Bracha
- Department of Neurobiology, Biochemistry and Biophysics, Wise Faculty of Life Sciences and Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- McGovern Institute for Brain Research, MIT, Cambridge, MA, USA.
| | - Hannah J Johnson
- Neuroscience Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
- Departments of Neurology and Immunobiology, College of Medicine, and BIO5 Institute, University of Arizona, Tucson, AZ, USA
| | - Nicole A Pranckevicius
- Centre for Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Francesca Catto
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Athena E Economides
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sergey Litvinov
- Computational Science and Engineering Laboratory, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Karoliina Hassi
- Centre for Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Marco Tullio Rigoli
- Human Technopole, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Cristina Cheroni
- Human Technopole, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | | | - Alessia Valenti
- Human Technopole, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Sarah Stucchi
- Human Technopole, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Shruti Attreya
- Undergraduate Biology Research Program, University of Arizona, Tucson, AZ, USA
| | - Paul D Ross
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Daniel Walsh
- Centre for Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | - Stuart Cobb
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Petros Koumoutsakos
- Computational Science and Engineering Laboratory, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Nicolò Caporale
- Human Technopole, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Giuseppe Testa
- Human Technopole, Milan, Italy.
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Anita A Koshy
- Departments of Neurology and Immunobiology, College of Medicine, and BIO5 Institute, University of Arizona, Tucson, AZ, USA.
| | - Lilach Sheiner
- Centre for Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| | - Oded Rechavi
- Department of Neurobiology, Biochemistry and Biophysics, Wise Faculty of Life Sciences and Sagol School for Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Merritt EF, Kochanowsky JA, Hervé P, Watson AA, Koshy AA. Toxoplasma type II effector GRA15 has limited influence in vivo. PLoS One 2024; 19:e0300764. [PMID: 38551902 PMCID: PMC10980211 DOI: 10.1371/journal.pone.0300764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/03/2024] [Indexed: 04/01/2024] Open
Abstract
Toxoplasma gondii is an intracellular parasite that establishes a long-term infection in the brain of many warm-blooded hosts, including humans and rodents. Like all obligate intracellular microbes, Toxoplasma uses many effector proteins to manipulate the host cell to ensure parasite survival. While some of these effector proteins are universal to all Toxoplasma strains, some are polymorphic between Toxoplasma strains. One such polymorphic effector is GRA15. The gra15 allele carried by type II strains activates host NF-κB signaling, leading to the release of cytokines such as IL-12, TNF, and IL-1β from immune cells infected with type II parasites. Prior work also suggested that GRA15 promotes early host control of parasites in vivo, but the effect of GRA15 on parasite persistence in the brain and the peripheral immune response has not been well defined. For this reason, we sought to address this gap by generating a new IIΔgra15 strain and comparing outcomes at 3 weeks post infection between WT and IIΔgra15 infected mice. We found that the brain parasite burden and the number of macrophages/microglia and T cells in the brain did not differ between WT and IIΔgra15 infected mice. In addition, while IIΔgra15 infected mice had a lower number and frequency of splenic M1-like macrophages and frequency of PD-1+ CTLA-4+ CD4+ T cells and NK cells compared to WT infected mice, the IFN-γ+ CD4 and CD8 T cell populations were equivalent. In summary, our results suggest that in vivo GRA15 may have a subtle effect on the peripheral immune response, but this effect is not strong enough to alter brain parasite burden or parenchymal immune cell number at 3 weeks post infection.
Collapse
Affiliation(s)
- Emily F. Merritt
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Joshua A. Kochanowsky
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Perrine Hervé
- Microbiologie Fondamentale et Pathogénicité, CNRS UMR 5234, Université de Bordeaux, Bordeaux, France
| | - Alison A. Watson
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Anita A. Koshy
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Neurology, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
3
|
Butterworth S, Kordova K, Chandrasekaran S, Thomas KK, Torelli F, Lockyer EJ, Edwards A, Goldstone R, Koshy AA, Treeck M. High-throughput identification of Toxoplasma gondii effector proteins that target host cell transcription. Cell Host Microbe 2023; 31:1748-1762.e8. [PMID: 37827122 PMCID: PMC12033024 DOI: 10.1016/j.chom.2023.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 10/14/2023]
Abstract
Intracellular pathogens and other endosymbionts reprogram host cell transcription to suppress immune responses and recalibrate biosynthetic pathways. This reprogramming is critical in determining the outcome of infection or colonization. We combine pooled CRISPR knockout screening with dual host-microbe single-cell RNA sequencing, a method we term dual perturb-seq, to identify the molecular mediators of these transcriptional interactions. Applying dual perturb-seq to the intracellular pathogen Toxoplasma gondii, we are able to identify previously uncharacterized effector proteins and directly infer their function from the transcriptomic data. We show that TgGRA59 contributes to the export of other effector proteins from the parasite into the host cell and identify an effector, TgSOS1, that is necessary for sustained host STAT6 signaling and thereby contributes to parasite immune evasion and persistence. Together, this work demonstrates a tool that can be broadly adapted to interrogate host-microbe transcriptional interactions and reveal mechanisms of infection and immune evasion.
Collapse
Affiliation(s)
- Simon Butterworth
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Kristina Kordova
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | | | | | - Francesca Torelli
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Eloise J Lockyer
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Amelia Edwards
- Advanced Sequencing Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Robert Goldstone
- Advanced Sequencing Facility, The Francis Crick Institute, London NW1 1AT, UK
| | - Anita A Koshy
- BIO5 Institute, University of Arizona, Tucson, AZ 85719, USA; Department of Immunobiology, University of Arizona, Tucson, AZ 85719, USA; Department of Neurology, University of Arizona, Tucson, AZ 85719, USA
| | - Moritz Treeck
- Signalling in Apicomplexan Parasites Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Cell Biology of Host-Pathogen Interaction Laboratory, Instituto Gulbenkian de Ciência, Oeiras 2780-156, Portugal.
| |
Collapse
|
4
|
Kongsomboonvech AK, García-López L, Njume F, Rodriguez F, Souza SP, Rosenberg A, Jensen KDC. Variation in CD8 T cell IFNγ differentiation to strains of Toxoplasma gondii is characterized by small effect QTLs with contribution from ROP16. Front Cell Infect Microbiol 2023; 13:1130965. [PMID: 37287466 PMCID: PMC10242045 DOI: 10.3389/fcimb.2023.1130965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/17/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Toxoplasma gondii induces a strong CD8 T cell response characterized by the secretion of IFNγ that promotes host survival during infection. The initiation of CD8 T cell IFNγ responses in vitro differs widely between clonal lineage strains of T. gondii, in which type I strains are low inducers, while types II and III strains are high inducers. We hypothesized this phenotype is due to a polymorphic "Regulator Of CD8 T cell Response" (ROCTR). Methods Therefore, we screened F1 progeny from genetic crosses between the clonal lineage strains to identify ROCTR. Naïve antigen-specific CD8 T cells (T57) isolated from transnuclear mice, which are specific for the endogenous and vacuolar TGD057 antigen, were measured for their ability to become activated, transcribe Ifng and produce IFNγ in response to T. gondii infected macrophages. Results Genetic mapping returned four non-interacting quantitative trait loci (QTL) with small effect on T. gondii chromosomes (chr) VIIb-VIII, X and XII. These loci encompass multiple gene candidates highlighted by ROP16 (chrVIIb-VIII), GRA35 (chrX), TgNSM (chrX), and a pair of uncharacterized NTPases (chrXII), whose locus we report to be significantly truncated in the type I RH background. Although none of the chromosome X and XII candidates bore evidence for regulating CD8 T cell IFNγ responses, type I variants of ROP16 lowered Ifng transcription early after T cell activation. During our search for ROCTR, we also noted the parasitophorous vacuole membrane (PVM) targeting factor for dense granules (GRAs), GRA43, repressed the response suggesting PVM-associated GRAs are important for CD8 T cell activation. Furthermore, RIPK3 expression in macrophages was an absolute requirement for CD8 T cell IFNγ differentiation implicating the necroptosis pathway in T cell immunity to T. gondii. Discussion Collectively, our data suggest that while CD8 T cell IFNγ production to T. gondii strains vary dramatically, it is not controlled by a single polymorphism with strong effect. However, early in the differentiation process, polymorphisms in ROP16 can regulate commitment of responding CD8 T cells to IFNγ production which may have bearing on immunity to T. gondii.
Collapse
Affiliation(s)
- Angel K. Kongsomboonvech
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Quantitative Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Laura García-López
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Quantitative Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Ferdinand Njume
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
| | - Felipe Rodriguez
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
| | - Scott P. Souza
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Quantitative Systems Biology Graduate Program, University of California, Merced, Merced, CA, United States
| | - Alex Rosenberg
- The Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA, United States
- Health Sciences Research Institute, University of California, Merced, Merced, CA, United States
| |
Collapse
|
5
|
Kochanowsky JA, Chandrasekaran S, Sanchez JR, Thomas KK, Koshy AA. ROP16-mediated activation of STAT6 enhances cyst development of type III Toxoplasma gondii in neurons. PLoS Pathog 2023; 19:e1011347. [PMID: 37068104 PMCID: PMC10138205 DOI: 10.1371/journal.ppat.1011347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 04/27/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023] Open
Abstract
Toxoplasma gondii establishes a long-lived latent infection in the central nervous system (CNS) of its hosts. Reactivation in immunocompromised individuals can lead to life threatening disease. Latent infection is driven by the ability of the parasite to convert from the acute-stage tachyzoite to the latent-stage bradyzoite which resides in long-lived intracellular cysts. While much work has focused on the parasitic factors that drive cyst development, the host factors that influence encystment are not well defined. Here we show that a polymorphic secreted parasite kinase (ROP16), that phosphorylates host cell proteins, mediates efficient encystment of T. gondii in a stress-induced model of encystment and primary neuronal cell cultures (PNCs) in a strain-specific manner. Using short-hairpin RNA (shRNA) knockdowns in human foreskin fibroblasts (HFFs) and PNCs from transgenic mice, we determined that ROP16's cyst enhancing abilities are mediated, in part, by phosphorylation-and therefore activation-of the host cell transcription factor STAT6. To test the role of STAT6 in vivo, we infected wild-type (WT) and STAT6KO mice, finding that, compared to WT mice, STAT6KO mice have a decrease in CNS cyst burden but not overall parasite burden or dissemination to the CNS. Finally, we found a similar ROP16-dependent encystment defect in human pluripotent stem cell-derived neurons. Together, these findings identify a host cell factor (STAT6) that T. gondii manipulates in a strain-specific manner to generate a favorable encystment environment.
Collapse
Affiliation(s)
- Joshua A. Kochanowsky
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | | | - Jacqueline R. Sanchez
- Postbaccalaureate Research Education Program, University of Arizona, Tucson, Arizona, United States of America
| | - Kaitlin K. Thomas
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Anita A. Koshy
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
- BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- Department of Neurology, University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
6
|
Geospatial epidemiology of Toxoplasma gondii infection in livestock, pets, and humans in China, 1984-2020. Parasitol Res 2022; 121:743-750. [PMID: 34988670 DOI: 10.1007/s00436-021-07415-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/19/2021] [Indexed: 12/22/2022]
Abstract
Undercooked or raw meat containing cyst-stage bradyzoites and oocyst-contaminated pets are presumed to constitute a major source of human toxoplasmosis. As the geospatial epidemiology of Toxoplasma gondii (T. gondii) infection in livestock, pets, and humans is rarely studied in China, we undertook a geospatial analysis using GIS visualization techniques. The present study retrieved information from the PubMed, China National Knowledge Infrastructure, and Baidu Scholar databases from 1984 up to 2020. All the data about the seroprevalence of T. gondii in livestock (sheep and goats, pigs, cattle and yaks), pets (cats, dogs), and humans in China were collected. Geospatial epidemiology of T. gondii infection in these hosts was performed using GIS. Results revealed that the estimated pooled seroprevalence of T. gondii was ranged from 3.98 to 43.02% in sheep and goats in China, 0.75 to 30.34% in cattle and yaks, 10.45 to 66.47% in pigs, 2.50 to 60.00% in cats, 0.56 to 27.65% in dogs, and 0.72 to 23.41% in humans. The higher seroprevalences of T. gondii were observed in sheep and goats in the districts of Chongqing, Zhejiang, and Beijing. The infection rates of T. gondii in cattle and yaks were higher in Guizhou, Zhejiang, and Chongqing. Also, the pigs from Chongqing and Guizhou were most severely infected with T. gondii. For cats, the districts of Shanxi, Hebei, and Yunnan had higher seroprevalences of T. gondii and, the infections among dogs were higher in Yunnan and Hebei as well. Furthermore, higher infection pressure of T. gondii exists in the districts of Taiwan and Tibet in humans. The geographical and spatial distribution of toxoplasmosis indicated that infection with T. gondii was widely spread in China, with a wide range of variations among the different hosts and regions in the country. Our results suggested that livestock and pets are not only a reservoir for the parasite but also a direct source of T. gondii infection for humans. It is important to control T. gondii infections in these animals that would reduce the risk of toxoplasmosis in humans.
Collapse
|
7
|
Chadha A, Chadee K. The NF-κB Pathway: Modulation by Entamoeba histolytica and Other Protozoan Parasites. Front Cell Infect Microbiol 2021; 11:748404. [PMID: 34595137 PMCID: PMC8476871 DOI: 10.3389/fcimb.2021.748404] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/27/2021] [Indexed: 12/15/2022] Open
Abstract
Protozoan parasites have led to worldwide devastation because of their ability to cause infectious diseases. They have evolved as successful pathogens in part because of their remarkable and sophisticated ways to evade innate host defenses. This holds true for both intracellular and extracellular parasites that deploy multiple strategies to circumvent innate host defenses for their survival. The different strategies protozoan parasites use include hijacking the host cellular signaling pathways and transcription factors. In particular, the nuclear factor-κB (NF-κB) pathway seems to be an attractive target for different pathogens owing to their central role in regulating prompt innate immune responses in host defense. NF-κB is a ubiquitous transcription factor that plays an indispensable role not only in regulating immediate immune responses against invading pathogens but is also a critical regulator of cell proliferation and survival. The major immunomodulatory components include parasite surface and secreted proteins/enzymes and stimulation of host cells intracellular pathways and inflammatory caspases that directly or indirectly interfere with the NF-κB pathway to thwart immune responses that are directed for containment and/or elimination of the pathogen. To showcase how protozoan parasites exploits the NF-κB signaling pathway, this review highlights recent advances from Entamoeba histolytica and other protozoan parasites in contact with host cells that induce outside-in and inside-out signaling to modulate NF-κB in disease pathogenesis and survival in the host.
Collapse
Affiliation(s)
- Attinder Chadha
- Departments of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Kris Chadee
- Departments of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
8
|
The Toxoplasma Polymorphic Effector GRA15 Mediates Seizure Induction by Modulating Interleukin-1 Signaling in the Brain. mBio 2021; 12:e0133121. [PMID: 34154412 PMCID: PMC8262954 DOI: 10.1128/mbio.01331-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toxoplasmic encephalitis can develop in individuals infected with the protozoan parasite Toxoplasma gondii and is typified by parasite replication and inflammation within the brain. Patients often present with seizures, but the parasite genes and host pathways involved in seizure development and/or propagation are unknown. We previously reported that seizure induction in Toxoplasma-infected mice is parasite strain dependent. Using quantitative trait locus mapping, we identify four loci in the Toxoplasma genome that potentially correlate with seizure development. In one locus, we identify the polymorphic virulence factor, GRA15, as a Toxoplasma gene associated with onset of seizures. GRA15 was previously shown to regulate host NF-κB-dependent gene expression during acute infections, and we demonstrate a similar role for GRA15 in brains of toxoplasmic encephalitic mice. GRA15 is important for increased expression of interleukin 1 beta (IL-1β) and other IL-1 pathway host genes, which is significant since IL-1 signaling is involved in onset of seizures. Inhibiting IL-1 receptor signaling reduced seizure severity in Toxoplasma-infected mice. These data reveal one mechanism by which seizures are induced during toxoplasmic encephalitis.
Collapse
|
9
|
de Faria Junior GM, Murata FHA, Lorenzi HA, Castro BBP, Assoni LCP, Ayo CM, Brandão CC, de Mattos LC. The Role of microRNAs in the Infection by T. gondii in Humans. Front Cell Infect Microbiol 2021; 11:670548. [PMID: 34055667 PMCID: PMC8160463 DOI: 10.3389/fcimb.2021.670548] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs are molecules belonging to an evolutionarily conserved family of small non-coding RNAs, which act on post-transcriptional gene regulation, causing messenger RNA (mRNA) degradation or inhibiting mRNA translation into proteins. These molecules represent potential biomarkers for diagnosis, non-invasive prognosis, and monitoring the development of the disease. Moreover, they may provide additional information on the pathophysiology of parasitic infections and guide strategies for treatment. The Apicomplexan parasite Toxoplasma gondii modifies the levels of microRNAs and mRNAs in infected host cells by modulating the innate and adaptive immune responses, facilitating its survival within the host. Some studies have shown that microRNAs are promising molecular markers for developing diagnostic tools for human toxoplasmosis. MicroRNAs can be detected in human specimens collected using non-invasive procedures. changes in the circulating host microRNAs have been associated with T. gondii infection in mice and ocular toxoplasmosis in humans. Besides, microRNAs can be amplified from samples using sensitive and molecular-specific approaches such as real-time PCR. This review presents recent findings of the role that microRNAs play during T. gondii infection and discuss their potential use of these small nuclei acid molecules to different approaches such as laboratory diagnosis, modulation of cell and tissue infected as other potential applications in human toxoplasmosis.
Collapse
Affiliation(s)
- Geraldo Magela de Faria Junior
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Fernando Henrique Antunes Murata
- Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, United States
| | | | - Bruno Bello Pede Castro
- Department of Preventive Veterinary Medicine and Animal Health, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, Brazil
| | - Letícia Carolina Paraboli Assoni
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Christiane Maria Ayo
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Cinara Cássia Brandão
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| | - Luiz Carlos de Mattos
- Immunogenetics Laboratory, Molecular Biology Department, Faculdade de Medicina de São José do Rio Preto (FAMERP), São José do Rio Preto, Brazil
| |
Collapse
|
10
|
Chiebao DP, Bartley PM, Chianini F, Black LE, Burrells A, Pena HFJ, Soares RM, Innes EA, Katzer F. Early immune responses and parasite tissue distribution in mice experimentally infected with oocysts of either archetypal or non-archetypal genotypes of Toxoplasma gondii. Parasitology 2021; 148:464-476. [PMID: 33315001 PMCID: PMC11010124 DOI: 10.1017/s0031182020002346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 11/15/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022]
Abstract
In most of the world Toxoplasma gondii is comprised of archetypal types (types I, II and III); however, South America displays several non-archetypal strains. This study used an experimental mouse model to characterize the immune response and parasite kinetics following infection with different parasite genotypes. An oral inoculation of 50 oocysts per mouse from T. gondii M4 type II (archetypal, avirulent), BrI or BrIII (non-archetypal, virulent and intermediate virulent, respectively) for groups (G)2, G3 and G4, respectively was used. The levels of mRNA expression of cytokines, immune compounds, cell surface markers and receptor adapters [interferon gamma (IFNγ), interleukin (IL)-12, CD8, CD4, CD25, CXCR3 and MyD88] were quantified by SYBR green reverse transcription-quantitative polymerase chain reaction. Lesions were characterized by histology and detection by immunohistochemistry established distribution of parasites. Infection in G2 mice was mild and characterized by an early MyD88-dependent pathway. In G3, there were high levels of expression of pro-inflammatory cytokines IFNγ and IL-12 in the mice showing severe clinical symptoms at 8–11 days post infection (dpi), combined with the upregulation of CD25, abundant tachyzoites and tissue lesions in livers, lungs and intestines. Significant longer expression of IFNγ and IL-12 genes, with other Th1-balanced immune responses, such as increased levels of CXCR3 and MyD88 in G4, resulted in survival of mice and chronic toxoplasmosis, with the occurrence of tissue cysts in brain and lungs, at 14 and 21 dpi. Different immune responses and kinetics of gene expression appear to be elicited by the different strains and non-archetypal parasites demonstrated higher virulence.
Collapse
Affiliation(s)
- Daniela P. Chiebao
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine and Animal Science – FMVZ, University of Sao Paulo, 87 Professor Doutor Orlando Marques de Paiva Avenue, 05508-270São Paulo, Brazil
| | - Paul M. Bartley
- Moredun Research Institute, Pentland Science Park, Bush Loan, EdinburghEH26 0PZ, UK
| | - Francesca Chianini
- Moredun Research Institute, Pentland Science Park, Bush Loan, EdinburghEH26 0PZ, UK
| | - Lauren E. Black
- Moredun Research Institute, Pentland Science Park, Bush Loan, EdinburghEH26 0PZ, UK
| | - Alison Burrells
- Moredun Research Institute, Pentland Science Park, Bush Loan, EdinburghEH26 0PZ, UK
| | - Hilda F. J. Pena
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine and Animal Science – FMVZ, University of Sao Paulo, 87 Professor Doutor Orlando Marques de Paiva Avenue, 05508-270São Paulo, Brazil
| | - Rodrigo M. Soares
- Department of Preventive Veterinary Medicine, Faculty of Veterinary Medicine and Animal Science – FMVZ, University of Sao Paulo, 87 Professor Doutor Orlando Marques de Paiva Avenue, 05508-270São Paulo, Brazil
| | - Elisabeth A. Innes
- Moredun Research Institute, Pentland Science Park, Bush Loan, EdinburghEH26 0PZ, UK
| | - Frank Katzer
- Moredun Research Institute, Pentland Science Park, Bush Loan, EdinburghEH26 0PZ, UK
| |
Collapse
|
11
|
Kochanowsky JA, Thomas KK, Koshy AA. ROP16-Mediated Activation of STAT6 Suppresses Host Cell Reactive Oxygen Species Production, Facilitating Type III Toxoplasma gondii Growth and Survival. mBio 2021; 12:e03305-20. [PMID: 33653884 PMCID: PMC8092286 DOI: 10.1128/mbio.03305-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/22/2021] [Indexed: 12/21/2022] Open
Abstract
Polymorphic effector proteins determine the susceptibility of Toxoplasma gondii strains to IFN-γ-mediated clearance mechanisms deployed by murine host cells. However, less is known about the influence of these polymorphic effector proteins on IFN-γ-independent clearance mechanisms. Here, we show that deletion of one such polymorphic effector protein, ROP16, from a type III background leads to a defect in parasite growth and survival in unstimulated human fibroblasts and murine macrophages. Rescue of these defects requires a ROP16 with a functional kinase domain and the ability to activate a specific family of host cell transcription factors (STAT3, 5a, and 6). The growth and survival defects correlate with an accumulation of host cell reactive oxygen species (ROS) and are prevented by treatment with an ROS inhibitor. Exogenous activation of STAT3 and 6 suppresses host cell ROS production during infection with ROP16-deficient parasites and depletion of STAT6, but not STAT3 or 5a, causes an accumulation of ROS in cells infected with wild-type parasites. Pharmacological inhibition of NOX2 and mitochondrially derived ROS also rescues growth and survival of ROP16-deficient parasites. Collectively, these findings reveal an IFN-γ-independent mechanism of parasite restriction in human cells that is subverted by injection of ROP16 by type III parasites.IMPORTANCEToxoplasma gondii is an obligate intracellular parasite that infects up to one-third of the world's population. Control of the parasite is largely accomplished by IFN-γ-dependent mechanisms that stimulate innate and adaptive immune responses. Parasite suppression of IFN-γ-stimulated responses has been linked to proteins that the parasite secretes into its host cell. These secreted proteins vary by T. gondii strain and determine strain-specific lethality in mice. How these strain-specific polymorphic effector proteins affect IFN-γ-independent parasite control mechanisms in human and murine cells is not well known. This study shows that one such secreted protein, ROP16, enables efficient parasite growth and survival by suppressing IFN-γ-independent production of ROS by human and mouse cells.
Collapse
Affiliation(s)
| | | | - Anita A Koshy
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Neurology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
12
|
Chen L, Christian DA, Kochanowsky JA, Phan AT, Clark JT, Wang S, Berry C, Oh J, Chen X, Roos DS, Beiting DP, Koshy AA, Hunter CA. The Toxoplasma gondii virulence factor ROP16 acts in cis and trans, and suppresses T cell responses. J Exp Med 2020; 217:133618. [PMID: 31961916 PMCID: PMC7062521 DOI: 10.1084/jem.20181757] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/10/2019] [Accepted: 11/25/2019] [Indexed: 01/19/2023] Open
Abstract
The ability of Toxoplasma gondii to inject the rhoptry kinase ROP16 into host cells results in the activation of the transcription factors STAT3 and STAT6, but it is unclear how these events impact infection. Here, parasites that inject Cre-recombinase with rhoptry proteins were used to distinguish infected macrophages from those only injected with parasite proteins. Transcriptional profiling revealed that injection of rhoptry proteins alone was sufficient to induce an M2 phenotype that is dependent on STAT3 and STAT6, but only infected cells displayed reduced expression of genes associated with antimicrobial activity and protective immunity. In vivo, the absence of STAT3 or STAT6 improved parasite control, while the loss of ROP16 resulted in a marked reduction in parasite numbers and heightened parasite-specific T cell responses. Thus, ROP16 is a virulence factor that can act in cis and trans to promote M2 programs and which limits the magnitude of parasite-specific T cell responses.
Collapse
Affiliation(s)
- Longfei Chen
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China.,Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - David A Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Joshua A Kochanowsky
- Department of Neurology and Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, AZ
| | - Anthony T Phan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Joseph T Clark
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Shuai Wang
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Corbett Berry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jung Oh
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - Xiaoguang Chen
- Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - David S Roos
- Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Anita A Koshy
- Department of Neurology and Department of Immunobiology, BIO5 Institute, University of Arizona, Tucson, AZ
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
13
|
Mukhopadhyay D, Arranz-Solís D, Saeij JPJ. Influence of the Host and Parasite Strain on the Immune Response During Toxoplasma Infection. Front Cell Infect Microbiol 2020; 10:580425. [PMID: 33178630 PMCID: PMC7593385 DOI: 10.3389/fcimb.2020.580425] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/11/2020] [Indexed: 01/02/2023] Open
Abstract
Toxoplasma gondii is an exceptionally successful parasite that infects a very broad host range, including humans, across the globe. The outcome of infection differs remarkably between hosts, ranging from acute death to sterile infection. These differential disease patterns are strongly influenced by both host- and parasite-specific genetic factors. In this review, we discuss how the clinical outcome of toxoplasmosis varies between hosts and the role of different immune genes and parasite virulence factors, with a special emphasis on Toxoplasma-induced ileitis and encephalitis.
Collapse
Affiliation(s)
| | | | - Jeroen P. J. Saeij
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| |
Collapse
|
14
|
Transcriptional Profiling Suggests T Cells Cluster around Neurons Injected with Toxoplasma gondii Proteins. mSphere 2020; 5:5/5/e00538-20. [PMID: 32878927 PMCID: PMC7471001 DOI: 10.1128/msphere.00538-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Like other persistent intracellular pathogens, Toxoplasma gondii, a protozoan parasite, has evolved to evade the immune system and establish a chronic infection in specific cells and organs, including neurons in the CNS. Understanding T. gondii’s persistence in neurons holds the potential to identify novel, curative drug targets. The work presented here offers new insights into the neuron-T. gondii interaction in vivo. By transcriptionally profiling neurons manipulated by T. gondii, we unexpectedly revealed that immune cells, and specifically CD8+ T cells, appear to cluster around these neurons, suggesting that CD8+ T cells specifically recognize parasite-manipulated neurons. Such a possibility supports evidence from other labs that questions the long-standing dogma that neurons are often persistently infected because they are not directly recognized by immune cells such as CD8+ T cells. Collectively, these data suggest we reconsider the broader role of neurons in the context of infection and neuroinflammation. Toxoplasma gondii’s tropism for and persistence in the central nervous system (CNS) underlies the symptomatic disease that T. gondii causes in humans. Our recent work has shown that neurons are the primary CNS cell with which Toxoplasma interacts and which it infects in vivo. This predilection for neurons suggests that T. gondii’s persistence in the CNS depends specifically upon parasite manipulation of the host neurons. Yet, most work on T. gondii-host cell interactions has been done in vitro and in nonneuronal cells. We address this gap by utilizing our T. gondii-Cre system that allows permanent marking and tracking of neurons injected with parasite effector proteins in vivo. Using laser capture microdissection (LCM) and RNA sequencing using RNA-seq, we isolated and transcriptionally profiled T. gondii-injected neurons (TINs), Bystander neurons (nearby non-T. gondii-injected neurons), and neurons from uninfected mice (controls). These profiles show that TIN transcriptomes significantly differ from the transcriptomes of Bystander and control neurons and that much of this difference is driven by increased levels of transcripts from immune cells, especially CD8+ T cells and monocytes. These data suggest that when we used LCM to isolate neurons from infected mice, we also picked up fragments of CD8+ T cells and monocytes clustering in extreme proximity around TINs and, to a lesser extent, Bystander neurons. In addition, we found that T. gondii transcripts were primarily found in the TIN transcriptome, not in the Bystander transcriptome. Collectively, these data suggest that, contrary to common perception, neurons that directly interact with or harbor parasites can be recognized by CD8+ T cells. IMPORTANCE Like other persistent intracellular pathogens, Toxoplasma gondii, a protozoan parasite, has evolved to evade the immune system and establish a chronic infection in specific cells and organs, including neurons in the CNS. Understanding T. gondii’s persistence in neurons holds the potential to identify novel, curative drug targets. The work presented here offers new insights into the neuron-T. gondii interaction in vivo. By transcriptionally profiling neurons manipulated by T. gondii, we unexpectedly revealed that immune cells, and specifically CD8+ T cells, appear to cluster around these neurons, suggesting that CD8+ T cells specifically recognize parasite-manipulated neurons. Such a possibility supports evidence from other labs that questions the long-standing dogma that neurons are often persistently infected because they are not directly recognized by immune cells such as CD8+ T cells. Collectively, these data suggest we reconsider the broader role of neurons in the context of infection and neuroinflammation.
Collapse
|
15
|
Aging with Toxoplasma gondii results in pathogen clearance, resolution of inflammation, and minimal consequences to learning and memory. Sci Rep 2020; 10:7979. [PMID: 32409672 PMCID: PMC7224383 DOI: 10.1038/s41598-020-64823-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/15/2020] [Indexed: 12/31/2022] Open
Abstract
Persistent inflammation has been identified as a contributor to aging-related neurodegenerative disorders such as Alzheimer's disease. Normal aging, in the absence of dementia, also results in gradual cognitive decline and is thought to arise, in part, because of a chronic pro-inflammatory state in the brain. Toxoplasma gondii is an obligate intracellular parasite that establishes a persistent, asymptomatic infection of the central nervous system (CNS) accompanied by a pro-inflammatory immune response in many of its hosts, including humans and rodents. Several studies have suggested that the inflammation generated by certain strains of T. gondii infection can be neuroprotective in the context of a secondary insult like beta-amyloid accumulation or stroke. Given these neuroprotective studies, we hypothesized that a prolonged infection with T. gondii may protect against age-associated decline in cognition. To test this hypothesis, we infected young adult mice with either of two genetically distinct, persistent T. gondii strains (Prugniaud/type II/haplogroup 2 and CEP/type III/haplogroup 3) and monitored mouse weight, survival, and learning and memory over the ensuing 20 months. At the end of the study, we evaluated CNS inflammation and parasite burden in the surviving mice. We found that parasite infection had no impact on age-associated decline in learning and memory and that by 20 months post infection, in the surviving mice, we found no evidence of parasite DNA, cysts, or inflammation in the CNS. In addition, we found that mice infected with type III parasites, which are supposed to be less virulent than the type II parasites, had a lower rate of long-term survival. Collectively, these data indicate that T. gondii may not cause a life-long CNS infection. Rather, parasites are likely slowly cleared from the CNS and infection and parasite clearance neither positively nor negatively impacts learning and memory in aging.
Collapse
|
16
|
Park J, Hunter CA. The role of macrophages in protective and pathological responses to Toxoplasma gondii. Parasite Immunol 2020; 42:e12712. [PMID: 32187690 DOI: 10.1111/pim.12712] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
The ability of Toxoplasma gondii to cause clinical disease in immune-competent and immune-deficient hosts coupled with its ease of use in vitro and availability of murine models has led to its use as a model organism to study how the immune system controls an intracellular infection. This article reviews the studies that established the role of the cytokine IFN-γ in the activation of macrophages to control T gondii and the events that lead to the mobilization and expansion of macrophage populations and their ability to limit parasite replication. Macrophages also have pro-inflammatory functions that promote protective NK and T-cell activities as well as regulatory properties that facilitate the resolution of inflammation. Nevertheless, while macrophages are important in determining the outcome of infection, T gondii has evolved mechanisms to subvert macrophage activation and can utilize their migratory activities to promote dissemination and these two properties underlie the ability of this parasite to persist and cause disease.
Collapse
Affiliation(s)
- Jeongho Park
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA.,Kangwon National University College of Veterinary Medicine and Institute of Veterinary Science, Chuncheon, Korea
| | | |
Collapse
|