1
|
Hong HR, Prince CR, Wu L, Lin IN, Callan K, Feaga HA. YebC2 resolves ribosome stalling and increases fitness of cells lacking EF-P and the ABCF ATPase YfmR. PLoS Genet 2025; 21:e1011633. [PMID: 40215226 PMCID: PMC11990639 DOI: 10.1371/journal.pgen.1011633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/22/2025] [Indexed: 04/14/2025] Open
Abstract
Ribosome stalling is a major source of cellular stress. Therefore, many specialized elongation factors help prevent ribosome stalling. One of the best characterized of these factors is EF-P, which prevents ribosome stalling at polyproline tracts and other difficult-to-translate sequences. Recent evidence suggests that other factors also facilitate translation of polyproline motifs. For example, YfmR was recently identified as a protein that prevents ribosome stalling at proline-containing sequences in the absence of EF-P. Here, we show that YebC2 (formerly YeeI) functions as a translation factor in Bacillus subtilis that resolves ribosome stalling at polyprolines. YebC2 associates with the ribosome, supporting a direct role for YebC2 in translation. Moreover, YebC2 can reduce ribosome stalling and support cellular fitness in the absence of EF-P and YfmR. Finally, we present evidence that YebC2 is evolutionarily distinct from previously characterized YebC-family transcription factors and demonstrate that these paralogs have distinct physiological roles in B. subtilis. Altogether our work identifies YebC2 as a translation factor that resolves ribosome stalling in B. subtilis and provides crucial insight into the relationship between YebC2, EF-P, and YfmR, three factors that prevent ribosome stalling at polyprolines.
Collapse
Affiliation(s)
- Hye-Rim Hong
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Cassidy R. Prince
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Letian Wu
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Isabella N. Lin
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Katrina Callan
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| | - Heather A. Feaga
- Department of Microbiology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
2
|
Raghunandanan S, Priya R, Lin G, Alanazi F, Zoss A, Warren E, Stewart P, Yang XF. Positive feedback regulation between RpoS and BosR in the Lyme disease pathogen. mBio 2025; 16:e0276624. [PMID: 39873484 PMCID: PMC11898620 DOI: 10.1128/mbio.02766-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/03/2025] [Indexed: 01/30/2025] Open
Abstract
In Borrelia burgdorferi, the causative agent of Lyme disease, differential gene expression is primarily governed by the alternative sigma factor RpoS (σS). Understanding the regulation of RpoS is crucial for elucidating how B. burgdorferi is maintained throughout its enzootic cycle. Our recent studies have shown that the homolog of Fur/PerR repressor/activator BosR functions as an RNA-binding protein that controls the rpoS mRNA stability. However, the mechanisms regulating BosR, particularly in response to host signals and environmental cues, remain largely unclear. In this study, we uncovered a positive feedback loop between RpoS and BosR, wherein RpoS post-transcriptionally regulates BosR levels. Specifically, mutation or deletion of rpoS significantly reduced BosR levels, whereas artificial induction of rpoS resulted in a dose-dependent increase in BosR levels. Notably, RpoS does not affect bosR mRNA levels but instead modulates the turnover rate of the BosR protein. Moreover, we demonstrated that environmental cues do not directly influence bosR expression but instead induce rpoS transcription and RpoS production, thereby enhancing BosR protein levels. These findings reveal a new layer of complexity in the RpoN-RpoS regulatory pathway, challenging the existing paradigm and suggesting a need to re-evaluate the factors and signals previously implicated in regulating RpoS via BosR. This study provides new insights into the intricate regulatory networks underpinning B. burgdorferi's adaptation and survival in its enzootic cycle.IMPORTANCELyme disease is the most prevalent arthropod-borne infection in the United States. The etiological agent, Borreliella (or Borrelia) burgdorferi, is maintained in nature through an enzootic cycle involving a tick vector and a mammalian host. RpoS, the master regulator of differential gene expression, plays a crucial role in tick transmission and mammalian infection of B. burgdorferi. This study reveals a positive feedback loop between RpoS and a Fur/PerR homolog. Elucidating this regulatory network is essential for identifying potential therapeutic targets to disrupt B. burgdorferi's enzootic cycle. The findings also have broader implications for understanding the regulation of RpoS and Fur/PerR family in other bacteria.
Collapse
Affiliation(s)
- Sajith Raghunandanan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Raj Priya
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Gaofeng Lin
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Fuad Alanazi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Andrew Zoss
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elise Warren
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Philip Stewart
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
3
|
Singh P, Bankhead T. Breaking a barrier: In trans vlsE recombination and genetic manipulation of the native vlsE gene of the Lyme disease pathogen. PLoS Pathog 2025; 21:e1012871. [PMID: 39792948 PMCID: PMC11756760 DOI: 10.1371/journal.ppat.1012871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/23/2025] [Accepted: 12/30/2024] [Indexed: 01/12/2025] Open
Abstract
Host-pathogen interactions represent a dynamic evolutionary process, wherein both hosts and pathogens continuously develop complex mechanisms to outmaneuver each other. Borrelia burgdorferi, the Lyme disease pathogen, has evolved an intricate antigenic variation mechanism to evade the host immune response, enabling its dissemination, persistence, and pathogenicity. Despite the discovery of this mechanism over two decades ago, the precise processes, genetic elements, and proteins involved in this system remain largely unknown. The vls locus, which is the site of antigenic variation, has been notoriously challenging to manipulate genetically due to its highly conserved structural features, even with significant advancements in molecular biology and genetic engineering for this highly segmented pathogen. Our study highlights the pivotal role of plasmid topology in facilitating in trans gene recombination. We demonstrate that gene conversion can occur in trans when a copy of vlsE gene is present on a linear plasmid, contrary to previous observations suggesting a cis arrangement is required for vlsE recombination. Significantly, employing this in trans gene conversion strategy with a linear plasmid, we have, for the first time, achieved targeted genetic mutation of putative cis-acting elements in the native vlsE gene. This has unveiled a potentially crucial role for the 17 bp direct repeats that flank the central variable cassette region of vlsE. Furthermore, we validated the reliability and reproducibility of our mutational approach by successfully inserting stop codons at two distinct sites within the central variable cassette of vlsE. Thus, this study presents a significant methodological innovation enabling the direct manipulation of the vls locus and lays the groundwork for systematic exploration of specific mutations affecting the mechanism of antigenic variation. As a result, it creates new avenues for research and raises intriguing questions that could guide the development of novel methods to explore host-pathogen interactions of the agent of Lyme disease.
Collapse
Affiliation(s)
- Preeti Singh
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| | - Troy Bankhead
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
4
|
Nairn BL, Lima BP, Chen R, Yang JQ, Wei G, Chumber AK, Herzberg MC. Effects of fluid shear stress on oral biofilm formation and composition and the transcriptional response of Streptococcus gordonii. Mol Oral Microbiol 2024; 39:477-490. [PMID: 39158270 PMCID: PMC11912947 DOI: 10.1111/omi.12481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/19/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024]
Abstract
Biofilms are subjected to many environmental pressures that can influence community structure and physiology. In the oral cavity, and many other environments, biofilms are exposed to forces generated by fluid flow; however, our understanding of how oral biofilms respond to these forces remains limited. In this study, we developed a linear rocker model of fluid flow to study the impact of shear forces on Streptococcus gordonii and dental plaque-derived multispecies biofilms. We observed that as shear forces increased, S. gordonii biofilm biomass decreased. Reduced biomass was largely independent of overall bacterial growth. Transcriptome analysis of S. gordonii biofilms exposed to moderate levels of shear stress uncovered numerous genes with differential expression under shear. We also evaluated an ex vivo plaque biofilm exposed to fluid shear forces. Like S. gordonii, the plaque biofilm displayed decreased biomass as shear forces increased. Examination of plaque community composition revealed decreased diversity and compositional changes in the plaque biofilm exposed to shear. These studies help to elucidate the impact of fluid shear on oral bacteria and may be extended to other bacterial biofilm systems.
Collapse
Affiliation(s)
- Brittany L Nairn
- Department of Biological Sciences, Bethel University, St. Paul, Minnesota, USA
| | - Bruno P Lima
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ruoqiong Chen
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Judy Q Yang
- Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Guanju Wei
- Saint Anthony Falls Laboratory, University of Minnesota, Minneapolis, Minnesota, USA
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ashwani K Chumber
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mark C Herzberg
- Department of Diagnostic and Biological Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Hong HR, Prince CR, Wu L, Lin IN, Feaga HA. YebC2 resolves ribosome stalling at polyprolines independent of EF-P and the ABCF ATPase YfmR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.18.618948. [PMID: 39463947 PMCID: PMC11507958 DOI: 10.1101/2024.10.18.618948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Polyproline motifs are essential structural features of many proteins, and recent evidence suggests that EF-P is one of several factors that facilitate their translation. For example, YfmR was recently identified as a protein that prevents ribosome stalling at proline-containing sequences in the absence of EF-P. Here, we show that the YebC-family protein YebC2 (formerly YeeI) functions as a translation factor in B. subtilis that resolves ribosome stalling at polyprolines. We demonstrate that YebC2, EF-P and YfmR act independently to support cellular fitness. Moreover, we show that YebC2 interacts directly with the 70S ribosome, supporting a direct role for YebC2 in translation. Finally, we assess the evolutionary relationship between YebC2 and other characterized YebC family proteins, and present evidence that transcription and translation factors within the YebC family have evolved separately. Altogether our work identifies YebC2 as a translation factor that resolves ribosome stalling and provides crucial insight into the relationship between YebC2, EF-P, and YfmR, three factors that prevent ribosome stalling at prolines.
Collapse
Affiliation(s)
- Hye-Rim Hong
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | | | - Letian Wu
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Isabella N. Lin
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| | - Heather A. Feaga
- Department of Microbiology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
6
|
Norris SJ, Brangulis K. Meta-analysis of the Vmp-like sequences of Lyme disease Borrelia: evidence for the evolution of an elaborate antigenic variation system. Front Microbiol 2024; 15:1469411. [PMID: 39450289 PMCID: PMC11499132 DOI: 10.3389/fmicb.2024.1469411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024] Open
Abstract
VMP-like sequence (vls) antigenic variation systems are present in every Lyme disease Borrelia strain with complete genome sequences. The linear plasmid-encoded vls system consists of a single expression site (vlsE) and contiguous array(s) of silent cassettes that have ~90% identity with the central cassette region of the cognate vlsE gene; antigenic variation occurs through random, segmental, and unidirectional recombination of vls silent cassette sequences into the vlsE expression site. Automated annotation programs do not accurately recognize vls silent cassette sequences, so these regions are not correctly annotated in most genomic sequences. In this study, the vls sequences were re-analyzed in the genomic sequences of 31 available Lyme disease Borrelia and one relapsing fever Borrelia organisms, and this information was utilized to systematically compare the vls systems in different species and strains. In general, the results confirm the conservation of the overall architecture of the vls system, such as the head-to-head arrangement of vlsE and a contiguous series of vlsS silent cassette sequences and presence of inverted repeat sequences between the two regions. However, the data also provide evidence for the divergence of the vls silent cassette arrays through point mutations, short indels, duplication events, and rearrangements. The probable occurrence of convergent evolution toward a vls system-like locus is exemplified by Borrelia turcica, a variable large protein (Vlp) expressing organism that is a member of the relapsing fever Borrelia group.
Collapse
Affiliation(s)
- Steven J. Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Kalvis Brangulis
- Department of Human Physiology and Biochemistry, Faculty of Medicine, Rīga Stradiņš University, Riga, Latvia
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
7
|
Raghunandanan S, Priya R, Lin G, Alanazi F, Zoss A, Warren E, Yang XF. Positive feedback regulation between RpoS and BosR in the Lyme disease pathogen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.14.613071. [PMID: 39314342 PMCID: PMC11419129 DOI: 10.1101/2024.09.14.613071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
In Borrelia burgdorferi, the Lyme disease pathogen, differential gene expression is primarily controlled by the alternative sigma factor RpoS (σS). Understanding how RpoS levels are regulated is crucial for elucidating how B. burgdorferi is maintained throughout its enzootic cycle. Our recent studies have shown that a homolog of Fur/PerR repressor/activator, BosR, functions as an RNA-binding protein that controls the rpoS mRNA stability. However, the mechanisms of regulation of BosR, particularly in response to host signals and environmental cues, remain largely unclear. In this study, we revealed a positive feedback loop between RpoS and BosR, where RpoS post-transcriptionally regulates BosR levels. Specifically, mutation or deletion of rpoS significantly reduced BosR levels, while artificial induction of rpoS resulted in a dose-dependent increase in BosR levels. Notably, RpoS does not affect bosR mRNA levels but instead modulates the turnover rate of the BosR protein. Furthermore, we demonstrated that environmental cues do not directly influence bosR expression but instead induce rpoS transcription and RpoS production, thereby enhancing BosR protein levels. This discovery adds a new layer of complexity to the RpoN-RpoS pathway and suggests the need to re-evaluate the factors and signals previously believed to regulate RpoS levels through BosR.
Collapse
Affiliation(s)
- Sajith Raghunandanan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Raj Priya
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Gaofeng Lin
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Fuad Alanazi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Andrew Zoss
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Elise Warren
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
8
|
Brischigliaro M, Krüger A, Moran JC, Antonicka H, Ahn A, Shoubridge E, Rorbach J, Barrientos A. The human mitochondrial translation factor TACO1 alleviates mitoribosome stalling at polyproline stretches. Nucleic Acids Res 2024; 52:9710-9726. [PMID: 39036954 PMCID: PMC11381339 DOI: 10.1093/nar/gkae645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024] Open
Abstract
The prokaryotic translation elongation factor P (EF-P) and the eukaryotic/archaeal counterparts eIF5A/aIF5A are proteins that serve a crucial role in mitigating ribosomal stalling during the translation of specific sequences, notably those containing consecutive proline residues (1,2). Although mitochondrial DNA-encoded proteins synthesized by mitochondrial ribosomes also contain polyproline stretches, an EF-P/eIF5A mitochondrial counterpart remains unidentified. Here, we show that the missing factor is TACO1, a protein causative of a juvenile form of neurodegenerative Leigh's syndrome associated with cytochrome c oxidase deficiency, until now believed to be a translational activator of COX1 mRNA. By using a combination of metabolic labeling, puromycin release and mitoribosome profiling experiments, we show that TACO1 is required for the rapid synthesis of the polyproline-rich COX1 and COX3 cytochrome c oxidase subunits, while its requirement is negligible for other mitochondrial DNA-encoded proteins. In agreement with a role in translation efficiency regulation, we show that TACO1 cooperates with the N-terminal extension of the large ribosomal subunit bL27m to provide stability to the peptidyl-transferase center during elongation. This study illuminates the translation elongation dynamics within human mitochondria, a TACO1-mediated biological mechanism in place to mitigate mitoribosome stalling at polyproline stretches during protein synthesis, and the pathological implications of its malfunction.
Collapse
Affiliation(s)
- Michele Brischigliaro
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10 Ave., Miami, FL 33136, USA
| | - Annika Krüger
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - J Conor Moran
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
- The University of Miami Medical Scientist Training Program (MSTP), 1600 NW 10th Ave.,Miami, FL33136, USA
| | - Hana Antonicka
- The Neuro and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Ahram Ahn
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
| | - Eric A Shoubridge
- The Neuro and Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing-Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Antoni Barrientos
- Department of Neurology, University of Miami Miller School of Medicine, 1600 NW 10 Ave., Miami, FL 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, 1600 NW 10th Ave., Miami, FL 33136, USA
- The Miami Veterans Affairs (VA) Medical System. 1201 NW 16th St, Miami, FL-33125, USA
| |
Collapse
|
9
|
Priya R, Ye M, Raghunanadanan S, Liu Q, Li W, Yu Q, Lou Y, Sintim HO, Yang XF. Borrelia burgdorferi Secretes c-di-AMP as an Extracellular Pathogen-Associated Molecular Pattern to Elicit Type I Interferon Responses in Mammalian Hosts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607721. [PMID: 39185169 PMCID: PMC11343124 DOI: 10.1101/2024.08.13.607721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Borrelia burgdorferi (B. burgdorferi), an extracellular spirochetal pathogen, elicits a type-I interferon (IFN-I) response that contributes to the pathology of Lyme disease, including the development and severity of Lyme arthritis. However, the specific Pathogen-Associated Molecular Patterns (PAMPs) of B. burgdorferi responsible for triggering the IFN-I response are not well understood. Previous studies have identified an unknown, nuclease-resistant component in B. burgdorferi culture supernatants that significantly stimulates the IFN-I response, but its identity remains unknown. In this study, we reveal that B. burgdorferi secretes cyclic-di-adenosine monophosphate (c-di-AMP) as a key extracellular PAMP, inducing the host IFN-I response in macrophages. Using genetically manipulated B. burgdorferi strains, we demonstrate a requirement of c-di-AMP for stimulating IFN-I response by macrophages ex vivo. Additionally, infecting mice with B. burgdorferi alongside exogenous c-di-AMP resulted in a markedly increased IFN-I response in mouse tissues. Furthermore, inactivation or inhibition of the host STING signaling pathway significantly reduced the IFN-I response, indicating that c-di-AMP-induced IFN-I production is STING-dependent. Our findings identify c-di-AMP as a crucial PAMP secreted by B. burgdorferi to elicit the host IFN-I response via activation of STING signaling pathway, suggesting that targeting c-di-AMP production could represent a novel therapeutic strategy against Lyme arthritis.
Collapse
Affiliation(s)
- Raj Priya
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Meiping Ye
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sajith Raghunanadanan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Qiang Liu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-Resistant Tuberculosis Research, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
- Wenzhou key laboratory of sanitary microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical UniversityDepartment of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yongliang Lou
- Wenzhou key laboratory of sanitary microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical UniversityDepartment of Chemistry, 560 Oval Drive, West Lafayette, IN 47907, USA
| | - Herman O. Sintim
- Institute for Drug Discovery, Purdue University, 720 Clinic Drive, West Lafayette, IN 47907, USA
- Purdue Institute of Inflammation, Immunology, and Infectious Disease, West Lafayette, IN 47907, USA
- James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, 560 Oval Drive, IN 47907, USA
| | - X. Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
10
|
Raghunandanan S, Priya R, Alanazi F, Lybecker MC, Schlax P, Yang X. A Fur family protein BosR is a novel RNA-binding protein that controls rpoS RNA stability in the Lyme disease pathogen. Nucleic Acids Res 2024; 52:5320-5335. [PMID: 38366569 PMCID: PMC11109971 DOI: 10.1093/nar/gkae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
The σ54-σS sigma factor cascade plays a central role in regulating differential gene expression during the enzootic cycle of Borreliella burgdorferi, the Lyme disease pathogen. In this pathway, the primary transcription of rpoS (which encodes σS) is under the control of σ54 which is activated by a bacterial enhancer-binding protein (EBP), Rrp2. The σ54-dependent activation in B. burgdorferi has long been thought to be unique, requiring an additional factor, BosR, a homologue of classical Fur/PerR repressor/activator. However, how BosR is involved in this σ54-dependent activation remains unclear and perplexing. In this study, we demonstrate that BosR does not function as a regulator for rpoS transcriptional activation. Instead, it functions as a novel RNA-binding protein that governs the turnover rate of rpoS mRNA. We further show that BosR directly binds to the 5' untranslated region (UTR) of rpoS mRNA, and the binding region overlaps with a region required for rpoS mRNA degradation. Mutations within this 5'UTR region result in BosR-independent RpoS production. Collectively, these results uncover a novel role of Fur/PerR family regulators as RNA-binding proteins and redefine the paradigm of the σ54-σS pathway in B. burgdorferi.
Collapse
Affiliation(s)
- Sajith Raghunandanan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Raj Priya
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Fuad Alanazi
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Meghan C Lybecker
- Bacterial Diseases Branch, Division of Vector-Borne Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Center for Disease Control and Prevention, Fort Collins, CO, USA
| | - Paula Jean Schlax
- Department of Chemistry and Biochemistry, Bates College, Lewiston, ME, USA
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Kim S, Samanta K, Nguyen BT, Mata-Robles S, Richer L, Yoon JY, Gomes-Solecki M. A portable immunosensor provides sensitive and rapid detection of Borrelia burgdorferi antigen in spiked blood. Sci Rep 2023; 13:7546. [PMID: 37161039 PMCID: PMC10170079 DOI: 10.1038/s41598-023-34108-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/24/2023] [Indexed: 05/11/2023] Open
Abstract
There are no assays for detecting B. burgdorferi antigen in blood of infected Lyme disease individuals. Here, we provide proof-of-principle evidence that we can quantify B. burgdorferi antigen in spiked blood using a portable smartphone-based fluorescence microscope that measures immunoagglutination on a paper microfluidic chip. We targeted B. burgdorferi OspA to develop a working prototype and added examples of two antigens (OspC and VlsE) that have diagnostic value for discrimination of Lyme disease stage. Using an extensively validated monoclonal antibody to OspA (LA-2), detection of OspA antigen had a broad linear range up to 100 pg/mL in 1% blood and the limit of detection (LOD) was 100 fg/mL (= 10 pg/mL in undiluted blood), which was 1000 times lower than our target of 10 ng/mL. Analysis of the two other targets was done using polyclonal and monoclonal antibodies. OspC antigen was detected at LOD 100 pg/mL (= 10 ng/mL of undiluted blood) and VlsE antigen was detected at LOD 1-10 pg/mL (= 0.1-1 ng/mL of undiluted blood). The method is accurate and was performed in 20 min from sample to answer. When optimized for detecting several B. burgdorferi antigens, this assay may differentiate active from past infections and facilitate diagnosis of Lyme disease in the initial weeks of infection, when antibody presence is typically below the threshold to be detected by serologic methods.
Collapse
Affiliation(s)
- Sangsik Kim
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Kamalika Samanta
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Merck & Co., West Point, PA, 19486, USA
- Immuno Technologies, Inc, Memphis, TN, 38103, USA
| | - Brandon T Nguyen
- College of Medicine, The University of Arizona, Tucson, AZ, 85724, USA
| | - Samantha Mata-Robles
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA
| | - Luciana Richer
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
- Immuno Technologies, Inc, Memphis, TN, 38103, USA
- US Biologic, Inc, Memphis, TN, 38103, USA
| | - Jeong-Yeol Yoon
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ, 85721, USA.
| | - Maria Gomes-Solecki
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
- Immuno Technologies, Inc, Memphis, TN, 38103, USA.
| |
Collapse
|
12
|
Mukherjee PG, Liveris D, Hanincova K, Iyer R, Wormser GP, Huang W, Schwartz I. Borrelia burgdorferi Outer Surface Protein C Is Not the Sole Determinant of Dissemination in Mammals. Infect Immun 2023; 91:e0045622. [PMID: 36880751 PMCID: PMC10112133 DOI: 10.1128/iai.00456-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Lyme disease in the United States is most often caused by Borrelia burgdorferi sensu stricto. After a tick bite, the patient may develop erythema migrans at that site. If hematogenous dissemination occurs, the patient may then develop neurologic manifestations, carditis, or arthritis. Host-pathogen interactions include factors that contribute to hematogenous dissemination to other body sites. Outer surface protein C (OspC), a surface-exposed lipoprotein of B. burgdorferi, is essential during the early stages of mammalian infection. There is a high degree of genetic variation at the ospC locus, and certain ospC types are more frequently associated with hematogenous dissemination in patients, suggesting that OspC may be a major contributing factor to the clinical outcome of B. burgdorferi infection. In order to evaluate the role of OspC in B. burgdorferi dissemination, ospC was exchanged between B. burgdorferi isolates with different capacities to disseminate in laboratory mice, and these strains were then tested for their ability to disseminate in mice. The results indicated that the ability of B. burgdorferi to disseminate in mammalian hosts does not depend on OspC alone. The complete genome sequences of two closely related strains of B. burgdorferi with differing dissemination phenotypes were determined, but a specific genetic locus that could explain the differences in the phenotypes could not be definitively identified. The animal studies performed clearly demonstrated that OspC is not the sole determinant of dissemination. Future studies of the type described here with additional borrelial strains will hopefully clarify the genetic elements associated with hematogenous dissemination.
Collapse
Affiliation(s)
- Priyanka G. Mukherjee
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Dionysios Liveris
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Klára Hanincova
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Radha Iyer
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Gary P. Wormser
- Department of Medicine, New York Medical College, Valhalla, New York, USA
| | - Weihua Huang
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Ira Schwartz
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
- Department of Medicine, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
13
|
Grassmann AA, Tokarz R, Golino C, McLain MA, Groshong AM, Radolf JD, Caimano MJ. BosR and PlzA reciprocally regulate RpoS function to sustain Borrelia burgdorferi in ticks and mammals. J Clin Invest 2023; 133:e166710. [PMID: 36649080 PMCID: PMC9974103 DOI: 10.1172/jci166710] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The RNA polymerase alternative σ factor RpoS in Borrelia burgdorferi (Bb), the Lyme disease pathogen, is responsible for programmatic-positive and -negative gene regulation essential for the spirochete's dual-host enzootic cycle. RpoS is expressed during tick-to-mammal transmission and throughout mammalian infection. Although the mammalian-phase RpoS regulon is well described, its counterpart during the transmission blood meal is unknown. Here, we used Bb-specific transcript enrichment by tick-borne disease capture sequencing (TBDCapSeq) to compare the transcriptomes of WT and ΔrpoS Bb in engorged nymphs and following mammalian host-adaptation within dialysis membrane chambers. TBDCapSeq revealed dramatic changes in the contours of the RpoS regulon within ticks and mammals and further confirmed that RpoS-mediated repression is specific to the mammalian-phase of Bb's enzootic cycle. We also provide evidence that RpoS-dependent gene regulation, including repression of tick-phase genes, is required for persistence in mice. Comparative transcriptomics of engineered Bb strains revealed that the Borrelia oxidative stress response regulator (BosR), a noncanonical Fur family member, and the cyclic diguanosine monophosphate (c-di-GMP) effector PlzA reciprocally regulate the function of RNA polymerase complexed with RpoS. BosR is required for RpoS-mediated transcription activation and repression in addition to its well-defined role promoting transcription of rpoS by the RNA polymerase alternative σ factor RpoN. During transmission, ligand-bound PlzA antagonizes RpoS-mediated repression, presumably acting through BosR.
Collapse
Affiliation(s)
| | - Rafal Tokarz
- Center for Infection and Immunity and
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Caroline Golino
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
| | | | - Ashley M. Groshong
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Pediatrics
| | - Justin D. Radolf
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Pediatrics
- Department of Molecular Biology and Biophysics
- Department of Genetics and Genome Sciences, and
- Department of Immunology, UConn Health, Farmington, Connecticut, USA
| | - Melissa J. Caimano
- Department of Medicine, UConn Health, Farmington, Connecticut, USA
- Department of Pediatrics
- Department of Molecular Biology and Biophysics
| |
Collapse
|
14
|
In silico Structural and Functional Characterization of a Hypothetical Protein from Stenotrophomonas maltophilia SRM01. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia is a low-virulence opportunistic pathogen that causes human infections, especially in profound ill patients. Even if the bacterial genomes seem understood, the activities of many proteins are unknown. The purpose of our current research is to unravel the functional characteristics i.e. functional domain search and valuable regions of a hypothetical protein that would aid in the identification of potential drug targets in Stenotrophomonas maltophilia. The hypothetical protein of S.maltophilia was located and annotated using different in silico techniques. Our target protein was predicted to be Transcrip Reg superfamily YebC/PmpR based on motif and domain analysis by functional annotation tools. The regulator proteins of the YebC family are part of a vast collection of widely conserved hypothetical proteins with unclear functions. Examining and reviewing the function of YebC family protein, they repress Quorum sensing by directly binding to the promoter region of QS master regulator pqrS. It has also been reported that T3SS expression is regulated by YebC, to activate the virulence expression direct interaction with one of the T3SS promoters is needed.
Collapse
|
15
|
Tan X, Lin YP, Pereira MJ, Castellanos M, Hahn BL, Anderson P, Coburn J, Leong JM, Chaconas G. VlsE, the nexus for antigenic variation of the Lyme disease spirochete, also mediates early bacterial attachment to the host microvasculature under shear force. PLoS Pathog 2022; 18:e1010511. [PMID: 35605029 PMCID: PMC9166660 DOI: 10.1371/journal.ppat.1010511] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/03/2022] [Accepted: 04/08/2022] [Indexed: 11/19/2022] Open
Abstract
Hematogenous dissemination is a critical step in the evolution of local infection to systemic disease. The Lyme disease (LD) spirochete, which efficiently disseminates to multiple tissues, has provided a model for this process, in particular for the key early event of pathogen adhesion to the host vasculature. This occurs under shear force mediated by interactions between bacterial adhesins and mammalian cell-surface proteins or extracellular matrix (ECM). Using real-time intravital imaging of the Lyme spirochete in living mice, we previously identified BBK32 as the first LD spirochetal adhesin demonstrated to mediate early vascular adhesion in a living mouse; however, deletion of bbk32 resulted in loss of only about half of the early interactions, suggesting the existence of at least one other adhesin (adhesin-X) that promotes early vascular interactions. VlsE, a surface lipoprotein, was identified long ago by its capacity to undergo rapid antigenic variation, is upregulated in the mammalian host and required for persistent infection in immunocompetent mice. In immunodeficient mice, VlsE shares functional overlap with OspC, a multi-functional protein that displays dermatan sulfate-binding activity and is required for joint invasion and colonization. In this research, using biochemical and genetic approaches as well as intravital imaging, we have identified VlsE as adhesin-X; it is a dermatan sulfate (DS) adhesin that efficiently promotes transient adhesion to the microvasculature under shear force via its DS binding pocket. Intravenous inoculation of mice with a low-passage infectious B. burgdorferi strain lacking both bbk32 and vlsE almost completely eliminated transient microvascular interactions. Comparative analysis of binding parameters of VlsE, BBK32 and OspC provides a possible explanation why these three DS adhesins display different functionality in terms of their ability to promote early microvascular interactions.
Collapse
Affiliation(s)
- Xi Tan
- Department of Biochemistry & Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Yi-Pin Lin
- Division of Infectious Diseases, New York State Department of Health, Wadsworth Center, Albany, New York, United States of America
| | - Michael J. Pereira
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Mildred Castellanos
- Department of Biochemistry & Molecular Biology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Beth L. Hahn
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Phillip Anderson
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jenifer Coburn
- Department of Medicine, Division of Infectious Diseases, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - George Chaconas
- Departments of Biochemistry & Molecular Biology and Microbiology, Immunology & Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
16
|
De Lay BD, Cameron TA, De Lay NR, Norris SJ, Edmondson DG. Comparison of transcriptional profiles of Treponema pallidum during experimental infection of rabbits and in vitro culture: Highly similar, yet different. PLoS Pathog 2021; 17:e1009949. [PMID: 34570834 PMCID: PMC8525777 DOI: 10.1371/journal.ppat.1009949] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/19/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022] Open
Abstract
Treponema pallidum ssp. pallidum, the causative agent of syphilis, can now be cultured continuously in vitro utilizing a tissue culture system, and the multiplication rates are similar to those obtained in experimental infection of rabbits. In this study, the RNA transcript profiles of the T. pallidum Nichols during in vitro culture and rabbit infection were compared to examine whether gene expression patterns differed in these two environments. To this end, RNA preparations were converted to cDNA and subjected to RNA-seq using high throughput Illumina sequencing; reverse transcriptase quantitative PCR was also performed on selected genes for validation of results. The transcript profiles in the in vivo and in vitro environments were remarkably similar, exhibiting a high degree of concordance overall. However, transcript levels of 94 genes (9%) out of the 1,063 predicted genes in the T. pallidum genome were significantly different during rabbit infection versus in vitro culture, varying by up to 8-fold in the two environments. Genes that exhibited significantly higher transcript levels during rabbit infection included those encoding multiple ribosomal proteins, several prominent membrane proteins, glycolysis-associated enzymes, replication initiator DnaA, rubredoxin, thioredoxin, two putative regulatory proteins, and proteins associated with solute transport. In vitro cultured T. pallidum had higher transcript levels of DNA repair proteins, cofactor synthesis enzymes, and several hypothetical proteins. The overall concordance of the transcript profiles may indicate that these environments are highly similar in terms of their effects on T. pallidum physiology and growth, and may also reflect a relatively low level of transcriptional regulation in this reduced genome organism.
Collapse
Affiliation(s)
- Bridget D. De Lay
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Todd A. Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Nicholas R. De Lay
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Steven J. Norris
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Diane G. Edmondson
- Department of Pathology and Laboratory Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
17
|
Samuels DS, Lybecker MC, Yang XF, Ouyang Z, Bourret TJ, Boyle WK, Stevenson B, Drecktrah D, Caimano MJ. Gene Regulation and Transcriptomics. Curr Issues Mol Biol 2020; 42:223-266. [PMID: 33300497 DOI: 10.21775/cimb.042.223] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Borrelia (Borreliella) burgdorferi, along with closely related species, is the etiologic agent of Lyme disease. The spirochete subsists in an enzootic cycle that encompasses acquisition from a vertebrate host to a tick vector and transmission from a tick vector to a vertebrate host. To adapt to its environment and persist in each phase of its enzootic cycle, B. burgdorferi wields three systems to regulate the expression of genes: the RpoN-RpoS alternative sigma factor cascade, the Hk1/Rrp1 two-component system and its product c-di-GMP, and the stringent response mediated by RelBbu and DksA. These regulatory systems respond to enzootic phase-specific signals and are controlled or fine- tuned by transcription factors, including BosR and BadR, as well as small RNAs, including DsrABb and Bb6S RNA. In addition, several other DNA-binding and RNA-binding proteins have been identified, although their functions have not all been defined. Global changes in gene expression revealed by high-throughput transcriptomic studies have elucidated various regulons, albeit technical obstacles have mostly limited this experimental approach to cultivated spirochetes. Regardless, we know that the spirochete, which carries a relatively small genome, regulates the expression of a considerable number of genes required for the transitions between the tick vector and the vertebrate host as well as the adaptation to each.
Collapse
Affiliation(s)
- D Scott Samuels
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Meghan C Lybecker
- Department of Biology, University of Colorado, Colorado Springs, CO 80918, USA
| | - X Frank Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Zhiming Ouyang
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Travis J Bourret
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - William K Boyle
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE, 68105 USA
| | - Brian Stevenson
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40536, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Melissa J Caimano
- Departments of Medicine, Pediatrics, and Molecular Biology and Biophysics, UConn Health, Farmington, CT, USA
| |
Collapse
|