1
|
Rong Z, Chen X, Qin L, Wang X, Luo F, Zou Q, Zeng H. Immune escape of Staphylococcus aureus mediated by osteocyte lacuna-canalicular network leads to persistent and uncured bone infection. Front Cell Infect Microbiol 2025; 15:1592086. [PMID: 40529302 PMCID: PMC12171435 DOI: 10.3389/fcimb.2025.1592086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Accepted: 04/30/2025] [Indexed: 06/20/2025] Open
Abstract
Bone infections, specifically chronic osteomyelitis, are characterized by recurrent episodes. They are considered intractable clinical diseases as they require protracted and difficult-to-cure courses. Staphylococcus aureus (S. aureus) is the most common pathogen responsible for bone infections and has high destruction rates. Previous literature has indicated that during S. aureus osteomyelitis, immune evasion mainly involves three mechanisms: biofilm formation, intracellular infection, and abscess formation. However, recently, it was observed that S. aureus can enter and persist for a long time in the Osteocyte lacuno-canalicular network (OLCN), a bone microstructure. Furthermore, it has been found to successfully evade the host's immune system via natural physical barriers, chemical properties, and bone microstructure's immune escape mechanisms. Therefore, S. aureus bone infections are more difficult to cure than soft-tissue infections. Currently, there are only a few studies on OLCN invasion by S. aureus, and the clinical evidence is not sufficient. Therefore, this review aimed to combine relevant published literature on the OLCN-mediated immune escape of S. aureus to elaborate on the pathological mechanisms associated with protracted and difficult-to-cure bone infections. The findings will provide a scientific basis and theoretical foundation for future comprehensive analysis of how S. aureus invades OLCN and novel treatment strategies for bone infections.
Collapse
Affiliation(s)
- Zhigang Rong
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
- National Engineering Research Center of Immunological Products, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaozhen Chen
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Leilei Qin
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaohua Wang
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fei Luo
- Department of Orthopaedics, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Quanming Zou
- National Engineering Research Center of Immunological Products, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
2
|
Butman HS, Stefaniak MA, Walsh DJ, Gondil VS, Young M, Crow AH, Nemeth AM, Melander RJ, Dunman PM, Melander C. Phenyl urea based adjuvants for β-lactam antibiotics against methicillin resistant Staphylococcus aureus. Bioorg Med Chem Lett 2025; 121:130164. [PMID: 40043820 DOI: 10.1016/j.bmcl.2025.130164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/04/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
Penicillin binding protein 4 (PBP4) is essential for Staphylococcus aureus cortical bone osteocyte lacuno-canalicular network (OLCN) invasion, which causes osteomyelitis and serves as a bacterial niche for recurring bone infection. Moreover, PBP4 is also a key determinant of S. aureus resistance to fifth-generation cephalosporins (ceftobiprole and ceftaroline). From these perspectives, the development of S. aureus PBP4 inhibitors may represent dual functional therapeutics that prevent osteomyelitis, and reverse PBP4-mediated β-lactam resistance. A high-throughput screen for small molecules that inhibit S. aureus PBP4 function identified compound 1. We recently described a preliminary structure activity relationship (SAR) study on 1, identifying several compounds with increased PBP4 inhibitory activity, some of which also inhibit PBP2a. Herein, we expand our exploration of phenyl ureas as antibiotic adjuvants, investigating their activity with penicillins and additional cephalosporins against PBP2a-mediated methicillin-resistant S. aureus (MRSA). We screened the previously reported pilot library, and prepared an additional series of phenyl ureas based on compound 1. Lead compounds potentiate multiple β-lactam antibiotics, lowering minimum inhibitory concentrations (MICs) below susceptibility breakpoints, with up to 64-fold reductions in MIC.
Collapse
Affiliation(s)
- Hailey S Butman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, United States
| | - Monica A Stefaniak
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, United States
| | - Danica J Walsh
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, United States
| | - Vijay S Gondil
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Mikaeel Young
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Andrew H Crow
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, United States
| | - Ansley M Nemeth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, United States
| | - Roberta J Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, United States
| | - Paul M Dunman
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, United States.
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, United States.
| |
Collapse
|
3
|
Vanvelk N, Tapia-Dean J, Zeiter S, de Mesy Bentley K, Xie C, Ebetino FH, Sun S, Neighbors J, Schwarz EM, Moriarty TF. Bisphosphonate-Conjugated Sitafloxacin for Treatment of Staphylococcus aureus Infection Associated with Cortical Bone Screws: Case Series in Sheep Model. Pharmaceuticals (Basel) 2025; 18:675. [PMID: 40430494 PMCID: PMC12114730 DOI: 10.3390/ph18050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/24/2025] [Accepted: 04/24/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Hydroxybisphosphonate-conjugated sitafloxacin (HBCS) was developed to achieve higher antibiotic concentrations within infected bone. Small animal studies supported further development, but the feasibility of HBCS treatment in a more clinically relevant and larger animal model is unknown. Methods: In this study, we present case reports on four sheep, each receiving four MRSA-contaminated tibial screws treated with different regimens of intravenous antibiotics. The first two sheep received two screws contaminated with 103 CFU and two screws contaminated with 105 CFU. Sheep 1 only received vancomycin, starting on day two. Sheep 2 received vancomycin, starting on day 2, but also received 7 doses of HBCS (2 mg/kg/48 h). The protocol for the final two sheep was revised, and both received four screws contaminated with 103 CFU, and vancomycin was started preoperatively. Sheep 3 and 4 received 7 doses (starting on day 6) and 9 doses (starting on day 2) of HBCS (4 mg/kg/48 h), respectively. Bacteriology was performed on three screws per animal. Longitudinal radiography and histology (n = 1 screw) were assessed for signs of osteolysis and reactive bone formation. Electron microscopy (EM) was performed in the first two sheep to evaluate antibiotic-induced bacterial damage. Results: All sheep tolerated HBCS infusion without clinical signs of discomfort. In addition to a high bacterial load (~104 CFU on all screws), Sheep 1 displayed extensive radiographic and histologic evidence of peri-implant osteolysis and reactive bone formation. Despite having a high bacterial load (~104 CFU on all screws), Sheep 2 displayed only mild radiographic and histologic evidence of peri-implant osteolysis and periosteal reactive bone formation. Bacteriology in Sheep 3 and 4 demonstrated near MRSA eradication (<100 CFU on 2 screws). Both sheep displayed no evidence of osteolysis or new bone formation adjacent to the screw head. EM confirmed the presence of bacteria resorbing bone and replicating in biofilm in Sheep 1, while antibiotic-killed bacteria with ruptured septal planes were seen in Sheep 2. Conclusions: This study demonstrates the feasibility of HBCS therapy in a clinically relevant animal model and provides guidance on future efficacy studies, such as the use of an inoculum of 103 CFU per screw, the initiation of antibiotic treatment commencing at the time of surgery, and the usability of antibiotic-killed bacteria within altered glycocalyx observed by TEM as a potential biomarker for HBCS efficacy.
Collapse
Affiliation(s)
- Niels Vanvelk
- AO Research Institute Davos, 7270 Davos, Switzerland
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center, 3015GD Rotterdam, The Netherlands
| | | | | | - Karen de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Center for Advanced Research Technology (CART), Electron Microscopy Resource, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Frank Hal Ebetino
- Department of Chemistry, University of Rochester, Rochester, NY 14642, USA
- BioVinc LLC, Pasadena, CA 91107, USA
| | - Shuting Sun
- Department of Chemistry, University of Rochester, Rochester, NY 14642, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Jeffrey Neighbors
- Department of Chemistry, University of Rochester, Rochester, NY 14642, USA
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY 14642, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Thomas Fintan Moriarty
- AO Research Institute Davos, 7270 Davos, Switzerland
- Center for Musculoskeletal Infections (ZMSI), University Hospital Basel, 4031 Basel, Switzerland
| |
Collapse
|
4
|
Song M, Sun J, Lv K, Li J, Shi J, Xu Y. A comprehensive review of pathology and treatment of staphylococcus aureus osteomyelitis. Clin Exp Med 2025; 25:131. [PMID: 40299136 PMCID: PMC12040984 DOI: 10.1007/s10238-025-01595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/10/2025] [Indexed: 04/30/2025]
Abstract
Osteomyelitis (OM) is an inflammation of the bone and bone marrow triggered by infectious pathogens which may induce progressive bone destruction. The majority of OM cases, especially the chronic OM cases, are induced by the most prevalent and devastating pathogen Staphylococcus aureus (S. aureus), partially due to its resistance mechanisms against the immune system and antibiotic therapies. Regarding the high rate of morbidity and recurrence in patients, it is pivotal to elucidate underlying mechanisms that how S. aureus enter and survive in hosts. The accumulated discoveries have identified multiple distinct strategies associated with chronicity and recurrence include biofilm development, small colony variants (SCVs), staphylococcus abscess communities (SACs), the osteocyte lacuno-canalicular network invasion (OLCN) of cortical bones, and S. aureus protein A (SpA). Unfortunately, little clinical progress has been achieved for the diagnosis and therapeutic treatment for OM patients, indicating that numerous questions remain to be solved. Therefore, we still have a long way to obtain the clear elucidation of the host-pathogen interactions which could be applied for clinical treatment of OM. In this review, we provide insights of current knowledge about how S. aureus evades immune eradication and remains persistent in hosts with recent discoveries. The common and novel treatment strategies for OM are also described. The purpose of this review is to have in-dept understanding of S. aureus OM and bring new perspectives to therapeutic fields which may be translated to the clinic.
Collapse
Affiliation(s)
- Muguo Song
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
- Kunming Medical University Graduate School, Kunming, 650500, China
| | - Jian Sun
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
- Kunming Medical University Graduate School, Kunming, 650500, China
| | - Kehan Lv
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
- Kunming Medical University Graduate School, Kunming, 650500, China
| | - Junyi Li
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China
- Kunming Medical University Graduate School, Kunming, 650500, China
| | - Jian Shi
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| | - Yongqing Xu
- Department of Orthopaedics, 920 Hospital of the Joint Logistics Support Force of the PLA, Kunming, 650032, China.
| |
Collapse
|
5
|
Zhang H, Qiao W, Liu Y, Yao X, Zhai Y, Du L. Addressing the challenges of infectious bone defects: a review of recent advances in bifunctional biomaterials. J Nanobiotechnology 2025; 23:257. [PMID: 40158189 PMCID: PMC11954225 DOI: 10.1186/s12951-025-03295-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025] Open
Abstract
Infectious bone defects present a substantial clinical challenge due to the complex interplay between infection control and bone regeneration. These defects often result from trauma, autoimmune diseases, infections, or tumors, requiring a nuanced approach that simultaneously addresses infection and promotes tissue repair. Recent advances in tissue engineering and materials science, particularly in nanomaterials and nano-drug formulations, have led to the development of bifunctional biomaterials with combined osteogenic and antibacterial properties. These materials offer an alternative to traditional bone grafts, minimizing complications such as multiple surgeries, high antibiotic dosages, and lengthy recovery periods. This review examines the repair mechanisms in the infectious microenvironment and highlights various bifunctional biomaterials that foster both anti-infective and osteogenic processes. Emerging design strategies are also discussed to provide a forward-looking perspective on treating infectious bone defects with clinically significant outcomes.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Wenyu Qiao
- Department of General Surgery, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yu Liu
- Research Center for Clinical Medicine, Jinshan Hospital Affiliated to Fudan University, Shanghai, 201508, China
| | - Xizhou Yao
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China
| | - Yonghua Zhai
- Department of Cardiovascular Medicine, Department of Hypertension, Ruijin Hospital and State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, China.
| | - Longhai Du
- Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, 201508, China.
| |
Collapse
|
6
|
McPherson EJ, Chowdhry M, Dipane MV, Marahrens B, Pena DD, Stavrakis AI. Antibiotic-Loaded Calcium Sulphate Beads for Treatment of Acute Periprosthetic Joint Infection in Total Knee Arthroplasty: Results Based on Risk Stratification. J Clin Med 2025; 14:1531. [PMID: 40095454 PMCID: PMC11899950 DOI: 10.3390/jcm14051531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/19/2025] Open
Abstract
Background: A post-operative or late acute periprosthetic joint infection (PJI) after Total Knee Arthroplasty (TKA) requires a protocol of aggressive joint Debridement, modular implant Exchange, Component Retention, and post-operative Antimicrobial therapy (DECRA). Recently, the novel addition of intra-articular Antimicrobial Loaded Calcium Sulphate (AL-CaSO4) beads during DECRA has been utilized to improve microbial eradication. This study reviews a consecutive series of DECRA TKA procedures with AL-CaSO4 beads with a standardized antimicrobial regimen. We hypothesize AL-CaSO4 beads will not improve infection-free implant survival in compromised hosts and limbs. Methods: This consecutive series included DECRA procedures for acute post-operative or late hematogenous PJI-TKA (primary and revision) detected within 4 weeks. One gram of vancomycin powder and 240 mg of liquid tobramycin were added to 10 cc of CaSO4 powder to create 3.0 and 4.8 mm beads delivered into the joint at closure. All patients were risk stratified according to McPherson Staging and followed for a minimum of 1 year. Results: Forty-two patients were studied. The infection-free success rate of DECRA with AL-CaSO4 was 62% (26/42) at 1 year. Average bead volume per case was 18.6 cc (range = 10-40 cc). McPherson Host stage and Limb Score were found to be significantly correlated with the success of the DECRA (p < 0.05). The success rate was highest in A-hosts (87.5%), declining to 50% in B-hosts, and 25% in C-hosts. Similarly, the success rate was highest for patients with Limb score 1 (100%), declining to 58.6% with Limb score 2, and 20% with Limb score 3. Importantly, a previous episode of infection in the affected joint was associated with significantly increased failure (p = 0.000025). Conclusions: This study reports an overall higher infection-free success rate of DECRA using AL-CaSO4 beads compared to the current literature. Antibiotic beads provide an advantage in selected groups that include A or B hosts and Limb scores of 1 or 2. In C-hosts, where the immune system is weak, or Limb score 3, where the wound is compromised and leaks, antibiotic beads do not improve success. Importantly, DECRAs should not be considered curative with a prior history of joint infection. In these difficult circumstances, one should consider an exchange protocol.
Collapse
Affiliation(s)
- Edward J. McPherson
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA 90404, USA; (E.J.M.); (M.V.D.); (D.D.P.); (A.I.S.)
| | - Madhav Chowdhry
- Department of Continuing Education, University of Oxford, Oxford OX1 2JA, UK
| | - Matthew V. Dipane
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA 90404, USA; (E.J.M.); (M.V.D.); (D.D.P.); (A.I.S.)
| | - Benedikt Marahrens
- Department of Internal Medicine, Brandenburg Medical School, Neuruppin, 14770 Brandenburg, Germany;
| | - Diego Dela Pena
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA 90404, USA; (E.J.M.); (M.V.D.); (D.D.P.); (A.I.S.)
| | - Alexandra I. Stavrakis
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA 90404, USA; (E.J.M.); (M.V.D.); (D.D.P.); (A.I.S.)
| |
Collapse
|
7
|
Vanvelk N, de Mesy Bentley KL, Verhofstad MHJ, Metsemakers WJ, Moriarty TF, Siverino C. Development of an ex vivo model to study Staphylococcus aureus invasion of the osteocyte lacuno-canalicular network. J Orthop Res 2025; 43:446-456. [PMID: 39380444 DOI: 10.1002/jor.25988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Staphylococcus aureus has multiple mechanisms to evade the host's immune system and antibiotic treatment. One such mechanism is the invasion of the osteocyte lacuno-canalicular network (OLCN), which may be particularly important in recurrence of infection after debridement and antibiotic therapy. The aim of this study was to develop an ex vivo model to facilitate further study of S. aureus invasion of the OLCN and early-stage testing of antibacterial strategies against bacteria in this niche. The diameter of the canaliculi of non-infected human, sheep, and mouse bones was measured microscopically on Schmorl's picrothionin stained sections, showing a large overlap in canalicular diameter. S. aureus successfully invaded the OLCN in all species in vitro as revealed by presence in osteocyte lacunae in Brown and Brenn-stained sections and by scanning electron microscopy. Murine bones were then selected for further experiments, and titanium pins with either a wild-type or ΔPBP4 mutant S. aureus USA300 were placed trans-cortically and incubated for 2 weeks in tryptic soy broth. Wild-type S. aureus readily invaded the osteocyte lacunae in mouse bones while the ΔPBP4 showed a significantly lower invasion of the OLCN (p = 0.0005). Bone specimens were then treated with gentamicin, sitafloxacin, R14 bacteriophages, or left untreated. Gentamicin (p = 0.0027) and sitafloxacin (p = 0.0280) significantly reduced the proportion of S. aureus-occupied lacunae, whilst bacteriophage treatment had no effect. This study shows that S. aureus is able to invade the OLCN in an ex vivo model. This ex vivo model can be used for future early-stage studies before proceeding to in vivo studies.
Collapse
Affiliation(s)
- Niels Vanvelk
- AO Research Institute Davos, Davos, Switzerland
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Center for Advanced Research Technology (CART), University of Rochester Medical Center Rochester, Rochester, New York, USA
| | - Michael H J Verhofstad
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven-University of Leuven, Leuven, Belgium
| | - Thomas F Moriarty
- AO Research Institute Davos, Davos, Switzerland
- Center for Muskuloskeletal Infections (ZMSI), University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
8
|
Saito M, McDonald KA, Grier AK, Meghwani H, Rangel-Moreno J, Becerril-Villanueva E, Gamboa-Dominguez A, Bruno J, Beck CA, Proctor RA, Kates SL, Schwarz EM, Muthukrishnan G. Immune Checkpoint Molecules as Biomarkers of Staphylococcus aureus Bone Infection and Clinical Outcome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.30.630837. [PMID: 39803468 PMCID: PMC11722373 DOI: 10.1101/2024.12.30.630837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Staphylococcus aureus prosthetic joint infections (PJIs) are broadly considered incurable, and clinical diagnostics that guide conservative vs. aggressive surgical treatments don't exist. Multi-omics studies in a humanized NSG-SGM3 BLT mouse model demonstrate human T cells: 1) are remarkably heterogenous in gene expression and numbers, and 2) exist as a mixed population of activated, progenitor-exhausted, and terminally-exhausted Th1/Th17 cells with increased expression of immune checkpoint proteins (LAG3, TIM-3). Importantly, these proteins are upregulated in the serum and the bone marrow of S. aureus PJI patients. A multiparametric nomogram combining high serum immune checkpoint protein levels with low proinflammatory cytokine levels (IFN-γ, IL-2, TNF-α, IL-17) revealed that TIM-3 was highly predictive of adverse disease outcomes (AUC=0.89). Hence, T cell impairment in the form of immune checkpoint expression and exhaustion could be a functional biomarker for S. aureus PJI disease outcome, and blockade of checkpoint proteins could potentially improve outcomes following surgery.
Collapse
Affiliation(s)
- Motoo Saito
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Katya A. McDonald
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Alex K. Grier
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Division of Gastroenterology and Hepatology, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Himanshu Meghwani
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology, Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Enrique Becerril-Villanueva
- Psychoimmunology laboratory, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñiz.” Mexico City, Mexico
| | - Armando Gamboa-Dominguez
- Deparment of Pathology, Instituto Nacional de Ciencias Médicas Y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Jennifer Bruno
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher A. Beck
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Richard A. Proctor
- Departments of Medical Microbiology/Immunology and Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Edward M. Schwarz
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Gowrishankar Muthukrishnan
- The Center for Musculoskeletal Research, Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
9
|
Scull G, Aligwekwe A, Rey Y, Koch D, Nellenbach K, Sheridan A, Pandit S, Sollinger J, Pierce JG, Flick MJ, Gilbertie J, Schnabel L, Brown AC. Fighting fibrin with fibrin: Vancomycin delivery into coagulase-mediated Staphylococcus aureus biofilms via fibrin-based nanoparticle binding. J Biomed Mater Res A 2024; 112:2071-2085. [PMID: 38874363 PMCID: PMC11464197 DOI: 10.1002/jbm.a.37760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
Staphylococcus aureus skin and soft tissue infection is a common ailment placing a large burden upon global healthcare infrastructure. These bacteria are growing increasingly recalcitrant to frontline antimicrobial therapeutics like vancomycin due to the prevalence of variant populations such as methicillin-resistant and vancomycin-resistant strains, and there is currently a dearth of novel antibiotics in production. Additionally, S. aureus has the capacity to hijack the host clotting machinery to generate fibrin-based biofilms that confer protection from host antimicrobial mechanisms and antibiotic-based therapies, enabling immune system evasion and significantly reducing antimicrobial efficacy. Emphasis is being placed on improving the effectiveness of therapeutics that are already commercially available through various means. Fibrin-based nanoparticles (FBNs) were developed and found to interact with S. aureus through the clumping factor A (ClfA) fibrinogen receptor and directly integrate into the biofilm matrix. FBNs loaded with antimicrobials such as vancomycin enabled a targeted and sustained release of antibiotic that increased drug contact time and reduced the therapeutic dose required for eradicating the bacteria, both in vitro and in vivo. Collectively, these findings suggest that FBN-antibiotic delivery may be a novel and potent therapeutic tool for the treatment of S. aureus biofilm infections.
Collapse
Affiliation(s)
- Grant Scull
- Joint Department of Biomedical Engineering, NC State University and UNC-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina, USA
| | - Adrian Aligwekwe
- Joint Department of Biomedical Engineering, NC State University and UNC-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina, USA
| | - Ysabel Rey
- Joint Department of Biomedical Engineering, NC State University and UNC-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina, USA
| | - Drew Koch
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina, USA
- College of Veterinary Medicine, NC State University, Raleigh, North Carolina, USA
| | - Kimberly Nellenbach
- Joint Department of Biomedical Engineering, NC State University and UNC-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina, USA
| | - Ana Sheridan
- Joint Department of Biomedical Engineering, NC State University and UNC-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina, USA
| | - Sanika Pandit
- Joint Department of Biomedical Engineering, NC State University and UNC-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina, USA
| | - Jennifer Sollinger
- Joint Department of Biomedical Engineering, NC State University and UNC-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina, USA
| | - Joshua G Pierce
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina, USA
- Department of Chemistry, NC State University, Raleigh, North Carolina, USA
| | - Matthew J Flick
- UNC-Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
- Blood Research Center, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Jessica Gilbertie
- Department of Microbiology and Immunology, Edward Via College of Osteopathic Medicine, Blacksburg, Virginia, USA
| | - Lauren Schnabel
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina, USA
- College of Veterinary Medicine, NC State University, Raleigh, North Carolina, USA
| | - Ashley C Brown
- Joint Department of Biomedical Engineering, NC State University and UNC-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, NC State University, Raleigh, North Carolina, USA
- Blood Research Center, UNC-Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
10
|
Ledger EVK, Massey RC. PBP4 is required for serum-induced cell wall thickening and antibiotic tolerance in Staphylococcus aureus. Antimicrob Agents Chemother 2024; 68:e0096124. [PMID: 39431816 PMCID: PMC11539222 DOI: 10.1128/aac.00961-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/21/2024] [Indexed: 10/22/2024] Open
Abstract
The bacterial pathogen Staphylococcus aureus responds to the host environment by synthesizing a thick peptidoglycan cell wall, which protects the bacterium from membrane-targeting antimicrobials and the immune response. However, the proteins required for this response were previously unknown. Here, we demonstrate by three independent approaches that the penicillin-binding protein PBP4 is crucial for serum-induced cell wall thickening. First, mutants lacking various non-essential cell wall synthesis enzymes were tested, revealing that a mutant lacking pbp4 was unable to generate a thick cell wall in serum. This resulted in reduced serum-induced tolerance of the pbp4 mutant toward the last resort antibiotic daptomycin relative to wild-type cells. Second, we found that serum-induced cell wall thickening occurred in each of a panel of 134 clinical bacteremia isolates, except for one strain with a naturally occurring mutation that results in an S140R substitution in the active site of PBP4. Finally, inhibition of PBP4 with cefoxitin prevented serum-induced cell wall thickening and the resulting antibiotic tolerance in the USA300 strain and clinical MRSA isolates. Together, this provides a rationale for combining daptomycin with cefoxitin, a PBP4 inhibitor, to potentially improve treatment outcomes for patients with invasive MRSA infections.
Collapse
Affiliation(s)
- Elizabeth V. K. Ledger
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Centre for Bacterial Resistance Biology, Imperial College London, London, United Kingdom
| | - Ruth C. Massey
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
11
|
Straub J, Baertl S, Verheul M, Walter N, Wong RMY, Alt V, Rupp M. Antimicrobial resistance: Biofilms, small colony variants, and intracellular bacteria. Injury 2024; 55 Suppl 6:111638. [PMID: 39482024 DOI: 10.1016/j.injury.2024.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 11/03/2024]
Abstract
Soft tissue and bone infections continue to be a serious complication in orthopedic and trauma surgery. Both can lead to a high burden for the patients and the healthcare system. Musculoskeletal infections can be induced by intraoperative contamination, bacterial contamination of open wounds or hematogenous bacterial spread. During the recent decades, advances were achieved in the understanding of pathogenesis and antibiotic resistance. Despite some progress in the diagnosis and advancing of therapeutic concepts, groundbreaking successful improvement of treatment concepts is still missing. Current therapy concepts are based on the two pillars consisting of surgical debridement with joint or bone reconstruction as well as prolonged antibiotic therapy. An improved understanding of both host and pathogen-related factors leading to treatment failure is essential in musculoskeletal infections. Therefore, this review aims to give an overview of pathogen-related pathophysiology in musculoskeletal infections. It describes defense strategies of pathogens such as (1) biofilm, its development, characteristics, and treatment options. In addition, (2) characteristics of small colony variants and (3) intracellular bacteria are highlighted. Lastly (4) an outlook for potential and promising future therapeutic strategies is provided.
Collapse
Affiliation(s)
- Josina Straub
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Susanne Baertl
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Marielle Verheul
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Nike Walter
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Ronald Man Yeung Wong
- Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Volker Alt
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Markus Rupp
- Department of Trauma Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| |
Collapse
|
12
|
Liu X, de Bakker V, Heggenhougen MV, Mårli MT, Frøynes AH, Salehian Z, Porcellato D, Morales Angeles D, Veening JW, Kjos M. Genome-wide CRISPRi screens for high-throughput fitness quantification and identification of determinants for dalbavancin susceptibility in Staphylococcus aureus. mSystems 2024; 9:e0128923. [PMID: 38837392 PMCID: PMC11265419 DOI: 10.1128/msystems.01289-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Antibiotic resistance and tolerance remain a major problem for the treatment of staphylococcal infections. Identifying genes that influence antibiotic susceptibility could open the door to novel antimicrobial strategies, including targets for new synergistic drug combinations. Here, we developed a genome-wide CRISPR interference library for Staphylococcus aureus, demonstrated its use by quantifying gene fitness in different strains through CRISPRi-seq, and used it to identify genes that modulate susceptibility to the lipoglycopeptide dalbavancin. By exposing the library to sublethal concentrations of dalbavancin using both CRISPRi-seq and direct selection methods, we not only found genes previously reported to be involved in antibiotic susceptibility but also identified genes thus far unknown to affect antibiotic tolerance. Importantly, some of these genes could not have been detected by more conventional transposon-based knockout approaches because they are essential for growth, stressing the complementary value of CRISPRi-based methods. Notably, knockdown of a gene encoding the uncharacterized protein KapB specifically sensitizes the cells to dalbavancin, but not to other antibiotics of the same class, whereas knockdown of the Shikimate pathway showed the opposite effect. The results presented here demonstrate the promise of CRISPRi-seq screens to identify genes and pathways involved in antibiotic susceptibility and pave the way to explore alternative antimicrobial treatments through these insights.IMPORTANCEAntibiotic resistance is a challenge for treating staphylococcal infections. Identifying genes that affect how antibiotics work could help create new treatments. In our study, we made a CRISPR interference library for Staphylococcus aureus and used this to find which genes are critical for growth and also mapped genes that are important for antibiotic sensitivity, focusing on the lipoglycopeptide antibiotic dalbavancin. With this method, we identified genes that altered the sensitivity to dalbavancin upon knockdown, including genes involved in different cellular functions. CRISPRi-seq offers a means to uncover untapped antibiotic targets, including those that conventional screens would disregard due to their essentiality. This paves the way for the discovery of new ways to fight infections.
Collapse
Affiliation(s)
- Xue Liu
- Department of Pathogen, Biology, International Cancer Center, Shenzhen University Medical School, Shenzhen, Guangdong, China
- Department of Fundamental Microbiology, University of Lausanne, , Switzerland
| | - Vincent de Bakker
- Department of Fundamental Microbiology, University of Lausanne, , Switzerland
| | | | - Marita Torrissen Mårli
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| | - Anette Heidal Frøynes
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| | - Zhian Salehian
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| | - Davide Porcellato
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, University of Lausanne, , Switzerland
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Norway
| |
Collapse
|
13
|
Gondil VS, Butman HS, Young M, Walsh DJ, Narkhede Y, Zeiler MJ, Crow AH, Carpenter ME, Mardikar A, Melander RJ, Wiest O, Dunman PM, Melander C. Development of phenyl-urea-based small molecules that target penicillin-binding protein 4. Chem Biol Drug Des 2024; 103:e14569. [PMID: 38877369 PMCID: PMC11185276 DOI: 10.1111/cbdd.14569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/08/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Staphylococcus aureus has the ability to invade cortical bone osteocyte lacuno-canalicular networks (OLCNs) and cause osteomyelitis. It was recently established that the cell wall transpeptidase, penicillin-binding protein 4 (PBP4), is crucial for this function, with pbp4 deletion strains unable to invade OLCNs and cause bone pathogenesis in a murine model of S. aureus osteomyelitis. Moreover, PBP4 has recently been found to modulate S. aureus resistance to β-lactam antibiotics. As such, small molecule inhibitors of S. aureus PBP4 may represent dual functional antimicrobial agents that limit osteomyelitis and/or reverse antibiotic resistance. A high throughput screen recently revealed that the phenyl-urea 1 targets PBP4. Herein, we describe a structure-activity relationship (SAR) study on 1. Leveraging in silico docking and modeling, a set of analogs was synthesized and assessed for PBP4 inhibitory activities. Results revealed a preliminary SAR and identified lead compounds with enhanced binding to PBP4, more potent antibiotic resistance reversal, and diminished PBP4 cell wall transpeptidase activity in comparison to 1.
Collapse
Affiliation(s)
- Vijay S. Gondil
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Hailey S. Butman
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, United States
| | - Mikaeel Young
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Danica J. Walsh
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, United States
| | - Yogesh Narkhede
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, United States
| | - Michael J. Zeiler
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, United States
| | - Andrew H. Crow
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, United States
| | - Morgan E. Carpenter
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, United States
| | - Aashay Mardikar
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Roberta J. Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, United States
| | - Olaf Wiest
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, United States
| | - Paul M. Dunman
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, New York 14642, United States
| | - Christian Melander
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, United States
| |
Collapse
|
14
|
Costa SF, Saraiva BM, Veiga H, Marques LB, Schäper S, Sporniak M, Vega DE, Jorge AM, Duarte AM, Brito AD, Tavares AC, Reed P, Pinho MG. The role of GpsB in Staphylococcus aureus cell morphogenesis. mBio 2024; 15:e0323523. [PMID: 38319093 PMCID: PMC10936418 DOI: 10.1128/mbio.03235-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024] Open
Abstract
For decades, cells of the Gram-positive bacterial pathogen Staphylococcus aureus were thought to lack a dedicated elongation machinery. However, S. aureus cells were recently shown to elongate before division, in a process that requires a shape elongation division and sporulation (SEDS)/penicillin-binding protein (PBP) pair for peptidoglycan synthesis, consisting of the glycosyltransferase RodA and the transpeptidase PBP3. In ovococci and rod-shaped bacteria, the elongation machinery, or elongasome, is composed of various proteins besides a dedicated SEDS/PBP pair. To identify proteins required for S. aureus elongation, we screened the Nebraska Transposon Mutant Library, which contains transposon mutants in virtually all non-essential staphylococcal genes, for mutants with modified cell shape. We confirmed the roles of RodA/PBP3 in S. aureus elongation and identified GpsB, SsaA, and RodZ as additional proteins involved in this process. The gpsB mutant showed the strongest phenotype, mediated by the partial delocalization from the division septum of PBP2 and PBP4, two penicillin-binding proteins that synthesize and cross-link peptidoglycan. Increased levels of these PBPs at the cell periphery versus the septum result in higher levels of peptidoglycan insertion/crosslinking throughout the entire cell, possibly overriding the RodA/PBP3-mediated peptidoglycan synthesis at the outer edge of the septum and/or increasing stiffness of the peripheral wall, impairing elongation. Consequently, in the absence of GpsB, S. aureus cells become more spherical. We propose that GpsB has a role in the spatio-temporal regulation of PBP2 and PBP4 at the septum versus cell periphery, contributing to the maintenance of the correct cell morphology in S. aureus. IMPORTANCE Staphylococcus aureus is a Gram-positive clinical pathogen, which is currently the second cause of death by antibiotic-resistant infections worldwide. For decades, S. aureus cells were thought to be spherical and lack the ability to undergo elongation. However, super-resolution microscopy techniques allowed us to observe the minor morphological changes that occur during the cell cycle of this pathogen, including cell elongation. S. aureus elongation is not required for normal growth in laboratory conditions. However, it seems to be essential in the context of some infections, such as osteomyelitis, during which S. aureus cells apparently elongate to invade small channels in the bones. In this work, we uncovered new determinants required for S. aureus cell elongation. In particular, we show that GpsB has an important role in the spatio-temporal regulation of PBP2 and PBP4, two proteins involved in peptidoglycan synthesis, contributing to the maintenance of the correct cell morphology in S. aureus.
Collapse
Affiliation(s)
- Sara F. Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Bruno M. Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Helena Veiga
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Leonor B. Marques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Simon Schäper
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Marta Sporniak
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Daniel E. Vega
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Ana M. Jorge
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Andreia M. Duarte
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - António D. Brito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Andreia C. Tavares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Patricia Reed
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Mariana G. Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| |
Collapse
|
15
|
Xie C, Ren Y, Weeks J, Rainbolt J, Kenney HM, Xue T, Allen F, Shu Y, Tay AJH, Lekkala S, Yeh SCA, Muthukrishnan G, Gill AL, Gill SR, Kim M, Kates SL, Schwarz EM. Longitudinal intravital imaging of the bone marrow for analysis of the race for the surface in a murine osteomyelitis model. J Orthop Res 2024; 42:531-538. [PMID: 37812184 PMCID: PMC10932844 DOI: 10.1002/jor.25716] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/08/2023] [Accepted: 10/05/2023] [Indexed: 10/10/2023]
Abstract
Critical knowledge gaps of orthopedic infections pertain to bacterial colonization. The established dogma termed the Race for the Surface posits that contaminating bacteria compete with host cells for the implant post-op, which remains unproven without real-time in vivo evidence. Thus, we modified the murine longitudinal intravital imaging of the bone marrow (LIMB) system to allow real-time quantification of green fluorescent protein (GFP+) host cells and enhanced cyan fluorescent protein (ECFP+) or red fluorescent protein (RFP+) methicillin-resistant Staphylococcus aureus (MRSA) proximal to a transfemoral implant. Following inoculation with ~105 CFU, an L-shaped metal implant was press-fit through the lateral cortex at a 90° angle ~0.150 mm below a gradient refractive index (GRIN) lens. We empirically derived a volume of interest (VOI) = 0.0161 ± 0.000675 mm3 during each imaging session by aggregating the Z-stacks between the first (superior) and last (inferior) in-focus LIMB slice. LIMB postimplantation revealed very limited bacteria detection at 1 h, but by 3 h, 56.8% of the implant surface was covered by ECFP+ bacteria, and the rest were covered by GFP+ host cells. 3D volumetric rendering of the GFP+ and ECFP+ or RFP+ voxels demonstrated exponential MRSA growth between 3 and 6 h in the Z-plane, which was validated with cross-sectional ex vivo bacterial burden analyses demonstrating significant growth by ~2 × 104 CFU/h on the implant from 2 to 12 h post-op (p < 0.05; r2 > 0.98). Collectively, these results show the competition at the surface is completed by 3 h in this model and demonstrate the potential of LIMB to elucidate mechanisms of bacterial colonization, the host immune response, and the efficacy of antimicrobials.
Collapse
Affiliation(s)
- Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Youliang Ren
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Jason Weeks
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Joshua Rainbolt
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - H. Mark Kenney
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas Xue
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Faith Allen
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Ye Shu
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Allie Jia Hui Tay
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Sashank Lekkala
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Shu-Chi A. Yeh
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Ann L. Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Steven R. Gill
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Minsoo Kim
- Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Stephen L. Kates
- Department of Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
16
|
Ren Y, Weeks J, Xue T, Rainbolt J, de Mesy Bentley KL, Shu Y, Liu Y, Masters E, Cherian P, McKenna CE, Neighbors J, Ebetino FH, Schwarz EM, Sun S, Xie C. Evidence of bisphosphonate-conjugated sitafloxacin eradication of established methicillin-resistant S. aureus infection with osseointegration in murine models of implant-associated osteomyelitis. Bone Res 2023; 11:51. [PMID: 37848449 PMCID: PMC10582111 DOI: 10.1038/s41413-023-00287-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/05/2023] [Accepted: 08/21/2023] [Indexed: 10/19/2023] Open
Abstract
Eradication of MRSA osteomyelitis requires elimination of distinct biofilms. To overcome this, we developed bisphosphonate-conjugated sitafloxacin (BCS, BV600072) and hydroxybisphosphonate-conjugate sitafloxacin (HBCS, BV63072), which achieve "target-and-release" drug delivery proximal to the bone infection and have prophylactic efficacy against MRSA static biofilm in vitro and in vivo. Here we evaluated their therapeutic efficacy in a murine 1-stage exchange femoral plate model with bioluminescent MRSA (USA300LAC::lux). Osteomyelitis was confirmed by CFU on the explants and longitudinal bioluminescent imaging (BLI) after debridement and implant exchange surgery on day 7, and mice were randomized into seven groups: 1) Baseline (harvested at day 7, no treatment); 2) HPBP (bisphosphonate control for BCS) + vancomycin; 3) HPHBP (hydroxybisphosphonate control for HBCS) + vancomycin; 4) vancomycin; 5) sitafloxacin; 6) BCS + vancomycin; and 7) HBCS + vancomycin. BLI confirmed infection persisted in all groups except for mice treated with BCS or HBCS + vancomycin. Radiology revealed catastrophic femur fractures in all groups except mice treated with BCS or HBCS + vancomycin, which also displayed decreases in peri-implant bone loss, osteoclast numbers, and biofilm. To confirm this, we assessed the efficacy of vancomycin, sitafloxacin, and HBCS monotherapy in a transtibial implant model. The results showed complete lack of vancomycin efficacy while all mice treated with HBCS had evidence of infection control, and some had evidence of osseous integrated septic implants, suggestive of biofilm eradication. Taken together these studies demonstrate that HBCS adjuvant with standard of care debridement and vancomycin therapy has the potential to eradicate MRSA osteomyelitis.
Collapse
Affiliation(s)
- Youliang Ren
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Jason Weeks
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Thomas Xue
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Joshua Rainbolt
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Pathology and Center for Advanced Research Technologies, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Ye Shu
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Yuting Liu
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Elysia Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | | | - Charles E McKenna
- Department of Chemistry, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jeffrey Neighbors
- Department of Pharmacology, Pennsylvania State University, Hershey, PA, 17033, USA
| | - Frank H Ebetino
- BioVinc, LLC, Pasadena, CA, 91107, USA
- Department of Chemistry, University of Rochester, Rochester, NY, 14642, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | | | - Chao Xie
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, 14642, USA.
- Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| |
Collapse
|
17
|
Xie C, Ren Y, Weeks J, Xue T, Rainbolt J, Bentley KDM, Shu Y, Liu Y, Masters E, Cherian P, McKenna C, Neighbors J, Ebetino F, Schwarz E, Sun S. Evidence of Bisphosphonate-Conjugated Sitafloxacin Eradication of Established Methicillin-Resistant S. aureus Infection with Osseointegration in Murine Models of Implant-Associated Osteomyelitis. RESEARCH SQUARE 2023:rs.3.rs-2856287. [PMID: 37214929 PMCID: PMC10197753 DOI: 10.21203/rs.3.rs-2856287/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Eradication of MRSA osteomyelitis requires elimination of distinct biofilms. To overcome this, we developed bisphosphonate-conjugated sitafloxacin (BCS, BV600072) and hydroxybisphosphonate-conjugate sitafloxacin (HBCS, BV63072), which achieve "target-and-release" drug delivery proximal to the bone infection and have prophylactic efficacy against MRSA static biofilm in vitro and in vivo. Here we evaluated their therapeutic efficacy in a murine 1-stage exchange femoral plate model with bioluminescent MRSA (USA300LAC::lux). Osteomyelitis was confirmed by CFU on the explants and longitudinal bioluminescent imaging (BLI) after debridement and implant exchange surgery on day 7, and mice were randomized into seven groups: 1) Baseline (harvested at day 7, no treatment); 2) HPBP (bisphosphonate control for BCS) + vancomycin; 3) HPHBP (bisphosphonate control for HBCS) + vancomycin; 4) vancomycin; 5) sitafloxacin; 6) BCS + vancomycin; and 7) HBCS + vancomycin. BLI confirmed infection persisted in all groups except for mice treated with BCS or HBCS + vancomycin. Radiology revealed catastrophic femur fractures in all groups except mice treated with BCS or HBCS + vancomycin, which also displayed decreases in peri-implant bone loss, osteoclast numbers, and biofilm. To confirm this, we assessed the efficacy of vancomycin, sitafloxacin, and HBCS monotherapy in a transtibial implant model. The results showed complete lack of vancomycin efficacy, while all mice treated with HBCS had evidence of infection control, and some had evidence of osseous integrated septic implants, suggestive of biofilm eradication. Taken together these studies demonstrate that HBCS adjuvant with standard of care debridement and vancomycin therapy has the potential to eradicate MRSA osteomyelitis.
Collapse
Affiliation(s)
- Chao Xie
- University of Rochester Medical Center
| | | | | | | | | | | | - Ye Shu
- University of Rochester Medical Center
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ghosh S, Webster TJ. Bioinspired advanced nanomaterials for infection control and promotion of bone growth. Nanomedicine (Lond) 2023. [DOI: 10.1016/b978-0-12-818627-5.00011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
19
|
Satishkumar N, Lai LY, Mukkayyan N, Vogel BE, Chatterjee SS. A Nonclassical Mechanism of β-Lactam Resistance in Methicillin-Resistant Staphylococcus aureus and Its Effect on Virulence. Microbiol Spectr 2022; 10:e0228422. [PMID: 36314912 PMCID: PMC9769611 DOI: 10.1128/spectrum.02284-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a group of pathogenic bacteria that are infamously resistant to β-lactam antibiotics, a property attributed to the mecA gene. Recent studies have reported that mutations associated with the promoter region of pbp4 demonstrated high levels of β-lactam resistance, suggesting the role of PBP4 as an important non-mecA mediator of β-lactam resistance. The pbp4-promoter-associated mutations have been detected in strains with or without mecA. Our previous studies that were carried out in strains devoid of mecA described that pbp4-promoter-associated mutations lead to PBP4 overexpression and β-lactam resistance. In this study, by introducing various pbp4-promoter-associated mutations in the genome of a MRSA strain, we demonstrate that PBP4 overexpression can supplement mecA-associated resistance in S. aureus and can lead to increased β-lactam resistance. The promoter and regulatory region of pbp4 is shared with a divergently transcribed gene, abcA, which encodes a multidrug exporter. We demonstrate that the promoter mutations caused an upregulation of pbp4 and downregulation of abcA, confirming that the resistant phenotype is associated with PBP4 overexpression. PBP4 has also been associated with staphylococcal pathogenesis, however, its exact role remains unclear. Using a Caenorhabditis elegans model, we demonstrate that strains having increased PBP4 expression are less virulent than wild-type strains, suggesting that β-lactam resistance mediated via PBP4 likely comes at the cost of virulence. IMPORTANCE Our study demonstrates the ability of PBP4 to be an important mediator of β-lactam resistance in not only methicillin-susceptible Staphylococcus aureus (MSSA) background strains as previously demonstrated but also in MRSA strains. When present together, PBP2a and PBP4 overexpression can produce increased levels of β-lactam resistance, causing complications in treatment. Thus, this study suggests the importance of monitoring PBP4-associated resistance in clinical settings, as well as understanding the mechanistic basis of associated resistance, so that treatments targeting PBP4 may be developed. This study also demonstrates that S. aureus strains with increased PBP4 expression are less pathogenic, providing important hints about the role of PBP4 in S. aureus resistance and pathogenesis.
Collapse
Affiliation(s)
- Nidhi Satishkumar
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
- Institute of Marine and Environmental Technology (IMET), Baltimore, Maryland, USA
| | - Li-Yin Lai
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
- Institute of Marine and Environmental Technology (IMET), Baltimore, Maryland, USA
| | - Nagaraja Mukkayyan
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
- Institute of Marine and Environmental Technology (IMET), Baltimore, Maryland, USA
| | - Bruce E. Vogel
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Som S. Chatterjee
- Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, Maryland, USA
- Institute of Marine and Environmental Technology (IMET), Baltimore, Maryland, USA
| |
Collapse
|
20
|
Moriarty TF, Metsemakers WJ, Morgenstern M, Hofstee MI, Vallejo Diaz A, Cassat JE, Wildemann B, Depypere M, Schwarz EM, Richards RG. Fracture-related infection. Nat Rev Dis Primers 2022; 8:67. [PMID: 36266296 DOI: 10.1038/s41572-022-00396-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/13/2022] [Indexed: 11/09/2022]
Abstract
Musculoskeletal trauma leading to broken and damaged bones and soft tissues can be a life-threating event. Modern orthopaedic trauma surgery, combined with innovation in medical devices, allows many severe injuries to be rapidly repaired and to eventually heal. Unfortunately, one of the persisting complications is fracture-related infection (FRI). In these cases, pathogenic bacteria enter the wound and divert the host responses from a bone-healing course to an inflammatory and antibacterial course that can prevent the bone from healing. FRI can lead to permanent disability, or long courses of therapy lasting from months to years. In the past 5 years, international consensus on a definition of these infections has focused greater attention on FRI, and new guidelines are available for prevention, diagnosis and treatment. Further improvements in understanding the role of perioperative antibiotic prophylaxis and the optimal treatment approach would be transformative for the field. Basic science and engineering innovations will be required to reduce infection rates, with interventions such as more efficient delivery of antibiotics, new antimicrobials, and optimizing host defences among the most likely to improve the care of patients with FRI.
Collapse
Affiliation(s)
- T Fintan Moriarty
- AO Research Institute Davos, Davos, Switzerland.,Center for Musculoskeletal Infections, Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| | - Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium.,Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Mario Morgenstern
- Center for Musculoskeletal Infections, Department of Orthopaedic and Trauma Surgery, University Hospital Basel, Basel, Switzerland
| | | | - Alejandro Vallejo Diaz
- Department of Orthopedics and Traumatology, Hospital Alma Mater de Antioquia, Medellín, Colombia.,Department of Orthopedics and Traumatology, Universidad Pontificia Bolivariana, Medellín, Colombia
| | - James E Cassat
- Department of Paediatrics, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Britt Wildemann
- Experimental Trauma Surgery, Department of Trauma, Hand and Reconstructive Surgery, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
| | - Melissa Depypere
- Department of Laboratory Medicine, University Hospitals Leuven, Leuven, Belgium.,Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - R Geoff Richards
- AO Research Institute Davos, Davos, Switzerland. .,School of Veterinary Science, Aberystwyth University, Aberystwyth, UK.
| |
Collapse
|
21
|
McCloskey MC, Kasap P, Ahmad SD, Su SH, Chen K, Mansouri M, Ramesh N, Nishihara H, Belyaev Y, Abhyankar VV, Begolo S, Singer BH, Webb KF, Kurabayashi K, Flax J, Waugh RE, Engelhardt B, McGrath JL. The Modular µSiM: A Mass Produced, Rapidly Assembled, and Reconfigurable Platform for the Study of Barrier Tissue Models In Vitro. Adv Healthc Mater 2022; 11:e2200804. [PMID: 35899801 PMCID: PMC9580267 DOI: 10.1002/adhm.202200804] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/11/2022] [Indexed: 01/27/2023]
Abstract
Advanced in vitro tissue chip models can reduce and replace animal experimentation and may eventually support "on-chip" clinical trials. To realize this potential, however, tissue chip platforms must be both mass-produced and reconfigurable to allow for customized design. To address these unmet needs, an extension of the µSiM (microdevice featuring a silicon-nitride membrane) platform is introduced. The modular µSiM (m-µSiM) uses mass-produced components to enable rapid assembly and reconfiguration by laboratories without knowledge of microfabrication. The utility of the m-µSiM is demonstrated by establishing an hiPSC-derived blood-brain barrier (BBB) in bioengineering and nonengineering, brain barriers focused laboratories. In situ and sampling-based assays of small molecule diffusion are developed and validated as a measure of barrier function. BBB properties show excellent interlaboratory agreement and match expectations from literature, validating the m-µSiM as a platform for barrier models and demonstrating successful dissemination of components and protocols. The ability to quickly reconfigure the m-µSiM for coculture and immune cell transmigration studies through addition of accessories and/or quick exchange of components is then demonstrated. Because the development of modified components and accessories is easily achieved, custom designs of the m-µSiM shall be accessible to any laboratory desiring a barrier-style tissue chip platform.
Collapse
Affiliation(s)
- Molly C McCloskey
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Pelin Kasap
- Theodor Kocher Institute, University of Bern, Bern, 3012, Switzerland
- Graduate School of Cellular and Biomedical Sciences (GCB), University of Bern, Bern, 3012, Switzerland
| | - S Danial Ahmad
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Shiuan-Haur Su
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kaihua Chen
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Mehran Mansouri
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | - Natalie Ramesh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Hideaki Nishihara
- Theodor Kocher Institute, University of Bern, Bern, 3012, Switzerland
| | - Yury Belyaev
- Microscopy Imaging Center, University of Bern, Bern, 3012, Switzerland
| | - Vinay V Abhyankar
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY, 14623, USA
| | | | - Benjamin H Singer
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Kevin F Webb
- Optics & Photonics Research Group, Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Katsuo Kurabayashi
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jonathan Flax
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Richard E Waugh
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Bern, 3012, Switzerland
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627, USA
| |
Collapse
|
22
|
Morita Y, Saito M, Rangel-Moreno J, Franchini AM, Owen JR, Martinez JC, Daiss JL, de Mesy Bentley KL, Kates SL, Schwarz EM, Muthukrishnan G. Systemic IL-27 administration prevents abscess formation and osteolysis via local neutrophil recruitment and activation. Bone Res 2022; 10:56. [PMID: 36028492 PMCID: PMC9418173 DOI: 10.1038/s41413-022-00228-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/20/2022] [Accepted: 06/15/2022] [Indexed: 01/07/2023] Open
Abstract
Interleukin-27 is a pleiotropic cytokine whose functions during bacterial infections remain controversial, and its role in patients with S. aureus osteomyelitis is unknown. To address this knowledge gap, we completed a clinical study and observed elevated serum IL-27 levels (20-fold higher, P < 0.05) in patients compared with healthy controls. Remarkably, IL-27 serum levels were 60-fold higher in patients immediately following septic death than in uninfected patients (P < 0.05), suggesting a pathogenic role of IL-27. To test this hypothesis, we evaluated S. aureus osteomyelitis in WT and IL-27Rα-/- mice with and without exogenous IL-27 induction by intramuscular injection of rAAV-IL-27p28 or rAAV-GFP, respectively. We found that IL-27 was induced at the surgical site within 1 day of S. aureus infection of bone and was expressed by M0, M1 and M2 macrophages and osteoblasts but not by osteoclasts. Unexpectedly, exogenous IL-27p28 (~2 ng·mL-1 in serum) delivery ameliorated soft tissue abscesses and peri-implant bone loss during infection, accompanied by enhanced local IL-27 expression, significant accumulation of RORγt+ neutrophils at the infection site, a decrease in RANK+ cells, and compromised osteoclast formation. These effects were not observed in IL-27Rα-/- mice compared with WT mice, suggesting that IL-27 is dispensable for immunity but mediates redundant immune and bone cell functions during infection. In vitro studies and bulk RNA-seq of infected tibiae showed that IL-27 increased nos1, nos2, il17a, il17f, and rorc expression but did not directly stimulate chemotaxis. Collectively, these results identify a novel phenomenon of IL-27 expression by osteoblasts immediately following S. aureus infection of bone and suggest a protective role of systemic IL-27 in osteomyelitis.
Collapse
Affiliation(s)
- Yugo Morita
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Motoo Saito
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Anthony M Franchini
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - John R Owen
- Department of Orthopedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - John C Martinez
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - John L Daiss
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Stephen L Kates
- Department of Orthopedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Orthopedics, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
23
|
Masters EA, Ricciardi BF, Bentley KLDM, Moriarty TF, Schwarz EM, Muthukrishnan G. Skeletal infections: microbial pathogenesis, immunity and clinical management. Nat Rev Microbiol 2022; 20:385-400. [PMID: 35169289 PMCID: PMC8852989 DOI: 10.1038/s41579-022-00686-0] [Citation(s) in RCA: 290] [Impact Index Per Article: 96.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 12/13/2022]
Abstract
Osteomyelitis remains one of the greatest risks in orthopaedic surgery. Although many organisms are linked to skeletal infections, Staphylococcus aureus remains the most prevalent and devastating causative pathogen. Important discoveries have uncovered novel mechanisms of S. aureus pathogenesis and persistence within bone tissue, including implant-associated biofilms, abscesses and invasion of the osteocyte lacuno-canalicular network. However, little clinical progress has been made in the prevention and eradication of skeletal infection as treatment algorithms and outcomes have only incrementally changed over the past half century. In this Review, we discuss the mechanisms of persistence and immune evasion in S. aureus infection of the skeletal system as well as features of other osteomyelitis-causing pathogens in implant-associated and native bone infections. We also describe how the host fails to eradicate bacterial bone infections, and how this new information may lead to the development of novel interventions. Finally, we discuss the clinical management of skeletal infection, including osteomyelitis classification and strategies to treat skeletal infections with emerging technologies that could translate to the clinic in the future.
Collapse
Affiliation(s)
- Elysia A Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin F Ricciardi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA.
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
24
|
Sun H, Lai P, Wu W, Heng H, Si S, Ye Y, Li J, Lyu H, Zou C, Guo M, Wang Y, Geng H, Liang J. MALDI-TOF MS Based Bacterial Antibiotics Resistance Finger Print for Diabetic Pedopathy. Front Chem 2022; 9:785848. [PMID: 35096767 PMCID: PMC8795630 DOI: 10.3389/fchem.2021.785848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Diabetes mellitus has become a major global health issue. Currently, the use of antibiotics remains the best foundational strategy in the control of diabetic foot infections. However, the lack of accurate identification of pathogens and the empirical use of antibiotics at early stages of infection represents a non-targeted treatment approach with a poor curative effect that may increase the of bacterial drug resistance. Therefore, the timely identification of drug resistant bacteria is the key to increasing the efficacy of treatments for diabetic foot infections. The traditional identification method is based on bacterial morphology, cell physiology, and biochemistry. Despite the simplicity and low costs associated with this method, it is time-consuming and has limited clinical value, which delays early diagnosis and treatment. In the recent years, MALDI-TOF MS has emerged as a promising new technology in the field of clinical microbial identification. In this study, we developed a strategy for the identification of drug resistance in the diagnosis of diabetic foot infections using a combination of macro-proteomics and MALDI MS analysis. The macro-proteomics result was utilized to determine the differential proteins in the resistance group and the corresponding peptide fragments were used as the finger print in a MALDI MS analysis. This strategy was successfully used in the research of drug resistance in patients with diabetic foot infections and achieved several biomarkers that could be used as a finger print for 4 different drugs, including ceftazidime, piperacillin, levofloxacin, and tetracycline. This method can quickly confirm the drug resistance of clinical diabetic foot infections, which can help aid in the early treatment of patients.
Collapse
Affiliation(s)
- Haojie Sun
- Medical College, Soochow University, Suzhou, China
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Peng Lai
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Wei Wu
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Hao Heng
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Shanwen Si
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Yan Ye
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Jiayi Li
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Hehe Lyu
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Caiyan Zou
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yu Wang
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Jun Liang, ; Houfa Geng, ; Yu Wang,
| | - Houfa Geng
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Jun Liang, ; Houfa Geng, ; Yu Wang,
| | - Jun Liang
- Medical College, Soochow University, Suzhou, China
- Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
- *Correspondence: Jun Liang, ; Houfa Geng, ; Yu Wang,
| |
Collapse
|
25
|
Wong Fok Lung T, Chan LC, Prince A, Yeaman MR, Archer NK, Aman MJ, Proctor RA. Staphylococcus aureus adaptive evolution: Recent insights on how immune evasion, immunometabolic subversion and host genetics impact vaccine development. Front Cell Infect Microbiol 2022; 12:1060810. [PMID: 36636720 PMCID: PMC9831658 DOI: 10.3389/fcimb.2022.1060810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/16/2022] [Indexed: 12/28/2022] Open
Abstract
Despite meritorious attempts, a S. aureus vaccine that prevents infection or mitigates severity has not yet achieved efficacy endpoints in prospective, randomized clinical trials. This experience underscores the complexity of host-S. aureus interactions, which appear to be greater than many other bacterial pathogens against which successful vaccines have been developed. It is increasingly evident that S. aureus employs strategic countermeasures to evade or exploit human immune responses. From entering host cells to persist in stealthy intracellular reservoirs, to sensing the environmental milieu and leveraging bacterial or host metabolic products to reprogram host immune responses, S. aureus poses considerable challenges for the development of effective vaccines. The fact that this pathogen causes distinct types of infections and can undergo transient genetic, transcriptional or metabolic adaptations in vivo that do not occur in vitro compounds challenges in vaccine development. Notably, the metabolic versatility of both bacterial and host immune cells as they compete for available substrates within specific tissues inevitably impacts the variable repertoire of gene products that may or may not be vaccine antigens. In this respect, S. aureus has chameleon phenotypes that have alluded vaccine strategies thus far. Nonetheless, a number of recent studies have also revealed important new insights into pathogenesis vulnerabilities of S. aureus. A more detailed understanding of host protective immune defenses versus S. aureus adaptive immune evasion mechanisms may offer breakthroughs in the development of effective vaccines, but at present this goal remains a very high bar. Coupled with the recent advances in human genetics and epigenetics, newer vaccine technologies may enable such a goal. If so, future vaccines that protect against or mitigate the severity of S. aureus infections are likely to emerge at the intersection of precision and personalized medicine. For now, the development of S. aureus vaccines or alternative therapies that reduce mortality and morbidity must continue to be pursued.
Collapse
Affiliation(s)
| | - Liana C Chan
- Department of Medicine, David Geffen School of Medicine at University of California Loss Angeles (UCLA), Los Angeles, CA, United States.,Divisions of Molecular Medicine and Infectious Diseases, Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States.,Lundquist Institute for Biomedical Innovation at Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Alice Prince
- Department of Pediatrics, Columbia University, New York, NY, United States
| | - Michael R Yeaman
- Department of Medicine, David Geffen School of Medicine at University of California Loss Angeles (UCLA), Los Angeles, CA, United States.,Divisions of Molecular Medicine and Infectious Diseases, Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States.,Lundquist Institute for Biomedical Innovation at Harbor-University of California Loss Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - M Javad Aman
- Integrated BioTherapeutics, Rockville, MD, United States
| | - Richard A Proctor
- Department of Medicine and Medical Microbiology/Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| |
Collapse
|
26
|
Klaczko ME, Lucas K, Salminen AT, McCloskey MC, Ozgurun B, Ward BM, Flax J, McGrath JL. Rapid and specific detection of intact viral particles using functionalized microslit silicon membranes as a fouling-based sensor. Analyst 2021; 147:213-222. [PMID: 34933322 DOI: 10.1039/d1an01504d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The COVID-19 pandemic demonstrated the public health benefits of reliable and accessible point-of-care (POC) diagnostic tests for viral infections. Despite the rapid development of gold-standard reverse transcription polymerase chain reaction (RT-PCR) assays for SARS-CoV-2 only weeks into the pandemic, global demand created logistical challenges that delayed access to testing for months and helped fuel the spread of COVID-19. Additionally, the extreme sensitivity of RT-PCR had a costly downside as the tests could not differentiate between patients with active infection and those who were no longer infectious but still shedding viral genomes. To address these issues for the future, we propose a novel membrane-based sensor that only detects intact virions. The sensor combines affinity and size based detection on a membrane-based sensor and does not require external power to operate or read. Specifically, the presence of intact virions, but not viral debris, fouls the membrane and triggers a macroscopically visible hydraulic switch after injection of a 40 μL sample with a pipette. The device, which we call the μSiM-DX (microfluidic device featuring a silicon membrane for diagnostics), features a biotin-coated microslit membrane with pores ∼2-3× larger than the intact virus. Streptavidin-conjugated antibody recognizing viral surface proteins are incubated with the sample for ∼1 hour prior to injection into the device, and positive/negative results are obtained within ten seconds of sample injection. Proof-of-principle tests have been performed using preparations of vaccinia virus. After optimizing slit pore sizes and porous membrane area, the fouling-based sensor exhibits 100% specificity and 97% sensitivity for vaccinia virus (n = 62). Moreover, the dynamic range of the sensor extends at least from 105.9 virions per mL to 1010.4 virions per mL covering the range of mean viral loads in symptomatic COVID-19 patients (105.6-107 RNA copies per mL). Forthcoming work will test the ability of our sensor to perform similarly in biological fluids and with SARS-CoV-2, to fully test the potential of a membrane fouling-based sensor to serve as a PCR-free alternative for POC containment efforts in the spread of infectious disease.
Collapse
Affiliation(s)
- Michael E Klaczko
- Department of Chemistry, University of Rochester, Rochester, NY, 14627 USA
| | - Kilean Lucas
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627 USA.
| | - Alec T Salminen
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627 USA.
| | - Molly C McCloskey
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627 USA.
| | - Baturay Ozgurun
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627 USA.
| | - Brian M Ward
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, 14642 USA
| | - Jonathan Flax
- Department of Urology, University of Rochester Medical Center, Rochester, NY, 14642 USA
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, 14627 USA.
| |
Collapse
|
27
|
Masters EA, Muthukrishnan G, Ho L, Gill AL, de Mesy Bentley KL, Galloway CA, McGrath JL, Awad HA, Gill SR, Schwarz EM. Staphylococcus aureus Cell Wall Biosynthesis Modulates Bone Invasion and Osteomyelitis Pathogenesis. Front Microbiol 2021; 12:723498. [PMID: 34484165 PMCID: PMC8415456 DOI: 10.3389/fmicb.2021.723498] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/15/2021] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus invasion of the osteocyte lacuno-canalicular network (OLCN) is a novel mechanism of bacterial persistence and immune evasion in chronic osteomyelitis. Previous work highlighted S. aureus cell wall transpeptidase, penicillin binding protein 4 (PBP4), and surface adhesin, S. aureus surface protein C (SasC), as critical factors for bacterial deformation and propagation through nanopores in vitro, representative of the confined canaliculi in vivo. Given these findings, we hypothesized that cell wall synthesis machinery and surface adhesins enable durotaxis- and haptotaxis-guided invasion of the OLCN, respectively. Here, we investigated select S. aureus cell wall synthesis mutants (Δpbp3, Δatl, and ΔmreC) and surface adhesin mutants (ΔclfA and ΔsasC) for nanopore propagation in vitro and osteomyelitis pathogenesis in vivo. In vitro evaluation in the microfluidic silicon membrane-canalicular array (μSiM-CA) showed pbp3, atl, clfA, and sasC deletion reduced nanopore propagation. Using a murine model for implant-associated osteomyelitis, S. aureus cell wall synthesis proteins were found to be key modulators of S. aureus osteomyelitis pathogenesis, while surface adhesins had minimal effects. Specifically, deletion of pbp3 and atl decreased septic implant loosening and S. aureus abscess formation in the medullary cavity, while deletion of surface adhesins showed no significant differences. Further, peri-implant osteolysis, osteoclast activity, and receptor activator of nuclear factor kappa-B ligand (RANKL) production were decreased following pbp3 deletion. Most notably, transmission electron microscopy (TEM) imaging of infected bone showed that pbp3 was the only gene herein associated with decreased submicron invasion of canaliculi in vivo. Together, these results demonstrate that S. aureus cell wall synthesis enzymes are critical for OLCN invasion and osteomyelitis pathogenesis in vivo.
Collapse
Affiliation(s)
- Elysia A Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States.,Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States
| | - Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States
| | - Lananh Ho
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States.,Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States
| | - Ann Lindley Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Chad A Galloway
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - James L McGrath
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States
| | - Hani A Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States.,Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States
| | - Steven R Gill
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States.,Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States.,Department of Orthopaedics, University of Rochester Medical Center, Rochester, NY, United States.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
28
|
Mosaad KE, Shoueir KR, Saied AH, Dewidar MM. New Prospects in Nano Phased Co-substituted Hydroxyapatite Enrolled in Polymeric Nanofiber Mats for Bone Tissue Engineering Applications. Ann Biomed Eng 2021; 49:2006-2029. [PMID: 34378121 DOI: 10.1007/s10439-021-02810-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/03/2021] [Indexed: 01/12/2023]
Abstract
The most common forms of tissue impairment are fracture bones and significant bone disorders caused by multiple traumas or normal aging. Surgical care sometimes necessitates the placement of a temporary or permanent prosthesis, which continues to be a challenge for orthopedic surgeons, including those with large bone defects. Electrospun scaffolds made from natural and synthetic nanofiber-based polymers are studied as natural extracellular matrix (ECM)-like scaffolds for tissue engineering. Besides, nanostructured materials have properties and functions depending on the scale of natural materials such as hydroxyapatite (HAP), ranging from 1 to 100 nm, which activity was proficient upon enrolled in nanofiber mats. The use of nanofibers in combination with nano-HAP has increased the scaffold's ability to replicate the construction of natural bone tissue that is the aim of the present text. In bone engineering, nanofiber substrates facilitate cell adhesion, proliferation, and differentiation, while HAP induces cells to secrete ECM for bone mineralization and development. This review aims to draw the reader's attention to the critical issues with synthetic and natural polymers containing HAP in bone tissue engineering; co-substituted hydroxyapatite has also been mentioned.
Collapse
Affiliation(s)
- Kareem E Mosaad
- Faculty of Engineering, Mechanical Department, Al-Azahar University, Cairo, Egypt
| | - Kamel R Shoueir
- Institute of Nanoscience & Nanotechnology, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt.
- Institut de Chimie et Procédés Pour l'Énergie, l'Environnement et la Santé (ICPEES), CNRS, UMR 7515, Université de Strasbourg, 25 rue Becquerel, 67087, Strasbourg, France.
| | - Ahmed H Saied
- Department of Mechanical Engineering, Faculty of Engineering, Kafrelsheikh University, El-Gaish Street, Kafrelsheikh, Egypt
| | - Montasser M Dewidar
- Department of Mechanical Engineering, Faculty of Engineering, Kafrelsheikh University, El-Gaish Street, Kafrelsheikh, Egypt
- Higher Institute of Engineering and Technology, Kafrelsheikh, Egypt
| |
Collapse
|
29
|
Dvorzhinskiy A, Perino G, Chojnowski R, van der Meulen M, Bostrom M, Yang X. Ceramic composite with gentamicin decreases persistent infection and increases bone formation in a rat model of debrided osteomyelitis. J Bone Jt Infect 2021; 6:283-293. [PMID: 34345576 PMCID: PMC8320378 DOI: 10.5194/jbji-6-283-2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/24/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction: Current methods of managing osteomyelitic voids after debridement are inadequate and result in significant morbidity to patients. Synthetic ceramic void fillers are appropriate for non-infected bone defects but serve as a nidus of re-infection in osteomyelitis after debridement. CERAMENT G (CG) is an injectable ceramic bone void filler which contains gentamicin and is currently being evaluated for use in osteomyelitic environments after debridement due to its theoretical ability to serve as a scaffold for healing while eliminating residual bacteria after debridement through the elution of antibiotics. The goal of this study was to evaluate (1) the rate of persistent infection and (2) new bone growth of a debrided osteomyelitic defect in a rat model which has been treated with either gentamicin-impregnated ceramic cement (CERAMENT G) or the same void filler without antibiotics (CERAMENT, CBVF). Methods: Osteomyelitis was generated in the proximal tibia of Sprague Dawley rats, subsequently debrided, and the defect filled with either (1) CG ( n = 20 ), (2) CBVF ( n = 20 ), or (3) nothing ( n = 20 ). Each group was euthanized after 6 weeks. Infection was detected through bacterial culture and histology. Bone growth was quantified using microCT. Results: Infection was not detected in defects treated with CG as compared with 35 % of defects ( 7 / 20 ) treated with CBVF and 50 % ( 10 / 20 ) of empty defects ( p = 0.001 ). Bone volume in the defect of CG-treated rats was greater than the CBVF (0.21 vs. 0.17, p = 0.021 ) and empty groups (0.21 vs. 0.11, p < 0.001 ) at 6 weeks after implantation. Conclusions: Ceramic void filler with gentamicin (CERAMENT G) decreased the rate of persistent infection and increased new bone growth as compared to the same void filler without antibiotics (CERAMENT) and an empty defect in a rat model of debrided osteomyelitis.
Collapse
Affiliation(s)
- Aleksey Dvorzhinskiy
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New
York, NY 10021, USA
| | - Giorgio Perino
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New
York, NY 10021, USA
| | - Robert Chojnowski
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New
York, NY 10021, USA
| | | | - Mathias P. G. Bostrom
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New
York, NY 10021, USA
| | - Xu Yang
- Department of Orthopaedic Surgery, Hospital for Special Surgery, New
York, NY 10021, USA
| |
Collapse
|
30
|
Development of Bisphosphonate-Conjugated Antibiotics to Overcome Pharmacodynamic Limitations of Local Therapy: Initial Results with Carbamate Linked Sitafloxacin and Tedizolid. Antibiotics (Basel) 2021; 10:antibiotics10060732. [PMID: 34204351 PMCID: PMC8235690 DOI: 10.3390/antibiotics10060732] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
The use of local antibiotics to treat bone infections has been questioned due to a lack of clinical efficacy and emerging information about Staphylococcus aureus colonization of the osteocyte-lacuno canalicular network (OLCN). Here we propose bisphosphonate-conjugated antibiotics (BCA) using a “target and release” approach to deliver antibiotics to bone infection sites. A fluorescent bisphosphonate probe was used to demonstrate bone surface labeling adjacent to bacteria in a S. aureus infected mouse tibiae model. Bisphosphonate and hydroxybisphosphonate conjugates of sitafloxacin and tedizolid (BCA) were synthesized using hydroxyphenyl and aminophenyl carbamate linkers, respectively. The conjugates were adequately stable in serum. Their cytolytic activity versus parent drug on MSSA and MRSA static biofilms grown on hydroxyapatite discs was established by scanning electron microscopy. Sitafloxacin O-phenyl carbamate BCA was effective in eradicating static biofilm: no colony formation units (CFU) were recovered following treatment with 800 mg/L of either the bisphosphonate or α-hydroxybisphosphonate conjugated drug (p < 0.001). In contrast, the less labile tedizolid N-phenyl carbamate linked BCA had limited efficacy against MSSA, and MRSA. CFU were recovered from all tedizolid BCA treatments. These results demonstrate the feasibility of BCA eradication of S. aureus biofilm on OLCN bone surfaces and support in vivo drug development of a sitafloxacin BCA.
Collapse
|
31
|
Staphylococcus aureus cell wall structure and dynamics during host-pathogen interaction. PLoS Pathog 2021; 17:e1009468. [PMID: 33788901 PMCID: PMC8041196 DOI: 10.1371/journal.ppat.1009468] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/12/2021] [Accepted: 03/12/2021] [Indexed: 01/09/2023] Open
Abstract
Peptidoglycan is the major structural component of the Staphylococcus aureus cell wall, in which it maintains cellular integrity, is the interface with the host, and its synthesis is targeted by some of the most crucial antibiotics developed. Despite this importance, and the wealth of data from in vitro studies, we do not understand the structure and dynamics of peptidoglycan during infection. In this study we have developed methods to harvest bacteria from an active infection in order to purify cell walls for biochemical analysis ex vivo. Isolated ex vivo bacterial cells are smaller than those actively growing in vitro, with thickened cell walls and reduced peptidoglycan crosslinking, similar to that of stationary phase cells. These features suggested a role for specific peptidoglycan homeostatic mechanisms in disease. As S. aureus missing penicillin binding protein 4 (PBP4) has reduced peptidoglycan crosslinking in vitro its role during infection was established. Loss of PBP4 resulted in an increased recovery of S. aureus from the livers of infected mice, which coincided with enhanced fitness within murine and human macrophages. Thicker cell walls correlate with reduced activity of peptidoglycan hydrolases. S. aureus has a family of 4 putative glucosaminidases, that are collectively crucial for growth. Loss of the major enzyme SagB, led to attenuation during murine infection and reduced survival in human macrophages. However, loss of the other three enzymes Atl, SagA and ScaH resulted in clustering dependent attenuation, in a zebrafish embryo, but not a murine, model of infection. A combination of pbp4 and sagB deficiencies resulted in a restoration of parental virulence. Our results, demonstrate the importance of appropriate cell wall structure and dynamics during pathogenesis, providing new insight to the mechanisms of disease. The prevalence of methicillin resistant Staphylococcus aureus (MRSA) in both hospitals and the wider community places a huge weight on healthcare providers. To discover new control regimes, it is therefore important to understand how the pathogen behaves within the relevant environment of the host. This is often hampered by the ability to obtain sufficient ex vivo pathogen samples for study. We have developed a method to isolate S. aureus from the infected host to be able to analyse cellular morphology and structure. S. aureus, isolated from an infected kidney abscess are smaller in size, with thicker cell walls than exponentially growing cells in vitro. Their cell wall peptidoglycan also is less crosslinked. These features suggested the role of components controlling cell wall homeostasis as being important for infections. We tested the role of PBP4, known to increase cell wall crosslinking and found a pbp4 mutant to have increased survival in macrophages and fitness within the murine host. Conversely the peptidoglycan hydrolase SagB, whose loss results in thinner cell walls was attenuated in the murine systemic model of infection, with concomitant loss of fitness within macrophages. Our study reveals an important adaptation to the host environment and the role of those components involved in cell wall homeostasis in vivo.
Collapse
|
32
|
Muthukrishnan G, Wallimann A, Rangel-Moreno J, Bentley KLDM, Hildebrand M, Mys K, Kenney HM, Sumrall ET, Daiss JL, Zeiter S, Richards RG, Schwarz EM, Moriarty TF. Humanized Mice Exhibit Exacerbated Abscess Formation and Osteolysis During the Establishment of Implant-Associated Staphylococcus aureus Osteomyelitis. Front Immunol 2021; 12:651515. [PMID: 33815412 PMCID: PMC8012494 DOI: 10.3389/fimmu.2021.651515] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus is the predominant pathogen causing osteomyelitis. Unfortunately, no immunotherapy exists to treat these very challenging and costly infections despite decades of research, and numerous vaccine failures in clinical trials. This lack of success can partially be attributed to an overreliance on murine models where the immune correlates of protection often diverge from that of humans. Moreover, S. aureus secretes numerous immunotoxins with unique tropism to human leukocytes, which compromises the targeting of immune cells in murine models. To study the response of human immune cells during chronic S. aureus bone infections, we engrafted non-obese diabetic (NOD)-scid IL2Rγnull (NSG) mice with human hematopoietic stem cells (huNSG) and analyzed protection in an established model of implant-associated osteomyelitis. The results showed that huNSG mice have increases in weight loss, osteolysis, bacterial dissemination to internal organs, and numbers of Staphylococcal abscess communities (SACs), during the establishment of implant-associated MRSA osteomyelitis compared to NSG controls (p < 0.05). Flow cytometry and immunohistochemistry demonstrated greater human T cell numbers in infected versus uninfected huNSG mice (p < 0.05), and that T-bet+ human T cells clustered around the SACs, suggesting S. aureus-mediated activation and proliferation of human T cells in the infected bone. Collectively, these proof-of-concept studies underscore the utility of huNSG mice for studying an aggressive form of S. aureus osteomyelitis, which is more akin to that seen in humans. We have also established an experimental system to investigate the contribution of specific human T cells in controlling S. aureus infection and dissemination.
Collapse
Affiliation(s)
- Gowrishankar Muthukrishnan
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | - Alexandra Wallimann
- AO Research Institute Davos, Davos, Switzerland.,Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | | | - Karen Mys
- AO Research Institute Davos, Davos, Switzerland
| | - H Mark Kenney
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | | | - John L Daiss
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States
| | | | | | - Edward M Schwarz
- Center for Musculoskeletal Research, Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, United States.,Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | | |
Collapse
|
33
|
McCall LI. Quo vadis? Central Rules of Pathogen and Disease Tropism. Front Cell Infect Microbiol 2021; 11:640987. [PMID: 33718287 PMCID: PMC7947345 DOI: 10.3389/fcimb.2021.640987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding why certain people get sick and die while others recover or never become ill is a fundamental question in biomedical research. A key determinant of this process is pathogen and disease tropism: the locations that become infected (pathogen tropism), and the locations that become damaged (disease tropism). Identifying the factors that regulate tropism is essential to understand disease processes, but also to drive the development of new interventions. This review intersects research from across infectious diseases to define the central mediators of disease and pathogen tropism. This review also highlights methods of study, and translational implications. Overall, tropism is a central but under-appreciated aspect of infection pathogenesis which should be at the forefront when considering the development of new methods of intervention.
Collapse
Affiliation(s)
- Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, United States
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
34
|
Gimza BD, Cassat JE. Mechanisms of Antibiotic Failure During Staphylococcus aureus Osteomyelitis. Front Immunol 2021; 12:638085. [PMID: 33643322 PMCID: PMC7907425 DOI: 10.3389/fimmu.2021.638085] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus is a highly successful Gram-positive pathogen capable of causing both superficial and invasive, life-threatening diseases. Of the invasive disease manifestations, osteomyelitis or infection of bone, is one of the most prevalent, with S. aureus serving as the most common etiologic agent. Treatment of osteomyelitis is arduous, and is made more difficult by the widespread emergence of antimicrobial resistant strains, the capacity of staphylococci to exhibit tolerance to antibiotics despite originating from a genetically susceptible background, and the significant bone remodeling and destruction that accompanies infection. As a result, there is a need for a better understanding of the factors that lead to antibiotic failure in invasive staphylococcal infections such as osteomyelitis. In this review article, we discuss the different non-resistance mechanisms of antibiotic failure in S. aureus. We focus on how bacterial niche and destructive tissue remodeling impact antibiotic efficacy, the significance of biofilm formation in promoting antibiotic tolerance and persister cell formation, metabolically quiescent small colony variants (SCVs), and potential antibiotic-protected reservoirs within the substructure of bone.
Collapse
Affiliation(s)
- Brittney D Gimza
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James E Cassat
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States.,Vanderbilt Institute for Infection, Immunology, and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
35
|
Masters EA, Hao SP, Kenney HM, Morita Y, Galloway CA, de Mesy Bentley KL, Ricciardi BF, Boyce BF, Schwarz EM, Oh I. Distinct vasculotropic versus osteotropic features of S. agalactiae versus S. aureus implant-associated bone infection in mice. J Orthop Res 2021; 39:389-401. [PMID: 33336806 PMCID: PMC7882123 DOI: 10.1002/jor.24962] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 12/06/2020] [Accepted: 12/14/2020] [Indexed: 02/04/2023]
Abstract
Osteomyelitis is a devastating complication of orthopaedic surgery and commonly caused by Staphylococcus aureus (S. aureus) and Group B Streptococcus (GBS, S. agalactiae). Clinically, S. aureus osteomyelitis is associated with local inflammation, abscesses, aggressive osteolysis, and septic implant loosening. In contrast, S. agalactiae orthopaedic infections generally involve soft tissue, with acute life-threatening vascular spread. While preclinical models that recapitulate the clinical features of S. aureus bone infection have proven useful for research, no animal models of S. agalactiae osteomyelitis exist. Here, we compared the pathology caused by these bacteria in an established murine model of implant-associated osteomyelitis. In vitro scanning electron microscopy and CFU quantification confirmed similar implant inocula for both pathogens (~105 CFU/pin). Assessment of mice at 14 days post-infection demonstrated increased S. aureus virulence, as S. agalactiae infected mice had significantly greater body weight, and fewer CFU on the implant and in bone and adjacent soft tissue (p < 0.05). X-ray, µCT, and histologic analyses showed that S. agalactiae induced significantly less osteolysis and implant loosening, and fewer large TRAP+ osteoclasts than S. aureus without inducing intraosseous abscess formation. Most notably, transmission electron microscopy revealed that although both bacteria are capable of digesting cortical bone, S. agalactiae have a predilection for colonizing blood vessels embedded within cortical bone while S. aureus primarily colonizes the osteocyte lacuno-canalicular network. This study establishes the first quantitative animal model of S. agalactiae osteomyelitis, and demonstrates a vasculotropic mode of S. agalactiae infection, in contrast to the osteotropic behavior of S. aureus osteomyelitis.
Collapse
Affiliation(s)
- Elysia A. Masters
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - Stephanie P. Hao
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - H. Mark Kenney
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Yugo Morita
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Chad A. Galloway
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Karen L. de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin F. Ricciardi
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Brendan F. Boyce
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Edward M. Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| | - Irvin Oh
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, USA
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|