1
|
Schultz EP, Ponsness L, Lanchy JM, Zehner M, Klein F, Ryckman BJ. Human cytomegalovirus gH/gL/gO binding to PDGFRα provides a regulatory signal activating the fusion protein gB that can be blocked by neutralizing antibodies. J Virol 2025:e0003525. [PMID: 40202318 DOI: 10.1128/jvi.00035-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/11/2025] [Indexed: 04/10/2025] Open
Abstract
Herpesviruses require membrane fusion for entry and spread, a process facilitated by the fusion glycoprotein B (gB) and the regulatory factor gH/gL. The human cytomegalovirus (HCMV) gH/gL can be modified by the accessory protein gO, or the set of proteins UL128, UL130, and UL131. While the binding of the gH/gL/gO and gH/gL/UL128-131 complexes to cellular receptors, including PDGFRα and NRP2, has been well-characterized structurally, the specific role of receptor engagements by the gH/gL/gO and gH/gL/UL128-131 in regulation of fusion has remained unclear. We describe a cell-cell fusion assay that can quantitatively measure fusion on a timescale of minutes and demonstrate that binding of gH/gL/gO to PDGFRα dramatically enhances gB-mediated cell-cell fusion. In contrast, gH/gL/pUL128-131-regulated fusion is significantly slower, and gH/gL alone cannot promote gB fusion activity within this timescale. The genetic diversity of gO influenced the observed cell-cell fusion rates, correlating with previously reported effects on HCMV infectivity. Mutations in gL that had no effect on the formation of gH/gL/gO or binding to PDGFRa dramatically reduced the cell-cell fusion rate, suggesting that gL plays a critical role in linking the gH/gL/gO-PDGFRa receptor binding to activation of gB. Several neutralizing human monoclonal antibodies were found to potently block gH/gL/gO-PDGFRa-regulated cell-cell fusion, suggesting this mechanism as a therapeutic target. IMPORTANCE Development of vaccines and therapeutics targeting the fusion apparatus of human cytomegalovirus (HCMV) has been limited by the lack of an in vitro cell-cell fusion assay that faithfully models the receptor-dependent fusion characteristic of HCMV entry. The cell-cell fusion assay described here demonstrated that the binding of gH/gL/gO to its receptor, PDGFRα, serves to regulate the activity of the fusion protein gB, and this is specifically vulnerable to inhibition by neutralizing antibodies. Moreover, the measurement of fusion kinetics allows for mutational studies of the fusion mechanism, assessing the influence of genetic diversity among the viral glycoproteins and studying the mechanism of neutralizing antibodies.
Collapse
Affiliation(s)
- Eric P Schultz
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, USA
| | - Lars Ponsness
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, USA
| | - Matthias Zehner
- Laboratory for Infection and Immune Biology, University of Cologne, Cologne, Germany
- Institute of Virology, University Cologne, Cologne, Germany
- Faculty of Medicine, University of Cologne, Cologne, Germany
- University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Florian Klein
- Institute of Virology, University Cologne, Cologne, Germany
- Faculty of Medicine, University of Cologne, Cologne, Germany
- University Hospital Cologne, University of Cologne, Cologne, Germany
- Laboratory of Experimental Immunology, University of Cologne, Cologne, Germany
| | - Brent J Ryckman
- Division of Biological Sciences, University of Montana, Missoula, Montana, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, USA
| |
Collapse
|
2
|
Schultz EP, Ponsness L, Lanchy JM, Zehner M, Klein F, Ryckman BJ. Human cytomegalovirus gH/gL/gO binding to PDGFRα provides a regulatory signal activating the fusion protein gB that can be blocked by neutralizing antibodies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.08.631902. [PMID: 39829861 PMCID: PMC11741351 DOI: 10.1101/2025.01.08.631902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Herpesviruses require membrane fusion for entry and spread, a process facilitated by the fusion glycoprotein B (gB) and the regulatory factor gH/gL. The human cytomegalovirus (HCMV) gH/gL can be modified by the accessory protein gO, or the set of proteins UL128, UL130 and UL131. While the binding of the gH/gL/gO and gH/gL/UL128-131 complexes to cellular receptors including PDFGRα and NRP2 has been well-characterized structurally, the specific role of receptor engagements by the gH/gL/gO and gH/gL/UL128-131 in regulation of fusion has remained unclear. We describe a cell-cell fusion assay that can quantitatively measure fusion on a timescale of minutes and demonstrate that binding of gH/gL/gO to PDGFRα dramatically enhances gB-mediated cell-cell fusion. In contrast, gH/gL/pUL128-131-regulated fusion is significantly slower and gH/gL alone cannot promote gB fusion activity within this timescale. The genetic diversity of gO influenced the observed cell-cell fusion rates, correlating with previously reported effects on HCMV infectivity. Mutations in gL that had no effect on formation of gH/gL/gO or binding to PDGFRα dramatically reduced the cell-cell fusion rate, suggesting that gL plays a critical role in linking the gH/gL/gO-PDGFRα receptor-binding to activation of gB. Several neutralizing human monoclonal antibodies were found to potently block gH/gL/gO-PDGFRα regulated cell-cell fusion, suggesting this mechanism as a therapeutic target.
Collapse
Affiliation(s)
- Eric P. Schultz
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Lars Ponsness
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| | - Matthias Zehner
- Laboratory for Infection and Immune Biology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Florian Klein
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brent J. Ryckman
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
- Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
3
|
Narayanan KK, Amaya M, Tsang N, Yin R, Jays A, Broder CC, Shukla D, Procko E. Sequence basis for selectivity of ephrin-B2 ligand for Eph receptors and pathogenic henipavirus G glycoproteins. J Virol 2023; 97:e0062123. [PMID: 37931130 PMCID: PMC10688352 DOI: 10.1128/jvi.00621-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/13/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE Ephrin-B2 (EFNB2) is a ligand for six Eph receptors in humans and regulates multiple cell developmental and signaling processes. It also functions as the cell entry receptor for Nipah virus and Hendra virus, zoonotic viruses that can cause respiratory and/or neurological symptoms in humans with high mortality. Here, we investigate the sequence basis of EFNB2 specificity for binding the Nipah virus attachment G glycoprotein over Eph receptors. We then use this information to engineer EFNB2 as a soluble decoy receptor that specifically binds the attachment glycoproteins of the Nipah virus and other related henipaviruses to neutralize infection. These findings further mechanistic understanding of protein selectivity and may facilitate the development of diagnostics or therapeutics against henipavirus infection.
Collapse
Affiliation(s)
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Natalie Tsang
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
| | - Randy Yin
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Alka Jays
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois, Urbana, Illinois, USA
| | - Erik Procko
- Department of Biochemistry, University of Illinois, Urbana, Illinois, USA
- Cancer Center at Illinois, University of Illinois, Urbana, Illinois, USA
- Cyrus Biotechnology, Seattle, Washington, USA
| |
Collapse
|
4
|
Maes S, Deploey N, Peelman F, Eyckerman S. Deep mutational scanning of proteins in mammalian cells. CELL REPORTS METHODS 2023; 3:100641. [PMID: 37963462 PMCID: PMC10694495 DOI: 10.1016/j.crmeth.2023.100641] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/06/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Protein mutagenesis is essential for unveiling the molecular mechanisms underlying protein function in health, disease, and evolution. In the past decade, deep mutational scanning methods have evolved to support the functional analysis of nearly all possible single-amino acid changes in a protein of interest. While historically these methods were developed in lower organisms such as E. coli and yeast, recent technological advancements have resulted in the increased use of mammalian cells, particularly for studying proteins involved in human disease. These advancements will aid significantly in the classification and interpretation of variants of unknown significance, which are being discovered at large scale due to the current surge in the use of whole-genome sequencing in clinical contexts. Here, we explore the experimental aspects of deep mutational scanning studies in mammalian cells and report the different methods used in each step of the workflow, ultimately providing a useful guide toward the design of such studies.
Collapse
Affiliation(s)
- Stefanie Maes
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biochemistry and Microbiology, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Nick Deploey
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Frank Peelman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium
| | - Sven Eyckerman
- VIB Center for Medical Biotechnology (CMB), Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark-Zwijnaarde 75, 9052 Ghent, Belgium.
| |
Collapse
|
5
|
Narayanan KK, Amaya M, Tsang N, Yin R, Jays A, Broder CC, Shukla D, Procko E. The Sequence Basis for Selectivity of Ephrin-B2 Ligand for Eph Receptors and Pathogenic Henipavirus G Glycoproteins: Selective Ephrin-B2 Decoys for Nipah and Hendra Virus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538420. [PMID: 37162958 PMCID: PMC10168364 DOI: 10.1101/2023.04.26.538420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Ephrin-B2 (EFNB2) is a ligand for six Eph receptors in humans and functions as a cell entry receptor for several henipaviruses including Nipah virus (NiV), a pathogenic zoonotic virus with pandemic potential. To understand the sequence basis of promiscuity for EFNB2 binding to the attachment glycoprotein of NiV (NiV-G) and Eph receptors, we performed deep mutagenesis on EFNB2 to identify mutations that enhance binding to NiV-G over EphB2, one of the highest affinity Eph receptors. The mutations highlight how different EFNB2 conformations are selected by NiV-G versus EphB2. Specificity mutations are enriched at the base of the G-H binding loop of EFNB2, especially surrounding a phenylalanine hinge upon which the G-H loop pivots, and at a phenylalanine hook that rotates away from the EFNB2 core to engage Eph receptors. One EFNB2 mutant, D62Q, possesses pan-specificity to the attachment glycoproteins of closely related henipaviruses and has markedly diminished binding to the six Eph receptors. However, EFNB2-D62Q has high residual binding to EphB3 and EphB4. A second deep mutational scan of EFNB2 identified combinatorial mutations to further enhance specificity to NiV-G. A triple mutant of soluble EFNB2, D62Q-Q130L-V167L, has minimal binding to Eph receptors but maintains binding, albeit reduced, to NiV-G. Soluble EFNB2 decoy receptors carrying the specificity mutations were potent neutralizers of chimeric henipaviruses. These findings demonstrate how specific residue changes at the shared binding interface of a promiscuous ligand (EFNB2) can influence selectivity for multiple receptors, and may also offer insight towards the development of henipavirus therapeutics and diagnostics.
Collapse
Affiliation(s)
| | - Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda MD, USA
| | - Natalie Tsang
- Department of Biochemistry, University of Illinois, Urbana IL, USA
| | - Randy Yin
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda MD, USA
| | - Alka Jays
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda MD, USA
| | - Christopher C. Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda MD, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois, Urbana IL, USA
| | - Erik Procko
- Department of Biochemistry, University of Illinois, Urbana IL, USA
- Cancer Center at Illinois, University of Illinois, Urbana IL, USA
- Cyrus Biotechnology, Seattle WA, USA
| |
Collapse
|
6
|
Chan MC, Chan KK, Procko E, Shukla D. Machine Learning Guided Design of High-Affinity ACE2 Decoys for SARS-CoV-2 Neutralization. J Phys Chem B 2023; 127:1995-2001. [PMID: 36827526 PMCID: PMC9999943 DOI: 10.1021/acs.jpcb.3c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/03/2023] [Indexed: 02/26/2023]
Abstract
A potential therapeutic strategy for neutralizing SARS-CoV-2 infection is engineering high-affinity soluble ACE2 decoy proteins to compete for binding to the viral spike (S) protein. Previously, a deep mutational scan of ACE2 was performed and has led to the identification of a triple mutant variant, named sACE22.v.2.4, that exhibits subnanomolar affinity to the receptor-binding domain (RBD) of S. Using a recently developed transfer learning algorithm, TLmutation, we sought to identify other ACE2 variants that may exhibit similar binding affinity with decreased mutational load. Upon training a TLmutation model on the effects of single mutations, we identified multiple ACE2 double mutants that bind SARS-CoV-2 S with tighter affinity as compared to the wild type, most notably L79V;N90D that binds RBD similarly to ACE22.v.2.4. The experimental validation of the double mutants successfully demonstrates the use of machine learning approaches for engineering protein-protein interactions and identifying high-affinity ACE2 peptides for targeting SARS-CoV-2.
Collapse
Affiliation(s)
- Matthew C. Chan
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61081, USA
| | - Kui. K. Chan
- Cyrus Biotechnology, Inc., Seattle, WA, 98101, USA
| | - Erik Procko
- Cyrus Biotechnology, Inc., Seattle, WA, 98101, USA
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61081, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61081, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61081, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL 61081, USA
| |
Collapse
|
7
|
Yu Y, Alvarado R, Petty LE, Bohlender RJ, Shaw DM, Below JE, Bejar N, Ruiz OE, Tandon B, Eisenhoffer GT, Kiss DL, Huff CD, Letra A, Hecht JT. Polygenic risk impacts PDGFRA mutation penetrance in non-syndromic cleft lip and palate. Hum Mol Genet 2022; 31:2348-2357. [PMID: 35147171 PMCID: PMC9307317 DOI: 10.1093/hmg/ddac037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/12/2022] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common, severe craniofacial malformation that imposes significant medical, psychosocial and financial burdens. NSCL/P is a multifactorial disorder with genetic and environmental factors playing etiologic roles. Currently, only 25% of the genetic variation underlying NSCL/P has been identified by linkage, candidate gene and genome-wide association studies. In this study, whole-genome sequencing and genome-wide genotyping followed by polygenic risk score (PRS) and linkage analyses were used to identify the genetic etiology of NSCL/P in a large three-generation family. We identified a rare missense variant in PDGFRA (c.C2740T; p.R914W) as potentially etiologic in a gene-based association test using pVAAST (P = 1.78 × 10-4) and showed decreased penetrance. PRS analysis suggested that variant penetrance was likely modified by common NSCL/P risk variants, with lower scores found among unaffected carriers. Linkage analysis provided additional support for PRS-modified penetrance, with a 7.4-fold increase in likelihood after conditioning on PRS. Functional characterization experiments showed that the putatively causal variant was null for signaling activity in vitro; further, perturbation of pdgfra in zebrafish embryos resulted in unilateral orofacial clefting. Our findings show that a rare PDGFRA variant, modified by additional common NSCL/P risk variants, have a profound effect on NSCL/P risk. These data provide compelling evidence for multifactorial inheritance long postulated to underlie NSCL/P and may explain some unusual familial patterns.
Collapse
Affiliation(s)
- Yao Yu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rolando Alvarado
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Lauren E Petty
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan J Bohlender
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Douglas M Shaw
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nada Bejar
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Oscar E Ruiz
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bhavna Tandon
- Department of Pediatrics and Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - George T Eisenhoffer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel L Kiss
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Chad D Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ariadne Letra
- Department of Diagnostic and Biomedical Sciences, UTHealth School of Dentistry at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston 77054, TX, USA
| | - Jacqueline T Hecht
- Department of Pediatrics and Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston 77054, TX, USA
| |
Collapse
|
8
|
Jing W, Procko E. ACE2-based decoy receptors for SARS coronavirus 2. Proteins 2021; 89:1065-1078. [PMID: 33973262 PMCID: PMC8242511 DOI: 10.1002/prot.26140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/16/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022]
Abstract
SARS coronavirus 2 is neutralized by proteins that block receptor-binding sites on spikes that project from the viral envelope. In particular, substantial research investment has advanced monoclonal antibody therapies to the clinic where they have shown partial efficacy in reducing viral burden and hospitalization. An alternative is to use the host entry receptor, angiotensin-converting enzyme 2 (ACE2), as a soluble decoy that broadly blocks SARS-associated coronaviruses with limited potential for viral escape. Here, we summarize efforts to engineer higher affinity variants of soluble ACE2 that rival the potency of affinity-matured antibodies. Strategies have also been used to increase the valency of ACE2 decoys for avid spike interactions and to improve pharmacokinetics via IgG fusions. Finally, the intrinsic catalytic activity of ACE2 for the turnover of the vasoconstrictor angiotensin II may directly address COVID-19 symptoms and protect against lung and cardiovascular injury, conferring dual mechanisms of action unachievable by monoclonal antibodies. Soluble ACE2 derivatives therefore have the potential to be next generation therapeutics for addressing the immediate needs of the current pandemic and possible future outbreaks.
Collapse
Affiliation(s)
- Wenyang Jing
- Center for Biophysics and Quantitative BiologyUniversity of IllinoisUrbanaIllinoisUSA
| | - Erik Procko
- Center for Biophysics and Quantitative BiologyUniversity of IllinoisUrbanaIllinoisUSA
- Department of Biochemistry and Cancer Center at IllinoisUniversity of IllinoisUrbanaIllinoisUSA
| |
Collapse
|
9
|
Laib Sampaio K, Lutz C, Engels R, Stöhr D, Sinzger C. Selection of Human Cytomegalovirus Mutants with Resistance against PDGFRα-Derived Entry Inhibitors. Viruses 2021; 13:v13061094. [PMID: 34201364 PMCID: PMC8229732 DOI: 10.3390/v13061094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
The human cytomegalovirus (HCMV) infects fibroblasts via an interaction of its envelope glycoprotein gO with the cellular platelet-derived growth factor receptor alpha (PDGFRα), and soluble derivatives of this receptor can inhibit viral entry. We aimed to select mutants with resistance against PDGFRα-Fc and the PDGFRα-derived peptides GT40 and IK40 to gain insight into the underlying mechanisms and determine the genetic barrier to resistance. An error-prone variant of strain AD169 was propagated in the presence of inhibitors, cell cultures were monitored weekly for signs of increased viral growth, and selected viruses were tested regarding their sensitivity to the inhibitor. Resistant virus was analyzed by DNA sequencing, candidate mutations were transferred into AD169 clone pHB5 by seamless mutagenesis, and reconstituted virus was again tested for loss of sensitivity by dose-response analyses. An S48Y mutation in gO was identified that conferred a three-fold loss of sensitivity against PDGFRα-Fc, a combination of mutations in gO, gH, gB and gN reduced sensitivity to GT40 by factor 4, and no loss of sensitivity occurred with IK40. The resistance-conferring mutations support the notion that PDGFRα-Fc and GT40 perturb the interaction of gO with its receptor, but the relatively weak effect indicates a high genetic barrier to resistance.
Collapse
|
10
|
Narayanan KK, Procko E. Deep Mutational Scanning of Viral Glycoproteins and Their Host Receptors. Front Mol Biosci 2021; 8:636660. [PMID: 33898517 PMCID: PMC8062978 DOI: 10.3389/fmolb.2021.636660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/18/2021] [Indexed: 11/17/2022] Open
Abstract
Deep mutational scanning or deep mutagenesis is a powerful tool for understanding the sequence diversity available to viruses for adaptation in a laboratory setting. It generally involves tracking an in vitro selection of protein sequence variants with deep sequencing to map mutational effects based on changes in sequence abundance. Coupled with any of a number of selection strategies, deep mutagenesis can explore the mutational diversity available to viral glycoproteins, which mediate critical roles in cell entry and are exposed to the humoral arm of the host immune response. Mutational landscapes of viral glycoproteins for host cell attachment and membrane fusion reveal extensive epistasis and potential escape mutations to neutralizing antibodies or other therapeutics, as well as aiding in the design of optimized immunogens for eliciting broadly protective immunity. While less explored, deep mutational scans of host receptors further assist in understanding virus-host protein interactions. Critical residues on the host receptors for engaging with viral spikes are readily identified and may help with structural modeling. Furthermore, mutations may be found for engineering soluble decoy receptors as neutralizing agents that specifically bind viral targets with tight affinity and limited potential for viral escape. By untangling the complexities of how sequence contributes to viral glycoprotein and host receptor interactions, deep mutational scanning is impacting ideas and strategies at multiple levels for combatting circulating and emergent virus strains.
Collapse
Affiliation(s)
| | - Erik Procko
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, IL, United States
| |
Collapse
|
11
|
Feldmann S, Grimm I, Stöhr D, Antonini C, Lischka P, Sinzger C, Stegmann C. Targeted mutagenesis on PDGFRα-Fc identifies amino acid modifications that allow efficient inhibition of HCMV infection while abolishing PDGF sequestration. PLoS Pathog 2021; 17:e1009471. [PMID: 33780515 PMCID: PMC8031885 DOI: 10.1371/journal.ppat.1009471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/08/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Platelet-derived growth factor receptor alpha (PDGFRα) serves as an entry receptor for the human cytomegalovirus (HCMV), and soluble PDGFRα-Fc can neutralize HCMV at a half-maximal effective concentration (EC50) of about 10 ng/ml. While this indicates a potential for usage as an HCMV entry inhibitor PDGFRα-Fc can also bind the physiological ligands of PDGFRα (PDGFs), which likely interferes with the respective signaling pathways and represents a potential source of side effects. Therefore, we tested the hypothesis that interference with PDGF signaling can be prevented by mutations in PDGFRα-Fc or combinations thereof, without losing the inhibitory potential for HCMV. To this aim, a targeted mutagenesis approach was chosen. The mutations were quantitatively tested in biological assays for interference with PDGF-dependent signaling as well as inhibition of HCMV infection and biochemically for reduced affinity to PDGF-BB, facilitating quantification of PDGFRα-Fc selectivity for HCMV inhibition. Mutation of Ile 139 to Glu and Tyr 206 to Ser strongly reduced the affinity for PDGF-BB and hence interference with PDGF-dependent signaling. Inhibition of HCMV infection was less affected, thus increasing the selectivity by factor 4 and 8, respectively. Surprisingly, the combination of these mutations had an additive effect on binding of PDGF-BB but not on inhibition of HCMV, resulting in a synergistic 260fold increase of selectivity. In addition, a recently reported mutation, Val 242 to Lys, was included in the analysis. PDGFRα-Fc with this mutation was fully effective at blocking HCMV entry and had a drastically reduced affinity for PDGF-BB. Combining Val 242 to Lys with Ile 139 to Glu and/or Tyr 206 to Ser further reduced PDGF ligand binding beyond detection. In conclusion, this targeted mutagenesis approach identified combinations of mutations in PDGFRα-Fc that prevent interference with PDGF-BB but maintain inhibition of HCMV, which qualifies such mutants as candidates for the development of HCMV entry inhibitors.
Collapse
Affiliation(s)
- Svenja Feldmann
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Dagmar Stöhr
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| | - Chiara Antonini
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Peter Lischka
- AiCuris Anti-infective Cures GmbH, Wuppertal, Germany
| | | | - Cora Stegmann
- Institute of Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
12
|
Kschonsak M, Rougé L, Arthur CP, Hoangdung H, Patel N, Kim I, Johnson MC, Kraft E, Rohou AL, Gill A, Martinez-Martin N, Payandeh J, Ciferri C. Structures of HCMV Trimer reveal the basis for receptor recognition and cell entry. Cell 2021; 184:1232-1244.e16. [PMID: 33626330 DOI: 10.1016/j.cell.2021.01.036] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/10/2021] [Accepted: 01/21/2021] [Indexed: 01/19/2023]
Abstract
Human cytomegalovirus (HCMV) infects the majority of the human population and represents the leading viral cause of congenital birth defects. HCMV utilizes the glycoproteins gHgLgO (Trimer) to bind to platelet-derived growth factor receptor alpha (PDGFRα) and transforming growth factor beta receptor 3 (TGFβR3) to gain entry into multiple cell types. This complex is targeted by potent neutralizing antibodies and represents an important candidate for therapeutics against HCMV. Here, we determine three cryogenic electron microscopy (cryo-EM) structures of the trimer and the details of its interactions with four binding partners: the receptor proteins PDGFRα and TGFβR3 as well as two broadly neutralizing antibodies. Trimer binding to PDGFRα and TGFβR3 is mutually exclusive, suggesting that they function as independent entry receptors. In addition, Trimer-PDGFRα interaction has an inhibitory effect on PDGFRα signaling. Our results provide a framework for understanding HCMV receptor engagement, neutralization, and the development of anti-viral strategies against HCMV.
Collapse
Affiliation(s)
- Marc Kschonsak
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA.
| | - Lionel Rougé
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | | | - Ho Hoangdung
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Nidhi Patel
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Ingrid Kim
- Department of Antibody Engineering, Genentech, South San Francisco, CA 94080, USA
| | - Matthew C Johnson
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Edward Kraft
- Department of BioMolecular Resources, Genentech, South San Francisco, CA 94080, USA
| | - Alexis L Rohou
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA
| | - Avinash Gill
- Department of Antibody Engineering, Genentech, South San Francisco, CA 94080, USA
| | - Nadia Martinez-Martin
- Department of Microchemistry, Proteomics and Lipidomics Department, Genentech, South San Francisco, CA 94080, USA.
| | - Jian Payandeh
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA; Department of Antibody Engineering, Genentech, South San Francisco, CA 94080, USA.
| | - Claudio Ciferri
- Department of Structural Biology, Genentech, South San Francisco, CA 94080, USA.
| |
Collapse
|
13
|
Procko E. Deep mutagenesis in the study of COVID-19: a technical overview for the proteomics community. Expert Rev Proteomics 2020; 17:633-638. [PMID: 33084449 PMCID: PMC7594187 DOI: 10.1080/14789450.2020.1833721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
INTRODUCTION The spike (S) of SARS coronavirus 2 (SARS-CoV-2) engages angiotensin-converting enzyme 2 (ACE2) on a host cell to trigger viral-cell membrane fusion and infection. The extracellular region of ACE2 can be administered as a soluble decoy to compete for binding sites on the receptor-binding domain (RBD) of S, but it has only moderate affinity and efficacy. The RBD, which is targeted by neutralizing antibodies, may also change and adapt through mutation as SARS-CoV-2 becomes endemic, posing challenges for therapeutic and vaccine development. AREAS COVERED Deep mutagenesis is a Big Data approach to characterizing sequence variants. A deep mutational scan of ACE2 expressed on human cells identified mutations that increase S affinity and guided the engineering of a potent and broad soluble receptor decoy. A deep mutational scan of the RBD displayed on the surface of yeast has revealed residues tolerant of mutational changes that may act as a source for drug resistance and antigenic drift. EXPERT OPINION Deep mutagenesis requires a selection of diverse sequence variants; an in vitro evolution experiment that is tracked with next-generation sequencing. The choice of expression system, diversity of the variant library and selection strategy have important consequences for data quality and interpretation.
Collapse
Affiliation(s)
- Erik Procko
- Department of Biochemistry and Cancer Center at Illinois, University of Illinois, Urbana, IL, USA
| |
Collapse
|