1
|
Yan Y, Cheung E, Verzier LH, Appetecchia F, March S, Craven AR, Du E, Probst AS, Rinvee TA, de Vries LE, Kauffman J, Bhatia SN, Nelson E, Singh N, Peng D, Shaw WR, Catteruccia F. Mapping Plasmodium transitions and interactions in the Anopheles female. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623125. [PMID: 39605504 PMCID: PMC11601300 DOI: 10.1101/2024.11.12.623125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The human malaria parasite, Plasmodium falciparum , relies on Anopheles mosquitoes for transmission. Once ingested during blood feeding, most parasites die in the mosquito midgut lumen or during epithelium traversal. How surviving ookinetes interact with midgut cells and form oocysts is unknown, yet these steps are essential to initiate a remarkable, similarly uncharacterized growth process culminating in the production of thousands of infectious sporozoites. Here, using single-cell RNA sequencing of both parasites and mosquito cells across four time points and two metabolic conditions, we unveil key processes shaping developmental transitions and mosquito-parasite interactions occurring in the midgut. In depth functional analyses reveal processes regulating oocyst growth and identify the transcription factor Pf SIP2 as essential for sporozoite infection of human hepatocytes. By combining the analysis of shared mosquito-parasite barcodes with confocal microscopy, we discover that parasites preferentially interact with midgut progenitor cells during epithelial crossing, potentially using their basal location as an exit landmark. Additionally, we unveil tight connections between extracellular late oocysts and surrounding muscle cells that may ensure parasites adhere to the midgut without damaging it. Ultimately, our study provides fundamental insight into the molecular events characterizing previously inaccessible biological transitions and mosquito-parasite interactions, and identifies candidates for transmission-blocking strategies.
Collapse
|
2
|
Bozic J, Joseph RE, Krizek RS, Holley A, Laroche M, Benoit JB, Rasgon JL. Revisiting the paradigm of anhematophagy in male mosquitoes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.617226. [PMID: 39416166 PMCID: PMC11482743 DOI: 10.1101/2024.10.08.617226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Female mosquitoes are reproductively obligate bloodfeeders which feed on vertebrate blood to obtain nutrients required for egg production (driving transmission of vector-borne pathogens in the process), and which rely on plant sugars for their non-reproductive energy requirements. Male mosquitoes, on the other hand, are thought to rely exclusively on plant sugars for their energetic needs; indeed, this dichotomy is one of the central tenets of medical entomology. Here, we show that male Culex tarsalis and Aedes aegypti mosquitoes will readily take blood from a membrane feeder when reared under dehydration conditions with no toxic effects. Mosquitoes with impaired humidity detection do not increase their bloodfeeding rates when dehydrated compared to wild-type controls. While conventionally reared males ignore a human host, dehydrated males are attracted to and attempt to probe, with some success, although they cannot access host capillaries. However, they will take blood from a vertebrate host wound. When fed a blood meal containing West Nile virus, male mosquitoes can become infected with and orally transmit the pathogen at rates and titers equivalent to females. Finally, vertebrate DNA, likely from blood, was detected in wild-caught specimens of male Culex quinquefasciatus mosquitoes from Texas. These data suggest that under some circumstances male mosquitoes may be able to probe and/or ingest blood and transmit pathogens to vertebrate hosts, and that their role in maintaining pathogen transmission cycles should be re-examined.
Collapse
Affiliation(s)
- Jovana Bozic
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Renuka E. Joseph
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Rachel S. Krizek
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Amber Holley
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX, USA
| | - Maureen Laroche
- Department of Microbiology & Immunology, The University of Texas Medical Branch, Galveston, TX, USA
- Department of Global Health, The University of Texas Medical Branch, Galveston, TX, USA
- Clima, Latin American Center of Excellence for Climate Change and Health, Universidad Peruana Cayetano Heredia (UPCH), Lima-Peru
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Jason L. Rasgon
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
- The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
3
|
Arora G, Tang X, Cui Y, Yang J, Chuang YM, Joshi J, Sajid A, Dong Y, Cresswell P, Dimopoulos G, Fikrig E. mosGILT controls innate immunity and germ cell development in Anopheles gambiae. BMC Genomics 2024; 25:42. [PMID: 38191283 PMCID: PMC10775533 DOI: 10.1186/s12864-023-09887-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/09/2023] [Indexed: 01/10/2024] Open
Abstract
Gene-edited mosquitoes lacking a gamma-interferon-inducible lysosomal thiol reductase-like protein, namely (mosGILTnull) have lower Plasmodium infection, which is linked to impaired ovarian development and immune activation. The transcriptome of mosGILTnull Anopheles gambiae was therefore compared to wild type (WT) mosquitoes by RNA-sequencing to delineate mosGILT-dependent pathways. Compared to WT mosquitoes, mosGILTnull A. gambiae demonstrated altered expression of genes related to oogenesis, 20-hydroxyecdysone synthesis, as well as immune-related genes. Serendipitously, the zero population growth gene, zpg, an essential regulator of germ cell development was found to be one of the most downregulated genes in mosGILTnull mosquitoes. These results provide a crucial missing link between two previous studies on the role of zpg and mosGILT in ovarian development. This study further demonstrates that mosGILT has the potential to serve as a target for the biological control of mosquito vectors and to influence the Plasmodium life cycle within the vector.
Collapse
Affiliation(s)
- Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA.
| | - Xiaotian Tang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Jing Yang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
- Current Affiliation: Cuiying Biomedical Research Center, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Jayadev Joshi
- Genomic Medicine Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Andaleeb Sajid
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, 06510, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, 21205, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, 06520, USA.
| |
Collapse
|
4
|
Stryapunina I, Itoe MA, Trinh Q, Vidoudez C, Du E, Mendoza L, Hulai O, Kauffman J, Carew J, Shaw WR, Catteruccia F. Precise coordination between nutrient transporters ensures fertility in the malaria mosquito Anopheles gambiae. PLoS Genet 2024; 20:e1011145. [PMID: 38285728 PMCID: PMC10852252 DOI: 10.1371/journal.pgen.1011145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/08/2024] [Accepted: 01/20/2024] [Indexed: 01/31/2024] Open
Abstract
Females from many mosquito species feed on blood to acquire nutrients for egg development. The oogenetic cycle has been characterized in the arboviral vector Aedes aegypti, where after a bloodmeal, the lipid transporter lipophorin (Lp) shuttles lipids from the midgut and fat body to the ovaries, and a yolk precursor protein, vitellogenin (Vg), is deposited into the oocyte by receptor-mediated endocytosis. Our understanding of how the roles of these two nutrient transporters are mutually coordinated is however limited in this and other mosquito species. Here, we demonstrate that in the malaria mosquito Anopheles gambiae, Lp and Vg are reciprocally regulated in a timely manner to optimize egg development and ensure fertility. Defective lipid transport via Lp knockdown triggers abortive ovarian follicle development, leading to misregulation of Vg and aberrant yolk granules. Conversely, depletion of Vg causes an upregulation of Lp in the fat body in a manner that appears to be at least partially dependent on target of rapamycin (TOR) signaling, resulting in excess lipid accumulation in the developing follicles. Embryos deposited by Vg-depleted mothers are completely inviable, and are arrested early during development, likely due to severely reduced amino acid levels and protein synthesis. Our findings demonstrate that the mutual regulation of these two nutrient transporters is essential to safeguard fertility by ensuring correct nutrient balance in the developing oocyte, and validate Vg and Lp as two potential candidates for mosquito control.
Collapse
Affiliation(s)
- Iryna Stryapunina
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Maurice A. Itoe
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Queenie Trinh
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Charles Vidoudez
- Harvard Center for Mass Spectrometry, Cambridge, Massachusetts, United States of America
| | - Esrah Du
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Lydia Mendoza
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Oleksandr Hulai
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Jamie Kauffman
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - John Carew
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - W. Robert Shaw
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Flaminia Catteruccia
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
5
|
Carrillo-Bustamante P, Costa G, Lampe L, Levashina EA. Evolutionary modelling indicates that mosquito metabolism shapes the life-history strategies of Plasmodium parasites. Nat Commun 2023; 14:8139. [PMID: 38097582 PMCID: PMC10721866 DOI: 10.1038/s41467-023-43810-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 11/20/2023] [Indexed: 12/17/2023] Open
Abstract
Within-host survival and between-host transmission are key life-history traits of single-celled malaria parasites. Understanding the evolutionary forces that shape these traits is crucial to predict malaria epidemiology, drug resistance, and virulence. However, very little is known about how Plasmodium parasites adapt to their mosquito vectors. Here, we examine the evolution of the time Plasmodium parasites require to develop within the vector (extrinsic incubation period) with an individual-based model of malaria transmission that includes mosquito metabolism. Specifically, we model the metabolic cascade of resource allocation induced by blood-feeding, as well as the influence of multiple blood meals on parasite development. Our model predicts that successful vector-to-human transmission events are rare, and are caused by long-lived mosquitoes. Importantly, our results show that the life-history strategies of malaria parasites depend on the mosquito's metabolic status. In our model, additional resources provided by multiple blood meals lead to selection for parasites with slow or intermediate developmental time. These results challenge the current assumption that evolution favors fast developing parasites to maximize their chances to complete their within-mosquito life cycle. We propose that the long sporogonic cycle observed for Plasmodium is not a constraint but rather an adaptation to increase transmission potential.
Collapse
Affiliation(s)
| | - Giulia Costa
- Vector Biology Unit, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
| | - Lena Lampe
- Vector Biology Unit, Max Planck Institute for Infection Biology, 10117, Berlin, Germany
- Physiology and Metabolism Laboratory, The Francis Crick Institute, NW11AT, London, UK
| | - Elena A Levashina
- Vector Biology Unit, Max Planck Institute for Infection Biology, 10117, Berlin, Germany.
| |
Collapse
|
6
|
Arora G, Tang X, Cui Y, Yang J, Chuang YM, Joshi J, Sajid A, Dong Y, Cresswell P, Dimopoulos G, Fikrig E. Anopheles gambiae mosGILT regulates innate immune genes and zpg expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551536. [PMID: 37577703 PMCID: PMC10418185 DOI: 10.1101/2023.08.01.551536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Gene-edited mosquitoes lacking a g amma-interferon-inducible lysosomal thiol reductase-like protein, namely ( mosGILT null ) have lower Plasmodium infection, which is linked to impaired ovarian development and immune activation. The transcriptome of mosGILT null A. gambiae was therefore compared to wild type (WT) by RNA-sequencing to delineate mosGILT-dependent pathways. Compared to WT mosquitoes, mosGILT null A. gambiae demonstrated altered expression of genes related to oogenesis, 20-hydroxyecdysone synthesis, as well as immune-related genes. Serendipitously, the zero population growth gene, zpg , an essential regulator of germ cell development was found to be one of the most downregulated genes in mosGILT null mosquitoes. These results provide the crucial missing link between two previous studies on the role of zpg and mosGILT in ovarian development. This study further demonstrates that mosGILT has the potential to serve as a target for the biological control of mosquito vectors and to influence the Plasmodium life cycle within the vector.
Collapse
|
7
|
Peng D, Kakani EG, Mameli E, Vidoudez C, Mitchell SN, Merrihew GE, MacCoss MJ, Adams K, Rinvee TA, Shaw WR, Catteruccia F. A male steroid controls female sexual behaviour in the malaria mosquito. Nature 2022; 608:93-97. [PMID: 35794471 PMCID: PMC9352575 DOI: 10.1038/s41586-022-04908-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/25/2022] [Indexed: 11/09/2022]
Abstract
Insects, unlike vertebrates, are widely believed to lack male-biased sex steroid hormones1. In the malaria mosquito Anopheles gambiae, the ecdysteroid 20-hydroxyecdysone (20E) appears to have evolved to both control egg development when synthesized by females2 and to induce mating refractoriness when sexually transferred by males3. Because egg development and mating are essential reproductive traits, understanding how Anopheles females integrate these hormonal signals can spur the design of new malaria control programs. Here we reveal that these reproductive functions are regulated by distinct sex steroids through a sophisticated network of ecdysteroid-activating/inactivating enzymes. We identify a male-specific oxidized ecdysteroid, 3-dehydro-20E (3D20E), which safeguards paternity by turning off female sexual receptivity following its sexual transfer and activation by dephosphorylation. Notably, 3D20E transfer also induces expression of a reproductive gene that preserves egg development during Plasmodium infection, ensuring fitness of infected females. Female-derived 20E does not trigger sexual refractoriness but instead licenses oviposition in mated individuals once a 20E-inhibiting kinase is repressed. Identifying this male-specific insect steroid hormone and its roles in regulating female sexual receptivity, fertility and interactions with Plasmodium parasites suggests the possibility for reducing the reproductive success of malaria-transmitting mosquitoes.
Collapse
Affiliation(s)
- Duo Peng
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Evdoxia G Kakani
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Verily Life Sciences, South San Francisco, CA, USA
| | - Enzo Mameli
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | - Sara N Mitchell
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,Verily Life Sciences, South San Francisco, CA, USA
| | | | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Kelsey Adams
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Tasneem A Rinvee
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - W Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
8
|
Paton DG, Probst AS, Ma E, Adams KL, Shaw WR, Singh N, Bopp S, Volkman SK, Hien DFS, Paré PSL, Yerbanga RS, Diabaté A, Dabiré RK, Lefèvre T, Wirth DF, Catteruccia F. Using an antimalarial in mosquitoes overcomes Anopheles and Plasmodium resistance to malaria control strategies. PLoS Pathog 2022; 18:e1010609. [PMID: 35687594 PMCID: PMC9223321 DOI: 10.1371/journal.ppat.1010609] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/23/2022] [Accepted: 05/20/2022] [Indexed: 11/18/2022] Open
Abstract
The spread of insecticide resistance in Anopheles mosquitoes and drug resistance in Plasmodium parasites is contributing to a global resurgence of malaria, making the generation of control tools that can overcome these roadblocks an urgent public health priority. We recently showed that the transmission of Plasmodium falciparum parasites can be efficiently blocked when exposing Anopheles gambiae females to antimalarials deposited on a treated surface, with no negative consequences on major components of mosquito fitness. Here, we demonstrate this approach can overcome the hurdles of insecticide resistance in mosquitoes and drug resistant in parasites. We show that the transmission-blocking efficacy of mosquito-targeted antimalarials is maintained when field-derived, insecticide resistant Anopheles are exposed to the potent cytochrome b inhibitor atovaquone, demonstrating that this drug escapes insecticide resistance mechanisms that could potentially interfere with its function. Moreover, this approach prevents transmission of field-derived, artemisinin resistant P. falciparum parasites (Kelch13 C580Y mutant), proving that this strategy could be used to prevent the spread of parasite mutations that induce resistance to front-line antimalarials. Atovaquone is also highly effective at limiting parasite development when ingested by mosquitoes in sugar solutions, including in ongoing infections. These data support the use of mosquito-targeted antimalarials as a promising tool to complement and extend the efficacy of current malaria control interventions. Effective control of malaria is hampered by resistance to vector-targeted insecticides and parasite-targeted drugs. This situation is exacerbated by a critical lack of chemical diversity in both interventions and, as such, new interventions are urgently needed. Recent laboratory studies have shown that an alternative approach based on treating Anopheles mosquitoes directly with antimalarial compounds can make mosquitoes incapable of transmitting the Plasmodium parasites that cause malaria. While promising, showing that mosquito-targeted antimalarials remain effective against wild parasites and mosquitoes, including drug- and insecticide-resistant populations in malaria-endemic countries, is crucial to the future viability of this approach. In this study, carried out in the US and Burkina Faso, we show that insecticide-resistance mechanisms found in highly resistant, natural Anopheles mosquito populations do not interfere with the transmission blocking activity of tarsal exposure to the antimalarial atovaquone, and that mosquito-targeted antimalarial exposure can block transmission of parasites resistant to the main therapeutic antimalarial drug artemisinin. By combining lab, and field-based studies in this way we have demonstrated that this novel approach can be effective in areas where conventional control measures are no longer as effective.
Collapse
Affiliation(s)
- Douglas G. Paton
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
- * E-mail: (DGP); (FC)
| | - Alexandra S. Probst
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - Erica Ma
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - Kelsey L. Adams
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - W. Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - Naresh Singh
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - Selina Bopp
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - Sarah K. Volkman
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - Domombele F. S. Hien
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Prislaure S. L. Paré
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Rakiswendé S. Yerbanga
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Abdoullaye Diabaté
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Roch K. Dabiré
- Institut de Recherche en Sciences de la Santé/Centre Muraz, Bobo-Dioulasso, Burkina Faso
| | - Thierry Lefèvre
- MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
- Laboratoire mixte international sur les vecteurs (LAMIVECT), Bobo Dioulasso, Burkina Faso
- Centre de Recherche en Écologie et Évolution de la Santé (CREES), Montpellier, France
| | - Dyann F. Wirth
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, United States of America
- * E-mail: (DGP); (FC)
| |
Collapse
|
9
|
Shaw WR, Marcenac P, Catteruccia F. Plasmodium development in Anopheles: a tale of shared resources. Trends Parasitol 2022; 38:124-135. [PMID: 34548252 PMCID: PMC8758519 DOI: 10.1016/j.pt.2021.08.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023]
Abstract
Interactions between the Anopheles mosquito vector and Plasmodium parasites shape how malaria is transmitted in endemic regions. The long association of these two organisms has led to evolutionary processes that minimize fitness costs of infection and benefit both players through shared nutrient resources, parasite immune suppression, and mosquito tolerance to infection. In this review we explore recent data describing how Plasmodium falciparum, the deadliest malaria parasite, associates with one of its most important natural mosquito hosts, Anopheles gambiae, and we discuss the implications of these findings for parasite transmission and vector control strategies currently in development.
Collapse
Affiliation(s)
- W Robert Shaw
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Perrine Marcenac
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Flaminia Catteruccia
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
10
|
Nanfack-Minkeu F, Sirot LK. Effects of Mating on Gene Expression in Female Insects: Unifying the Field. INSECTS 2022; 13:insects13010069. [PMID: 35055912 PMCID: PMC8781128 DOI: 10.3390/insects13010069] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Insects play many important roles including in ecosystems, food production, pathogen transmission, and production of materials. As a result, humans are interested in understanding how to control insect population sizes for control, propagation, or conservation efforts. In many insect species, female reproductive output is promoted by mating and components of the ejaculate. Beyond just the impact of receiving sperm, mating and ejaculate components can result in increased rate of oocyte development, ovulation, and oviposition as well as other changes such as reduced mating receptivity. To understand how mating causes these changes, researchers have investigated changes in female gene expression that occur after mating. In this review, we summarize the current state of knowledge on mating-induced gene expression changes in female insects and the methods used for conducting such studies. We find that genes related to immune response, chemosensation, and metabolism are commonly regulated across species. We suggest future research paths to facilitate the comparison of studies on mating-regulated gene expression across insect species. Abstract There is intense interest in controlling insect reproductive output. In many insect species, reproductive output is profoundly influenced by mating, including the receipt of sperm and seminal fluid molecules, through physiological and behavior changes. To understand these changes, many researchers have investigated post-mating gene expression regulation. In this review, we synthesize information from studies both across and within different species about the impact of mating, or components of mating, on female gene expression patterns. We found that genes related to the roles of metabolism, immune-response, and chemosensation are regulated by mating across many different insect species. We highlight the few studies that have taken the important next step of examining the functional consequences of gene expression regulation which is crucial in order to understand the mechanisms underlying the mating-regulated control of female lifespan and reproduction and to make use of such knowledge to propagate or control insect populations. The potential of cross-study comparisons is diminished by different studies using different methods. Thus, we also include a consideration of how future studies could be designed to facilitate cross-study comparisons and a call for collaboration across researchers studying different insect species and different aspects of insect biology.
Collapse
|
11
|
Roe K. Proposed classifications of immunogenomic editing by cancers and pathogens. INFECTION GENETICS AND EVOLUTION 2021; 96:105126. [PMID: 34715386 DOI: 10.1016/j.meegid.2021.105126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/14/2021] [Accepted: 10/23/2021] [Indexed: 10/20/2022]
Abstract
Several evolutionary mechanisms exist between a lethal disease agent, such as a cancer or a pathogen, and the immune system of a surviving subpopulation of hosts. Immunogenomic editing is herein defined as the evolution of a lethal disease agent genome or the surviving carrier or host subpopulation immune system genomes. One type of immunogenomic editing called immunoediting has already been identified for cancer genomes. The effects of two other types of immunogenomic editing have been observed for pathogens and humans. However, these types of editing are only a few types of a much broader immunogenomic editing process, and some of the other types of immunogenomic editing have not been explicitly recognized. Immunogenomic editing can include seven types, and several types of immunogenomic editing have applications including analysis of subpopulation responses to cancers and pathogens. Applications would also include facilitating analysis of substantial subpopulation vulnerability differences to lethal pathogen epidemics. The need for quicker analysis of the actual transmission chains and the immunogenomic mechanisms for the faster spread of dangerously virulent pathogens can be expected to increase, since modern transportation technology can spread new pathogens very rapidly around the world.
Collapse
Affiliation(s)
- Kevin Roe
- San Jose, CA, United States of America.
| |
Collapse
|
12
|
Ekoka E, Maharaj S, Nardini L, Dahan-Moss Y, Koekemoer LL. 20-Hydroxyecdysone (20E) signaling as a promising target for the chemical control of malaria vectors. Parasit Vectors 2021; 14:86. [PMID: 33514413 PMCID: PMC7844807 DOI: 10.1186/s13071-020-04558-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/19/2020] [Indexed: 01/07/2023] Open
Abstract
With the rapid development and spread of resistance to insecticides among anopheline malaria vectors, the efficacy of current World Health Organization (WHO)-approved insecticides targeting these vectors is under threat. This has led to the development of novel interventions, including improved and enhanced insecticide formulations with new targets or synergists or with added sterilants and/or antimalarials, among others. To date, several studies in mosquitoes have revealed that the 20-hydroxyecdysone (20E) signaling pathway regulates both vector abundance and competence, two parameters that influence malaria transmission. Therefore, insecticides which target 20E signaling (e.g. methoxyfenozide and halofenozide) may be an asset for malaria vector control. While such insecticides are already commercially available for lepidopteran and coleopteran pests, they still need to be approved by the WHO for malaria vector control programs. Until recently, chemicals targeting 20E signaling were considered to be insect growth regulators, and their effect was mostly studied against immature mosquito stages. However, in the last few years, promising results have been obtained by applying methoxyfenozide or halofenozide (two compounds that boost 20E signaling) to Anopheles populations at different phases of their life-cycle. In addition, preliminary studies suggest that methoxyfenozide resistance is unstable, causing the insects substantial fitness costs, thereby potentially circumventing one of the biggest challenges faced by current vector control efforts. In this review, we first describe the 20E signaling pathway in mosquitoes and then summarize the mechanisms whereby 20E signaling regulates the physiological processes associated with vector competence and vector abundance. Finally, we discuss the potential of using chemicals targeting 20E signaling to control malaria vectors.![]()
Collapse
Affiliation(s)
- Elodie Ekoka
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa. .,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa.
| | - Surina Maharaj
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Luisa Nardini
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Yael Dahan-Moss
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette L Koekemoer
- WITS Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for Emerging, Zoonotic & Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| |
Collapse
|