1
|
Bagatella S, Monney C, Gross N, Bernier Gosselin V, Schüpbach-Regula G, Hemphill A, Oevermann A. Intravacuolar persistence in neutrophils facilitates Listeria monocytogenes spread to co-cultured cells. mBio 2025; 16:e0270024. [PMID: 40067021 PMCID: PMC11980584 DOI: 10.1128/mbio.02700-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 02/10/2025] [Indexed: 04/10/2025] Open
Abstract
The bacterium Listeria monocytogenes (Lm) causes listeriosis in humans and ruminants. Acute lesions are predominantly infiltrated by polymorphonuclear neutrophils (PMNs), considered to be the efficient bactericidal arm of innate immunity. However, recent evidence suggests that PMNs cannot achieve antilisterial sterilizing immunity and that Lm may persist within PMNs. Despite this, interactions between PMNs and Lm remain poorly understood. In this study, we characterized the listericidal activity and interaction dynamics of bovine PMNs with Lm ex vivo. Phagocytosed Lm failed to escape into the PMN cytosol and was primarily targeted by phagolysosomal mechanisms. However, PMNs enabled prolonged intravacuolar survival of a resilient Lm subpopulation, largely as viable but non-culturable (VBNC) bacteria. This resilient Lm population could spread from PMNs to a cell line, resuscitate, and complete its canonical life cycle, thereby perpetuating the infection. Therefore, we identify PMNs as a mobile niche for Lm survival and provide evidence that PMNs harbor VBNC bacteria, potentially facilitating Lm dissemination within the host. IMPORTANCE Listeria monocytogenes (Lm) is a significant foodborne pathogen responsible for high hospitalization rates in humans, especially vulnerable groups such as the elderly, pregnant women, and immunocompromised individuals. In animals like ruminants, Lm infection leads to severe disease manifestations, notably brainstem encephalitis. This study uncovers a novel mechanism by which bovine neutrophils (PMNs) harbor Lm in a viable but non-culturable (VBNC) state, enabling the bacteria to hide in the host. PMNs, traditionally viewed as bacteria killers, may serve as Trojan horses, allowing Lm to persist and spread within the host. This discovery has broad implications for understanding Lm's persistence, its role in recurrent infections, and the development of new therapeutic strategies targeting VBNC forms of Lm to improve treatment outcomes and disease control.
Collapse
Affiliation(s)
- Stefano Bagatella
- Division of Neurological Sciences, NeuroCenter, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Camille Monney
- Division of Neurological Sciences, NeuroCenter, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Natascha Gross
- Division of Neurological Sciences, NeuroCenter, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | - Andrew Hemphill
- Institute of Parasitology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, NeuroCenter, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Fritsch VN, Hensel M. Experimental Approaches to Visualize Effector Protein Translocation During Host-Pathogen Interactions. Bioessays 2025; 47:e202400188. [PMID: 40078034 PMCID: PMC11931682 DOI: 10.1002/bies.202400188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 03/14/2025]
Abstract
Bacterial pathogens deliver effector proteins into host cells by deploying sophisticated secretion systems. This effector translocation during host-pathogen interactions is a prerequisite for the manipulation of host cells and organisms and is important for pathogenesis. Analyses of dynamics and kinetics of translocation, subcellular localization, and cellular targets of effector proteins lead to understanding the mode of action and function of effector proteins in host-pathogen interplay. This review provides an overview of biochemical and genetic tools that have been developed to study protein effector translocation qualitatively or quantitatively. After introducing the challenges of analyses of effector translocation during host-pathogen interaction, we describe various methods ranging from static visualization in fixed cells to dynamic live-cell imaging of effector protein translocation. We show the main findings enabled by the approaches, emphasize the advantages and limitations of the methods, describe recent approaches that allow real-time tracking of effector proteins in living cells on a single molecule level, and highlight open questions in the field to be addressed by application of new methods.
Collapse
Affiliation(s)
| | - Michael Hensel
- Abt. MikrobiologieUniversität OsnabrückOsnabrückGermany
- Center for Cellular Nanoananalytics (CellNanOs)Universität OsnabrückOsnabrückGermany
| |
Collapse
|
3
|
Feltham L, Moran J, Goldrick M, Lord E, Spiller DG, Cavet JS, Muldoon M, Roberts IS, Paszek P. Bacterial aggregation facilitates internalin-mediated invasion of Listeria monocytogenes. Front Cell Infect Microbiol 2024; 14:1411124. [PMID: 39045131 PMCID: PMC11263170 DOI: 10.3389/fcimb.2024.1411124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Dissemination of food-borne L. monocytogenes in the host relies on internalin-mediated invasion, but the underlying invasion strategies remain elusive. Here we use live-cell microscopy to follow single cell interactions between individual human cells and L. monocytogenes and elucidate mechanisms associated with internalin B (InlB)-mediated invasion. We demonstrate that whilst a replicative invasion of nonphagocytic cells is a rare event even at high multiplicities of invasion, L. monocytogenes overcomes this by utilising a strategy relaying on PrfA-mediated ActA-based aggregation. We show that L. monocytogenes forms aggregates in extracellular host cell environment, which promote approximately 5-fold more host cell adhesions than the non-aggregating actA-ΔC mutant (which lacks the C-terminus coding region), with the adhering bacteria inducing 3-fold more intracellular invasions. Aggregation is associated with robust MET tyrosine kinase receptor clustering in the host cells, a hallmark of InlB-mediated invasion, something not observed with the actA-ΔC mutant. Finally, we show via RNA-seq analyses that aggregation involves a global adaptive response to host cell environment (including iron depletion), resulting in metabolic changes in L. monocytogenes and upregulation of the PrfA virulence regulon. Overall, our analyses provide new mechanistic insights into internalin-mediated host-pathogen interactions of L. monocytogenes.
Collapse
Affiliation(s)
- Liam Feltham
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Josephine Moran
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Marie Goldrick
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Elizabeth Lord
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - David G. Spiller
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jennifer S. Cavet
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Mark Muldoon
- Department of Mathematics, University of Manchester, Manchester, United Kingdom
| | - Ian. S. Roberts
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Pawel Paszek
- School of Biology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
4
|
Schulte M, Grotheer L, Hensel M. Bright individuals: Applications of fluorescent protein-based reporter systems in single-cell cellular microbiology. Mol Microbiol 2024; 121:605-617. [PMID: 38234267 DOI: 10.1111/mmi.15227] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/19/2024]
Abstract
Activation and function of virulence functions of bacterial pathogens are highly dynamic in time and space, and can show considerable heterogeneity between individual cells in pathogen populations. To investigate the complex events in host-pathogen interactions, single cell analyses are required. Fluorescent proteins (FPs) are excellent tools to follow the fate of individual bacterial cells during infection, and can also be deployed to use the pathogen as a sensor for its specific environment in host cells or host organisms. This Resources describes design and applications of dual fluorescence reporters (DFR) in cellular microbiology. DFR feature constitutively expressed FPs for detection of bacterial cells, and FPs expressed by an environmentally regulated promoter for interrogation of niche-specific cues or nutritional parameters. Variations of the basic design allow the generation of DFR that can be used to analyze, on single cell level, bacterial proliferation during infection, subcellular localization of intracellular bacteria, stress response, or persister state. We describe basic considerations for DFR design and review recent applications of DFR in cellular microbiology.
Collapse
Affiliation(s)
- Marc Schulte
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- CellNanOs-Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
| | - Luisa Grotheer
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abt. Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
- CellNanOs-Center of Cellular Nanoanalytics Osnabrück, Universität Osnabrück, Osnabrück, Germany
| |
Collapse
|
5
|
Broch F, El Hajji L, Pietrancosta N, Gautier A. Engineering of Tunable Allosteric-like Fluorogenic Protein Sensors. ACS Sens 2023; 8:3933-3942. [PMID: 37830919 DOI: 10.1021/acssensors.3c01536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Optical protein sensors that enable detection of relevant biomolecules of interest play central roles in biological research. Coupling fluorescent reporters with protein sensing units has enabled the development of a wide range of biosensors that recognize analytes with high selectivity. In these sensors, analyte recognition induces a conformational change in the protein sensing unit that can modulate the optical signal of the fluorescent reporter. Here, we explore various designs for the creation of tunable allosteric-like fluorogenic protein sensors through incorporation of sensing protein units within the chemogenetic fluorescence-activating and absorption-shifting tag (FAST) that selectively binds and stabilizes the fluorescent state of 4-hydroxybenzylidene rhodanine (HBR) analogs. Conformational coupling allowed us to design analyte-responsive optical protein sensors through allosteric-like modulation of fluorogen binding.
Collapse
Affiliation(s)
- Fanny Broch
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Lina El Hajji
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Nicolas Pietrancosta
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, 75005 Paris, France
| | - Arnaud Gautier
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
- Institut Universitaire de France, 75231 Paris, France
| |
Collapse
|
6
|
Tchagang CF, Mah TF, Campbell-Valois FX. Anaerobic fluorescent reporters for live imaging of Pseudomonas aeruginosa. Front Microbiol 2023; 14:1245755. [PMID: 37928662 PMCID: PMC10623331 DOI: 10.3389/fmicb.2023.1245755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
Pseudomonas aeruginosa thrives in the airways of individuals with cystic fibrosis, in part by forming robust biofilms that are resistant to immune clearance or antibiotic treatment. In the cystic fibrosis lung, the thickened mucus layers create an oxygen gradient, often culminating with the formation of anoxic pockets. In this environment, P. aeruginosa can use nitrate instead of oxygen to grow. Current fluorescent reporters for studying P. aeruginosa are limited to the GFP and related analogs. However, these reporters require oxygen for the maturation of their chromophore, making them unsuitable for the study of anaerobically grown P. aeruginosa. To overcome this limitation, we evaluated seven alternative fluorescent proteins, including iLOV, phiLOV2.1, evoglow-Bs2, LucY, UnaG, Fluorescence-Activating and Absorption-Shifting Tag (FAST), and iRFP670, which have been reported to emit light under oxygen-limiting conditions. We generated a series of plasmids encoding these proteins and validated their fluorescence using plate reader assays and confocal microscopy. Six of these proteins successfully labeled P. aeruginosa in anoxia. In particular, phiLOV2.1 and FAST provided superior fluorescence stability and enabled dual-color imaging of both planktonic and biofilm cultures. This study provides a set of fluorescent reporters for monitoring P. aeruginosa under low-oxygen conditions. These reporters will facilitate studies of P. aeruginosa in biofilms or other contexts relevant to its pathogenesis, such as those found in cystic fibrosis airways. Due to the broad host range of our expression vector, the phiLOV2.1 and FAST-based reporters may be applicable to the study of other Gram-negative bacteria that inhabit similar low-oxygen niches.
Collapse
Affiliation(s)
- Caetanie F. Tchagang
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Host-Microbe Interactions Laboratory, Center for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Thien-Fah Mah
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, Canada
| | - François-Xavier Campbell-Valois
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity, and Inflammation, University of Ottawa, Ottawa, ON, Canada
- Host-Microbe Interactions Laboratory, Center for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
7
|
Pourpre R, Lakisic G, Desgranges E, Cossart P, Pagliuso A, Bierne H. A bacterial virulence factor interacts with the splicing factor RBM5 and stimulates formation of nuclear RBM5 granules. Sci Rep 2022; 12:21961. [PMID: 36535993 PMCID: PMC9763339 DOI: 10.1038/s41598-022-26037-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
L. monocytogenes causes listeriosis, a foodborne disease that is particularly dangerous for immunocompromised individuals and fetuses. Several virulence factors of this bacterial pathogen belong to a family of leucine-rich repeat (LRR)-containing proteins called internalins. Among these, InlP is known for its role in placental infection. We report here a function of InlP in mammalian cell nucleus organization. We demonstrate that bacteria do not produce InlP under in vitro culture conditions. When ectopically expressed in human cells, InlP translocates into the nucleus and changes the morphology of nuclear speckles, which are membrane-less organelles storing splicing factors. Using yeast two-hybrid screen, immunoprecipitation and pull-down experiments, we identify the tumor suppressor and splicing factor RBM5 as a major nuclear target of InlP. InlP inhibits RBM5-induced cell death and stimulate the formation of RBM5-induced nuclear granules, where the SC35 speckle protein redistributes. Taken together, these results suggest that InlP acts as a nucleomodulin controlling compartmentalization and function of RBM5 in the nucleus and that L. monocytogenes has developed a mechanism to target the host cell splicing machinery.
Collapse
Affiliation(s)
- Renaud Pourpre
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Goran Lakisic
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Emma Desgranges
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Pascale Cossart
- grid.428999.70000 0001 2353 6535Institut Pasteur, Paris, France
| | - Alessandro Pagliuso
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Hélène Bierne
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| |
Collapse
|
8
|
Gautier A. Fluorescence-Activating and Absorption-Shifting Tags for Advanced Imaging and Biosensing. Acc Chem Res 2022; 55:3125-3135. [PMID: 36269101 DOI: 10.1021/acs.accounts.2c00098] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Fluorescent labels and biosensors play central roles in biological and medical research. Targeted to specific biomolecules or cells, they allow noninvasive imaging of the machinery that govern cells and organisms in real time. Recently, chemogenetic reporters made of organic dyes specifically anchored to genetic tags have challenged the paradigm of fully genetically encoded fluorescent proteins. Combining the advantage of synthetic fluorophores with the targeting selectivity of genetically encoded tags, these chemogenetic reporters open new exciting prospects for studying cell biochemistry and biology. In this Account, we present the growing toolbox of fluorescence-activating and absorption-shifting tags (FASTs), small monomeric proteins of 14 kDa (125 amino acids residues) that can be used as markers to monitor gene expression and protein localization in live cells and organisms. Engineered by directed protein evolution from the photoactive yellow protein (PYP) from the bacterium Halorhodospira halophila, prototypical FAST binds and stabilizes the fluorescent state of live-cell compatible hydroxybenzylidene rhodanine chromophores. This class of chromophores are normally dark when free in solution or in cells because they dissipate light energy through nonradiative processes. The protein cavity of FAST allows the stabilization of the deprotonated state of the chromophore and blocks the chromophore into a planar conformation, which leads to highly fluorescent protein-chromophore assemblies. The use of such fluorogenic dyes (also called fluorogens) enables the imaging of FAST fusion proteins in cells with high contrast without the need to remove unbound ligands through separate washing steps. Fluorogens with various spectral properties exist nowadays allowing investigators to adjust the spectral properties of FAST to their experimental conditions. Molecular engineering allowed furthermore to generate membrane-impermeant fluorogens for the selective labeling of cell-surface proteins. Over the years, we generated a collection of FAST variants with expanded spectral properties or fluorogen selectivity using a concerted strategy involving molecular engineering and directed protein evolution. Moreover, protein engineering allowed us to adapt FASTs for the design of fluorescent biosensors. Circular permutation enabled the generation of FAST variants with increased conformational flexibility for the design of biosensors in which fluorogen binding is conditioned to the recognition of a given analyte. Bisection of FASTs into two complementary fragments allowed us furthermore to create split variants with reversible complementation that allow the detection and imaging of dynamic protein-protein interactions. We provide, here, a general overview of the current state of development of these different systems and their applications for advanced live cell imaging and biosensing and discuss potential future directions.
Collapse
Affiliation(s)
- Arnaud Gautier
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France.,Institut Universitaire de France, 75005 Paris, France
| |
Collapse
|
9
|
Gutierrez MG, Enninga J. Intracellular niche switching as host subversion strategy of bacterial pathogens. Curr Opin Cell Biol 2022; 76:102081. [PMID: 35487154 DOI: 10.1016/j.ceb.2022.102081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 11/03/2022]
Abstract
Numerous bacterial pathogens "confine" themselves within host cells with an intracellular localization as main or exclusive niche. Many of them switch dynamically between a membrane-bound or cytosolic lifestyle. This requires either membrane damage and/or repair of the bacterial-containing compartment. Niche switching has profound consequences on how the host cell recognizes the pathogens in time and space for elimination. Moreover, niche switching impacts how bacteria communicate with host cells to obtain nutrients, and it affects the accessibility to antibiotics. Understanding the local environments and cellular phenotypes that lead to niche switching is critical for developing new host-targeted antimicrobial strategies, and has the potential to shed light into fundamental cellular processes.
Collapse
Affiliation(s)
- Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Jost Enninga
- Dynamics of Host-Pathogen Interactions Unit and UMR3691 CNRS, Institut Pasteur, Paris, France; Université de Paris, Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
10
|
Petit TJ, Lebreton A. Adaptations of intracellular bacteria to vacuolar or cytosolic niches. Trends Microbiol 2022; 30:736-748. [DOI: 10.1016/j.tim.2022.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/28/2022]
|
11
|
Autotrophic lactate production from H2 + CO2 using recombinant and fluorescent FAST-tagged Acetobacterium woodii strains. Appl Microbiol Biotechnol 2022; 106:1447-1458. [PMID: 35092454 PMCID: PMC8882112 DOI: 10.1007/s00253-022-11770-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
Abstract
AbstractLactate has various uses as industrial platform chemical, poly-lactic acid precursor or feedstock for anaerobic co-cultivations. The aim of this study was to construct and characterise Acetobacterium woodii strains capable of autotrophic lactate production. Therefore, the lctBCD genes, encoding the native Lct dehydrogenase complex, responsible for lactate consumption, were knocked out. Subsequently, a gene encoding a d-lactate dehydrogenase (LDHD) originating from Leuconostoc mesenteroides was expressed in A. woodii, either under the control of the anhydrotetracycline-inducible promoter Ptet or under the lactose-inducible promoter PbgaL. Moreover, LDHD was N-terminally fused to the oxygen-independent fluorescence-activating and absorption-shifting tag (FAST) and expressed in respective A. woodii strains. Cells that produced the LDHD fusion protein were capable of lactate production of up to 18.8 mM in autotrophic batch experiments using H2 + CO2 as energy and carbon source. Furthermore, cells showed a clear and bright fluorescence during exponential growth, as well as in the stationary phase after induction, mediated by the N-terminal FAST. Flow cytometry at the single-cell level revealed phenotypic heterogeneities for cells expressing the FAST-tagged LDHD fusion protein. This study shows that FAST provides a new reporter tool to quickly analyze gene expression over the course of growth experiments of A. woodii. Consequently, fluorescence-based reporters allow for faster and more targeted optimization of production strains.Key points
•Autotrophic lactate production was achieved with A. woodii.
•FAST functions as fluorescent marker protein in A. woodii.
•Fluorescence measurements on single-cell level revealed population heterogeneity.
Collapse
|
12
|
Recent Advancements in Tracking Bacterial Effector Protein Translocation. Microorganisms 2022; 10:microorganisms10020260. [PMID: 35208715 PMCID: PMC8876096 DOI: 10.3390/microorganisms10020260] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022] Open
Abstract
Bacteria-host interactions are characterized by the delivery of bacterial virulence factors, i.e., effectors, into host cells where they counteract host immunity and exploit host responses allowing bacterial survival and spreading. These effectors are translocated into host cells by means of dedicated secretion systems such as the type 3 secretion system (T3SS). A comprehensive understanding of effector translocation in a spatio-temporal manner is of critical importance to gain insights into an effector’s mode of action. Various approaches have been developed to understand timing and order of effector translocation, quantities of translocated effectors and their subcellular localization upon translocation into host cells. Recently, the existing toolset has been expanded by newly developed state-of-the art methods to monitor bacterial effector translocation and dynamics. In this review, we elaborate on reported methods and discuss recent advances and shortcomings in this area of tracking bacterial effector translocation.
Collapse
|
13
|
Tran TT, Mathmann CD, Gatica-Andrades M, Rollo RF, Oelker M, Ljungberg JK, Nguyen TTK, Zamoshnikova A, Kummari LK, Wyer OJK, Irvine KM, Melo-Bolívar J, Gross A, Brown D, Mak JYW, Fairlie DP, Hansford KA, Cooper MA, Giri R, Schreiber V, Joseph SR, Simpson F, Barnett TC, Johansson J, Dankers W, Harris J, Wells TJ, Kapetanovic R, Sweet MJ, Latomanski EA, Newton HJ, Guérillot RJR, Hachani A, Stinear TP, Ong SY, Chandran Y, Hartland EL, Kobe B, Stow JL, Sauer-Eriksson AE, Begun J, Kling JC, Blumenthal A. Inhibition of the master regulator of Listeria monocytogenes virulence enables bacterial clearance from spacious replication vacuoles in infected macrophages. PLoS Pathog 2022; 18:e1010166. [PMID: 35007292 PMCID: PMC8746789 DOI: 10.1371/journal.ppat.1010166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/01/2021] [Indexed: 02/04/2023] Open
Abstract
A hallmark of Listeria (L.) monocytogenes pathogenesis is bacterial escape from maturing entry vacuoles, which is required for rapid bacterial replication in the host cell cytoplasm and cell-to-cell spread. The bacterial transcriptional activator PrfA controls expression of key virulence factors that enable exploitation of this intracellular niche. The transcriptional activity of PrfA within infected host cells is controlled by allosteric coactivation. Inhibitory occupation of the coactivator site has been shown to impair PrfA functions, but consequences of PrfA inhibition for L. monocytogenes infection and pathogenesis are unknown. Here we report the crystal structure of PrfA with a small molecule inhibitor occupying the coactivator site at 2.0 Å resolution. Using molecular imaging and infection studies in macrophages, we demonstrate that PrfA inhibition prevents the vacuolar escape of L. monocytogenes and enables extensive bacterial replication inside spacious vacuoles. In contrast to previously described spacious Listeria-containing vacuoles, which have been implicated in supporting chronic infection, PrfA inhibition facilitated progressive clearance of intracellular L. monocytogenes from spacious vacuoles through lysosomal degradation. Thus, inhibitory occupation of the PrfA coactivator site facilitates formation of a transient intravacuolar L. monocytogenes replication niche that licenses macrophages to effectively eliminate intracellular bacteria. Our findings encourage further exploration of PrfA as a potential target for antimicrobials and highlight that intra-vacuolar residence of L. monocytogenes in macrophages is not inevitably tied to bacterial persistence.
Collapse
Affiliation(s)
- Thao Thanh Tran
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | | | | | - Rachel F. Rollo
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | | | | | - Tam T. K. Nguyen
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | | | - Lalith K. Kummari
- The University of Queensland School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Orry J. K. Wyer
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | - Katharine M. Irvine
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | - Annette Gross
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | - Darren Brown
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jeffrey Y. W. Mak
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Karl A. Hansford
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Rabina Giri
- Mater Research Institute – The University of Queensland, Brisbane, Australia
| | - Veronika Schreiber
- Mater Research Institute – The University of Queensland, Brisbane, Australia
| | - Shannon R. Joseph
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | - Fiona Simpson
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | - Timothy C. Barnett
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, Australia
| | | | - Wendy Dankers
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Australia
| | - James Harris
- Department of Medicine, School of Clinical Sciences at Monash Health, Faculty of Medicine, Nursing & Health Sciences, Monash University, Clayton, Australia
| | - Timothy J. Wells
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Matthew J. Sweet
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Eleanor A. Latomanski
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Hayley J. Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Romain J. R. Guérillot
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sze Ying Ong
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Melbourne, Australia
| | - Yogeswari Chandran
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Melbourne, Australia
| | - Elizabeth L. Hartland
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research and Department of Molecular and Translational Science, Monash University, Melbourne, Australia
| | - Bostjan Kobe
- The University of Queensland School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, Brisbane, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Jennifer L. Stow
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | | | - Jakob Begun
- Mater Research Institute – The University of Queensland, Brisbane, Australia
| | - Jessica C. Kling
- The University of Queensland Diamantina Institute, Brisbane, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, Brisbane, Australia
- * E-mail:
| |
Collapse
|
14
|
El Hajji L, Benaissa H, Gautier A. Isolating and Engineering Fluorescence-Activating Proteins Using Yeast Surface Display. Methods Mol Biol 2022; 2491:593-626. [PMID: 35482206 DOI: 10.1007/978-1-0716-2285-8_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This protocol describes the workflow to isolate and engineer fluorescence-activating proteins by yeast surface display. Fluorescence-activating proteins are an emerging class of fluorescent chemogenetic reporters for monitoring gene expression and protein localization in living cells and organisms. They become fluorescent upon binding exogenously applied fluorogenic organic dyes. Efficient fluorescence-activating proteins can be selected from yeast-displayed libraries by iterative rounds of fluorescence-activated cell sorting. The overall strategy is described, as well as a strategy for characterizing the affinity and spectroscopic properties of the selected clones.
Collapse
Affiliation(s)
- Lina El Hajji
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des biomolécules, LBM, Paris, France
| | - Hela Benaissa
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des biomolécules, LBM, Paris, France
| | - Arnaud Gautier
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des biomolécules, LBM, Paris, France.
- Institut Universitaire de, Paris, France.
| |
Collapse
|
15
|
Bagatella S, Tavares-Gomes L, Oevermann A. Listeria monocytogenes at the interface between ruminants and humans: A comparative pathology and pathogenesis review. Vet Pathol 2021; 59:186-210. [PMID: 34856818 DOI: 10.1177/03009858211052659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The bacterium Listeria monocytogenes (Lm) is widely distributed in the environment as a saprophyte, but may turn into a lethal intracellular pathogen upon ingestion. Invasive infections occur in numerous species worldwide, but most commonly in humans and farmed ruminants, and manifest as distinct forms. Of those, neuroinfection is remarkably threatening due to its high mortality. Lm is widely studied not only as a pathogen but also as an essential model for intracellular infections and host-pathogen interactions. Many aspects of its ecology and pathogenesis, however, remain unclear and are rarely addressed in its natural hosts. This review highlights the heterogeneity and adaptability of Lm by summarizing its association with the environment, farm animals, and disease. It also provides current knowledge on key features of the pathology and (molecular) pathogenesis of various listeriosis forms in naturally susceptible species with a special focus on ruminants and on the neuroinvasive form of the disease. Moreover, knowledge gaps on pathomechanisms of listerial infections and relevant unexplored topics in Lm pathogenesis research are highlighted.
Collapse
Affiliation(s)
- Stefano Bagatella
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Leticia Tavares-Gomes
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
16
|
Quereda JJ, Morón-García A, Palacios-Gorba C, Dessaux C, García-del Portillo F, Pucciarelli MG, Ortega AD. Pathogenicity and virulence of Listeria monocytogenes: A trip from environmental to medical microbiology. Virulence 2021; 12:2509-2545. [PMID: 34612177 PMCID: PMC8496543 DOI: 10.1080/21505594.2021.1975526] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
Listeria monocytogenes is a saprophytic gram-positive bacterium, and an opportunistic foodborne pathogen that can produce listeriosis in humans and animals. It has evolved an exceptional ability to adapt to stress conditions encountered in different environments, resulting in a ubiquitous distribution. Because some food preservation methods and disinfection protocols in food-processing environments cannot efficiently prevent contaminations, L. monocytogenes constitutes a threat to human health and a challenge to food safety. In the host, Listeria colonizes the gastrointestinal tract, crosses the intestinal barrier, and disseminates through the blood to target organs. In immunocompromised individuals, the elderly, and pregnant women, the pathogen can cross the blood-brain and placental barriers, leading to neurolisteriosis and materno-fetal listeriosis. Molecular and cell biology studies of infection have proven L. monocytogenes to be a versatile pathogen that deploys unique strategies to invade different cell types, survive and move inside the eukaryotic host cell, and spread from cell to cell. Here, we present the multifaceted Listeria life cycle from a comprehensive perspective. We discuss genetic features of pathogenic Listeria species, analyze factors involved in food contamination, and review bacterial strategies to tolerate stresses encountered both during food processing and along the host's gastrointestinal tract. Then we dissect host-pathogen interactions underlying listerial pathogenesis in mammals from a cell biology and systemic point of view. Finally, we summarize the epidemiology, pathophysiology, and clinical features of listeriosis in humans and animals. This work aims to gather information from different fields crucial for a comprehensive understanding of the pathogenesis of L. monocytogenes.
Collapse
Affiliation(s)
- Juan J. Quereda
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Alvaro Morón-García
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
| | - Carla Palacios-Gorba
- Departamento de Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad Cardenal Herrera-CEU, CEU Universities. Valencia, Spain
| | - Charlotte Dessaux
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - Francisco García-del Portillo
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| | - M. Graciela Pucciarelli
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Biología Molecular ‘Severo Ochoa’. Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid. Madrid, Spain
| | - Alvaro D. Ortega
- Departamento de Biología Celular. Facultad de Ciencias Biológicas, Universidad Complutense de Madrid. Madrid, Spain
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CNB)- Consejo Superior De Investigaciones Científicas (CSIC), Madrid, Spain
| |
Collapse
|
17
|
Benaissa H, Ounoughi K, Aujard I, Fischer E, Goïame R, Nguyen J, Tebo AG, Li C, Le Saux T, Bertolin G, Tramier M, Danglot L, Pietrancosta N, Morin X, Jullien L, Gautier A. Engineering of a fluorescent chemogenetic reporter with tunable color for advanced live-cell imaging. Nat Commun 2021; 12:6989. [PMID: 34848727 PMCID: PMC8633346 DOI: 10.1038/s41467-021-27334-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/12/2021] [Indexed: 11/09/2022] Open
Abstract
Biocompatible fluorescent reporters with spectral properties spanning the entire visible spectrum are indispensable tools for imaging the biochemistry of living cells and organisms in real time. Here, we report the engineering of a fluorescent chemogenetic reporter with tunable optical and spectral properties. A collection of fluorogenic chromophores with various electronic properties enables to generate bimolecular fluorescent assemblies that cover the visible spectrum from blue to red using a single protein tag engineered and optimized by directed evolution and rational design. The ability to tune the fluorescence color and properties through simple molecular modulation provides a broad experimental versatility for imaging proteins in live cells, including neurons, and in multicellular organisms, and opens avenues for optimizing Förster resonance energy transfer (FRET) biosensors in live cells. The ability to tune the spectral properties and fluorescence performance enables furthermore to match the specifications and requirements of advanced super-resolution imaging techniques.
Collapse
Affiliation(s)
- Hela Benaissa
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005, Paris, France
| | - Karim Ounoughi
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005, Paris, France
| | - Isabelle Aujard
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005, Paris, France
| | - Evelyne Fischer
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Rosette Goïame
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Julie Nguyen
- Université de Paris, NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
| | - Alison G Tebo
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005, Paris, France
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Chenge Li
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005, Paris, France
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Thomas Le Saux
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005, Paris, France
| | - Giulia Bertolin
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Institute of Genetics and Development of Rennes, Unité Mixte de Recherche (UMR) 6290, F-35000, Rennes, France
| | - Marc Tramier
- University of Rennes, Centre National de la Recherche Scientifique (CNRS), (IGDR) Institute of Genetics and Development of Rennes, Unité Mixte de Recherche (UMR) 6290, F-35000, Rennes, France
| | - Lydia Danglot
- Université de Paris, NeurImag Imaging Facility, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014, Paris, France
- Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, Membrane Traffic in Healthy & Diseased Brain, 75014, Paris, France
| | - Nicolas Pietrancosta
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, Paris, France
| | - Xavier Morin
- Institut de Biologie de l'ENS (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSL, 75005, Paris, France
| | - Ludovic Jullien
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005, Paris, France
| | - Arnaud Gautier
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS, Laboratoire des Biomolécules, LBM, 75005, Paris, France.
- PASTEUR, Department of Chemistry, École Normale Supérieure, Université PSL, Sorbonne Université, CNRS, 75005, Paris, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
18
|
Anaerobic fluorescent reporters for cell identification, microbial cell biology and high-throughput screening of microbiota and genomic libraries. Curr Opin Biotechnol 2021; 71:151-163. [PMID: 34375813 DOI: 10.1016/j.copbio.2021.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/08/2021] [Indexed: 11/23/2022]
Abstract
The lack of real-time reporters in obligate anaerobes has limited studies in gene expression, promoter characterization, library screening, population dynamics, and cell biology in these organisms. While the use of enzymatic, colorimetric, and luminescent reporters has been reported, the need for reliable anaerobic fluorescent proteins is widely acknowledged. Recently, the fluorescent proteins HaloTag, SNAP-tag and FAST have been established as reliable reporters in Clostridium spp., thus suggesting that these reporters can be adopted widely for many obligate anaerobes. With a multitude of labeling options, these anaerobic fluorescent proteins hold a great potential for screening promoters, terminators, and RBS sites, tracking population dynamics in complex multi-species co-cultures, such as microbiomes, screening libraries, and in cell biology studies of protein localization and interactions using high-resolution microscopy.
Collapse
|
19
|
The molecular mechanisms of listeriolysin O-induced lipid membrane damage. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183604. [PMID: 33722646 DOI: 10.1016/j.bbamem.2021.183604] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/22/2022]
Abstract
Listeria monocytogenes is an intracellular food-borne pathogen that causes listeriosis, a severe and potentially life-threatening disease. Listeria uses a number of virulence factors to proliferate and spread to various cells and tissues. In this process, three bacterial virulence factors, the pore-forming protein listeriolysin O and phospholipases PlcA and PlcB, play a crucial role. Listeriolysin O belongs to a family of cholesterol-dependent cytolysins that are mostly expressed by gram-positive bacteria. Its unique structural features in an otherwise conserved three-dimensional fold, such as the acidic triad and proline-glutamate-serine-threonine-like sequence, enable the regulation of its intracellular activity as well as distinct extracellular functions. The stability of listeriolysin O is pH- and temperature-dependent, and this provides another layer of control of its activity in cells. Moreover, many recent studies have demonstrated a unique mechanism of pore formation by listeriolysin O, i.e., the formation of arc-shaped oligomers that can subsequently fuse to form membrane defects of various shapes and sizes. During listerial invasion of host cells, these membrane defects can disrupt phagosome membranes, allowing bacteria to escape into the cytosol and rapidly multiply. The activity of listeriolysin O is profoundly dependent on the amount and accessibility of cholesterol in the lipid membrane, which can be modulated by the phospholipase PlcB. All these prominent features of listeriolysin O play a role during different stages of the L. monocytogenes life cycle by promoting the proliferation of the pathogen while mitigating excessive damage to its replicative niche in the cytosol of the host cell.
Collapse
|
20
|
Bajunaid W, Haidar-Ahmad N, Kottarampatel AH, Ourida Manigat F, Silué N, F. Tchagang C, Tomaro K, Campbell-Valois FX. The T3SS of Shigella: Expression, Structure, Function, and Role in Vacuole Escape. Microorganisms 2020; 8:microorganisms8121933. [PMID: 33291504 PMCID: PMC7762205 DOI: 10.3390/microorganisms8121933] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
Shigella spp. are one of the leading causes of infectious diarrheal diseases. They are Escherichia coli pathovars that are characterized by the harboring of a large plasmid that encodes most virulence genes, including a type III secretion system (T3SS). The archetypal element of the T3SS is the injectisome, a syringe-like nanomachine composed of approximately 20 proteins, spanning both bacterial membranes and the cell wall, and topped with a needle. Upon contact of the tip of the needle with the plasma membrane, the injectisome secretes its protein substrates into host cells. Some of these substrates act as translocators or effectors whose functions are key to the invasion of the cytosol and the cell-to-cell spread characterizing the lifestyle of Shigella spp. Here, we review the structure, assembly, function, and methods to measure the activity of the injectisome with a focus on Shigella, but complemented with data from other T3SS if required. We also present the regulatory cascade that controls the expression of T3SS genes in Shigella. Finally, we describe the function of translocators and effectors during cell-to-cell spread, particularly during escape from the vacuole, a key element of Shigella’s pathogenesis that has yet to reveal all of its secrets.
Collapse
Affiliation(s)
- Waad Bajunaid
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Nathaline Haidar-Ahmad
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Anwer Hasil Kottarampatel
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - France Ourida Manigat
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Navoun Silué
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Caetanie F. Tchagang
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Kyle Tomaro
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - François-Xavier Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (W.B.); (N.H.-A.); (A.H.K.); (F.O.M.); (N.S.); (C.F.T.); (K.T.)
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Correspondence:
| |
Collapse
|